CHAPTIR III
THE FUNCTIONAL EQUATION :

f(xy ¥) + £(x + y, 2) = £(y, 2) + £(x, ¥ + z) ON GROUP

In this chapter we will discuss the functional oequation ;

(p) f(xy y) + f(x+ y, 2) = £(y, 2) + £f(x, ¥ + 8)

i /
where f:GxG-—-56G, GandG are ablian groups and x,¥, z,

in G .
Our purpose is to give conditions under which a function

g ¢ G—)G, such that
(B) £(x, ¥) = glx) + g(y) - glx + y)

for all x, y, in G exists,

/ /
Wile shall denote the identities of G and G by ¢ and e

respectively,

Let f/: G x G ——3»G/ be defined by f/(x, y) = £f(x, y)~-f(e,e),
It can be verified that fl satisfied (A) and f?e, e) = e/. It
follows that f satisfied (A) if and only if there exists k € G’
and there exists f{: G X Gy Gl, satisfying (A) and er,e) = e/,
such that f = fl+ k., Ilence therec is no loss of generality to

assume that

(*) f(e’ e) = [+ .
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In (A), replace ¥y = 2 = ¢, Then

f(x,e) + f(x, e) = f(e, e) + f(x, e).

Hence by cancellation we have

/

(Ao']) f(X' e)- = e
for all x in G.
Similarly
/
(A.E) f(e, y) 3t e
fof»all y in G,
Definition 361 A function f on G Xx G is said to® symmetric if

fix, y) = I(y, x)

for all xy ¥, in G

Definition 3,2 Let - X be an ordinal, By a ¥ - sequence in a group G,

we mean & one - to - .one~function x on ¥ into G- fe4 , where e is

the identity of G. For each B (%, we define a subgroup SB as follows;

a

SP T <§xct {"X(?j) 7

i S;'3<ﬁ<‘x) will be called the ¥ - sequence of subgroups

determined by the ¥ = sequence ixd%(d<'5) )

Definition 3,3 Let S be a subgroup of a group G, Tor any

te G~-S , we shall denote the subgroup gencrated by S and t

by 8Lt} o dewvi
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3] - o CBUItH

Lemma 3.4 Let S be a proper subgroup of a group G

For any element t € G - S.

a) if mt € S Hr some nonzero integer m, then for every

element y € 8 [t,] - S, there cxists an element s of S and positive

integer p such that v 8 + pt,

») if ot é S for any nonzero integer m, then for

every element y e S[t7] = S, there exists a unique element 8 € S

and a unique integer n such that y = s + nt.

Proof, a) Assume that mt e S for some non-zero integer m,
Since (-m)t = (-mt), hence (-mt) & S.

Therefore it is sufficient to prove the lemma for the case

that mt ¢ 8 where m is positive,

Let y e S{t]-8

Since y&€ SLt] y hence y can be expressed in the form

y =8 +nt, where s € S and n is an integer,

By Archimedean property, we can choose a positive integer

q such that gqm > - n,
Observe that

s = qmt + gmt + nt,

<
1

(s=qmt) + (gqm + n)t,

]
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. *
Since s - qmt € S and qm + n 0, hence y = s + pt, wherec

(s - gmt) € 5 and p = qm+n ig a positive integer.

S =
b) Assume that nmt % s for any nonzero integer m.
et yecs[t]- s
Since y & S[t], hence y can be expressed in the form
y = 8 + nt where s €S and n is an integer.,
To show the uniqueness of s and n, let
! /
y =8 + nt and - y=8+nt
!
where s, 8 € S and n, r are integers.
/
without loss of generality we may assume that n)n .
] /
Therefore (n <0yt ='is -8 € S.
By the assumption that there is no m # O such that mt ¢ 3,
/
have n = d = O, Hence g=85=-0t' = €.

/ /
It follows that n = n and 5 = 8 .

!
TLemma 3.5 Let (G, +) and (G, +) be abelian groups. Let

/
f +:Gx@—0G be a synnetric function such that

/

1~) f(eqe) = e
and
(n) f(xy ¥) + £lx+ ¥y 5, 2) = £(y, 2) + f(xy y+ 2)

for all x,y, z, in G. Tet S be a subgroup of G such that there
/
exist a function g : S — G satisfying

we
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(B) f(x,y) = g(x) + g(y) - g(x+y)

for all x,y, in S¢ Let t € G « S, Then there exists an

A A '
extension g of g such that f and g satisfies (B) on S[:t] y 1ecCe

{
(B) £(xyy) = &(x) + &(¥) - &(x + ¥)

Bl g /
for all x,y € S | t_]. Furthermore, if a is any element in G,

A
2 can be @hosen in such a way that g (t)

&,

!
Proof, Let a be any element in Ge

Case I Assume that t is such that mt é S for any nonzero

N
integer me¢ Define g on S [t] as follows : For any s € S, 1let

(3e54%) Blot + srreEte)
(3e502) g(nt +8) =e=a +'§((n+1)t+s)+f(t,nt+s) for n £ =1,
(3e543) Blat + 8) = & + B((n=1)t+s)=£(t,(n=1)t+s)

for n 2 %1 ,

Since each y € S [ t] - S has a unique representation in
the form y = nt + s, hence @ is well - defined, It follows
from (3.He1) that @ is an extension of g . It remains to be

/
shown that f and @ satisfies (B) .

/
Let s, 8 be any elements in S, For each integers n, m,

let B(nym) be the statement



/ A A e /
"f(nt+s, mt + 8) = g(nt+s) +g(mt+s)=-g((n+m)t+s+s )¢

For each nonnegative integer N,let P(N) be the proposition

"B(n,m) holds for all integers n,m with {nf{¢&N , m|jg N . ®
3 /
Since s, 8 € S, we have
! / '
f(sy 8) = g(8) + g(s) - g(s + 8).

By (345.1) we have

I A /
f(ot + B, ot+s) = g(ot+s)+ g(ot+s) = g(ot+s+s’).
Hence P(0) holds.

Let k be any nonnegative integer. Assume that P(k) holds.

We shall show that P(k+1) holds.

Let n, m be any integers such that jn!| £ k+1 . ! ml & kel o

By the assumption P(k), we have B(n,m) holding for all n,m
such that [n| < k+1 and |mi{< k+1 ., It remains to be verified

that B(n,m) holds in the following cases :

Case 1, n==%k1 ,{m{f &k .
Case 2, m = k+ ,gn{ék.
Case 3. n==%k1 , m = =k=1,
Caso 4, n=«k=1, m = k.
Case 5. n = =k=1, |m| & R %

Case 6. fal & ¥, 0= okt ,
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Case 7. n =kt 3, m= k1,
Case 8e 0 o= -k-1, nm s —k—1 ™
Case 1, n = k+1 , ‘m'ék.

Note that k+1 and k+m+1 are positive. Hence, by

(3.5.3) we have

A A
g((k+1)t+s) = a+g(kt+s)- f(t,kt+s),

A / N i /
g( (k+m+1)t+s+s ) = a+g((ktm)t+s+s) =~ f(t,(k+m)t+s+s ).

These imply

A A / A /
g((k+M)t+s) + g( mt+s) = g((k+m+1)t+s+s)
A . A A
= a+8(kt+s)-f(t,kt+a)+g(mt+s’)-a—g((k+m)t+s+s')
¥ f(t,(k+m)t+s+s/),

A e - |
= g(kt+s)-f(t,kt+s)+g(mt+s)-g((k+m)t+s+s)

/
+ f(t,(k+m)t+s+s ),

A A 1A
= g(kt+s)+g(mt+s)-g((k+m)t+s+é) - f(t,kt+s)

/
+ f(t,(k+m)t+s+s ),

/
£(kt+s,mt+8)=F(t kt+s) + £(t,(kem)t+s+s’),

where the last equality follows from the inductive hypothesis,

/
Replacing x, y, z in (A) by t, kt + s, mt + s respectively, we have

/ { /
f(t,kt+s) + f((k+1N)t+s,mt+s) = f(kt+s,mt+s) +£(t,(k+m)t+s+s ).



8.

This implies

' /
£(kt+s,mt+8) ~ £(t,kt+s) +I(t, (kem)t+s+s' ) = £((ke1)tes, mbes ).
Hence
N N i A ! /
g((k+1)t+s)+g(mt+s) = g((k+m+1)t+s+s) = F((k+1)t+s,mt+s ),

Case 2 m=ktl, {n|gk.

The verification of B(nym) in this case is similar to the

case 1,

Case 3 n=ktly m= =k-1,

Note that k+1 is positive and -k-=1 is negative, hence by

(3.5.3) and (3.5.2) respectively we have

g((k+1)t+s) a+g(kt+s) - f(t,kt +5).

it

B((~k=1)t+8) ~a + B(=kt4s) + £(t,(=k=1)tss ) .

These imply
A A /
B((k+1)t+8) + g((~k=1)t+s) - g(s+8)

A A { A /
a+g(kt+s)-f(t,kt+s)=a+g(-kt+s) + (t,(~k=1)t+s)-g(s+s8),

i

N A . /
B(kt+s)=£(t kt+s)+g(~kt+8)+£(t,(~ka1)t+8) =B (s4s ),

/
B(kt+8) +5(~kt+8)-F(s48) = (t kb +8) +£ (£, (=ke1)trs’ ),

!
£(kt+8, ~kt+8) ~£(t,kt+s) + £(t,(-k-1)t+a),
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where the last equality follows from the inductive hypothesis.

/
Replacing x,y,z in (A) by kt+s, t, (~k=1)t+s respectively, we have
!
f(kt+s,t) + £((k+1)t+s, (-k=-1)t+s ) = f(t,(-k-1)t+sl) + f(kt+s, -kt+s/)¢
This implies

£(kt+s,=ktss) = £(t,kt+8)+E(t,(=k=1)t+8) = £((ks1)tss, (mke1)bra).

Hence

B((k+1)t48)+8((=k=1)t+8) = B(548) = £((ke1)t48 ,(=kel)bag).

Case l* n = =k=1 y m = k+1

The verification of B(n,m) in this case is similar to the

case 3.

Case 5 n = =k=1 , I m !gzk .

Note that ~k-1 and ~k+m-1 are negative. Hence by (3,5.2)

we have
AN A
g((=k=1)t+s) = =a+g(-kt+s)+f(t,(~k=1)t+s),
A i A / !
g({(=k+m=1)t+s+s8) = -a+g((~-ksm)t+s+s) +f(t,(=k+n=1)t+s+s).
These imply
A A A i
g((-k—1)t+s)+g(mt+§) - g((=k+m=1)t+s+8)
A A /
= =a+g(=kt+s8)+f(t,(~k=1)t+s)+g(mt+s)

/
18~ ((=k+m)t+848)= £(t,(=k+m=1)t+s+8),
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A A i /
g(=kt+s)+f(t,(~k=1)t+8)+g(mt+s)=~ g((—k+m)t+s+s)
!
~f(t,(=k+m=1)t+s+8),

@(-kt+s)+§(mt+é)-§((-k+m)t+s+é)+f(t,(-k-1)t+s)

!
-f(ty(=k+m=1)t+s+s5),

: i S
f(=kt+s,mt+s) + £(t, (=k=1)t+s)~-f(t,(~k+m=1)t+s+s),

n

where the last equality follows from the inductive hypothesise.

i
Replacing x,y¥,2, in (A) by t,(=k=1)t+s and mt+s respectively,

we have

] ! /
f(ty(=k=1)t+s)+f(~kt+s, mt+s) = f((=k=1)t+s, mt+s)+f(t,(—k+m-4)t+s+s)
This implies

/ [ /

f(=kt+s mt+s)+f(t,(~k=1)t+8)=f(t,(=k+g=1)t+s+s) = £((-k=1)t+s,mt+s).
Hence
A A b N i !
g((=k=1)t+spg(mt+s)=g((~k+m=1)t+s+8) = £((~k=1)t+s,mt+s).

Case 6 | n | £ ky m = <kel,

The verification of B(n,m) in this case is similar to the

case 5,



Case 7 n =k+1 g I = k+1
Sinee k+1, 2k+1, 2k+2 are positive, hence by (3.5.3), we have

Sttkit)tse)

~
a+g(kt+s)-f(t,kt+s),

A [ A / ‘
g((k+1)t+s) a+g(kt+s)=f(t kt+s),

A | {
g((2k+2)t+s+é) a+g((2k+1)t+s+é)-f(t,(2k+1)t+s+s),

{ /
= a+(a+f8(2ktrs+8) = £(t,2kt+s+8))

/
~f(t,(2k+1)t+s+8),
A / !
=  2a+g(2kt+s+s) = f(t,2kt+s+s)
' !
~f(t,(2k+1)t+s8+8) .
These imply

E((k+1)t48)+8( (ke 1) t48)e B((2ke2)beses )

y ! ]
a+g(kt+8)=£(t kt+ra+B(kt+8) - £(t kt+s)
A / / . !
- 2a-g(2kt+s+s)+ f(t, 2kt+s+s) + f(ty,(2ki+1)t+s+8),

/ /
B(kt+8)+5 (Kt +5) =g (2kt+s+8) ~f(t kt+s)

/ P : /
~f(t,kt+s)+f(t,2kt+s+8) +£(t,(2k+1)t+s+8),

/ 4
f(kt+s,kt+s)=f(t kt+s)=f(t,kt+s)

! {
+ f(t,2kt+8+8) +f(t,(2k+1)t+s+8),

T1504 6680
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where the last equality follows from the inductive hypothesis.

!
Replacing x, y, 2z in (A) by t, kt+s and kt+s respectively,

we have

! ! / :
£(t,kt+8) + £((ke1)t4s,kt+s) = £(ktssy ktes) + £(t,2kt + s « &)
This implies

! { / /
f(kt+s,kt+s)- f(t,kt+s)+ f(t,2kt+s+s8 ) = f((k+1)t+s, kt+s).

/
Adding ~f(t,kt+s)+ f(t,(2k+1)t+s+s) to the both sides,

we have
! { ' t
f(kt+s,kt+s)-f(t kt+s)=-F(t ,kt+s)+ f(t,2kt+s+s) + £(t,(2k+1)t+s+s)
, / :
= f((k+1)t+s, kt+s)=f(t ,kt+s)+f(t,(2k+1)t+s5+8),.
/
Replacing x,y,2z in (A) by t,kt+s and (k+1)t+s
respectively, we have
/ ' !
f(t,kt+8)+f((k+N)t+s, (k+1)t+s) = f(kt+s, (k+1)t+s )
/
+ f(t,(2k+1)t+s+8) o
This implies
1 {
F((k+1)t+s, kt+s) = £(t,kt+8)+f(t,(2k+1)t+s+8)

: /
= f((k+1)t+s, (k+1)t+s )..
Hence

BCCeN) t+8)+8((ke1)t+8) = B((2ks2)t+848) = £((ke1)tes, (kel)tss).
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Case O n = =k-1, m = k<1,

Since ~k-1, =2k-1, =2ke-2 are negative, hence by (3.5.2)

we have

g((-k—1)t+s) -a+g(-£f+s)+f(t,(-k-1)t+s) .

A / A / s
g((=k=1)t+a) ~a+g(=kt+s) + f(t,(~ke1)t+s),

1

A i ! A / /
g((=2k=2)t+s+8) ~a+8((=2k=1)t+s+8)+ £(t,(=2ke2)t+s+s),

/
= ot (~a+p(=2kt+s48) +£(t ,(=2k=1)t+5+8) )
/
+ T(t,(=2k=2)t,+5+8),

A / /
= =2a+g(=2kt+s+8)+f(t,(~2k=1)t+s+8)

/
+2(t,(~2k=2)t+s+8).

These imply
A / A /
E((=k=1)t+8)+ B8((=k=1)t+5) = g((=2k=2)t+5+s)
A A /
= =a+g(=kt+s)+f(t,(=k=1)t+s) -a+g(~-kt+s)
/ A / /
+f(ty(=k=1)t+8)+2a=g(=2kt+s+8)=Ff(t ,(=2k=1)t+s+8)

/
~f(t,(=2k=2)t+s+s8),

A A 1A ! :
= g(=kt+s)+g(~kt+s)=g(=2kt+s+s)+f(t,(=k=1)t+s)

+ f(t,(-k—1)t+;)-f(t,62k-1)t+s+é)— f(t,(-2k—2)t+s+és.
w Pl B LR B e BOE , Colbat VBB YR (4 s €utnt Yo 48)

_f(t'(-2k-1)t+s+é)-f(t,(-2k—2)t+s+é),
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where the last equality follows from the inductive hypothesis,

/
Replacing x,y, 2 in (A) by t, (=ke1)t+s and (=k-1)t+s

respectively, we have
i / t
f(t,(-k—1)t+s)+f(-kt+s, (=k=1)t+s8) = f((~k=1)t+s, (~k=1)t+s)
i
+f(t,(~2k=2)t+s+s),
This implies
{ !
F(ty(=k=1)t+s)=f(t,(=2k=2)t+s5+8)
! l !
= f((~k=1)t+s, (~k=1)t+8)=f(~kt+s, («k=1)t+s ),

/ /
Adding f(=kt+s, <kt+8)+ f(t,(=k=1)t+s)=f(t,(=2k=1)t+s+8)

to the both sides, we have
-2k=2

{ / /
f(-kt+s,—kt+s)+f(t,(—k-1)t+s)+f(t,(-k~1)t+s) - f(t,jt+s+s)
j:-— k"1

= f(-kt+s,-kt+;)+f(t,(-k-1)t+s)+f((-k-1)t+;, (=k=1)t+s )

—f (kb8 , (=ke1)trs) =L (t, (=2k=1)t+54+8).

Replacing X, y, z in (A) by t,(=k=1)t+s, -kt+sl
respectively, we have
f(t;(—k-1)t}s)+f(-kt+s, i) . B CAMRT) Gamiale +8) s ECE o (-2Wut) b suing b
This implies

4 ! ' /
f(~-kt+s, «kt+s) + f(ty(~k=1)t+s)=f(~kt+s, (-k-1)t+§¥f(t,(-2k-1)t+s+s)

n
Q
.
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Hence
§'<<k-1>t+s> + Q((-k-1)t+s’) - @((-2}:-2)1; + 8 + s')

= 2((=keq1) t+s/, (=k=1)t+s)

Therefore P(k+1) holds.

Case II Assume that t is such that mt € S for some nonzero

integer mo Let m, be the smallest positive integer such that

mt& S . By lemma 3.4(a), for anyyc S[t]- S, there exists

an element s € S and a positive integer n such that y = s + nte

A
Define g on 8 [t] as follows : For any s¢€ S, let

(3.5.4) g(nt +8) = gt + s8) if nt + s € 8§

(3.545) E(nt + 8) a + Q((n-1)t+s) -f(t,(n=1)t+s)

for n >1 and nt + s ¢ 8 o

) A
It follows from (3.5.4) that g is an extension of g. We

A ro N R
will prove that g is well - defined on S [ t]- S. Let yesS [t] -
Assume that
/ /
y = pt + s and y=pt +s

/ e : $
where p and p are positive integers and s, s € S.

/ ! /
Write P = agm +r and p = qm + T
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SR Al 4
where vy 45 Ty Ps . Qy T are integers such that 0 4 r, r o m, e

/
Since y ¢ Sy hence r, r > 0. Without loss of generality

\ /
we may assume that X2 P s

Since
{ / /
(qm0+ r) t+s = 3y = (qmo+ r)t+ s .
L / l

Hence (r - )t = (q - q) mt+s-s.

: ! / {

Since (q = q)mot +s -8 € 8, hence (r-r)t € S,
/

But 0 € r=-rc m e Therefore, by the minimality of m

we have T -7 = 0/

/
Hence . qmot + 8 = qmot + 5 .

By (3.5.5) we have

/ / 2 / i
ra + g(qmot +8) - % f(t,(qm0+r-j)t+s ,
J=1

A I /
g((qmo + 1)t + 8)

r
ra + g(qmot +68) «% f(t,(qmo+r-j)t+s)

A
g((gm + r)t+s)
o
j=1

! /
Since qmot + s = qmot + S, hence

i !
g(qmot + 8) = g(qmot + 8)
and

/ /
5 % (qmo+ r - jlt+ s)= f(t,(qmo+ r-j)t+s)
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for each j. Therefore
! /
’é((qm0 + )t + 8) = @((qmo+ It + 8).

Hence
A ! {
glpt + 8) = /g\(pt + 8)e
sty .
Observe that the definition of g given in (3.5.4) and
(3.5.5) are the same as those given by (3.5.1) and (3.5.3) in

/
A
case I. The proof of case I shows that g and f satisfy (B) »

This completes the prove of lemma 3.5 .

Lemma 3.6 Let G be a group and ¥ be an ordinal, Let i_&ii(d<x)

be a family of subgroups of G such that for each « < B < X,

For each £ < ¥ 4 let x, be an element of S

§*C: s ol oL +1

a °

such that x ¢ US '« If ¥ is a cardinal number, then
7240(

ll

s where L}ﬁg‘ denotes the cardinal number of U 3, .

YA S AL

¥ £

o

~

<
% ca

A

Proofe. If X ‘is f£inite then

¢
le’ xo, ecoy xx“ 2‘} g Sx~‘| .
= US& °
ALY
Hence
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If ¥ is infinite cardinal then by lemma A=35, ¥ is a

limit ordinal., Since _

p & T
l X N)c'%, Q :....’,/"_.,_1 N (“?‘\Plﬂ’\jh\
' ¢ ) & 1 _//.~/ y \':
U ix.i S US,y . | 3 |
ALY L% \ & \ %5 ® )
. &
Since ¥ is a limit ordinal, UsS, , <« Usy
oL % Ly
Y - {
Hence U=} a U 8. :
oL X L R
|
Therefore U vx /] < s Sy
AL% Pa s
Since ixoL; (A< %) is equipotent to ¥ , hence
3o —Uix 1
AL X
Hence ¥ 4 tkég) |
L%

Theorem 3.7 Given any group G, there exists an ordinal ¥ and
a ¥- sequence '[x,;ﬁ (< %) in G such thgat the ¥ = sequence

? e 7 ' . 2
~s°,¢}k,,<\ ¥ ) - of subgroup of G determined by ix«_f(.((?‘) has

the property that 8, = @
A<y

Proof., In the case that G = ie S s the ordinal ¥= O

|

Sg = < ¢> =led = a
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Assume that G # Ze} « First we shall show that there
exists an ordinal ¥ and a family of subgroups i Sd,}(d< X))

and US‘,L = G .

such that if L < B < ¥ , then 8,C 8
<B

B

Let £ be a choice function for G.

Let B be any nonzero ordinal such that the subgroups S

have been defined for all « < B and G -|JS, is not empty .

o<L<B

Case 1 B omi §%g for some ordinal § .
Define Y. = (G /BLY

5 L < B

<
and SB = <{y°L/oL<B}> >
Case 2 B is a limit ordinal.
Define Sg = (=
L B
= G -8
Vg Pl B)

We claim that there exists an ordinal number ¥ such that
<L ¥
Suppose the contrary, i.e, for all ¥ ,

M

LY
/ " s
Take Xs: = PG where ®G is the power set of G.
Hence Usge C a.
A< ¥
Therefore 8. £ 8,
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By lemma 3.6, we have

14
LJ/So( ) g
o<y
Hence G > ®C s+ which is a contradiction.

Therefore the assumption is false, hence there exists an

ordinal X and a family {Sd}(om ¥ of subgroups of G

such that Usd = G
Al Y

Let (e(G =Us, ) if B is a non limit ordinal

2 W, <P+
B c(G - {Us, ) 4if B is a limit ordinal .

ol <B
Observe that x{3 = yB~. By the above construction, we
see that gx*%(d(;;) is a ¥ = sequence and ixoc}(o(< %)

generates the ¥ = sequence of subgroup iso(}(o(< . G HE

/
Theorem 3.8 Let (G, +) and (G, +) be abelian groups. Let
!

a symmetric function f:1GxX G—G satisfy
/
(%) f(eqe) = e ,
(A) £(xyy) + £f(x + y, 2) = f(y, 2) + £f(x,y + z)

/
for all x, ¥y 2, in G. Then there exists a function g :G— G

such that

(B) f(x,y) = g(x) + g(y) - glx + y)

Tor altl ¥, in G
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-

Proof, From theorem 3,7 there exists an ordinal ¥ and a ¥ - sequence

meﬁ(ou,_() in G such that the ¥ - sequence Esgcjcaxx‘) of

subgroup: of G determined by {%,1¢ucx) has the property that

L/’ So" = G .
A<y
For each o< ¥ , we shall define 8, on S, so that

y ,
(1) if « <« , then Br-C B »
=

(2) f and each g, satisfy (B) on - S

This will be done by transfinite induction,

Define e on S = ie } by putting

Clearly f and 8o satisfy (B) on S, .

Let p< ¥ be any ordinal number such that 8 have been

defined so that f and 5% satisfy (B) on Se fov all x<« P

Case 1 P = S+ 1 for some o;’rdinal S e

Since g has been defined on Sg 4 hence by lemma 3,5,

there exists an extension é\s on S: ;:xS] such that f and é\S
satisfy (B) on 8, {'xx] "

Put
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Then gb is defined on Sﬁ = Sé{xé] and f and gﬁ

satisfy (B) on 8 It can be shown that (1) holds,

F .

Case 2~ P is a limit ordinal,

In this case, we put

B. = Ug,»
P ¢ P
Clearly (1) holds. TFrom (1), 4t follows that gP is
well - defined on SFs = LJSx and f, g satisfy (B) on Sp .

d(ﬁ P
Hence, for each p<%, 41f g has been defined on S 9

and f and g satisfy (B) on S P%or alle < P s then gB can be

defined on S and f and g_ satisfy (B) on S Therefore,for

p * p B°
all o(X¥, g, can be defined on S, and f and 8, satisfy (B) on -
Define

odX

Hence, by(1), g is well - defined on G = Us, and f
LY

and g satisfy (B) on G .

For certain group G, the symmetry of f can be derived from
the functional equation(A), Tor such a group the symmetry of f

needs not be assumed,

L
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Theorem 349 Let the group G in theorem 3,8 be such that there
exist a sequence of infinite cyclic subgroup iSLS with the

following properties :'

) G . UsiD...jsi:-...Dso .

1)  Tor muy  2¢ Si sy 2% &€ Si-’l.

iii) For all x; € Si and all j > i , there exists

X6 S'j such that

;- /
If a function f : G x G — G s Wwhere G is an abelian group,

satisfy

/
(*) £ B —————e—;
and

(A) F(x,y) + f(x+y, z2) = £(y, z) + f(x,5y + z)

!
for all x,y, 2z, in G, then there exists a function g : G -G such

that
(B) f(x,y) = g(x) + g(y) - g(x+y)

for all x,y, in G .
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Proof From (*) and (A) it follows that

/

(Ae?) f(x,e) e

for all x in G, and

(Ae2) fle,y) = o
for all y in G.
Define
Fixy ¥) = I€¥Y/F 2(73)N

For all x in G and ®r each integers n, m, let C(m,n) *e the

statement

{
"F(mx,nx ) = e forall x € G."

For each nonnegative integer N, let P(N) be the proposition :

"G(myn) holds for all integers m,n with Im! < N, |n! < N.©
By (*) , P(0) holds.

Let k be any positive integer. Assume that P(k-1) holds.
We shall show that P(k)holds. Let myn be any integers such that
[m] & X5 ’111 & ke By the assumption P(k-1), we have C(m,n)

holding for all m,n such that ]ml < k and !n! < k o« It

remains to be verified that C(m,m) holds in the following cases



Case

Case

Case

Case

Case

Case

Case

Case

Replacing

1.
2.

3.
L,

Se

6.

7o

Z

Inl <
n =
iml S
Iml <
m=xXk
o=k
m = =k
m = -k

T HRF) + (XY x)

This implies

f(x,y) - £(y,x)

Therefore

(3. 9 1)

Observe that

F(x,y)

F(x,y)

H

k=1, m=k ,

’n.=k.

in (A), we have

f(yex) + f(x,y+x)

F(x,y+4x) = F(x+y,%x).

P x,x+¥) o

£(x,y) = £(y,x) ,

£ (y,x) - £(x,y)),

“F(yyx)

49



Therefore

(3.9 22)

Case 1,

(1e1)

have

(1.2)

(1e3)

50

F(x,y) = = F(¥y,x) .

Suppose that n is negative,

By (3¢7.2), (3.9.1) and the inductive hypothesis,

F(kx, nx) <P(r1x, kx),

it

-F(nx, (f""iﬂ)k) 3

/
= (¢} °

Suppose that n is zero.
7

By (A1) and (A.2) we have

F(kx, e) f(kx, e) - f(e,kx),

Suppose that n is positive.

By (3¢9 42), (3.°9.1) and inductive hypothesis we have

- F(nx, kx),

F(kx, nx)

-F(nx, (k=-n)x),-

!/
= e .

we
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Case 2 n o= =ky tnl & xet

If follows from (3,9 .2) that
T (kx, nx) = - F(nx, kx) .

Replacing n and x in the last equation by - n and - x

respectively, we have

F(-kx, nx) = =F(nx, -kx) ,

(2,1) Suppose that n is negative,

By (3¢9+1) and inductive hypothesis, we have

-F(nx, =-kx) -M(nx, =(k+n)x),

!
= [+] L]

Hence

F(-kx, nx)

!
(0]
.

(2.2) Suppose that n is zero «

By (A.1) and (A.2) we have

F(-kx, e) f(~kx, e) - f(e, =-kx),

/

= e P

(2.3) Suppose that n is positive,

By (3.9 «1) and inductive hypothesis, we have

-F(nx, -kx) -F(nx, (n=k)x),

1]

!
= e °



Hence

Case

3

(3.1)

Case 4,

(3.2)

(343)

(k1)

5t

Suppose that m is negative.

By (3.9 .1) and inductive hypothesis we have

F(mx, kx)

F(mx, (k4+m)x),

Suppose that m is zero .
By (A.1) and (A.2) , we have

F(e, kx) f(e, kx) - f(kx, e),

’
= (<] .

Suppose that m is positive.
By (3.9 1) and inductive hypothesis we have

F(mx, kx) F(mx,(k-m)x),

lm'ék-'l,n:-k.
Suppose that m is negative.

By (3.92.1) and inductive hypothesis, we have
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F(mx, -kx) F(mx, -(k+m)x),

/
= e °

(4.2) Suppose that m is zero.

By (Ae1) and (A.2) wo have

F(e, -kx)

(4
=5 <] »

(4+3) Suppose that m is positive.

BY (3¢9 +1) @d inductive hypothesis,

F(mx, =kx) F(mx, (m=-k)x),

/
= G ]

BY (369 .1), (A1) and (A.2), we have

F(kx, -kx) "F(kx, e),

f(kx, e) « f(e, kx),

f
= e .

(e, ~kx) - f(-kx, o) ,

we have

53



Case 6. m= -k, n =k,

By (307 01)’ (A.I‘) and (1’&.2), we have

F(-kx, kx) F(~kx, €),

]

f(-kx, ) =-f(e,-kx),

Case 7 m= =ky n -k o

it

BY (3.9 1), (Ae¢1) andi(As2), wo have

F(=kx, =kx) F(=kx, ¢),

1

£(-kx,0) = £(o,-kx) ,

i

/
= e .

Case 8 m = evagenkie

BY (3.9 .1), (As1) and (A.2), we have,

it

F(-kx, kx) F(=kx, €) ,

Therefore we have P(N) hold Hr all il. Thus

F(mx, nx) - ¥

forall xdn G

54
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Let x, y be in G, Then there exist p and g such that
X & 8 and = S
o T < g "

Choose r > P ad r. »: g

By (iii), there exist 2y %, € Sr such that

and y = 2 —2 3

Let z be a generator of Sr. Then

z4 = az and 22 = bz

for some integer a, b .

Therefore x = a2 P,z and y = i
Set a:2" B m, and p.2" "2 - N, e
Therefore P(x, ¥) = F(m,z, nqz) .
Vie have proved that F(qu, n1z) = e/ for all z in ¢ .
Hence T(x,y) = e/ : for all x,y in G.
Therefore
f(x,y) = f(y,x)

for all x,y, in G.
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Hence, by theorem 3.8’, the condusion of the theorem follows.

/
Theorem 3,70 Let (G,+) be an abelian group and let (G,+) be

/
@ 2 - divisible abelian groups. lLet F : G x G — G satisfy

(4) P(xy¥) + F(x+y 42) = F(y,2) + F(x,y +2)

/
for all x, y, z in G, Then there exists a function g : G — G
satisfying
(3.170,1) F(x,y) = Blxi¥)r+g(x) + g(y) - glx+y),
where B is a skew-symmetric biadditive function; i.e, B satisfies
(3.,10,2) B(x+y42) = B(xyz) + B(y,z) ,

(36104.3) B(x,y+2) B(x,y) + B(x,z) ,

(30100“‘) B(X,,‘/) £ B(y,x) = 0

for all x, ¥, 2, i8W3

Proof. Let

}] -
Bty) = 2 [Py - Fm]
We will show that B satisfies (3.10.2) (3.10,3) and (3.10.4)

By definition of B, we have

B(x,¥) + B(yyx)

% [F(x,y) = T(yy%) + F(yq,x) = F(x,yﬂ B



(3'10.4)

Hence

Replacing =x,y.z in (A)

F(zyx) + F(B+x, ¥) =

This implies

(3.10.5)

Replacing y, z in (A)

F(x,2) + F(x+247 =

This implies

(3.10,6)
By the definition of B,

B(x+y,2) =
By (A) and (3.70.,5), we

[F(x+y,z) - F(z,x+y)]

Nija

~F(z,x+y)

T(x,y+2) = F(x+z,y) =

57

holds .

by z4%x,y 4 respectively, we have

PR, 7) + Tl{2,%4Y) &

S F(x,y) - F(zyx) = F(z+X,¥).

by z and y respectively we have

BEZSY) + F(x7+2) o

T(xy2) = F(Z,7)e
we have

% [F(x+y,Z) - F(Z,X+Y)} .

have

[F(x,y+z) + E(F,2) - P(x,y) + F(x,y)

- F(2+X,y) = F(Z,X)T '

=

= [F(x,y+z) - F(z+X,¥) + F(y,2) = T(z,%)]

!
{=

i 3
- %il‘"(xvz) ~ F(2,¥) + F(y,2) = Flz,x)| ,
= 1 [F(X’Z) - F(Z,X)-l s l —F(y’z)_ F(z,y)‘?i .
2 SR ¢

= B(xy,2) + B(y,2) ,
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where the third equality follows from (3.70.6) by replacing
F(x,y+z) = F(z+x,y) by F(x,z) - F(z,y) and the last equality

follows from the definition of B., Hence
B(x+y,42) = B(x,2) + B(y,z)
The verification of (3,10,3) is similar to that of (3.710.2)
and will = omitted.

Thus D satisfies (341042), (3.70,3) and (3.10.4),

Set (x5 % {F(x,y) + T(y,%)

{
Since G is abelian, 'hence

f(x,y) F oByax). «

Observe that

1 | b
B(x,y) + f(x,y)ll= %[?(xvY) = F(y,x)} + E [F(va) of! F(y,x)j ’
= F(x,y) .
Hence
(3410, 7) F(XQX) = B(x,y) + f(x,y)

Next, we shall show that f satisfies (A).

Replacing x = z and z = x in (A), we have

(301008) F(ZQY) + F(z+y,x) = F(Y|x) g F(z'x+Y)o
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Observe that

£(x,y) + T(x+y,2)

h e >
LF(x,y)+ F(y,x)]f Eﬂ}(x+y,z) + F(24yX+Y) |

L
=

= {F(x,y)+ F(x+y,2) + F(y,x)+F(Z.X+Yﬂ ’

XY P

|
|-

= 1IF(r2) + Flx,y42)4T(yez,%) + Fz,3)|

l_F(y.z) + F(Z.yi] + % [F(x,y+z)+F(y+z,Xﬂ

|
g -

Hihz) + Tx;942),

1

where the first and the last equalities follow from the definifion
of £, the third equality follows from (A) and (31048) by replacing
F(x,¥) + F(x+¥,2) by F(y,2) + F(x,y+z) and replacing F(y.x) + I'(z,x+y)

by F(y+z,x) + F(z,y). Hence
/
(h) f(x,¥) + £(x+y,2) = T(y,z) '+ f(x,y+2) .

/
Since f is symmetric and f satisfies (A) , hence by
§ /
theorem 3,3, we can construct a function g : G — G satisfying

the identity

£{mey) ‘= g(x) + g(y) = g(x+y)
This identity together with (3.10,7) dimply that

\

F(x,y) = B(x,y) + g8(x) + g(y) = glx+y)

This completes the proof of the theorem 3,10 .
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