การวิเคราะห์ชาตุบางตัวในหมู่ 3 เอ โดยวิธีอะโนดิคสตริพพิง

นางสาวกัณทิพย์ วิเศษหอม

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิทยาศาสตรมหาบัณฑิต แผนกวิชาเคมี บัณฑิตวิทยาลัย จุฬาลงกรณมหาวิทยาลัย พ.ศ. 2520

ANODIC STRIPPING ANALYSIS OF SOME OF GROUP III A ELEMENTS

MISS KUNTHIP VISESHOM

A Thesis Submitted in Partial Fulfillment of the Requirements

for the Degree of Master of Science

Department of Chemistry

Graduate School

Chulalongkorn University

1977

Accepted by the Graduate School, Chulalongkorn University, in Partial Fulfillment of the Requirements for the Degree of Master of Science.

Kind Parkmet

(Professor Dr. Visid Prachuabmoh)

Dean

Thesis Committee

Salag Dhabanandana Chairman

(Professor Dr. Salag Dhabanandana)

Protspun Kanatharane Advisor

(Assistant Professor Dr. Proespun Kanatharana)

Sin Varothai

(Assistant Professor Dr. Siri Varothai)

Longsh Liquiate Member

(Dr. Songsak Srianujata)

Thesis Advisor:

Assistant Professor Dr. Proespun Kanatharana

Copyright 1977

The Graduate School

Chulalongkorn University

Thesis Title:

Anodic Stripping Analysis of Some of Group III A

Elements

Ву

Miss Kunthip Viseshom

Department

Chemistry

หัวข้อวิทยานิพนธ์ การวิเคราะห์ธาตุบางตัวในหมู่ 3 เอ โดยวิธีอะโนดิคสตริพพิง ชื่อ นางสาวกัณฑิพย์ วิเศษหอม แผนกวิชา เคมี ปีการศึกษา 2519

บทคัดยอ

วิทยานิพนธ์นี้เป็นการศึกษาเกี่ยวกับคุณสมบัติและการวิเคราะห์ทางปริมาณของชาตุ
แทลเลี่ยม (I) อินเคียม (III) และแกลเลี่ยม (III) โดยวิชี่อะโนคิกสตริพพิง (anodic
stripping analysis) บนกลาสซีคาร์บอนอิเลคโตรค ในสารละลายหลายชนิด สาร
ละลายที่เหมาะสมสำหรับการวิเคราะห์แหลเลี่ยม (I) คือ สารละลายโปแตสเซี่ยมไนเตรต
(potassium nitrate) เข็มขัน 0.1 โมลาร์ (molar) และสารละลายอะซี่เตตบัพิเฟอร์
pH5.0 (acetate buffer pH 5.0) โดยเทคนิคนี้แหลเลี่ยม (I) ในสารละลายทั้งสอง
ที่กล่าวมา สามารถวิเคราะห์ไก้ถึงความเข้มขัน 1.00 x 10 6 โมลาร์ โดยการอิเลคโตร—
เคพโพสิต (electrodeposition) เป็นเวลา 10 นาที่ที่ —1.0 โวลท์ (volt) เทียบกับ
แซทหูเรตเตคคาโลเมลอีเลคโตรค (SCE) การวิเคราะห์อินเคียมในสารละลายอะซี่เตต
บัพิเฟอร์ pH 5.0 สามารถหาได้ถึง 1.00 x 10 6 โมลาร์ โดยการอิเลคโตรเคพโพสิตที่
-1.0 โวลท์ เทียบกับ SCE เป็นเวลา 10 นาที่ สาหรับแกลเลี่ยม (III) สามารถวิเคราะห์
ไก้โดยทำในสารละลายโซเดียมไทโอไซยาเนต (NascN) เข้มขัน 1.0 โมลาร์ ไก้ถึงปริมาณ
1.00 x 10 5 โมลาร์ โดยการอิเลคโตรเคพโพสิตที่ —1.7 โวลท์ เทียบกับ SCE เป็นเวลา
5 นาที

การวิเคราะห์แทลเลี่ยม (I)ในสารผสมระหวางแทลเลี่ยม (I)กับอินเคียม (III) และแทลเลี่ยม (I)กับแกลเลี่ยม (III)สามารถทำไก้ในสารละลายโปแฅสเซียมในเฅรฅ เข้มข้น 0.1 โมลาร์ ในสารผสมระหวางแทลเลี่ยม (I)กับอินเคียม (III) ชาตุทั้งสองนี้ สามารถวิเคราะห์หาปริมาณไก้โคยวิธีอะโนทิศสติพพิง ในสารละลายอะซีเฅฅบัฟเฟอร์ pH 5.0 เมื่อความเข้มข้นของธาตุที่จะวิเคราะห์มีปริมาณอย่างน้อยเป็นสองเท่าของอีกธาตุหนึ่ง และ โดยอาศัยเทคนิคนี้ได้ทคลองศึกษาหาปริมาณแทลเลี่ยมในสารผสมระหว่างแทลเลี่ยม (I) –

อินเกี่ยม (III) และแกลเลี่ยม (III) ในสารละลายโปแฅสเซี่ยมไนเตรตเข้มข้น 0.1 โมลาร์ พบวาแกลเลี่ยมไม่มีผลกระทบต่อการวิเคราะห์ทางปริมาณของแทลเลี่ยม (I) Thesis Title Anodic Stripping Analysis of Some of Group III A Elements

Name Miss Kunthip Viseshom : Department of Chemistry

Academic Year 1976

ABSTRACT

In this study; the anodic stripping voltammetric behaviors of thallium (I), indium (III) and gallium (III) were studied on a glassy carbon electrode in many supporting electrolytes. The appropriate supporting electrolytes for the anodic stripping analysis of Tl (I) are 0.1 M KNO3 and the acetate buffer pH 5.0. The sensitivity of this technique is 1.00 X 10⁻⁶M Tl (I) in either 0.1 M KNO3 or the acetate buffer pH 5.0 by a 10 minute electrodeposition at -1.0 V vs the saturated calomel electrode (SCE). The anodic stripping analysis of In (III) was appreciative in the acetate buffer pH 5.0 with the sensitivity of 1.00 X 10⁻⁶M In (III) by a 10 minute electrodeposition at -1.0 V vs SCE. Ga (III) could be determined by anodic stripping voltammetric technique in 1.0 M NaSCN with the sensitivity of 1.00 X 10⁻⁵M Ga (III), using a 5 minute electrodeposition at -1.7 V vs SCE.

The anodic stripping analyses of Tl (I) in the mixtures of Tl (I)-In (III) and Tl (I)-Ga (III) were successful in 0.1 M KNO₃ supporting electrolyte. The determinations of both Tl (I) and In (III) in the mixture of Tl (I) and In (III) were possible by anodic stripping voltammetric technique in the acatate buffer pH 5.0 when the concentration of the species determined was at least twice of the other. In addition,

the anodic stripping voltammetry of Tl (I) in the tertiary mixture of Tl (I), In (III) and Ga (III) was studied in 0.1 M KNO3 and it was found that Ga (III) did not interfere.

ACKNOWLEDGEMENT

The author wishes to express her gratitude to Dr. Proespun
Kanatharana for her continuous guidance and assistance in the
laboratory work leading to as good the result as the actual writing
of this thesis. The author wishes to thank deeply Dr. Salag
Dhabanandana, Dr. Siri Varothai and Dr. Songsak Srianujata for
reading this thesis and making helpful comments on its content.
The author also wishes to express her appreciation to the University
Development commission for granting a fellowship and supporting the
research program.

CONTENTS

	PAGE
Abstract (Thai)	iv
Abstract (English)	vi
Acknowledgement	viii
List of Tables	x
List of Figures	xii
Chapter Chapter	
1 INTRODUCTION	1
2 EXPERIMENTAL	13
2.1 Chemicals	13
2.2 Apparatus	13
2.3 Procedure	14
3 ANODIC STRIPPING ANALYSIS OF THALLIUM (I)	17
4 ANODIC STRIPPING ANALYSIS OF INDIUM (III)	43
5 ANODIC STRIPPING ANALYSIS OF GALLIUM (III)	59
6 ANODIC STRIPPING ANALYSES OF THALLIUM, INDIUM	AND
GALLIUM IN MIXTURES	70
7 CONCLUSION AND RECOMMENDATION	92
BIBLIOGRAPHY	95
VITTO A	108

LIST OF TABLES

TABLE		PAGE
1.1	Physical properties of gallium, indium and thallium	4
1.2	Standard reduction potentials of gallium, indium and	
	thallium vs standard hydrogen electrode (SHE)	6
3.1	The cathodic voltammetric behavior of 1.00 X 10 ⁻³ M TlNO ₃	
	in various supporting electrolytes	22
3.2	The ASV behavior of thallium in various concentrations	
	of potassium nitrate	23
3.3	The effect of pH on the ASV of thallium in Q.1 M KNO_3-HNO_3	
	system	24
3.4	The ASV behavior of thallium in various concentrations	
	of potassium chloride	26
3.5	The ASV behavior of thallium in various concentrations	
	of acetic acid	28
3.6	The ASV behavior of Tl (I) in acetate buffer at various pH	28
3.7	A comparison of the ASV of $1.00 \times 10^{-4} M$ Tl (I) in various	
	supporting electrolytes	32
3.8	A comparison of data of anodic stripping analyses of Tl (I)
	in various electrolytes	34
3.9	Conditions for electrodeposition of Tl (I) and data of	
	anodic stripping analysis of thallium in 0.1 M KNO3	37
3.10	Conditions for electrodeposition of Tl (I) and data of	
	anodic stripping analysis of thallium in acetate buffer	
	pH 5.0	38

LIST OF TABLES (continued)

TABLE		PAGE
4.1	The cathodic voltammetric behavior of 1.00 \times 10 ⁻³ $^{\rm M}$ In (III)
	in various electrolytes	48
4.2	The ASV behavior of 1.00 X 10 ⁻⁴ M In (III) in various	
	concentrations of KCl supporting electrolyte	50
4.3	The ASV data of 1.00 X 10 ⁻⁴ M In (III) in various	
	concentrations of HCl supporting electrolyte	52
4.4	The ASV behavior of In (III) in acetate buffers	53
4.5	Conditions for electrodeposition of In (III) and data of	
	anodic stripping analysis of indium in acetate buffer	
	pH 5.0	56
5.1	Comparison of the ASV data of 1.00 X 10 4 Ga (III) in	
	various electrolytes	66
5.2	The anodic stripping analysis of Ga (III) in 1.0 M NaSCN	66
6.1	Data of the ASV of mixtures of Tl (I) and In (III) in	
	0.1 M KNO ₃ supporting electrolyte	72
6.2	Data of the ASV of mixtures of Tl (I) and Ga (III) in	
	0.1 M KNO ₃ supporting electrolyte	76
6.3	The ASV data of mixtures of 1.00 X 10^{-5} M Tl (I) and	
	various concentrations of In (III) in the acetate buffer	
	pH 5.0	79

LIST OF TABLES (continued)

PABLE		PAGI
6.4	The ASV data of mixtures of 1.00 \times 10 ⁻⁵ M In (III) and	
	various concentrations of Tl (I) in the acetate buffer	
	рН 5.0.	86
6.5	The ASV data of Tl (I)-In (III)-Ga (III) mixtures in	
	0.1 M KNO3 supporting electrolyte.	89

LIST OF FIGURES

FIGUE	RE	PAGE
3.1	Cathodic voltammograms of Tl (I) in various electrolytes	21
3.2	Dependence of the anodic peak current of thallium on pH	
	of acetate buffer	29
5.3	Anodic voltammograms of 1.00 X 10 ⁻⁵ M Tl (I) in acetate	
	buffer pH 4.6 and pH 5.0	31
3.4	Anodic voltammogram of 4.00 X 10 ⁻⁵ M Tl (I) compared in	
	various electrolytes.	33
3.5	Anodic voltammograms of thallium in 0.1 M KNOz	36
3.6	The linear dependence of anodic peak current on concentra-	
	tion of Tl (I) in various electrolytes	40
3.7	The linear dependence of anodic peak current on concentra-	
	tion of T1 (I) in 0.1 M KNO3	41
3.8	The linear dependence of anodic peak current on concentra-	
	tion of Tl (I) in acetate buffer pH 5.0	42
4.1	Cathodic voltammograms of In (III) in various electrolytes	49
4.2	Anodic voltammograms of In (III) in various electrolytes	51
4.3	The effect of pH on the anodic peak current of In (III)	54
4.4	Voltammograms of indium in acetate buffer pH 5.0.	57
4.5	The linear dependence of anodic peak current on concentra-	e.,
	tion of In (III)	58
5.1	Cathodic voltammograms of Ga (III) in various electrolytes	62
5.2	Anodic voltammograms of Ga (III) in various electrolytes	64

LIST OF FIGURES (continued)

FIGUI	RE	PAGE
5.3	Anodic voltammograms of Ga (III) in various concentrations	
	of NaSCN	65
5.4	Dependence of the anodic stripping peak current on	
	concentration of Ga (III) in 1.0 M NaSCN	67
5.5	Anodic stripping voltammograms of 1.0 M NaSCN and	
	1.00 X 10 ⁻⁵ M Ga (III) in 1.0 M NaSCN	68
6.1	Plots of the anodic peak current of Tl (I) vs the	
	concentration of In (III) in Tl (I)-In (III) mixture	
	in 0.1 M KNO ₃	73
6.2		,,,
	8.00 X 10 ⁻⁵ M Ga (III) in 0.1 M KNO ₃	75
6.3	The plot of the anodic stripping peak current of Tl (I)	17
	vs the log concentration of Ga (III)	77
6.4	The ASV behaviors of Tl (I) - In (III) mixtures	7.7
	in the acetate buffer pH 5.0.	80
6.5		00
	-0.67 V on the concentration of In (III)	81
6.6	Anodic voltammogram of the binary mixtures of Tl (I) and	01
	In (III) at the molar ratio of 2:1	82
6.7	The plot of the anodic peak current at ca0.65 V vs the	02
	concentration of Tl (I)	83
6.8		05
	1.00 X 10 ⁻⁵ M Tl (I) and various concentrations of In (III)	85
6.9		05
	concentration of Tl (I)	87
	The state of the s	(1)

LIST OF FIGURES (continued)

FIGURE			PAGI
6.10	Anodic voltammogram of the tertiary mixture of		
	Tl-In-Ga in 0.1 M KNO3	<i>f</i> = -	90
6.11	The effect of Ga (III) and In (III) on the anodic	peak	
	current of Tl (I)		91