CHAPTER 1II
PRELIMINARIES

In this chapter we will give some definitions and results
from topology and group theory which will be a basic , requirement
for our investigation. The materials of this chapter were
extracted from reference [2] 4 [3] ’ [4] ’ [5] » [7] . We
shall assume that the reader is familiar with common terms used
in set theory. Some details about ordinals and cardinals which

will be used in the sequel can be found in the appendix

2.1 Adlgebraic Concepts

Following the usual custom, the value of the binary
operation o at (x, y) is written x 6y instead of the usual

functional notation o (x, y) .

A group is a pair (G, o ), where G is a non =- empty set

and o is a binary operation on G such that

a) the operation is associative, that is ,

x o(yog) = (xoy)o2z for all elements x, ¥, 2 of G ;
b) there is an element ¢ of G such that

egx'= X /&= X for each x-in G :
c) for each x in G there is an element £1 in G such

that

1
XoX > o 4

]
o
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It can be shown that the dement e in (b) is unique, it is
known as the identity of G. For each x € G, the element x-1 in
(¢) is also unique. It is known as the inverse of x. We shall

(e}
sometimes write“for (G, ¢ )« For any element x & G, the order

‘of x is the least positive integer m such that x'= e « If no

such integer exists we say that x is of infinite order. If G is

a group in which every element other than the idenlity is of

infinite order, G is said to be torsion-free. If G is group in

which every element is of finite order, G is said to be a

a torsion group. 4 group G is abelian or commutative, if and

only if Xy = ¥Yeox for all members x and y of Ge A group H
is a subgroup of G if and only if HEG and the group operation
of H is the restriction of that of G. Let S be any subset of G.
(The intersection of all subgroups of G that contains S form a

subgroup of G« It is called the subgroup generated by S and will

be denoted by < 8> ). It can be shown that when S ¢ @, < S)
is the set of all finite product of elements of S or their inverses.

When S = @, < S )» consists of the identity alone.

A non - empty set F with two binary operations +, ° ,
known as addition and multiplication respectively, is said to

form a field if :
e e o



i) F forms a commutative group under addition.
) T - {o} , where 0 is the additive identity forms
a commutative group under multiplication.

iii) For any a, b, c&F , we have
a(b + ¢) = ab + ac
Let (Fy, +,+) be a field and (V, + ) be a commutative

group with a rule of multiplication which assigns to any a € F,

ue Vy, a product au& V . Then V is called a vector space over F

if the following axioms hold :

1) For any a€F and any u, ve&V,
alu + v) /= au +av .
2) For any a, b&F and any ucV,
(a b)) u = au + bu..
3) For any a, b&F and u &V,
a(bu) Asdbbims
b) For vE&V, v =v where 1 is the multiplicative

identity of F .

The elements of F and V will be refered to as scalars
and vectors, respectively. A subset E of a vector space V is said to
to be a subsBace if E is a vector space over the same field with
addition and scalar multiplication induced from Vy, i.e. the
operations of E are the restriction of that of V. If V is a vector

space over the field F and {xi} (1 <1 <n) is a finite subset of

s

V, then for aie E4 L %4 1y z aix'i is called
1=



a linear combination of the X e The vectors X1 Xy eegX) eV

are said to be linearly dependent over F, or simply dependent,

if there exist scalars a1, caey ants F , not all of them ZEero,

n
such that ¥ aixi = 0 . An arbitrary set & of vectors is
i=1

said tol a linearly dependent set if some finite subset of & is

linearly dependente. Otherwise, the set A is called a linearly

independent or simply independent. If ﬁg is a linearly independent

subset of V such that for every v € V, v can be written as a

linear combination of vectors in @ y We say thatg is a basis of

V. It can be shown that every veétor in ¥ has a unique representation
as a linear combination of elements of 59 and that every basis of

V has the same cardinal number. The cardinal number of a basis of

a vector space is called its dimension. If the cardinal number

of a basis of a vector space is finite, the vector space is called

finite dimensional.

2.2 Topological Spaces.

Let X be a set and q’be a collection of subsets of X. The
collection ff is called a topology on X provided CT satisfies the

following conditions :
a) @ and X are elements of .
b) The intersection of any two members of 7’ is in 5f.

c) The arbitrary union of members of ff is in ﬁr;



If ‘fis a topology on a set X, then (X, (1/) is said to be

a topological space. Occasionally, we shall denote any topological

space(X, T) simply by X. The members of ‘] are called < g open

sets of X(or simply open sets of X)e« If a topological space X has

0

the property that for any x, y in X there exist open sets 01, 5

such that x € 0,, y & O2 and O1n O, = @, we say that X is

7 2

a Hausdorff space. For any topological space (X , "T )y it can

be shown that if Y is any subset of X, then the family

‘Ty = {’T‘ﬂ Y T’éq} is a topology on Y ; it is called

e
the relative topology of Y and the topological space (Y, ]y) is

called a subspace of (X, 6]/).

By a neighborhood of a point x in a topological space X,

we shall mean a set N for which there exists an open set | such

that x €T C N . For x&X 4 the collection Nx of all

neighborhoods of x is called the neighborhood system of x. A

subset & of a topological space X is said to be closed if and
only if its relative complement X (A4 is open. An element

x in a topological space X is an accumulation point of a subset &

of X if and only if every neighborhood of x contains points of A
other than x. The closure of a subset A& is the intersection of all
the closed sets that contains A. The closure of A is denoted by a.
It can be shown that the accumulation points of A4 are contained in

X . A set & is dense in a topological space X if and only if A = X



A subcollection 6.8 of a topology ('T is said to be a
base of ‘T provided the following condition holds : for each

TE‘T and xE‘T, there is a W = QB such that x € W C T,

or equivalently, each T in ‘]J is a union of members of ‘.B .
It can be shown that if a family ‘B of subsets of a set X has

the properties,
3 Y 4 25
i) the union of sets in 4 is X.
i) .t h BBl a5 8. | B is th i f
p 5 or eac 1% B> QS 1 > is e union o

members of'@, then E is a base for some topology for X. This
topology consists of all sets that can be written as unions of sets
in ?J. Observe that the family of all open intervals form a base
for a topology on the set R of. real numbers. This topology is

called the usual topology on TR o

1 (‘J
A subfamily o of | is a subbase of the topology 61/ on X
if and only if the set of all finite intersections of members of

13 form a base for Cf

A base for the neighborhood system Nx of a point x is

G r
a subgollection *fjf__,.x of ‘Nx such that for each N_ € o)\x,

there is a Ux E@X such that x ¢ Ux c Nx e If all sets in

ch are open, we say that @ w is an open base for the

neighborhood system Nx'.




(@]

4 function f of a topological space (X,‘T ) into a
topological space (Y,lb ) is continuous at a point x if and only
if, given any neighborhood Vy of the point y = f(x), there is

a neighborhood U, of the point x such that f(l]x) < Vy e ' The

mapping f is said to be continuous on X if it is continuous at
every point of X.

Theorem 2.2.1 If X and Y are topological space and f
is a function on X to Y, then the following statements are

equivalent.

a) The function f is continuous.

——

b) For each subset & of X, f(A) C f(a) .

¢) For any open set | ¢= Y, the preimage f-1(T')

~

is open in X. For the proof of this theorem see [5] o

Let £ : D—Y be a map from a subset D of a topological

space X into a topological space Y. Let X, be an accumulation
point of D. If for every neighborhood V of Yo 0 there is a

neighborhood U of x_  such that £(U - ng} ) C V, then Y,

is a limit of f at X, It can be shown that when Y is a
Hausforff space, f can have at most one limit at each point X, e
Hence, if a limit of f at X exists , it is unique. When this

is the case, we shall use the notation Y, = lim f(x)
o X— X

to indicate that Y, is the limit of f at X, » When Y is .



the extended real line, we then define functions on D to ﬁ 9

called the limit superior and the limit inferior of £, the value

of these limits at x are written as lim sup f(t) and 1im inf £(t)

t—ax t— x

respectively . To define 1lim sup f(t) and 1lim in £ f£(t),

t—x t—ex
let N be the class of all sets N= DNy when U can be
any neighborhood of x. We assume x&€ D s therefore N £ g .

Then, by definition

;
lim  sup £(t) / RN sup { £0(t) : t€ N}, x €D,
g % NedN
ifm dof . () # sup inf {f(t) 1 &€ N], x €D .
t—nx NeJYy

It can be shown that if f is continuous at x € D, then

lim  inf f(t) = f(x) = lim adp f£(t) .
t—x t— x

Let ixo,_/ ol € A]q be a family of sets. X = 11X,

(%N
<L e A

denotes the set of all mappingg x: A——-)UX“ such that x(<&) € X,
AEA

for each o, €& A . X 1is called the Cartesian product or product

of X For each x € X and each « & A&, x(oL ) is

"
oo
called the projection of x on X, « We shall denote x (X)) »by

X, - The mapping P, : f—p X, defined by P (x) = x_ 3

Ee

is called the o¢ th projection mapping. It can be seen that
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is a mapping from X onto XoL PO 1 {X“/o(. € A} is a family

of topologiecal spaces, then the family of sets of the form

Pc:1 (ol )y - Wheve Y isa 6_-1;(- open set, forms a subbase

of a topology ij for the product TTx,,( . This topology is
qEA

known as the product topology. The topoiogical space (TD(« ' T )

will be called the product space of {x& e AL

Let D be a set . A binary relation > on D is said to

direct D 4if the following hold :
a) for any my n and p in D if m>n and n > p, then
m-xp-3
b) for any m in Dy, we have m » m ;

c) for any m and n in Dy there exists a p in D such

that p > m and P2 ne

4 directed set is a pair (Dy > ), where > directs D.

Let X be a set, Anet yinXisamapy : D~—>X where

(Dy, > ) is a directed sete For L € D we usually write Ve

for y(oL ) « The notation {y"(l will be used to

(et e D)

designate a net defined on the directed set (Dy 2 D

Remark One immediatly observes that the concept of a directed
set is a generalization of the positive integers with their natural

ordering, and that of a net is the generalization of a sequence.



Let I be any limit ordinal number. Henc‘e\(,'f’;,“{) is a
directed set. Any net having (”, ) ) as a directed set will be

called [7 - net. st

A net Eydj in a topological space (X, 7 ) converges

(e D)
to x € X if for each neighborhood U of x there exists a peED

such that for all « ) p , Y.& U+ vhen {yoc} converges

L (L € D)

8 : i ¢ .
0 x, we say that x is a limit of Ly&g(deD)

Suppose Eyﬁc}(&e p)y ~is '8 met in a set X, Let J be a
directed set and k be a function fronm J to D such that
1) if o » of,y thot /oA k¢ A0 TR

) AT ¥, p &€ D then there is j ¢ J such that k(j) » &

and k(j) » P o

Then the composition y o k from J into X is said to be a
subnet of the net iya:}(o(eD)' The subnet Fok is wusually
written as {y } '
k. :
i~ e d

It can be shown that every convergent net in a Hausdorff
space has a unique limit, e shall write lim(yoé s LED) = p

to mean that {y { converges to p.

xI(AED)

Let S be a subset of a set ¥, A collection oF of subsets

of X is called a covering of S if and only if the union of the sets
in J© contains ¢, ‘hen b is a covering of S we also say that o”(ér

covers S.
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Let #% be a covering of a subset S of a set X, A collection
‘3{ is called a subcovering of Jb if and only if 3{ covers S

and every set in H is a set in ?Zv °

A collection dﬂé of subsets of a topological space X is

called an open covering of a subset A of a topological space X if

and only if I is a covering of 4 and every set in dﬂé is open in

X .

A subset 4 of a topological space X is compact if and only if
every covering of A by sets which are open in X has a finite

subcovering.

2.3 Topological groups

A triple (G, o , ﬂ' ) is a topological group if and only

if (G 4, o ) is a group, (G,QT ) is a topological space, and the
function whose value at a member (x, y) of G x G is x‘.,y-1 is
continuous relative to the product topology for G X G. We sometimes

say " G is a topological group " .

Example of topological groups

a) The set R of real numbers with addition as the group
operation and the usual topology form an additive abelian topological
groupe.

b) The set E{ of positive real numbers with multiplication
as the group oéeration and the relative topology of the usual

topology of R form a topological groupe.
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¢) The set ﬁzk of 2all real k - tuples with addition as
the coordinate addition and the usual topology of m&k form a

topological group.

d) A complex number can be considered as an ordered pair
of real numbers. Hence the usual topology on € sy the set of
complex numbers, shall mean the usual topology on ﬂza e« The set
{ of complex numbers with addition as its binary operation and

the usual topology on ¢ form a topological group .

All topological groups mentioned above are abelian and

torsion freee.

*

A topological group X will be said to be ¢ - compact if

X = L}Kn for some sequence {Kn/ n ¢ a{} of compact
n=o0 )
neighborhoods of e, the identity of X, Note that 1ék) is

¥
§ - compact,

2.4 Uniform Spaces

2.441 Uniformities and the uniform topology

By a relation on a set X we mean a subset of XxX. If U
is a relation on X , its inverse, denote by []-1 s is defined
by

v - i(y, x) // (x, & U}
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For any two relations {J, V on X, their composition U,V
r
is defined by U oV = i(x, z) / xy 2 C X and there exists

y € X such that (x, y) € U and (y, 2z) € V}.

The relation
AN ={(x,x)/xex}
will be called the diagonal,

A uniformity for a set X is @ non - empty family 1L of

relations on X such that

a) each member of 4, contains the diagonal A ,
b) if U is in/UYy “je<dfien U-1 is also in b ,
¢) if U is in/q), 'y ~then there exists a V in %), such

that VoV C U,

d) if U and V are members of {b , then U]l V is in
Vo

e) if T is in U anda UCVC XxX , then V is in b.

A uniform space is a pair (X,%% ), where X is a set and

U is a uniformity on X « If A is a subset of X, the relative
/
uniformity qJ, for A is the uniformity consisting of the sets

i /
UNaxa), for yelh. (4, ) is called a (uniform) subspace
of X .

A subfamily % of a uniformity QUo is a base for b if
and only if each member of Ul contains a member of @ . If @&

base @ of a uniformity b is given, then each U is in Ua
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contains a member of ;‘B « Hence any base for 9 determines b

entirely .
It can be shown that a family fB of subsets of X x X is
2 base for some uniformity for X if and only if

!/
(a) each member of 9B contains the diagonal A ;

/ -
(b) if U is in B, then U ! contains a member of

B

(¢) if U is in By ~then- VoV C U for some V
in @; and

/

(d) The interscction of two members of @ contains

a member of ;‘B .

When X = TR , the set of @ll real numbers, the collection
B of a11 sets of the férm 1'-25 %= [(x,y)/ Ix-y, < SJ s where
$ is any positive real number, satisfies (al), (b,), (c’), (d,) y
Hence f{?) is a base for some uniformity for TR . This uniformity

is called the usual uniformity for - Y

If (X, W) is a uniform spacey C is any subset of X, and
U  is any element of U, we denote by U[C] the set of all
points y in X such that (xy ¥y) is in U for some point x in - C .
If can be verified that the family of all subsets A& of X such that
for each x in A there is U in 9y such that Ulxica, is

a topology on X. This topology is called the uniform topology

determined by b .

0000 X
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Let oY be the neighborhood system of the identity e of a

topological group (G, 0,9 ). For each N in JY', 1let

R(N) = {(x, ¥) & Gx G y;c-1e N} 5
LN) = {(x, Y EExE : x5 e N
It can be verified that R(N) = {R(N)/ N € o\{}and
LYy = {L(N)/ N C-.J\[} form bases for some uniformities. These

uniformities are known as the right uniformity and the left

uniformity on G, determined by % respectively. It can be

shown that the uniformitie. +ith L(JY) R () and L(()\’)U&(d\(‘,as
bases determine the same uniform topologyy which coincides with
the original topology € of the topological group (G, 0,9 ). Hence
the topology of any topological group is always a uniform topology.
Remark : Recall that the 'set of real numbers R with addition as
the group operation and the usual topology, 1is a topological
groupe It can be seen that the usual uniformity of ’IR can be

considered as the uniformity determined by the usual topology

of R .

2.4.2 Uniform Continuity

A function f on & uniform space (X, Y ) with values in a

uniform space (Y,V)) is uniformly continuous relative to %o and

W if and only if for each V in ) the set {(x, y) (f(x),f(y))GV_}
is a member of b . Let A be a subset of X with a relative

1 ! .
uniformity U . A function f on (A,%U ) with values in a uniform

/
space (Y, ) 1is uniformly continuous relative to U, and U/
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if and only if for each V in '} the set{(x,y):(f(x), f(yNe V}

!
is a member of 1.

Remark 1 One can see that a function f on a subset A of a
topological group (G, o 61’) with values in a topological group

(GI, *,"T’) is uniform continuous on A if and only if for each
N/EJY’, where N/ is an open base of neighborhoods of the identity
¢ of Gl y there exists a N G:N, where N is an open base of
the identity e of G, such that f(y) [f(x) 'je MI (or

[f(x)} -1f(y) e N,) whenever yx-1e N (or x-1ye N) for

Xy ¥ IniAcs

Remark 2 Let JY be the set of all open neighborhoods of the

identity e of the topological group Ge It can be shown that the
family {M’;‘SN / NI) N EN} forms an open base of the neighborhoods of
the identity (e,e) of the product space G x G. Hence it follows
from remark 1 that a function f from GXxGy into a topological
group G/ is uniformly continuous on 4x A , for a subset A of G,

if and only if for ecach open neighborhood N’ of e’ s the identity

F
of G , there exists a neighborhood N of the identity e of G

/ / & e w1 {
such that f(x,y) [f(x’, y)]{—:N (or [f(x, y)] f(x,y) € N)
/ P | ! [‘1
whenever (x, ¥y)o (X, ¥)7 & N x N (or (X, ¥) « (xy y)E N x N)

/
for all (xXy ¥)s (x/, ¥) € A x A
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In [2] it has been proved that if f is a continuous function whose
domain is a compact uniform space and whose range is a uniform

spacey, then f is uniformly continuous.

2.443 Product Uniformities

For each a of an index set A, let (Xa’ U,a) be a uniform

space. The product uniformity for X {Xa tac A} is the smallest

uniformity such that the projection into each coordinate space is

uniformly continuous. It can be shown that the product uniformity

describes precisely the product topology on X E Xa ta & Alg °
J

A net iyd}(_ ot in a uniform space X is a Cauchy net if
ol & ) e cid

for a given {J in the uniformity Uo of X there exists o(.oC: D

such that for all o, B 2o, (X, B € D), (y‘x, yB) e Ue.

Remark A net { is cauchy in a topological group

L Yiwe D)
(6,0,T ) if it is cauchy relative to the uniformity which

determines the topology CT .

The following are well - known facts about nets in topological
space and uniform space. We state these facts for later references.

Their proofs are straight forward and will be omitted.

Theorem 2.5.1 If a net {ydj in a topological space (X, 9 )

(x€D)
converges to x,then any subnet of iyx}'(.‘eo) also converges to X.

Theorem 2.5.2 If 9l is a uniformity for a set X and 1] ie
ary set in 1), then there exists a Wof €U such that Wo W-1g 1 %

Furthermore, Wean be chosen to bé symmetric, i.e, W-1 = W .e
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Theorem 2.5.3 If a net %yg} L B
———e o) (ot €

converges to any point 7, in X, then {yd'g Cotet5y is capuchy.

in a uniform space X

Lemma 2.5.4 Let [I' - nets iy&} (< [") ana iy:.,_}(v(<r') in a uniform

space (X,%) converge to a point x € X. Define

I y@«g_ﬂn. if ol-= w%+ na
z =2
ol ; y
\'Ly(a)%,+n if o = &)?+ nz + 1,

where }, is an ordinal and n <@ . Then {zdx(o( <P) is a

cauchy net.

Proof First we shall verify that the net fzd} «<T) are well -

defined . For each o« € [’ , can be written in the form Wg+ m
where 3 and m are unique ordinal and m is finite. Since either
m=n2 or m= na+ 1 for some finite ordinal n. Hence for

all ot€l", either o = WE+ MR or o= Wi+ na+ 1 for

unique g, and n .

Therefore net {zm,_} is well - defined on I' ,

Next we will show that the net {z.|(«< ) is cauchy. Let V be

in % . By theorem 2.5.2 , there exists a W of U such that

W o W -, < V and W-1 = W.

Since the [ - net iy,,o’f(ax F) converges to a point x & X,

hence there exists ¥y < [" such that (y 2 X)EW for all & ) ¥,.

Similarly the [’ = net S.Y{r;.%(d('.") converges to the point
/ / '
x & X, hence there exists ‘o’o < [" such that (yo(/, x) € W for

b5y
all o¢>,‘60 !
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Choose 1 ,< [’ such that ‘71 ¥ ¥, and 1, > ¥q
/
Therefore for all o ;4 > yl,] we have

! -
(y y¥,) € Wow
o o

i

V .

Since iyoj i}

S' e
(£ <) and LY, I ote [7) are convergent, hence

they are cauchy. Therefore

i) there exists v <V such that for all o ,of <[, if
(,,g, | o

..Lz'yl'then (y&é. ,yu,/,)e\/,
> P2

ii) there exists W <I' such that for all « %< [’
5

i A s
/ / R
o4 e, 2 v{ﬁthen (yd‘ v %, /6, Vs

o

Since vz ,Yl : '.\'z' are ordinals, they can be expressed
2
! 2 D

in the form :
Q! : w%’.‘_ 'y{' 4 "r{'lz(;::%pj- YIZL ;“.’l: = w%; Vl}' 3

where 31, %2, ;3 are some ordinals and Ny Ny n3 &R
set ; = We +nad + |
7[1 1

&1 )

sk
za
il

w}L + na,_‘ﬂ‘- 9

’13 = w%‘% e nv-'\‘a + 1
§o ot g
Take YL =max [ Ytl ’ /lz , Vi% RN

We claim that for all o B < P, $2u4y B 2 VL then (zuc, ZB) e V.,

We shall prove this fact by cases :
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i) both of «£ 4 B are in the form Wwe+ g :
%

ii) both of £, B are in the .form ar% + L]

iii) only one of £ , B is in the form W+ Nl a
Case 1 Suppose
! f
oL = a7§,+ n2 and B = oyi+ n2 ,

/ ]
for some ordinals ?, %’ and ny, n < «w . Then

Zoc = y and Z = y ! /

6)§+ n B (,._)%(+ n .
Since
!
w45+ n2 > 2 = w4 + n 2
? q- q& f& 2 !
hence, by theorem A - 30 , we have

w?+112;w§2 £ n_ = T

Similarly,

! ! / ! i
W%+ n2 2v > =TWs ¥ " 1mn e implies w4+ n > w4+ 1 = % . Hence
3 l vl.z v e 4 [AR [z

(z , ZB) = (XQi+ n, ngj+ ﬂ) € V.

Case 2 Suppose

!
£ = @i+ n2+1 and B = we + 02 + 1

: - n
4 !
for some ordinals -;, 3, and ny n < w, Then

I !

Z = and 2
b yq)%-i' n B wg+ N .
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Since

I
ay? + n2 + 1 2> 7}2, Q; = a>%%+ n32 + 1,

hence, by theorem A - 30 , we have

W% +n W%, + n
¥ ¥

"
—~

Similarly 3
i 1] g 3
co% # nd+ 4 }122 75 = co§z+ n32 + 1 implies
" ! l<> w0 \
‘§/+ n> 3/; Uy Vls
Hence
] /
(2,4 25) = (y A\ R-S

Case 3. Without loss of generality we may assume that

/ s
of = w%,+ n2 and B:w?’_+ n2 + 1 -

/ 1
for some ordinals ?)3/ and n, n < ® ., Then

. and z = y ! .
Since

co?+ n2 zxzz *vZA = w%+ n12+1,

hence, by theorem A - 30 , we have

W3+ n > Wi+ n =1/C'
o 1 1
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Similarly, since

/ / . /
w§+ n2+‘1grygq = W% + n.2+ 1,
1

L b4 1
7
it follows from theorem A - 30 that a>§4-11 > aw;+ n1 = Y ”
s {
’
Hence (gx, ZB) = (Xu}+ N y&3:+ ﬂ) ev.

Therefore {z“}{?x<'rs is Cauchy .

2.6 Topological vector space

A topological vector space is the vector space E over

the field k of real or complex number and a Hausdorff topology
on £ such that the function f : E x E-f—>E and g ¢+ KxE —E
defined by f(x,y) = x + y and g(Ax) =Ax , are continuous,
where the topology on K is the usual topology. However, in
this thesis, by a topological vector space, we shall mean a

real topological vector space.

2.7 Spaces with property (7 N)

Let [” be a limit ordinal. 4 topological space X will

be said to have property (I'N), if for each accumulation point

x of any  subset A of X, there exists a [" - net in A which

converges to x.
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Theorem 2471 Let (X, ¥ ) bea topological space which has the
property (PN). Let g : X—Y be a function from space X into a
topological Y. Then g is continuous if for each x in X and for
each net EX,L% («<T") which converges to x, the netég(xoc)}(d@ )

converges to g(x) .

Proof. Assume thst for eaeh x in X and for each ['= net {xo,j (< i7)

which converges to x, the ! = net {g(xd_)}(c(< ") converges to g(x).
Let A be a subset of X and x be an accumulation point of A. Since
X has property (I"N), hence there exists a ["- net {xdn‘j(nL<r') in A
which converges to x. Then {g(xd)} (<) converges to g(x) .

We claim that g(x) € g(A). Suppose g(x) ¢ g(A) . Then g(x) must
be in the complement of m) which is open. Hence there exists>
an open set 0 such that g(x) is in 0 ana g(a)N 0 is empty. But
g(x) is the 1limit of the ' - net {g(x‘i)} («<<T") and g(x) is in O,
hence there exists an ordinal B < |’ such that 8(’(.;:) e Q for all
o 2B . Therefore g(xd') ¢ g(A) for all o > B, which is a

contradiction. Hence g(x) ¢ g(A). Therefore g(A) C gTI).

Therefore, by theorem 2.2.1, g is continuous .
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