MAIN RESULT

Let $X_{j}, j=1,2, \ldots, n$ be independent integral-valued random variables. Let

$$
s_{n}=x_{1}+x_{2}+\ldots+x_{n}
$$

In this chapter, we obtain approximations for $P\left(k_{1} \leq S_{n} \leq k_{2}\right)$ in term of normal probabilities with certain types of correction terms. Since, by Theorem 2.1, $P\left(\mathrm{k}_{1} \leq \mathrm{S}_{\mathrm{n}} \leq \mathrm{k}_{2}\right)$ can be written in terms of

$$
R(T)=\frac{1}{2 \pi} \int_{0}^{\pi} \frac{\left|\varphi_{S}(t)\right| \sin \left(T \sqrt{B_{n}} t-\alpha(t)\right) d t}{\sin \frac{t}{2}},
$$

so it suffices to obtain approximations for $R(T)$. This is done in Theorem 3.11.

Lemma 3.1. Let X be a random variable. If X has moment of order p where p is a nonnegative integer. Then the following holds :
(3.1.1) $\ldots \int_{-\infty}^{\infty} \int_{-\infty}^{\infty}(x-y)^{p} d F_{X}(x) d F_{X}(y)=\sum_{m=0}^{p}(-1)^{p-m}(\underset{m}{p}) E\left(x^{m}\right) E\left(x^{p-m}\right)$.

Proof

$$
\begin{aligned}
\int_{-\infty}^{\infty} \int_{-\infty}^{\infty}(x-y)^{p} d F_{X}(x) d F_{X}(y) & =\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \sum_{m=0}^{p}\binom{p}{m} x^{m}(-y)^{p-m} d F_{X}(x) d F_{X}(y), \\
& =\sum_{m=0}^{p}(-1)^{p-m}\left(p_{m}^{p}\right) \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x^{m} y^{p-m} d F_{X}(x) d F_{X}(y),
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{m=0}^{p}(-1)^{p-m}\left(\frac{p}{m}\right) \int_{-\infty}^{\infty} x^{m} d F_{X}(x) \int_{-\infty}^{\infty} y^{p-m} d F_{X}(y), \\
& =\sum_{m=0}^{p}(-1)^{p-m}\left(\frac{p}{m}\right) E\left(x^{m}\right) E\left(x^{p-m}\right) .
\end{aligned}
$$

Lemma 3.2. Let X be a random variable with finite variance. Then the following hold :
$(3.2: 1) \ldots \int_{-\infty}^{\infty} \int_{-\infty}^{\infty}(x-y)^{2} d F_{x}(x) d F_{X}(y)=2 \sigma^{2}(x)$.
and
(3.2.2) ... $2 \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \sin ^{2}\left((x-y) \frac{t}{2}\right) d F_{x}(x) d F_{x}(y) \leq t^{2} \sigma^{2}(x)$
for $t \in \mathbb{R}$.

Proof : By taking $p=2$ in (3.1.1), we have

$$
\begin{aligned}
\int_{-\infty}^{\infty} \int_{-\infty}^{\infty}(x-y)^{2} d F_{X}(x) d F_{X}(y) & =\sum_{m=0}^{2}(-1)^{2-m}\left({ }_{m}^{2}\right) E\left(X^{m}\right) E\left(x^{2-m}\right) \\
& =2 \sigma^{2}(x)
\end{aligned}
$$

ie. (3.2.1) holds.

Since $|\sin \Theta| \leq|\theta|$, we have

$$
0 \leq \sin ^{2}\left((x-y) \frac{t}{2}\right) \leq(x-y)^{2} \frac{t^{2}}{4}
$$

Hence

$$
\begin{aligned}
2 \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \sin ^{2}\left((x-y) \frac{t}{2}\right) d F_{X}(x) d F_{X}(y) & \leq \frac{t^{2}}{2} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty}(x-y)^{2} d F_{X}(x) d F_{x}(y) \\
& =t^{2} \sigma^{2}(x)
\end{aligned}
$$

Lemma 3.3. Let X be a random variable with finite variance. If $t^{2}<\frac{1}{\sigma^{2}(x)+1}$, then
(3.3.1) ... $\log \left|\varphi_{X}(t)\right|=\frac{-1}{2} \sum_{p=1}^{\infty} \frac{2}{p}_{p}^{p}\left(\int_{-\infty}^{\infty} \int_{\infty}^{\infty} \sin ^{2}\left((x-y) \frac{t}{2}\right) d F_{X}(x) d F_{X}(y)\right)^{p}$.

Proof : Since $\left|\varphi_{X}(t)\right|^{2}$ is real and

$$
\begin{aligned}
\left|\varphi_{X}(t)\right|^{2} & =\varphi_{X}(t) \overline{\varphi_{X}(t)}, \\
& =\int_{-\infty}^{\infty} e^{i t x} d F_{X}(x) \int_{-\infty}^{\infty} e^{-i t y} d F_{X}(y), \\
& =\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{i t(x-y)} d F_{X}(x) d F_{X}(y), \\
& =\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \cos ((x-y) t) d F_{X}(x) d F_{X}(y)+i \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \sin ((x-y) t) d F_{X}(x) d F_{X}(y)
\end{aligned}
$$

so we have

$$
\begin{aligned}
\left|\varphi_{X}(t)\right|^{2} & =\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \cos ((x-y) t) d F_{X}(x) d F_{X}(y) \\
& =\int_{-\infty}^{\infty} \int_{-\infty}^{\infty}\left(1-2 \sin ^{2}\left((x-y) \frac{t}{2}\right)\right) d F_{X}(x) d F_{X}(y) \\
& =\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} d F_{X}(x) d F_{X}(y)-2 \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \sin ^{2}\left((x-y) \frac{t}{2}\right) d F_{X}(x) d F_{X}(y) \\
& =1-2 \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \sin ^{2}\left((x-y) \frac{t}{2}\right) d F_{X}(x) d F_{X}(y)
\end{aligned}
$$

Since $t^{2}<\frac{1}{\sigma^{2}(x)+1}$, by $(3.2: 2)$, we have
$0 \leq 2 \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \sin ^{2}\left((x-y) \frac{t}{2}\right) d F_{X}(x) d F_{X}(y)<1$. Hence $\log \left|\varphi_{X}(t)\right|$ is meaningful
and

$$
\begin{aligned}
\log \left|\varphi_{X}(t)\right| & =\frac{1}{2} \log \left(1-2 \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \sin ^{2}\left((x-y) \frac{t}{2}\right) d F_{X}(x) d F_{X}(y)\right), \\
& =-\frac{1}{2} \sum_{p=1}^{\infty} \frac{1}{p}\left(2 \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \sin ^{2}\left((x-y) \frac{t}{2}\right) d F_{X}(x) d F_{X}(y)\right)^{p}, \\
& =-\frac{1}{2} \sum_{p=1}^{\infty} \frac{2}{2}_{p}^{p}\left(\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \sin ^{2}\left((x-y) \frac{t}{2}\right) d F_{X}(x) d F_{X}(y)\right)^{p},
\end{aligned}
$$

For convenience, in dealing with a certain type of polynomials and their derivatives, we introduce the following notation.

Notation. For any polynomial function $p(t)$ and any positive integer i, we use $p_{[i]}$ to denote the polynomial function defined by

$$
p_{[i]}(t)=(p(t))^{i}
$$

Lemma 3.4. Let $f(t), g(t)$ and $h(t)$ be polynomial functions defined by

$$
\begin{aligned}
& f(t)=a_{o} t^{j}+a_{1} t^{j+1}+\ldots+a_{p} t^{j+p}+a_{p+1} t^{j+p+1} \\
& g(t)=a_{o} t^{j}+a_{1} t^{j+1}+\ldots+a_{p} t^{j+p}+b^{j+p+1}
\end{aligned}
$$

and

$$
h(t)=\left|a_{o}\right| t^{j}+\left|a_{1}\right| t^{j+1}+\ldots+\left|a_{p}\right| t^{j+p}|b| t^{j+p+1}
$$

where $j \geq 0$ and $p \geq 0$.

Assume that $\left|a_{p+1}\right| \leq|b|$, then for any positive integers $i ; q_{0}$
such that $i j \leq q_{0}<i j+p+1$, we have
(3.4.1) ... $\sum_{q=0}^{q} \frac{1}{q!} \underset{[i]}{(q)}(0) t^{q}-\sum_{q=q_{0}+1}^{i(j+p+1)} \frac{1}{q!} \underset{[i]}{(q)} t^{q_{0}+1} \leq f(t)$
for all $t \in(0,1)$ and

for all $t \in(0,1)$.

Proof : Let i and q_{0} be any posiさive integers such that $i j \leq q_{0}<i j+p+1$.

Note that $f(t), g(t)$, and $h(t)$ are polynomials, they can be express as their Taylor's polynomials.. In doing so, we have

$$
\begin{aligned}
& f_{[i]}^{(t)}=\frac{i(j+p+1)}{\sum_{q=0}} \frac{1}{q!} f_{[i]}^{(q)} t^{q}, \\
& \underset{[i]}{g(t)}= \\
& \sum_{q=0}^{i(j+p+1)} \frac{1}{q!} g_{[i]}^{(q)}(0) t^{q},
\end{aligned}
$$

and

$$
h_{[i]}^{(t)}=\sum_{q=0}^{i(j+p+1)} \frac{1}{q!} h_{[i]}^{(q)} t^{q}
$$

On the other hand, by using multinomial expansions, we have

$$
\begin{aligned}
& (3.4 .3) \ldots f_{[i]}^{(t)}=\sum_{\left.n_{d}+n_{1}+\ldots+n_{p+1}=i^{\left(n_{0}, n_{1}, \ldots, n_{p+1}\right.}\right)}^{i} a_{0}^{n_{0}} a_{1}^{n_{1}} \ldots \\
& a_{p+1}^{n} p+1\left(t^{j}\right)^{n_{o}}\left(t^{j+1}\right)^{n_{1}} \ldots\left(t^{j+p+1}\right)^{n_{p+1}},
\end{aligned}
$$

$$
\begin{aligned}
&(3.4 .4) \ldots g_{[i]}(t)={ }_{n_{0}+n_{1}+\ldots+n_{p+1}=i}\left(n_{0}, n_{1}, \ldots, n_{p+1}\right) a_{0}^{n_{0} a_{1}^{n_{1}} \ldots} \\
& a_{p}^{n_{p}}{ }^{n} n^{n} \cdot{ }^{n}+1 \\
&\left.(t)^{j}\right)^{n_{o}}\left(t^{j+1},\right)^{n_{1}} \ldots\left(t^{j+p+1}\right)^{n} n_{p+1}
\end{aligned}
$$

$$
\begin{aligned}
& \text { and }
\end{aligned}
$$

$$
\begin{aligned}
& \left|a_{p}\right|^{n_{p}}|b|^{n_{p+1}}\left(t^{j}\right)^{n_{i}}\left(t^{j+1}\right)^{n_{1}} \ldots\left(t^{j+p+1}\right)^{n_{p+1}} .
\end{aligned}
$$

From (3.4.3) and (3.4.4), we see that $f(t)$ and $g(t)$ contain only [i] [i]
terms of degree larger than or equal to ij. So we have
(q) (q)
$\underset{[i]}{f(0)} \underset{[i]}{g}(0)=0$ for $0 \leq q \leq i j-1$. Therefore

$$
\sum_{q=0}^{i j-1} \frac{1}{q!} \underset{[i]}{(q)}(0) t^{q}=\sum_{q=0}^{i j-1} \frac{1}{q!}{\underset{[i]}{(q)}(0) t^{q} .}^{(i)}
$$

From (3.4.3), we observe that any term of $f(t)$ must be of the form [i]

$$
\binom{i}{n_{0}, n_{1}, \ldots, n_{p+1}} a_{0} a_{1} \ldots a_{p+1} t{ }_{p} n_{1}+\left(n_{1}+2 n_{2}+\ldots+(p+1) n_{p+1}\right)
$$

for some nonnegative integers $n_{0}, \ldots, n_{p}, n_{p+1}$ such that $n_{0}+n_{1}+\ldots+n_{p+1}=i$. Therefore $n_{p+1}=0$ for any term of $f(t)$ of degree smaller than $i j+p+1$. So the term of $\underset{[i]}{f(t)}$ of degree smaller than $i j+p+1$ must be of the form

$$
\left(n_{0}, n_{1}, \ldots, n_{p}\right) a_{0}^{n_{0}} a_{1}^{n_{1}} \ldots a_{p}^{n_{p}} t .
$$

Similarly, we can show that for the term of $g[t]$ of degree smaller than $i j+p+1$ must be of the form

$$
\left(n_{o}, n_{1}, \ldots, n_{p}\right) a_{o}^{n_{o}} a_{1}^{n_{1}} \ldots a_{p}^{n_{p}} t^{i j+\left(n_{1}+2 n_{2}+\ldots+p n_{p}\right)}
$$

Hence for any $q<i j+p+1$, terms of degree q oficf ${ }_{[i]}(t)$ and $g_{[i]}(t)$ are equal.

Since $q_{0}<i j+p+1$, we have
(3.4.6) ... $\sum_{q=0}^{q_{0}} \frac{1}{q!} \frac{(q)}{[i]} t^{q}=\sum_{q=0}^{\sum_{0}} \frac{1}{q!} g_{[i]}^{(q)}(0) t^{q}$.

From (3.4.3), (3.4.5) and $t>0$, we observe that for any nonnegative integer q, the term of degree q of $f(t)$ must be less than or equal to: [i] the term of degree q of $h_{[i]}(t)$ and must be larger than or equal to the term of degree q of $-h_{[i]}(t)$.

Hence

$$
\begin{aligned}
& \text { (3.4.7) } \ldots \sum_{q=q_{i}+1}^{i(j+p+1)} \frac{1}{q!} \underset{[i]}{h(q)} t^{q} \leq \sum_{q=q_{0}+1}^{i(j+p+1)} \frac{1}{q!} \underset{[i]}{f(0)} t^{q} \\
& \leq \sum_{q=q_{0}^{i(j+p+1)}} \frac{1}{q!} \underset{[i]}{h(0) t^{q}}
\end{aligned}
$$

From (3.4.6) and (3.4.7), we have

$$
\begin{aligned}
& \sum_{q=0}^{q} \frac{1}{q!} \underset{[i]}{(q)}(0) t^{q}-\sum_{\sum_{q=q_{0}}^{i(j+1}}^{i(p+1)} \frac{1}{q!} \underset{[i]}{(q)}(0) t^{q} \leq \underset{[i]}{f}(t) \leq \sum_{q=0}^{q} \frac{1}{q!} \underset{[i]}{(q)}(0) t^{q} \\
& +\underset{q=q_{0}+1}{i(j+p+1)} \frac{1}{q!} \underset{[i]}{h(0) t^{q}} .
\end{aligned}
$$

Since $0<t<1$ and $h(t) \geq 0$, so we have (3.4.1) and (3.4.2). [i]
\#

Lemma 3.5. Let X be a random variable with moment of order $2 p_{o}+2$ where p_{0} is a positive integer. Then there exist constants $\bar{c}_{1}(x)$, $\bar{c}_{2}(x), \ldots, \bar{c}_{p_{\theta}+1}(X)$ such that
i) $\sum_{m=1}^{p_{o}} \bar{c}_{m}(x) t^{2 m}-\bar{c}_{p_{0}+1}(x) t^{2 p_{0}+2} \leq-\frac{1}{2} \sum_{p=1}^{p_{0}} \frac{2^{p}}{p}\left[\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \sin ^{2}\left((x-y) \frac{t}{2}\right)\right.$

$$
\left.d F_{X}(x) d F_{X}(y)\right]^{p} \leq \sum_{m=1}^{p_{0}} \bar{c}_{m}(x) t^{2 m}+\bar{c}_{p_{0}+1}(x) t^{2 p_{0}+2}
$$

for all $t \varepsilon(0,1)$ and
ii) $\bar{c}_{p_{0}+1}(\mathrm{x}) \geq 0$.

Proof : For $p=1,2, \ldots, p_{0}+1$, let

$$
\begin{aligned}
& g_{p}(x)=\sum_{m=0}^{2 p}\left(\frac{2 p}{m}\right)(-1)^{2 p-m} E\left(x^{m}\right) E\left(x^{2 p-m}\right), \\
& \tilde{H}_{X, p}(t)=\left[\sum_{m=1}^{p_{i}+1} \frac{(-1)^{m-1}}{2(2 m)!} g_{m}(x) t^{2 m}\right]^{p}
\end{aligned}
$$

and

$$
H_{x, p}(t)=\left[\sum_{m=1}^{p_{0}+1} \frac{1}{2(2 m)!} g_{m}(x) t^{2 m}\right]^{p}
$$

By using Taylor's formula for $\sin ^{2} \theta$, we have
$\sin ^{2}\left((x-y) \frac{t}{2}\right)=\sum_{m=1}^{p_{o}} \frac{(-1)^{m-1}}{2(2 m)!}(x-y)^{2 m} t^{2 m}+\frac{(-1)^{p_{0}}}{2\left(2 p_{0}+2\right)!}(x-y)^{2 p_{0}+2} \cos \left((x-y) t_{0}\right) t^{2 p_{0}+2}$,
for some t_{o}.

$$
\begin{aligned}
& \text { So, } \quad \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \sin ^{2}\left((x-y) \frac{t}{2}\right) d F_{x}(x) d F_{X}(y) \\
& =\int_{-\infty}^{\infty} \int_{-\infty}^{\infty}\left[\sum_{m=1}^{p} \frac{(-1)^{m-1}}{2(2 m)!}(x-y)^{2 m} t^{2 m}+\frac{(-1)^{p}}{2\left(2 p_{o}+2\right)!}(x-y)^{2 p_{o}+2} \cos \left((x-y) t_{o}\right) t^{2 p_{o}+2}\right] \\
& d F_{X}(x) d F_{X}(y), \\
& =\sum_{m=1}^{p_{0}} \frac{(-1)^{m-1}}{2(2 m)!} t^{2 m} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty}(x-y)^{2 m} d F_{x}(x) d F_{x}(y)+\frac{(-1)^{p_{0}}}{2\left(2 p_{0}+2\right)!} t^{2 p_{o}+2} \\
& \int_{-\infty}^{\infty} \int_{-\infty}^{\infty}(x-y)^{2 p_{0}+2} \cos ((x-y) t) d F(x) d F_{x}(y) \cdot
\end{aligned}
$$

$$
\begin{aligned}
& \text { (3.5.1) } \ldots \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \sin ^{2}\left((x-y) \frac{t}{2}\right) d F_{X}(x) d F_{X}(y)=\sum_{m=1}^{p_{o}} \frac{(-1)^{m-1}}{2(2 m)!} g_{m}(x) t^{2 m} \\
& +\frac{(-1)^{p} o_{t}}{2\left(2 p_{0}+2\right)!} 0_{0}^{2 p_{0}+2} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty}(x-y)^{2 p_{0}+2} \cos \left((x-y) t_{0}\right) d F_{X}(x) d F_{X}(y) . \\
& \text { Let } f(t)=\sum_{m=1}^{p} \frac{(-1)^{m-1}}{2(2 m)!} g_{m}(x) t^{2 m}+\frac{(-1)^{p_{o}}{ }_{t}{ }^{2 p_{o}+2}}{2\left(2 p_{o}+2\right)!} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty}(x-y)^{2 p_{o}+2} \\
& \cos \left((x-y) t_{0}\right) d F_{X}(x) d F_{X}(y), \\
& g(t):=\sum_{m=1}^{p_{o}} \frac{(-1)^{m-1}}{2(2 m)!} g_{m}(x) t^{2 m}+\frac{(-1)^{p_{0}}}{2\left(2 p_{0}+2\right)!} g_{p_{0}}+1(x) t^{2 p_{0}+2}
\end{aligned}
$$

and

$$
h(t)=\sum_{m=1}^{p_{0}+1} \frac{1}{2(2 m)!} g_{m}(x) t^{2 m}
$$

Since $g_{m}(X) \geq 0$ for $m=1,2, \ldots, p_{0}+1$ and

$$
\begin{aligned}
\left|\int_{-\infty}^{\infty} \int_{-\infty}^{\infty}(x-y)^{2 p_{0}+2} \cos \left((x-y) \frac{t}{2}\right) d F_{x}(x) d F_{X}(y)\right| & \leq \int_{-\infty}^{\infty} \int_{-\infty}^{\infty}(x-y)^{2 p_{0}+2} d F_{X}(x) d F_{X}(y) \\
& =g_{p_{0}+1}(x)
\end{aligned}
$$

by Lemma 3.4, we have, for each positive integer i,

$\leq \sum_{q=1}^{p_{0}} \frac{1}{(2 q)!} \underset{[i]}{(2 q)}(0) t^{2 q}+\sum_{\substack{i\left(p_{0}+1\right)}}^{\sum_{o+1}^{(2 q)}} \frac{1}{(2 q)!}[i] \quad t^{2 p_{i}+2}$

Observe that,

$$
\begin{aligned}
& g(t)=\tilde{H}_{X, p}^{\sim}(t), \\
& {[p]} \\
& h(t)=H_{X, p}(t)
\end{aligned}
$$

and by (3.5.1),

$$
f(t)=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \sin ^{2}\left((x-y) \frac{t}{2}\right) d F_{X}(x) d F_{X}(y)
$$

Hence we have

$$
\begin{aligned}
& \leq\left[\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \sin ^{2}\left((x-y) \frac{t}{2}\right) d F_{X}(x) d F_{x}(y)\right]^{p} \\
& \leq \sum_{o=1}^{p_{0}} \frac{1}{(2 q)!}{ }^{H_{x, p}}(2 q)(0) t^{2 q}+\left[\sum_{q=p_{0}+1}^{p\left(p_{0}+1\right)} \frac{1}{(2 q)!} H_{x, p}^{(2 q)}(0)\right] t^{2 p_{0}+2}
\end{aligned}
$$

$$
\begin{aligned}
& \sum_{q=1}^{p_{0}}\left(-\frac{1}{2} \sum_{p=1}^{p_{0}} \frac{2^{p}}{p(2 q)!} \tilde{H}_{X, p}^{(2 q)}(0)\right) t^{2 q}-\left[\sum_{p=1}^{p_{0}} \frac{p(p+1)}{\sum_{i}} \sum_{q=p_{0}+1}^{\sum_{2}^{p}} \underset{p(2 q)!}{(2 q)} H_{X,(}^{(0)}\right] t^{2 p_{O}+2} \\
& \leq-\frac{1}{2} \sum_{p=1}^{p} \frac{2^{p}}{p}\left[\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \sin ^{2}\left((x-y) \frac{t}{2}\right) d F_{X}(x) d F_{X}(y)\right]^{p}
\end{aligned}
$$

By choosing $\bar{c}_{q}(X), q=1,2, \ldots, p_{0}+1$ as follows:

$$
\begin{aligned}
& \bar{c}_{q}(x)=-\frac{1}{2} \sum_{p=1}^{p} \frac{2 p}{p(2 q)!} \tilde{H}_{x, 1}^{(2 q)}(0), q=1,2, \ldots, p_{i .}^{0}, \\
& \bar{c}_{p_{0}+1}(x)=\frac{1}{2} \sum_{p=1}^{p} \sum_{q=p+1}^{p} \frac{2^{p(p-1)}}{p(2 q)!} H_{X, p}^{(2 q)},
\end{aligned}
$$

we have
$\sum_{q=1}^{p} \bar{c}_{q}(x) t^{2 q}-\bar{c}_{p_{j}+1}(x) t^{2 p_{o}^{+2} \leq} \leq \frac{-1}{2} \sum_{p=1}^{p} \frac{2^{p}}{2}\left[\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \sin ^{2}\left((x-y) \frac{t}{2}\right) d F_{X}(x) d F_{X}(y)\right]^{p}$

$$
\leq \sum_{q=1}^{p_{o}} \bar{c}_{q}(x) t^{2 q}+\bar{c}_{p_{o}+1}(x) t^{2 p_{o}+2}
$$

and $\bar{c}_{p_{0}+1}(x) \geq 0$.

Lemma 3.6. Let X be a random variable with moment of order $2 p_{0}+2$ where p_{0} is a positive integer. Then there exist constants $c_{1}(X)$, $c_{2}(X), \ldots, c_{p_{i+1}}(X)$ such that
i) $\sum_{m=1}^{p_{o}} c_{m}(x) t^{2 m}-c_{p_{0}+1}(x) t^{2 p_{0}+2} \leq \log \left|\varphi_{X}(t)\right| \leq \sum_{m=1}^{p_{o}} c_{m}(x) t^{2 m}+c_{p_{0}+1}(x) t^{2 p_{o}+2}$
for $t^{2}<\frac{1}{2 \sigma^{2}(x)+1}$ and
ii) $\quad c_{1}(x)=-\frac{1}{2} \sigma^{2}(x)$.

Proof : Observe that

$$
\begin{aligned}
& -\frac{1}{2} \sum_{p=p_{0}+1}^{\infty} \frac{2^{p}}{p}\left[\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \sin ^{2}\left((x-y) \frac{t}{2}\right) d F_{x}(x) d F_{X}(y)\right]^{p} \\
& \geq-\frac{1}{2} \sum_{p=p_{0}+1}^{\infty}\left[2 \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \sin ^{2}\left((x-y) \frac{t}{2}\right) d F_{X}(x) d F_{x}(y)\right]^{p}, \\
& =-\frac{1}{2} \frac{\left[2 \int_{-\infty}^{\infty} \cdot \int_{-\infty}^{\infty} \sin ^{2}\left((x-y) \frac{t}{2}\right) d F_{X}(x) d F_{X}(y)\right]^{p_{0}+1}}{1-2 \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \sin ^{2}\left((x-y) \frac{t}{2}\right) d F_{X}(x) d F_{X}(y)}, \\
& \geq-\left(\sigma^{2}(x) t^{2}\right)^{p+1} \text {, } \\
& =-\sigma^{2 p_{0}+2}(x) t^{2 p_{0}+2} \text {, }
\end{aligned}
$$

where the first equality and the second inequality follow from, (3.2.2) and the fact that $t^{2}<\frac{1}{2 \sigma^{2}(x)+1}$.

Hence we have
$-\frac{1}{2} \sum_{p=p_{0}+1}^{\infty} \frac{2^{p}}{p}\left[\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \sin ^{2}\left((x-y) \frac{t}{2}\right) d F_{X}(x) d F_{x}(y)\right]^{p} \geq-\sigma_{0}^{2 p+2}(x) t^{2 p_{0}+2}$

Therefore
(3.6.1) $\ldots-\sigma^{2 p_{0}+2}(x) t^{2 p_{o}+2} \leq-\frac{1}{2} \sum_{p=p_{0}+1}^{\infty} \frac{2^{p}}{p}\left[\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \sin ^{2}(x-y) \frac{t}{2}\right)$

$$
\left.d F_{X}(x) d F_{X}(y)\right]^{p} \leq \sigma^{2 p_{0}+2}(x) t^{2 p_{0} i+2}
$$

Let $\bar{c}_{1}(x), \bar{c}_{2}(x), \ldots, \bar{c}_{p_{0}+1}(x)$ be constants in our proof of Lemma 3.4. and let $c_{p}(x)=\bar{c}_{p}(x)$ for $p=1,2, \ldots, p_{o}$ and $c_{p_{o}+1}(x)=\bar{c}_{p_{o}+1}+\sigma{ }_{o}^{2 p_{o}+2}(x)$.

By Lemma 3.3, Lemma 3.5(i) and (3.6.1), we have

To show (ii), we note that

$$
c_{1}(x)=-\frac{1}{2} \sum_{p=1}^{p_{0}} \frac{2^{p}}{2 p} \tilde{H}_{x, P}^{(2)}(0)
$$

where

$$
\tilde{H}_{\mathrm{X}, \mathrm{p}}^{(2)}(0)= \begin{cases}\frac{1}{2} g_{1}(\mathrm{x}) & \text { if } \mathrm{p}=1, \\ 0 & \text { if } \dot{p}>1 .\end{cases}
$$

Hence $\quad c_{1}(x)=-\frac{1}{4} g_{1}(x)$. So, by (3.2.1), we have $c_{1}(\dot{x})=-\frac{1}{2} \sigma^{2}(x)$.

Theorem 3.7. Let $x_{j}, j=1,2, \ldots, n$ be independent random variables with moment of order $2 p_{o}+2$ where p_{o} is a positive integer. Let $c_{p}\left(x_{j}\right)$, $j=1,2, \ldots, n, p=1,2, \ldots, p_{0}+1$ be constants in Lemma 3.6. We define $\sigma_{\text {max }}^{2}=\max \left\{\sigma^{2}\left(x_{j}\right) \mid j=1,2, \ldots, n\right\}+1, \tau=\frac{1}{2 \sqrt[4]{n} \sqrt{\sigma_{\text {max }}^{2}}}$,

$$
k_{p}=\sum_{j=1}^{n} c_{p}\left(x_{j}\right)
$$

$$
\begin{aligned}
& K=\sum_{p=1}^{p_{o}+1}\left|K_{p}\right|, \\
& \tilde{G}(t)=\sum_{p=2}^{p_{o}+1} K_{p} t^{2 p}, \\
& G(t)=\sum_{p=2}^{p_{o}+1}\left|K_{p}\right| t^{2 p},
\end{aligned}
$$

$$
\begin{aligned}
& \text { and } \\
& K_{2} e^{\frac{k}{16 n} t^{4}} \quad \text { if } p_{0}=1 \text {, } \\
& \sum_{p=1}^{p_{0}} \frac{1}{p!}\left[\begin{array}{cc}
p\left(2 p_{0}+2\right) & \sum_{q=p+p_{0}}^{(2 q)} \\
\frac{1}{(2 q)!} G^{(p)}(0)
\end{array}\right] t^{2\left(p+p_{0}\right)}+\frac{1}{\left(p_{0}+1\right)!} e^{\frac{k}{16 n} k_{0}+14\left(p_{0}+1\right)} \\
& \text { if } p_{0}>1 \text {, }
\end{aligned}
$$

then

$$
\left|\left|\varphi_{S_{n}}(t)\right|-\left(1+h_{1}(t)\right) e^{-\frac{1}{2} B_{n} t^{2}}\right| \leq h_{2}(t) e^{-\frac{1}{2} B_{n} t^{2}}
$$

for all $t \varepsilon(0,5)$.

Proof : Since, by Lemma $3.6(\mathrm{ii}), c_{1}\left(x_{j}\right)=-\frac{1}{2} \sigma^{2}\left(x_{j}\right)$, we have $K_{1}=-\frac{1}{2} B_{n}$

Case $p_{0}=1$. By Lemma 3.6(i), we have

$$
-\frac{1}{2} B_{n} t^{2}-K_{2} t^{4} \leq \log \left|\varphi_{S_{n}}(t)\right| \leq-\frac{1}{2} B_{n} t^{2}+K_{2} t^{4}
$$

and $\mathrm{K}_{2} \geq 0$. So we have

$$
\begin{aligned}
& e^{-\frac{1}{2} B_{n} t^{2}-K_{2} t^{4}} \leq\left|\varphi_{S_{n}}(t)\right| \leq e^{-\frac{1}{2} B_{n} t^{2}+K_{2} t^{4}} \\
& \left(e^{-K_{2} t^{4}}-1\right) e^{-\frac{1}{2} B_{n} t^{2}} \leq\left|\varphi_{S_{n}}(t)\right|-e^{-\frac{1}{2} B_{n} t^{2}} \leq\left(e^{K_{2} t^{4}}-1\right) e^{-\frac{1}{2} B_{n} t^{2}}
\end{aligned}
$$

Note that for $x>0, e^{x}-1 \leq x e^{x}$ and $e^{-x}-1 \geq-x$. Hence:..

$$
-K_{2} t^{4} e^{-\frac{1}{2} B_{n} t^{2}} \leq\left|\varphi_{S_{n}}(t)\right|-e^{-\frac{1}{2} B_{n} t^{2}} \leq K_{2} t^{4} e^{K_{2} t^{4}} e^{-\frac{1}{2} B_{n} t^{2}}
$$

Since $t^{4}<\frac{1}{16 n}$,

$$
-K_{2} e^{\frac{K_{2}}{16 n}} t^{4} e^{-\frac{1}{2} B_{n} t^{2}} \leq\left|\varphi_{S_{n}}(t)\right|-e^{-\frac{1}{2} B_{n} t^{2}} \leq K_{2} e^{\frac{K_{2}}{16 n}} t^{4} e^{-\frac{1}{2} B_{n} t^{2}}
$$

Hence $\left|\left|\varphi_{S_{n}}(t)\right|-e^{-\frac{1}{2} B_{n} t^{2}}\left(1+h_{1}(t)\right)\right| \leq h_{2}(t) e^{-\frac{1}{2} B_{n} t^{2}}$,
where

$$
h_{1}(t)=0
$$

and

$$
h_{2}(t)=k_{2} e^{\frac{k_{2}}{16 n}} t^{4}
$$

Case $p_{0}>1$. Since $x_{1}, x_{2}, \ldots, x_{n}$ are independent, by Lemma $3.6(i)$, we have

$$
\begin{aligned}
& -\frac{1}{2} B_{n} t^{2}+\sum_{m=2}^{p_{0}} K_{m} t^{2 m}-K_{p_{0}+1} t^{2 p_{o}+2} \leq \log \left|\varphi_{S_{n}}(t)\right| \leq-\frac{1}{2} B_{n} t^{2}+\sum_{m=2}^{p_{0}} K_{m} t^{2 m} \\
& +k_{p_{o}+1} t^{2 p_{o}+2} \text {, } \\
& \sum_{e}^{-\frac{1}{2} B_{n} t^{2}+\sum_{m=2}^{p_{0}} K_{m} t^{2 m}-K_{p_{0}+1} t^{2 p_{o}+2}} \leq\left|\varphi_{S_{n}}(t)\right| \leq e^{-\frac{1}{2} B_{n} t^{2}+\sum_{m=2}^{p_{0}} K_{m} t^{2 m}+K_{p_{0}+1} t^{2 p_{0}+2}}
\end{aligned}
$$

$(3.7 .1) \ldots\left(e^{\sum_{m=2} K_{m} t^{2 m}-K_{p_{0}+1} t^{2 p_{o}+2}}\right) e^{-\frac{1}{2} B_{n} t^{2}} \leq\left|\varphi_{s_{n}}(t)\right|-e^{-\frac{1}{2} B_{n} t^{2}}$

$$
\left.\leq \sum_{m=2}^{\sum_{0} K_{m} t^{2 m}+K_{p_{0}+1} t^{2 p_{0}+2}}\right) e^{-\frac{1}{2} B_{n} t^{2}}
$$

Observe that for $x \in\left(-\frac{K}{16 n}, \frac{K}{16 n}\right)$,
$(3.7 .2) \ldots 1+\sum_{p=1}^{p_{0}} \frac{x^{p}}{p!}-\frac{|x|^{p_{0}+1}}{\left(p_{0}+1\right)!} e^{\frac{K}{16 n}} \leq e^{x} \leq 1+\sum_{p=1}^{p_{0}} \frac{x^{p}}{p!}+\frac{|x|^{p_{0}+1}}{\left(p_{0}+1\right)!} e^{\frac{K}{16 n}}$
Since $t^{4}<\frac{1}{16 n}$, we have $\left|\sum_{m=2}^{p_{0}} k_{m} t^{2 m} \pm K_{p_{0}+1} t^{2 p_{0}+2}\right|<\frac{k}{16 n}$.

Therefore, by (3.7.2), we have

and

$$
\begin{aligned}
& (3.7 .4) \ldots e^{\sum_{m=2}^{p_{0}} K_{m} t^{2 m}+k_{p_{0}+1} t^{2 p_{0}+2}} \leq \sum_{p=1}^{p_{0}} \frac{1}{p!}\left[\sum_{m=2}^{p_{0}} k_{m} t^{2 m}+K_{p_{0}+1} t^{2 p_{0}+2}\right]^{p} \\
& \left.+\left.\frac{e^{\frac{k}{16 n}}}{\left(p_{0}+1\right)!}\right|_{m=2} ^{p_{0}} K_{m} t^{2 m}+K_{p_{0}+1} t^{2 p_{0}+2} \right\rvert\, p_{0}+1
\end{aligned}
$$

By Lemma 3.4, if we let

$$
\begin{aligned}
& f(t)=\sum_{m=2}^{p_{0}} K_{m} t^{2 m}-K_{p_{0}+1} t^{2 p_{0}+2}, \\
& v(t)=\sum_{m=2}^{p_{0}} K_{m} t^{2 m}+K_{p_{0}+1} t^{2 p_{0}+2}, \\
& g(t)=\widetilde{G}(t)
\end{aligned}
$$

and

$$
h(t)=G(t)
$$

then for $p \leq p_{0}$, we have
$(3.7 .5) \ldots\left[\sum_{m=2}^{p_{0}} K_{m} t^{2 m}-K_{p_{0}+1} t^{2 p_{0}+2}\right]^{p}$

$$
\geq \sum_{q=1}^{p+p_{0}^{-1}} \frac{1}{(2 q)!} \underset{\sim}{\underset{G}{(2 q)}(0)}[p] \quad t^{2 q}-\left[\begin{array}{ccc}
p\left(p_{0}+1\right) & (2 q) \\
\sum_{q=p+p_{0}} & \frac{1}{(2 q)!} & G(0) \\
{[p]}
\end{array}\right] t^{2\left(p_{0}+p\right)}
$$

and
(3.7.6) $\ldots\left[\sum_{m=2}^{p_{0}} K_{m} t^{2 m}+K_{p_{0}+1} t^{2 p_{0}+2}\right]^{p}$

$$
\leq \sum_{q=1}^{p+p_{0}-1} \frac{1}{(2 q)!}{\underset{G}{[p]}}_{(2 q)} \quad t^{2 q}+\left[\begin{array}{cc}
p\left(p_{0}+1\right) \\
\sum_{q=p+p_{0}}^{(2 q)!} & \underset{[p]}{(2 q)}(0)
\end{array}\right] t \cdot 1\left(p_{0}+p\right)
$$

From (3.7.3) and (3.7.5),

$$
\begin{aligned}
& e^{\sum_{m=2}^{p_{0}} K_{m} t^{2 m}-K_{p_{0}+1} t^{2 p_{0}+2}} \geq \sum_{\sum_{0}}^{p_{0}} \frac{1}{p!} \sum_{q=1}^{p+p_{0}-1} \frac{1}{(2 q)!} \tilde{G}_{[p]}^{(2 q)}(0) t^{2 q} \\
& -\sum_{p=1}^{p_{0}} \frac{1}{p!}\left[\begin{array}{ccc}
p\left(p_{0}+1\right) & 1 & (2 q) \\
\sum_{q=p+p_{0}} & \frac{1}{(2 q)!} & G(0) \\
{[p]}
\end{array}\right] t^{2\left(p_{0}+p\right)}
\end{aligned}
$$

$-\frac{e^{\frac{K}{16 n}}}{\left(p_{0}+1\right)!}\left|\sum_{m=2}^{p_{0}} K_{m} t^{2 m}-K_{p_{0}+1} t^{2 p_{0}+2}\right| p_{0}+1$
Since $t^{2}<1,\left|\sum_{m=2}^{p_{0}} K_{m} t^{2 m}-K_{p_{0}+1} t^{2 p_{o}+2}\right| p_{0}^{p_{0}+1} \leq K^{p_{0}+1} t .4\left(p_{o}+1\right)$

Hence we have

$$
\sum_{m=2}^{p_{0}} K_{m} t^{2 m}-K_{p_{o}+1} t^{2 p_{o}+2}
$$

$$
\geq \quad \sum_{p=1}^{p_{0}} \frac{1}{p!} \sum_{q=1}^{p+p_{0}-1} \frac{1}{(2 q)!}{\underset{G}{[p]}(2 q)}_{(0)}^{(p)} t^{2 q}
$$

$$
-\sum_{p=1}^{p_{0}} \frac{1}{p!}\left[\sum_{q=p+p_{0}}^{p\left(p_{0}+1\right)} \frac{1}{(2 q)!} G_{[p]}^{G}(0)\right]^{2\left(p+p_{0}\right)}-\frac{e^{\frac{K}{16 n}}}{\left(p_{0}+1\right)!} K^{p_{0}+1} t^{4\left(p_{0}+1\right)}
$$

$$
=h_{1}(t)-h_{2}(t)
$$

Similarly, from (3.7.4) and (3.7.6), we can show that

$$
\begin{array}{ll}
\sum_{m=2}^{p_{0}} K_{m} t^{2 m}-K_{p_{0}+1} t \\
e^{2 p_{0}+2} & \leq h_{1}(t)+h_{2}(t)
\end{array}
$$

From (3.7.1), (3.7.7) and (3.7.8) we have
$\left(h_{1}(t)-h_{2}(t)\right) e^{-\frac{1}{2} B_{n} t^{2}} \leq\left|\varphi_{S_{n}}(t)\right|-e^{-\frac{1}{2} B_{n} t^{2}} \leq\left(h_{1}(t)+h_{2}(t)\right) e^{-\frac{1}{2} B_{n} t^{2}}$

Hence
$-h_{2}(t) e^{-\frac{1}{2} B_{n} t^{2}} \leq\left|\varphi_{S_{n}}(t)\right|-\left(1+h_{1}(t)\right) e^{-\frac{1}{2} B_{n} t^{2}} \leq h_{2}(t) e^{-\frac{1}{2} B_{n} t^{2}}$

Since $h_{2}(t) \geq 0$,

$$
\left|\left|\varphi_{S_{n}}(t)\right|-\left(1+h_{1}(t)\right) e^{-\frac{1}{2} B_{n} t^{2}}\right| \leq h_{2}(t) e^{-\frac{1}{2} B_{n} t^{2}}
$$

Theorem 3.8 Let $X_{j}, j=1,2, \ldots, n$ be independent random variables. and S be a real number such that $0<S<1$. Let
i) each $\theta_{x_{j}}$ (t) has $\left(2 p_{o}+2\right)$ - th derivative on ($-S, s$) and there exists an a such that $\left|\theta_{X_{j}}^{\left(2 p_{o}+2\right)}(t)\right| \leq a$ on $(-S, S)$ and
ii) each $\theta_{x_{j}}(t)$ has $\left(2 p_{0}+1\right)$ - th continuous derivative on $[-S, S]$. Let
$\tilde{F}(t)=\sum_{m=1}^{p_{0}} \sum_{j=1}^{n} \theta_{x_{j}}^{(2 m+1)} \frac{t^{2 m+1}}{(2 m+1)!}+n a \frac{t^{2 p_{o}+2}}{\left(2 p_{0}+2\right)!}$,
$F(t)=\sum_{m=1}^{p_{0}} \sum_{j=1}^{n}\left|\theta_{x_{j}}^{(2 m+1)}(0)\right| \frac{t^{2 m+1}}{(2 m+1)!}+n a-\frac{t^{2 p_{0}+2}}{\left(2 p_{0}+2\right)!}$,
$h_{3}(t)=\sum_{i=1}^{p_{0}} \frac{(-1)^{i}}{(2 i)!} \sum_{q=2 i}^{2 i+p_{0}^{-1}} \frac{1}{(2 q)!} \tilde{F}_{[2 i]}^{(2 q)}(0) t^{2 q}$,
$h_{4}(t)=\sum_{i=1}^{p_{0}} \frac{(-1)^{i-1}}{(2 i-1)!} \sum_{q=2 i-1}^{2 i+p_{o}-1} \frac{1}{(2 q-1)!}-[2 i-1](2 q-1){\underset{F}{c}}_{(2 q-1)}^{(0)}$
and

$$
\begin{aligned}
& h_{5}(t)=\sum_{i=1}^{p_{0}} \frac{1}{(2 i)!}\left[\sum_{q=4 i+2 p_{0}}^{2 i\left(2 p_{o}+2\right)} \frac{1}{q!} \quad F_{[2 i]}(q) \quad(0)\right] t^{4 i+2 p_{0}} \\
& +\sum_{i=1}^{p_{0}} \frac{1}{(2 i-1)!}\left[\begin{array}{cc}
(2 i-1)\left(2 p_{0}+2\right) \\
\sum_{q=4 i+2 p_{0}-2} & \frac{1}{q!}
\end{array} F_{[2 i-1]}^{(q)}(0)\right] t^{4 i+2 p_{0}-2}
\end{aligned}
$$

$+\frac{2}{\left(2 p_{0}+1\right)!}(F(1))^{2 p_{0}+1} t .6 p_{0}+3$

If $t \in(0, S)$, then

$$
\left|\sin \left(T \sqrt{B_{n}} t-\alpha(t)\right)-\sin \left(T \sqrt{B_{n}} t\right)\left(1+h_{3}(t)\right)+\cos \left(\cdot T \sqrt{B_{n}} t\right) h_{4}(t)\right|<h_{5}(t)
$$

Proof : Observe that for $j=1,2, \ldots, n$,

$$
\begin{aligned}
& \varphi_{X_{j}}(t)=\int_{-\infty}^{\infty} e^{i x t} d F_{X}(x), \\
&=\int_{-\infty}^{\infty} \cos x t d F_{X}(x)+i \int_{-\infty}^{\infty} \sin x t d F_{X}(x), \\
& \int^{\infty} \sin x t F_{X}(x)
\end{aligned}
$$

so we have $\theta_{X_{j}}(t)=\arctan \left(\frac{\infty}{\infty}\right)$ and $\theta_{X_{j}}(t)$ is odd.

$$
\int_{-\infty} \cos x t F_{X}(x)
$$

Hence [see appendix]. For each $t \in(-s, s)$ and each
$j \in\{1,2, \ldots, n\}$, there is t_{j} such that
$\theta_{X_{j}}(t)=\theta_{X_{j}}^{(1)}(0) t+\sum_{m=1}^{p_{0}} \theta_{X_{j}}^{(2 m+1)}(0) \frac{t^{2 m+1}}{(2 m+1)!}+\theta_{x_{j}}^{\left(2 p_{0}+2\right)} t^{2 p_{0}+2} \frac{t^{\left(2 p_{0}+2\right)!}}{}$.

Since $x_{1}, x_{2}, \ldots, x_{n}$ are independent,

$$
\begin{aligned}
\theta_{S_{n}}(t) & =\sum_{j=1}^{n} \theta_{x_{j}}^{(1)}(0) t+\sum_{m=1}^{p_{0}} \sum_{j=1}^{n} \theta_{X_{j}}^{(2 m+1)}(0) \frac{t^{2 m+1}}{(2 m+1)!} \\
& +\sum_{j=1}^{n} \theta_{X_{j}}^{\left(2 p_{o}+2\right)}\left(t_{j}\right) \frac{t^{2 p_{0}+2}}{\left(2 p_{0}+2\right)!}
\end{aligned}
$$

Since $\theta_{X_{j}}^{(1)}(0)=E\left(X_{j}\right)$ and $\alpha(t)=\theta_{S_{n}}(t)-\sum_{j=1}^{n} E\left(X_{j}\right)$,

$$
\alpha(t)=\sum_{m=1}^{p_{0}} \sum_{j=1}^{n} \theta_{X_{j}}^{(2 m+1)}(0) \frac{t^{2 m+1}}{(2 m+1)!}+\sum_{j=1}^{n} \theta_{X_{j}}^{\left(2 p_{o}+2\right)}\left(t_{j}\right) \frac{t^{2 p_{o}+2}}{\left(2 p_{o}+2\right)!}
$$

By using Taylor's formula expansion, there are α_{0} and α ' such that. .

$$
\cos (\alpha(t))=\sum_{i=0}^{p_{0}} \frac{(-1)^{i}}{(2 i)!} \alpha_{[2 i]}(t)+\frac{1}{\left(2 p_{0}+1\right)!} \sin \alpha_{0} \alpha_{\left[2 p_{0}+1\right]}(t)
$$

and

$$
\sin (\alpha(t))=\sum_{i=1}^{p_{0}} \frac{(-1)^{i-1}}{(2 i-1)!} \alpha[2 i-1](t)+\frac{1}{\left(2 p_{0}+1\right)!} \cos \alpha^{\prime} \alpha_{\left[2 p_{o}+1\right]}(t)
$$

Hence

$$
\begin{aligned}
& \left.\sin \left(T \sqrt{B_{n}} t\right)-\alpha(t)\right)=\sin \left(T \sqrt{B_{n}} t\right) \cos (\alpha(t))-\cos \left(T \sqrt{B_{n}} t\right) \sin (\alpha(t)), \\
& =\sin \left(T \sqrt{B_{n}} \cdot t\right)\left[\sum_{i=0}^{p_{0}} \frac{(-1)^{i}}{(2 i)!} \alpha_{[2 i]}(t)+\frac{1}{\left(2 p_{0}+1\right)!} \sin \alpha_{0} \alpha_{\left[2 p_{0}+1\right]}(t)\right] \\
& -\cos \left(T \sqrt{B_{n}} t\right)\left[\sum_{i=1}^{p_{0}} \frac{(-1)^{i-1}}{(2 i-1)!} \alpha_{[2 i-1]}(t)+\frac{1}{\left(2 p_{0}+1\right)!} \cos \alpha^{\prime} \alpha_{\left[2 p_{0}+1\right]}(t)\right], \\
& \leq \sin \left(T \sqrt{B_{n}} t\right) \quad \sum_{i=0}^{p_{0}} \frac{(-1)^{i}}{(2 i)!} \alpha_{[2 i]}(t)-\cos \left(T \sqrt{B}_{n} t\right) \sum_{i=1}^{p_{o}} \frac{(-1)^{i-1}}{(2 i-1)!} \alpha_{[2 i-1]}(t) \\
& +\frac{2}{\left(2 p_{0}+1\right)!}\left|\alpha_{\left[2 p_{o}+1\right]}(t)\right|, \\
& =\sin \left(T \sqrt{B}_{n} t\right)+\sin \left(T \sqrt{B_{n}} t\right) \sum_{i=1}^{p_{o}} \frac{(-1)^{i}}{(2 i)!} \alpha_{[2 i]}(t) .
\end{aligned}
$$

$-\cos \left(T \sqrt{B_{n}} t\right) \sum_{i=1}^{p_{0}} \frac{(-1)^{i-1}}{(2 i-1)!} \alpha_{[2 i-1]}(t)+\frac{2}{\left(2 p_{0}+1\right)!}\left|\alpha_{\left[2 p_{0}+1\right]}(t)\right|$

Since $|\alpha(t)| \leq F(t)$ and $0<t<1$,
(3.8.1) ... $\sin \left(T \sqrt{B_{n}} t-\alpha(t)\right)$

$$
\begin{aligned}
& \leq \sin \left(T \sqrt{B_{n}} t\right)+\sin \left(T \sqrt{B_{n}} t\right) \sum_{i=1}^{p_{0}} \frac{(-1)^{i}}{(2 i)!} \ddot{\alpha}_{[2 i]}(t) \\
& -\cos \left(T \sqrt{B_{n}} t\right) \sum_{i=1}^{p_{0}} \frac{(-1)^{i-1}}{(2 i-1)!} \alpha_{[2 i-1]}(t) \\
& +\frac{2}{\left(2 p_{0}+1\right)!}\left(F_{1)^{2 p_{0}+1} t p_{0}+3}^{t}\right.
\end{aligned}
$$

Similarly we can show that
$(3.8 .2) \ldots \sin \left(T \sqrt{B_{n}} t-\alpha(t)\right)$

$$
\begin{aligned}
& \geq \sin \left(T \sqrt{B_{n}} t\right)+\sin \left(T \sqrt{B_{n}} t\right) \sum_{i=1}^{p_{0}} \frac{(-1)^{i}}{(2 i)!} \propto[2 i]^{(t)} \\
& -\cos \left(T \sqrt{B_{n}} t\right) \sum_{i=1}^{p_{0}} \frac{(-1)^{i-1}}{(2 i-1)!} \alpha_{[2 i-1]}(t) \\
& -\frac{2}{\left(2 p_{0}+1\right)!}\left(F_{[i]}(1)\right)^{2 p_{0}+1} t^{6 p_{0}+3}
\end{aligned}
$$

By Lemma 3.4, let $f(t)=\alpha(t), g(t)=\tilde{F}(t)$ and $h(t)=F(t)$,
we have
and

From $(3.8 .1),(3.8 .3)$ and $(3.8 .4)$, we have

$$
\begin{aligned}
& \left.(3.8 .5) \ldots \sin \left(T \sqrt{B_{n}} t\right)-\alpha(t)\right) \\
& \leq \sin \left(T \sqrt{B_{n}} t\right)+\sin \left(T \sqrt{B_{n}} t\right) \sum_{i=1}^{p_{0}} \frac{(-1)^{i}}{(2 i)!} \sum_{q=0}^{4 i+2 p_{0}-1} \sum_{q!}^{\tilde{F}^{(q)}(0) t^{q}}{ }_{[2 i]}^{(q)}
\end{aligned}
$$

$$
-\cos \left(T \sqrt{B_{n}} t\right) \sum_{i=1}^{p_{0}} \frac{(-1)^{i-1}}{(2 i-1)!} \sum_{q=0}^{4 i+2 p_{0}-3} \frac{1}{q!} \tilde{F}_{[2 i-1]}(0) t^{q}
$$

$$
+\sum_{i=1}^{p_{0}} \frac{1}{(2 i)!}\left[\sum_{q=4 i+2 p_{0}}^{2 i\left(2 p_{0}+2\right)} \frac{1}{q!} F_{[2 i]}^{(q)}(0)\right] t^{4 i+2 p_{0}}
$$

$$
+\sum_{i=1}^{p_{0}} \frac{1}{(2 i-1)!}\left[\begin{array}{ccc}
\sum_{q=4 i+2 p_{0}-2}^{(2 i-1)\left(2 p_{0}+2\right)} & \frac{1}{q!} \sum_{[2 i-1]} & (q)
\end{array} t^{4 i+2 p_{0}-2}\right.
$$

$$
+\frac{2}{\left(2 p_{0}+1\right)!}\left(F_{[1]}(1)\right)^{2 p_{0}+1} t p_{0}^{6 p_{0}+3}
$$

$$
\begin{aligned}
& \text { (3.8.4) ... }(-1)^{i} \alpha_{[2 i-1]}(t) \leq(-1)^{i} \sum_{q=0}^{4 i+2 p_{0}^{-1}} \frac{1}{q!} \underset{\sim}{\underset{F}{(q)}(0 i-1]} t^{q} \\
& +\left[\begin{array}{ccc}
(2 i-1)\left(2 p_{o}+2\right) & (q) \\
\Sigma & \frac{1}{q!} & F^{(0)}(0) \\
q=4 i+2 p_{0} & {[2 i-1]}
\end{array}\right] t^{4 i+2 p_{0}}
\end{aligned}
$$

$$
\begin{aligned}
& +\left[\begin{array}{ccc}
2 i\left(2 p_{0}+2\right) & (q) \\
\sum_{q=4 i+2 p_{0}} & \frac{1}{q!} & F \\
{[2 i]}
\end{array}\right] t^{4 i+2 p_{0}}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Since } \\
& \tilde{F}_{[2 i]}(t)=\left[\begin{array}{ccc}
p_{0} & n & (2 m+1) \\
\sum_{m=1}^{n} & \sum_{j=1} \theta_{j} & (0) \frac{t^{2 m+1}}{(2 m+1)!}+n a \frac{t^{2 p_{o}+2}}{\left(2 p_{0}+2\right)!}
\end{array}\right]^{2 i} \\
&=t^{6 i}\left[\begin{array}{ccc}
p_{0} & n & (2 m+1) \\
\sum_{m=1} & \sum_{j=1} \theta_{X_{j}} & (0) \frac{t^{2 m-2}}{(2 m+1)!}+n a \frac{t^{2 p_{o}^{-1}}}{\left(2 p_{0}+2\right)!}
\end{array}\right]
\end{aligned}
$$

we observe that for a nonnegative interger q such that $0 \leq q<4 i$,
$\widetilde{F}^{(q)}(0)=0$ and we see that all the coefficient of terms of odd degree [Di]
q such that $4 i<q \leq 4 i+2 p_{0}-1$ are zero. Hence

$$
\tilde{F}^{(q)}(0)=0
$$

for all odd q such that $4 i<q \leq 4 i+2 p_{0}-1$.

Therefore

$$
\sum_{i=1}^{p_{0}} \frac{(-1)^{i}}{(2 i)} \sum_{q=0}^{4 i+2 p_{0}-1} \frac{1}{q} \underset{\sim}{\tilde{F}}(2 i](0) t^{q}=\sum_{i=1}^{p_{0}} \frac{(-1)^{i}}{(2 i)!} \sum_{q=2 i}^{2 i+p_{0}-1} \quad \frac{1}{(2 q)!} \underset{[2 i]}{\widetilde{F}}(0) t^{2 q}
$$

$$
\text { CHULALONGKOR }=h_{3}(t)
$$

By a similar reasoning, we see that

$$
\begin{aligned}
& \sum_{i=1}^{p_{0}} \frac{(-1)^{i-1}}{(2 i-1)!} \sum_{q=0}^{4 i+2 p_{0}-1} \quad \frac{1}{q!} \tilde{F}_{[2 i-1]}^{(q)}(0) t^{q}=\sum_{i=1}^{p_{0}} \frac{(-1)^{i-1}}{(2 i-1)!} \sum_{q=2 i}^{2 i+p_{0}^{-1}} \frac{1}{(2 q-1)!} \\
& \underset{[2 i-1]}{(2 q-1)}(0) t^{2 q-1}, \\
& =h_{4}(t) \text {. }
\end{aligned}
$$

Hence, by (3.8.5)

$$
\begin{aligned}
(3.8 .6) \ldots \sin \left(T \sqrt{B_{n}} t-\alpha(t)\right) & \leq \sin \left(T \sqrt{B_{n}} t\right)+\sin \left(T \sqrt{B_{n}} t\right) h_{3}(t) \\
& -\cos \left(T \sqrt{B_{n}} t\right) h_{4}(t)+h_{5}(t)
\end{aligned}
$$

Similarly, by (3.8.2) and Lemma 3.4, we can show that

$$
\begin{aligned}
(3.8 .7) \ldots \sin \left(T \sqrt{B_{n}} t-\alpha(t)\right) & \geq \sin \left(T \sqrt{B_{n}} t\right)+\sin \left(T \sqrt{B_{n}} t\right) h_{3}(t) \\
& -\cos \left(T \sqrt{B_{n}} t\right) h_{4}(t)-h_{5}(t)
\end{aligned}
$$

From (3.8.6) and (3.8.7), we have
$\left|\sin \left(T \sqrt{B}_{n} t-\alpha(t)\right)-\sin \left(T \sqrt{B_{n}} n\right)\left(1+h_{3}(t)\right)+\cos \left(T \sqrt{B_{n}} t\right) h_{4}(t)\right| \leq h_{5}(t)$. \#

Lemma 3.9. Let $X_{1}, X_{2}, \ldots, x_{n}$ be independent integral-valued random variables with finite variances. Let τ be as in Theorem 3.7. Then there exist constants $\hat{c}_{1}, \hat{c}_{2}, \ldots, \hat{c}_{n}$ such that
(3.9.1)... i)
$\left|\varphi_{S_{n}}(t)\right|$
$\sum_{j=1}^{n} \hat{c}_{j} t^{2}$
for $t \in[0,5]$ and

$$
\begin{aligned}
\text { (3.9.2)... ii) } \begin{aligned}
\frac{1}{2} & \left|\int_{j}^{\pi} \frac{\left|\varphi_{S_{n}}(t)\right| \sin \left(T \sqrt{B_{n}} t-\alpha(t)\right)}{\sin \frac{t}{2}} d t\right| \\
& -\sum_{j=1}^{n} \hat{c}_{j} \tau^{2} \\
\leq & \frac{e^{j=1} \sum_{j=1}^{n} \hat{c}_{j} j^{2}}{4}
\end{aligned} .
\end{aligned}
$$

Proof : i) Let $t \varepsilon[0, \mathcal{j}]$. If there is j such that $\left|\varphi_{X_{j}}(t)\right|=0$, then we choose $\hat{c}_{1}=\hat{c}_{2}=\ldots=\hat{c}_{n}=0$. Suppose that for each $j,\left|\varphi_{X_{j}}(t)\right|>0$. By (3.3.1), we have
$\log \left|\varphi_{X_{j}}(t)\right|=-\frac{1}{2} \sum_{p=1}^{\infty} \frac{2^{p}}{p!}\left[\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \sin ^{2}\left((x-y) \frac{t}{2}\right) d F_{X_{j}}(x) d F_{X_{j}}(y)\right]^{p}$
Since X_{j} is an integral-valued random variable, we have
$\log \left|\varphi_{X_{j}}(t)\right|=-\frac{1}{2} \sum_{p=1}^{\infty} \frac{2^{p}}{p!}\left[\sum_{k=-\infty}^{\infty} \sum_{\ell=-\infty}^{\infty} p_{X_{j}}(k) p_{X_{j}}(\ell) \sin ^{2}\left((x-y) \frac{t}{2}\right)\right]^{p}$.
Hence

$$
\begin{aligned}
\log \left|\varphi_{X_{j}}(t)\right| & \leq-\sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} p_{X_{j}}(k) p_{X_{j}}(l) \sin ^{2}\left((x-y) \frac{t}{2}\right), \\
& \leq-2 \sum_{k=-\infty}^{\infty} p_{X_{j}}(k) p_{X_{j}}(k+1) \sin ^{2} \frac{t}{2}, \\
& \leq-\frac{2}{\pi^{2}} \sum_{k=-\infty}^{\infty} p_{X_{j}}(k) p_{X_{j}}(k+1) t^{2}
\end{aligned}
$$

where the last inequality follows from the fact that $\sin \frac{t}{2} \geq \frac{t}{\pi}$ on $[0, \pi]$.

Let $\quad \hat{c}_{j}=\frac{2}{\pi^{2}} \sum_{k=-\infty}^{\infty} p_{X_{j}}(k) p_{X_{j}}(k+1)$.

Hence

$$
\log \left|\varphi_{S_{n}}(t)\right| \leq-\sum_{j=1}^{n} c_{j} t^{2}
$$

$$
\left|\varphi_{s_{n}}(t)\right| \leq e^{-\sum^{j=1} \hat{c}_{j} t^{2}}
$$

To prove (ii), we have

$$
\begin{aligned}
& \frac{1}{2 \pi}\left|\int_{\sigma}^{\pi} \frac{\left|\varphi_{s_{n}}(t)\right| \sin \left(t \sqrt{B_{n}} t-\alpha(t)\right)}{\sin \frac{t}{2}} d t\right| \\
& <\frac{1}{2} \int_{\sigma}^{\pi} \frac{\left|\varphi_{s_{n}}(t)\right| d t}{t} \text {, } \\
& \leq \frac{1}{2} \int_{\tau}^{\pi} \frac{e^{-\frac{e^{j}}{t} \hat{c}} \mathrm{t}^{2}}{} d t \text {, }
\end{aligned}
$$

$$
\begin{aligned}
& \leq \\
& 4 \sum_{j=1}^{n} \hat{c}_{j} \sigma^{2} \text {, }
\end{aligned}
$$

where the second inequality follows from (i) and the last inequality follows from the fact that. for $x>0, \int_{x}^{\infty} \frac{e^{-t^{2}}}{t} d t \leq \frac{e^{-x^{2}}}{2 x^{2}}$.

Lemma 3.10. For any positive integer p_{o}, there exist polynomial functions $A(t), B(t)$ such that the following hold :
(i) $A(t)$ is of degree at most $2 p_{o}-2$,
(ii) $B(t)$ is of degree larger than $2 p_{o}-2$
and
(iii) $\left|\frac{1}{\sin \frac{t}{2}}-\frac{2}{t}(1+A(t))\right| \leq B(t)$
for all $t \in(0,1)$.

Proof :

Case $p_{0}=1$. Since $\sin \frac{t}{2}=\frac{t}{2}-\frac{\cos t^{\prime}}{48} t^{3}$ for some t^{\prime},

$$
\leq \frac{t^{2}}{24\left|\sin \frac{t}{2}\right|},
$$

$$
\leq \frac{\pi t}{24}
$$

where the last inequality follows from the fact that $\sin \frac{t}{2} \geq \frac{t}{\pi}$ on $[0 ; \pi]$ Hence

$$
\left|\frac{1}{\sin \frac{t}{2}}-\frac{2}{t}(1+A(t))\right| \leq B(t)
$$

where $A(t)=0$ and $B(t)=\frac{\pi t}{24}$.

Case $p_{0} \geq 2$. Since $\sin \frac{t}{2}=\frac{t}{2}(1+z(t))$ where

$$
z(t)=\sum_{p=1}^{p_{o}^{-1}} \frac{(-1)^{p}}{(2 p+1)!}\left(\frac{t}{2}\right)^{2 p}+\frac{(-1)^{p_{o}}}{\left(2 p_{o}+1\right)!} \cos t_{o}\left(\frac{t}{2}\right)^{2 p_{0}}
$$

for some t_{0} and $|z(t)|<1$ for $0<t<1$, we have

$$
\begin{aligned}
& \frac{1}{\sin \frac{t}{2}}=\frac{2}{t(1+Z(t))}, \\
& =\frac{2}{t} \sum_{k=0}^{\infty}(-1)^{k} z^{k}(t) \text {, } \\
& =\frac{2}{t}\left[\sum_{k=0}^{p_{0}^{-1}}(-1)^{k} z^{k}(t)+(-1)^{p_{0}} \frac{z^{p_{o}}(t)}{1+z(t)}\right], \\
& =\frac{2}{t}+\frac{2}{t}\left[\sum_{k=1}^{p_{0}-1}(-1)^{k} z^{k}(t)+(-1)^{p_{0}} \frac{z^{p_{o}}(t)}{1+z(t)}\right], \\
& =\frac{2}{t}+\frac{2}{t} \sum_{k=1}^{p_{0}-1}(-1)^{k}\left[\sum_{p=1}^{p_{0}-1} \frac{(-1)^{p}}{(2 p+1)!}\left(\frac{t}{2}\right)^{2 p}+\frac{(-1)^{p_{0}}}{\left(2 p_{0}+1\right)!} \cos t_{0}\left(\frac{t}{2}\right)^{2 p_{0}}\right]^{k} \\
& +\frac{(-1)^{p_{0}}}{\sin \frac{t}{2}}\left[\sum_{p=1}^{p_{0}-1} \frac{(-1)^{p}}{(2 p+1)!}\left(\frac{t}{2}\right)^{2 p}+\frac{(-1)^{p_{0}}}{\left(2 p_{0}+1\right)!} \cos t_{0}\left(\frac{t}{2}\right)^{2 p_{0}}\right]^{p_{0}} .
\end{aligned}
$$

Hence
(3.10.1) $\ldots \frac{1}{\sin \frac{t}{2}} \leq \frac{2}{t}+\frac{2}{t} \sum_{k=1}^{p_{o}^{-1}}(-1)^{k}\left[\sum_{p=1}^{p-1} \frac{(-1)^{p}}{(2 p+1)!}\left(\frac{t}{2}\right)^{2 p}\right.$

$$
\begin{aligned}
& \left.+\frac{(-1)^{p_{0}}}{\left(2 p_{0}+1\right)!} \cos t_{0}\left(\frac{t}{2}\right)^{2 p_{0}}\right]^{k} \\
& +\frac{1}{\left|\sin \frac{t}{2}\right|}\left[\sum_{p=1}^{p_{0}} \frac{1}{(2 p+1)!}\left(\frac{t}{2}\right)^{2 p}\right]^{p_{0}}
\end{aligned}
$$

and

$$
\begin{aligned}
(3.10 .2) \ldots \frac{1}{\sin \frac{t}{2}} & \geq \frac{2}{t}+\frac{2}{t} \sum_{k=1}^{p_{0}-1}(-1)^{k}\left[\sum_{p=1}^{p_{0}^{-1}} \frac{(-1)^{p}}{(2 p+1)!}\left(\frac{t}{2}\right)^{2 p}\right. \\
& \left.+\frac{(-1)^{p}}{\left(2 p_{0}+1\right)!} \cos t_{0}\left(\frac{t}{2}\right)^{2 p_{0}}\right]^{k}
\end{aligned}
$$

$$
-\frac{1}{\left|\sin \frac{t}{2}\right|}\left[\sum_{p=1}^{p_{0}} \frac{1}{(2 p+1)!}\left(\frac{t}{2} .\right)^{2 p}\right]{ }^{p_{0}}
$$

Let

$$
\begin{aligned}
(3: 10.3) \ldots f(t) & =\sum_{p=1}^{p_{0}^{-1}} \frac{(-1)^{p}}{(2 p+1)!}\left(\frac{t}{2}\right)^{2 p}+\frac{(-1)^{p_{o}}}{\left(2 p_{o}+1\right)!} \cos _{0}\left(\frac{t}{2}\right)^{2 p_{o}}, \\
\tilde{D}(t) & =\sum_{p=1}^{p_{0}} \frac{(-1)^{p}}{(2 p+1)!}\left(\frac{t}{2}\right)^{2 p}
\end{aligned}
$$

and

$$
D(t)=\sum_{p=1}^{p_{0}} \frac{1}{(2 p+1)!}\left(\frac{t}{2}\right)^{2 p},
$$

By Lemma 3.4 , for a positive integer i, we have

$$
(-1)^{i} f_{[i]}(t) \leq(-1)^{i} \sum_{m=1}^{p_{0}-1} \frac{1}{(2 m)!} \tilde{D}_{[i]}^{(2 m)}(0)\left(\frac{t}{2}\right)^{2 m}+\sum_{m=p_{0}}^{i p_{0}} \frac{1}{(2 m)!} D_{[i]}^{(2 m)}(0)\left(\frac{t}{2}\right)^{2 p_{0}} .
$$

By (3.10.3), we have

$$
\begin{aligned}
& (-1)^{i}\left[\sum_{p=1}^{p_{0}-1} \frac{(-1)^{p}}{(2 p+1)!}\left(\frac{t}{2}\right)^{2 p}+\frac{(-1)^{p_{0}}}{\left(2 p_{0}+1\right)!} \cos t_{0}\left(\frac{t}{2}\right)^{2 p_{0}}\right]^{i} \\
& \leq(-1)^{i} \sum_{m=1}^{p_{0}-1} \frac{1}{(2 m)!} \tilde{D}_{[i]}^{(2 m)}(0)\left(\frac{t}{2}\right)^{2 m}+\sum_{m=p_{0}}^{i p_{0}} \frac{1}{(2 m)!} \sum_{[i]}^{(2 m)}(0)\left(\frac{t}{2}\right)^{2 p_{0}} .
\end{aligned}
$$

Hence, by (3.10.1), we have

$$
\frac{1}{\sin \frac{t}{2}} \leq \frac{2}{t}+\sum_{k=1}^{p_{o}^{-1}}(-1)^{k} \sum_{m=1}^{p_{o}^{-1}} \frac{1}{(2 m)!} \tilde{D}_{[k]}^{(2 m)}(0)\left(\frac{t}{2}\right)^{2 m-1}
$$

$$
+\left[\sum_{k=1}^{p_{0}-1} \sum_{m=p_{0}}^{k p_{0}} \frac{1}{(2 m)!} \sum_{[k]}^{(2 m)}(0)\right]\left(\frac{t}{2}\right)^{2 p_{0}-1}+\frac{1}{\left|\sin \frac{t}{2}\right|}\left[\sum_{p=1}^{p_{0}} \frac{1}{(2 p+1)!}\left(\frac{t}{2}\right)^{2 p_{1}}\right]^{p_{0}}
$$

Since $\sin \frac{t}{2} \geq \frac{t}{\pi}$ on $[0, \pi]$ and $t \varepsilon(0,1)$. we have

$$
\begin{aligned}
(3.10 .4) \ldots \frac{1}{\sin \frac{t}{2}} & \leq \frac{2}{t}+\sum_{m=1}^{p_{o}^{-1}} \sum_{k=1}^{p_{o}^{-1}} \frac{(-1)^{k}}{(2 m)!} \tilde{D}_{[k]}^{(2 m)}(0)\left(\frac{t}{2}\right)^{2 m-1} \\
& +\left[\sum_{k=1}^{p_{0}^{-1}} \sum_{m=p_{0}}^{k p_{0}} \frac{1}{(2 m)!}{ }_{[k]}^{(2 m)}(0)\right]\left(\frac{t}{2}\right)^{2 p_{o}^{-1}}
\end{aligned}
$$

$$
+\prod_{0}^{2}\left[\sum_{0=1}^{p_{0}} \frac{1}{(2 p+1)!}\right]\left(\frac{t}{2}\right)^{2 p_{0}-1}
$$

Let $A(t)=\frac{1}{2} \sum_{m=1}^{p_{0}^{-1}} \sum_{k=1}^{p_{0}^{-1}} \frac{(-1)^{k}}{(2 m)!} \tilde{D}_{[k]}^{(2 m)}(0)\left(\frac{t}{2}\right)^{2 m}$
and

$$
B(t)=\left[\begin{array}{ccc}
p_{0}-1 & k p_{0} & 1 \\
\sum_{k=1} & \sum_{m=p_{0}}^{(2 m)} & D^{(2 m)!} \\
{[k]} & (0)+\frac{\pi}{2} \sum_{p=1}^{p_{0}} \frac{1}{(2 p+1)!}
\end{array}\right]\left(\frac{t}{2}\right)^{2 p_{0}-1} .
$$

Here from (3.10.4), we have

$$
\frac{1}{\sin \frac{t}{2}} \leq \frac{2}{t}+\frac{2 A(t)}{t}+B(t)
$$

Similarly, we can show that

$$
\frac{1}{\sin \frac{t}{2}} \geq \frac{2}{t}+\frac{2 A(t)}{t}-B(t)
$$

So $\left|\frac{1}{\sin \frac{t}{2}}-\frac{2}{t}(1+A(t))\right| \leq B(t)$.

Notation. In stating the next theorem, which is our main theorem, we need various notations introduced in Lemma 3.5, Lemma 3.6, Theorem 3.7, Theorem 3.8 and Lemma 3.9. For convenience, they are listed below.

Let $x_{1}, x_{2}, \ldots, x_{n}$ be any random variables and p_{o} be any positive integer. Let
$g_{p}\left(x_{j}\right)=\sum_{m=0}^{2 p}\binom{2 p}{m}(-1)^{2 p-m} E\left(x_{j}^{m}\right) E\left(x_{j}^{2 p-m}\right)$ for $p=1,2, \ldots, p_{o}+1$.

For a positive integer p, let

$$
\begin{aligned}
& \tilde{H}_{x_{j}, p}(t)=\left[\sum_{m=1}^{p+1} \frac{(-1)^{m-1}}{2(2 m)!} g_{m}\left(x_{j}\right) t^{2 m}\right]^{p} \text {, } \\
& H_{X_{j}, p}(t)=\left[\sum_{m=1}^{p_{0}+1} \frac{1}{2(2 m)!} g_{m}\left(x_{j}\right) t^{2 m}\right]^{p} \text {. } \\
& c_{p}\left(x_{j}\right)=-\frac{1}{2} \sum_{m=1}^{p_{0}} \frac{2^{m}}{m(2 p)!} \tilde{H}_{x_{j}, m}^{(2 p)}(0) \text { for } p=1,2, \ldots, P_{o} \text {, } \\
& c_{p_{0}+1}\left(X_{j}\right)=\frac{1}{2} \sum_{p=1}^{p_{0}} \sum_{i=p_{o}+1}^{p\left(p_{0}+1\right)} \frac{p(2 q)!}{H_{X_{j}, p}(0)+\sigma p_{o}+2}\left(X_{j}\right), \\
& K_{p}=\sum_{j=1}^{n} c_{p}\left(x_{j}\right) \text { for } p=1,2, \ldots, p_{o}+1 \\
& K=\sum_{p=1}^{p_{o}+1}\left|K_{p}\right| \text {, } \\
& \tilde{G}(t)=\sum_{p=2}^{p_{o}+1} K_{p} t^{2 p} \text {, }
\end{aligned}
$$

Let $T=\frac{1}{\sqrt[4]{n} \sqrt{\sigma^{2} \text { max }}}$ where $\sigma_{\text {max }}^{2}=\max \left\{\sigma^{2}\left(x_{j}\right) \mid j=1,2, \ldots, n\right\}+1$.
If each $\theta_{x_{j}}(t), j=1,2, \ldots, n$ has $\left(2 p_{0}+2\right)$ - th derivative
and $\left|\theta_{x_{j}}^{\left(2 p_{o}+2\right)}(t)\right| \leq a$ on $(-5, \tau)$, then we have

$$
\begin{aligned}
& \tilde{F}(t)=\sum_{m=1}^{p_{0}} \sum_{j=1}^{n} \theta_{x_{j}}^{(2 m+1)}(0) \frac{t^{2 m+1}}{(2 m+1)!}+n a \frac{t^{2 p_{0}+2}}{\left(2 p_{0}+2\right)!}, \\
& F(t)=\sum_{m=1}^{p_{0}} \sum_{j=1}^{n}\left|\theta x_{j}^{(2 m+1)}(0)\right| \frac{t^{2 m+1}}{(2 m+1)!}+n a \frac{t^{2 p_{0}+2}}{\left(2 p_{0}+2\right)!}, \\
& h_{3}(t)=\sum_{i=1}^{p_{0}} \frac{(-1)^{i}}{(2 i)!} \sum_{q=2 i}^{2 i+p_{0}-1} \frac{1}{(2 q)!} \tilde{F}_{[2 i]}^{(2 q)}(0) t^{2 q},
\end{aligned}
$$

$$
h_{4}(t)=\sum_{i=1}^{p_{0}} \frac{(-1)^{i-1}}{(2 i-1)!} \sum_{q=2 i}^{2 i+p_{0}-1} \frac{1}{(2 q-1)!} \tilde{F}_{[2 i-1]}^{(2 q-1)}(0) t^{2 q-1},
$$

$$
\begin{aligned}
& G(t)=\sum_{p=2}^{p_{0}+1}\left|K_{p}\right| t^{2 p},
\end{aligned}
$$

$$
\begin{aligned}
& h_{2}(t)= \begin{cases}k_{2}{ }^{\frac{K_{2}}{16 n}} t^{4} & \text { if } p_{0}=1, \\
p_{0} \\
\sum_{m=1}^{m!} \frac{1}{m!}\left[\sum_{q=m+p}^{m(2 p+2)}\right. & \left.\frac{1}{(2 q)!} \tilde{G}_{[m]}^{(2 q)}(0)\right] t^{2\left(m+p_{0}\right)}\end{cases} \\
& +\frac{1}{\left(p_{0}+1\right)!} e^{\frac{k}{16 n} p_{0}+1} t^{4\left(p_{0}+1\right)} \text { if } p_{0}>1 .
\end{aligned}
$$

and

$$
\begin{aligned}
& h_{5}(t)=\sum_{i=1}^{p_{0}} \frac{1}{(2 i)!}\left[\begin{array}{ccc}
2 i\left(2 p_{o}+2\right) & (q) \\
\sum_{q=4 i+2 p_{o}} & \frac{1}{q!} & F^{q} \\
{[2 i]}
\end{array}\right] t^{4 i+2 p_{0}} \\
& +\sum_{i=1}^{p_{0}} \frac{1}{(2 i-1)!}\left[\begin{array}{ccc}
(2 i-1)\left(2 p_{0}+2\right) & (q) \\
\sum_{q=4 i+2 p_{0}-2} & \frac{1}{q!} & F_{[2 i-1]}
\end{array}\right] t^{4 i+2 p_{0}-2} \\
& +\frac{2}{\left(2 p_{o}+1\right)!}\left(F_{[1]}(1)\right)^{2 p_{o}+1} t^{6 p_{o}+3} .
\end{aligned}
$$

For each $j=1,2, \ldots, n$, let
and

Theorem 3.11 Let $x_{j}, j=1,2, \ldots, n$ be independent integral-valued random variables with finite moments of order $2 p_{0}+2$ where p_{0} is a positive integer. Assume that $B_{n}>0$. Let $A(t), B(t)$ be as define in Lemma 3.10. If
i) each $\theta_{X_{j}}(t)$ has $\left(2 p_{0}+2\right)$ - th derivative on $(-\mathcal{F}, \mathcal{F})$ and there exists an a such that $\left|\theta_{x_{j}}^{\left(2 p_{o}+2\right)}(t)\right| \leq a$ on $(-\tau, \tau)$ and
ii) each $\theta_{X_{j}}$ (t) has $\left(2 p_{o}+1\right)$-th continuous derivative on $[-5,5]$,
then

$$
\begin{aligned}
R(T) & =\frac{1}{\sqrt{2 \pi}} \int_{0}^{T}-\frac{t^{2}}{2} d t+\frac{1}{\pi} \int_{0}^{\infty}-\frac{1}{2} e^{B_{n} t^{2}} \frac{\sin \left(T \sqrt{B_{n}} t\right) A(t)}{t} d t \\
& +\frac{1}{\pi} \int_{0}^{\infty}-\frac{1}{2} e^{B_{n}} t^{2} \sin \left(T \sqrt{B_{n}} t\right)\left(\frac{1}{t}+\frac{A(t)}{-t}\right)\left(h_{1}(t)+h_{1}(t) h_{3}(t)+h_{3}(t)\right) d t \cdot \\
& -\frac{1}{\pi} \int_{0}^{\infty}-\frac{1}{2} e_{n} t^{2} \cos \left(T \sqrt{B_{n}} t\right)\left(\frac{1}{t}+\frac{A(t)}{t}\right)\left(h_{4}(t)+h_{1}(t) h_{4}(t)\right) d t \\
& +\Delta
\end{aligned}
$$

where

$$
\begin{aligned}
&|\Delta|< \frac{e^{-\sigma^{2} c}}{\sigma^{2} c}+\frac{1}{2 \pi} \int_{0}^{\infty} e^{-c t^{2}} B(t) d t+\frac{1}{\pi} \int_{0}^{\infty}-\frac{1}{2} e_{n} t^{2} h_{2}(t)\left|\frac{1}{t}+\frac{A(t)}{t}\right| d t \\
&+ \frac{1}{\pi} \left\lvert\, \int_{0}^{\tau}-\frac{1}{2} B_{n} t^{2}\right. \\
& \left.\left(1+h_{1}(t)\right) h_{5}(t)\left(\frac{1}{t}+\frac{A(t)}{t}\right) d t \right\rvert\,+ \\
& \frac{1}{\pi} \int_{g}^{\infty}-\frac{1}{2} B_{n} t^{2}\left|\left(1+h_{1}(t)\right)\left(1+h_{3}(t)+h_{4}(t)\right)\left(\frac{1}{t}+\frac{A(t)}{t}\right)\right| d t .
\end{aligned}
$$

Proof : By Lemma 3.10, there are polynomial functions $A(t)$, $B(t)$ such that
(3.11.1) $\ldots \frac{1}{2 \pi} \int_{0}^{\tau} \frac{\left|\varphi_{S_{n}}(t)\right| \sin \left(T \sqrt{B_{n}} t-\alpha(t)\right)}{\sin \frac{t}{2}} d t$

$$
=\frac{1}{\pi} \int_{0}^{\tau}\left|\varphi_{S_{n}}(t)\right| \sin \left(T \sqrt{B_{n}} t-\alpha\right)\left(\frac{1}{t}+\frac{A(t)}{t}\right) d t+\Delta_{1}
$$

such that

$$
\left|\Delta_{1}\right| \leq \frac{1}{2 \pi} \int_{0}^{J}\left|\varphi_{S_{n}}(t)\right| B(t) d t
$$

$$
\begin{aligned}
& \leq \frac{1}{2 \pi} \int_{0}^{5} e^{-c t^{2}} B(t) d t \\
& \leq \frac{1}{2 \pi} \int_{0}^{\infty} e^{-c t^{2}} B(t) d t
\end{aligned}
$$

where the second inequality follows from (3.9.1).
By Theorem 3.7, there are polynomial functions h_{1}, h_{2} such that
(3.11.2) ... $\frac{1}{\pi} \int_{0}^{T}\left|\varphi_{s_{n}}(t)\right| \sin \left(T \sqrt{B_{n}} t-\alpha(t)\right) \cdot\left(\frac{1}{t}+\frac{A(t)}{t}\right) d t$

$$
=\frac{1}{\pi} \int_{0}^{\tau} e^{-\frac{1}{2} B_{n} t^{2}}\left(1+h_{1}(t)\right) \sin \left(T \sqrt{B_{n}} t-\alpha(t)\right)\left(\frac{1}{t}+\frac{A(t)}{t}\right) d t+\Delta_{2}
$$

where $\quad\left|\Delta_{2}\right| \leq \frac{1}{\pi} \int_{0}^{T}-\frac{1}{2} e^{n} t^{2} h_{2}(t)\left|\left(\frac{1}{t}+\frac{A(t)}{t}\right)\right| d t$,

$$
\leq \frac{1}{\pi} \int_{0}^{\infty} e^{-\frac{1}{2} B n^{t^{2}}} h_{2}(t)\left|\frac{1}{t}+\frac{A(t)}{t}\right| d t
$$

By Theorem 3.8, there are polynomial functions h_{3}, h_{4} and h_{5} such that

$$
\begin{aligned}
&(3.11 .3) \ldots \frac{1}{\pi} \int_{0}^{\tau}-\frac{1}{2} B_{n} t^{2}\left(1+h_{1}(t)\right) \sin \left(T \sqrt{B_{n}} t-\alpha(t)\right)\left(\frac{1}{t}+\frac{A(t)}{t}\right) d t \\
&= \frac{1}{\pi} \int_{0}^{\tau}-\frac{1}{2} B_{n} t^{2}\left(1+h_{1}(t)\right)\left(\sin \left(T \sqrt{B_{n}} t\right)\left(1+i h_{3}(t)\right)-\cos \left(T \sqrt{B_{n}} t\right) h_{4}(t)\right) \\
&\left(\frac{1}{t}+\frac{A(t)}{t}\right) d t+\Delta_{3}
\end{aligned}
$$

where

$$
\left|\Delta_{3}\right| \leq \frac{1}{\pi}\left|\int_{0}^{5}-\frac{1}{2} e^{n} t^{2}\left(1+h_{1}(t)\right) h_{5}(t)\left(\frac{1}{t}+\frac{A(t)}{t}\right) d t\right|
$$

From (3.11.1), (3.11.2) and (3.11.3), we have

$$
(3.11 .4) \ldots \frac{1}{\pi} \int_{0}^{\tau} \frac{\left|\varphi_{S_{n}}(t)\right| \sin \left(T \sqrt{B_{n}} t-\alpha(t)\right)}{\sin \frac{t}{2}} d t
$$

$$
=\frac{1}{\pi} \int_{0}^{\sigma} e^{\frac{1}{2} B_{n} t^{2}} \frac{\sin \left(T \sqrt{B_{n}} t\right)}{t} d t+\frac{1}{\pi} \int_{0}^{\sigma} e^{\frac{1}{2} B_{n} t^{2}} \frac{\sin \left(T \sqrt{B_{n}} t\right)}{t} A(t) d t
$$

$$
-\frac{1}{\pi} \int_{0}^{\pi}-\frac{1}{2} B_{n} t^{2} \cos \left(T \sqrt{B_{n}} t\right)\left(\frac{1}{t}+\frac{A(t)}{t}\right)\left(h_{4}(t)+h_{1}(t) h_{4}(t)\right) d t+\Delta_{4}
$$

$$
+\frac{1}{\pi}\left|\int_{0}^{\sigma} e^{-\frac{1}{2} B_{n} t^{2}}\left(1+h_{1}(t)\right) h_{5}(t)\left(\frac{1}{t}+\frac{A(t)}{t}\right) d t\right|
$$

Since

$$
\begin{aligned}
R(T) & =\frac{1}{2 \pi} \int_{0}^{\tau} \frac{\left|\varphi_{S_{n}}(t)\right| \sin \left(T \sqrt{B_{n}} t-\alpha(t)\right)}{\sin \frac{t}{2}} d t \\
& +\frac{1}{2 \pi} \int_{5}^{\pi} \frac{\left|\varphi_{S_{n}}(t)\right| \sin \left(T \sqrt{B_{n}} t-\alpha(t)\right)}{\sin \frac{1}{2}} d t
\end{aligned}
$$

by 3.9 .2 , we have

$$
R(T)=\frac{1}{2 \pi} \int_{0}^{\tau} \frac{\left|\varphi_{S_{n}}(t)\right| \sin \left(T \sqrt{B_{n}} t-\alpha(t)\right.}{\sin \frac{t}{2}} d t+\Delta_{5}
$$

where

$$
\left|\Delta_{5}\right| \leq \frac{e^{-c 5^{2}}}{4 c 5^{2}}
$$

Hence by (3.11 .4), we have

$$
\begin{aligned}
R(T) & =\frac{1}{\pi} \int_{0}^{9} \frac{e^{-\frac{1}{2} B_{n} t^{2}} \sin \left(T \sqrt{B_{n}} t\right)}{t} d t+\frac{1}{\pi} \int_{0}^{5} \frac{e^{-\frac{1}{2} B_{n} t^{2}} \sin \left(T \sqrt{B_{n}} t\right) A(t)}{t} d t \\
& +\frac{1}{\pi} \int_{0}^{5}-\frac{1}{e^{2} B_{n} t^{2}} \sin \left(T \sqrt{B_{n}} t\right)\left(\frac{1}{t}+\frac{A(t)}{t}\right)\left(h_{1}(t)+h_{1}(t) h_{3}(t)+h_{3}(t)\right) d t \\
& -\frac{1}{\pi} \int_{0}^{\pi}-\frac{1}{e^{2} B_{n} t^{2}} \cos \left(T \sqrt{B_{n}} t\right)\left(\frac{1}{t}+\frac{A(t)}{t}\right)\left(h_{4}(t)+h_{1}(t) h_{4}(t)\right) d t+\Delta_{6}
\end{aligned}
$$

where $\left|\Delta_{6}\right| \leq\left|\Delta_{4}\right|+\left|\Delta_{5}\right|$.

$$
\begin{aligned}
& \text { Hence } \\
& R(T)=\frac{1}{\pi} \int_{0}^{\infty} \frac{e^{-\frac{1}{2} B_{n} t^{2}} \cdot \sin \left(T \sqrt{B_{n}} t\right)}{t} d t+\frac{1}{\pi} \int_{0}^{\infty} \frac{e^{-\frac{1}{2} B_{n} t^{2}} \sin \left(T \sqrt{B_{n}} t\right) A(t)}{t} d t \\
& +\frac{1}{\pi} \int_{0}^{\infty}-\frac{1}{2} B_{n} t^{2} \sin \left(T \sqrt{B_{n}} t\right)\left(\frac{1}{t}+\frac{A(t)}{t}\right)\left(h_{1}(t)+h_{1}(t) h_{3}(t)+h_{3}(t)\right) d t \\
& \left.-\frac{1}{\pi} \int_{0}^{\infty}-\frac{1}{2} B_{n} t^{2} \cos \left(T \sqrt{B_{n}} t\right)\left(\frac{1}{t}+\frac{A(t)}{t}\right)\left(h_{4}(t)+h_{1}(t) h_{4}(t)\right)\right) d t+\Delta_{6}+\Delta_{7} \text {, } \\
& \text { where }\left|\Delta_{7}\right| \leq \frac{1}{\pi} \int_{\tau}^{\infty} e^{-\frac{1}{2} B_{n} t^{2}}\left|\left(1+h_{1}(t)\right)\left(1+h_{3}(t)+h_{4}(t)\right)\left(\frac{1}{t}+\frac{A(t)}{t}\right)\right| d t .
\end{aligned}
$$

$$
\begin{aligned}
& \text { Since } \int_{0}^{\infty}-\frac{1}{e^{2}} B_{n} t^{2} \frac{\sin \left(T \sqrt{B_{n}} t\right)}{t} d t=\sqrt{\frac{\pi}{2}} \int_{0}^{T}-\frac{1}{e^{2} B_{n} t^{2}} d t, \\
& R(T)= \frac{1}{\sqrt{2 \pi}} \int_{0}^{T}-\frac{1}{e^{2} B_{n} t^{2}} d t+\frac{1}{\pi} \int_{0}^{\infty}-\frac{1}{2} e^{2} t^{2} \frac{\sin \left(T \sqrt{B_{n}} t\right) A(t)}{t} d t \\
&+\frac{1}{\pi} \int_{0}^{\infty}-\frac{1}{e^{2} B_{n} t^{2}} \sin \left(T \sqrt{B_{n}} t\right)\left(\frac{1}{t}+\frac{A(t)}{t}\right)\left(h_{1}(t)+h_{1}(t) h_{3}(t)+h_{3}(t)\right) d t \\
&- \frac{1}{\pi} \int_{0}^{\infty}-\frac{1}{e^{2} B_{n} t^{2}} \cos \left(T \sqrt{B_{n}} t\right)\left(\frac{1}{t}+\frac{A(t)}{t}\right)\left(h_{4}(t)+h_{1}(t) h_{4}(t)\right) d t+\Delta \\
& \text { where }|\Delta|< \frac{e^{-5^{2} c}}{5^{2} c}+\frac{1}{2 \pi} \int_{0}^{\infty} e^{-c t^{2}} B(t) d t+\frac{1}{\pi} \int_{0}^{\infty}-\frac{1}{2} B_{n} t^{2} \\
& h_{2}(t)\left|\frac{1}{t}+\frac{A(t)}{t}\right| d t \\
&+\frac{1}{\pi} \int_{0}^{\infty}-\frac{1}{e^{2} B_{n} t^{2}}\left|\left(1+h_{1}(t)\right) h_{5}(t)\left(\frac{1}{t}+\frac{A(t)}{t}\right)\right| d t \\
&+\frac{1}{\pi} \int_{\sigma}^{\infty}-\frac{1}{e^{2} B_{n} t^{2}\left|\left(1+h_{1}(t)\right)\left(1+h_{3}(t)+h_{4}(t)\right)\left(\frac{1}{t}+\frac{A(t)}{t}\right)\right| d t}
\end{aligned}
$$

