Chapter I . VP eead

INTRODUCTION

1.1 General Background on Liquid Crystals

Liquid crystalsl’2 possess many physical properties found either
in a liquid or a crystal. The anisotropy of the liquid crystal molecule
leads to man& interesting anisotropic optical, electrical, and magnetic
properties. Nearly all liquia crystals found are organic compounds3.
These organic molecules may be of a variety of chemical types, such as

acids, azo- and azoxy- compounds, and cholesteric esters.

According to the arrangement of the rod-like molecules in the
system, G. Friedel4 classified liquid erystal phaseé into three classes :

nematic, cholesteric, and smectic (see Fig. 1).

1

"
0. Lehmann, Flussige Kristalle (Engelmann, Leipzig, 1904)

2M.J. Stephen, and J.P. Straley, Rev. Mod. Phys. 46(1974), 617.

3W. Kast, Landolt-Bornstein Tables (Springer, Berlin) Vol. 2,

Part 2a, p. 266. (1969)

4G..Friedel, Ann. Phys. 19(1922), 273.
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a). nematic b) cholesteric c) smectic

Fig. 1. Schematic of arrangement of molecules in the three major

liquid crystal phases:-

1.2 The Curvature Elasticity Theory

Useful for understénding physical phenomena in liquid crystal
systems is the curvature elasiticity theory developed by Zochers, Oseené,

and Frank7. This theory is reviewed briefly in the following.

Oseen assumed that the energy of a liquid crystal could be written
as a sum of the pairwise interactions of the molecules. The interaction
of these pairs depends on the relative orientations of the molecules. A
unit vector n (r) may be introduced to represent the direction of the
preferred axis at any point r. We use a local right-handed Cartesian
coordinate system x, y, z with 2z parallel to n. The six local

components of curvature at the point r are defined by :

5

H. Zocher, Trans. Faraday Soc. 29(1933), 945.

6C.W. Oseen, Trans. Faraday Soc. 29(1933), 883.

7F.C. Frank, Discuss. Faraday Soc. 25(19538), 19.
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The three fundamental curvature strains, labelled as splay, twist

and bend respectively, are shown in Fig:i 2..
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Fig. 2 The three distinct curvature strains of a liquid crystal

in a given region

These curvature strains can also be defined by expanding
the preferred orientational vector n (r) in a Taylor Series in powers

of x, y, z measured from the origin :
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n ax + a,y + a,z + 0(x7) ,
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It may be seen that
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The Gibbs free energy density g of a liquid crystal, relative
to its free energy density in/the state of uniform orientation, can be

expanded in terms of the six curvature strains :
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where ki and kij are the curvature elastic constants. '

Frank considered the symmetry of the liquid crystal system and

showed that the free energy density can be written in the form
2
' =
g kl(sl+sz) + kz(t1+t2) + % kll(sl+sz)
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It is to be noted that only eight independent elastic moduli are .

needed. By introducing

s = _kllkll’ to =, —k2/k22, ERPRUPRPR & 9.
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we can write
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g = '’k (s tsy=s ) i koo(t i+t =t ) + % k), (b +b))

+ k12(51+52)(t1+t2) { sinusseness(lsla)

The free energy density .can be written in a vector notation as

follows :

Y

2 2
g = k kll(div n-s) t+k kzz(g «curln + t )

+ % k33(3 . grad 3)2 - klz(div n)(n . curl n) ......(1.7Db)

where so = - t = - —_— e

The magnitude of curvature elastic moduli of liquid crystals is
generally 10'-6 dyn. and the energy associated with the curvature in
liquid crystals is very small compafed with the energy required to

elastically deform a solid.



1.3 The Effects of Magnetic Field

The diamagnetic susceptibility of liquid crystal, owing to the
anisotropic structure of the molecules composing it, is also anisotropic
in form. In the uniaxial state the magnetic susceptibility may be

written as a second rank tensor :

\

Xij = ¥ Gij + X, P4 nj f cxennn wvesensnicled)
where X, = x”- X, 1s the anisotropy in the susceptibility and is

generally positive and x” and are the susceptibilities per unit

X4

volume along and perpendicular to the molecular axis respectively,

.Two more terms are added to the free energy equation in the
presence of magnetic field =
/4

g, = -%tz—lsxa(_'n_.g) PP & )

.
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In general, the first term can be omitted as it is independent

of the orientation of the director. The last term gives rise to a
torque on the molecules, and will align them parallel to the.field if
Xy i§ positive,

1.3.1 Effect of magnetic field on a nematic system : Fredericksz

transition



When contained between two parallel glass slides, a nematic system
is constrained to lie either perpendicular or parallel to the glass at
the boundaries. When a magnetic field, applied perpendicular to the
director, exceeds a certain critical value, the optical prope?ties of
the system change abruptly. This effect, first observed by Fredericksz
and Zolina8, can be used to determine some of the elastic constants.
There are three principal cases which have been studied by Saupeg,

Pieranski, Brochard, and Gu_yon10 and Rapinill. Other geometries have

been considered by Dafermos12 and Leslie13.

X

a). Perpendicular case

In the perpendicular case the director is constrained to be
perpendicular to the surfaces and the x-axis along the magnetic field.
Defining ¢ to be the angle between the director n (z) and the =z

axis, the director will have the form

n, = cos ¢ (2) " n__= sin ¢(z) , STeveTeteretet (410041 1()))

The f:ee energy per unit area may be written

Sy redaricksz, sud ¥, Zolins, Kristallogr. 79(1931), 225

"9, Saupe, Z. Naturforsch. A 15(1960), 815.
10P. Pieranski, F. Brochard, and E. Guyon, J.Phys. 34(1973),35.
llA. Rapini, M. Papoular, and P. Pincus, C.R, Acad. Sci. B 267(1968),
1230.
12

C.M. Dafermos, SIAM J. Appl. Math. 16(1968), 1305.
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= L dz [(k11 sin2¢ + k cosz¢)(%§§2 - xaHZ sin2¢]
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where d is the thickness of the sample.
We will assume, for simplicity,that k11 = k33 = k, then

d/2
= %52 s [52(—3%)2 = sin2¢] teeeeea(1.11)

= -d/2-

where & @ et ot 5  is the magnetic coherence lemgth. -
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Fig. 3. Molecular orientation in the Fredericksz transition, perpendicular

case :
a) Below a certain critical field, Hc’ the aligment is not

affected

b) Slightly above H
c

13F.M. Leslie, J. Phys. D 3(1970), 889.



The equilibrium configuration is determined by minimizing the free

energy with respect to 2z which gives rise to the equation :

2

C.2
ZM + Sin¢cos¢ = 0 o ..---.oo(l.lz)
5 az? '

The general solution of Eq. (l1.12) has been found. The first integral

is

6 - aha e’ ¢

= (sin2 ¢m - sin2 d))li issss sl held)

where the constant A is determined by the candition that %% = 0 at

the midplane of the system/ (z = 0)*

2l -\ a0 ¢ ' eeena(1.14)
m

and ¢m is the maximum value of ¢ which lies half way between the

glass surfaces. at z = 0. The equation may be further integrated to

‘give -

£ dé’

é (sin2 ¢m - sin2 %)

(s d - 2)

b

= ¢gesc ¢ F(csc ¢m,¢ ) ceeeesees(1.15)
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where F .is the incomplete elliptic integral of the first kind.

the“

If we use the boundary condition ¢ = 0 at z = %
maximum distortion is found by putting z = 0, ¢ = ¢m
% d = Ecsc ¢m F(csc ¢m, ¢m) R ¢ P )

EK(sin ¢ )

where K is the complete elliptic integral of the first kind.

This equatioh has a solution (other than ¢m = 0) only for d > g
giving the critical field HC from d = ﬂEc
kg4 ks
A F=38
or » HC d(xa) o oc.-.ooo(1c17)

For k ~ 10_6 dyn, Xg ~ 10—6 cgs. 'This gives Hcd of order unity.

For (H - Hc) / Hc <<t ¢m o (H - HC)% . This is shown in Fig.4.
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Fig. 4. The maximum distortion ¢m in the Fredericksz transition as

a function of applied field
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b). Parallel case

In this case, the director is constrained to be parallel
to the surfaces. When a magnetic field applied parallel to the surfaces
exceeded a critical field Hc the optical properties of the system change

abruptly. Hc is given by

. . 9 : .
H d'(kll/xa) PY .uon-.o.o.(lolB)
This phenomenon has been considered in terms of the continuum theorylb.

c). Twist case

A third case is that the field is applied in the‘plane of
the glass, but perpendicular to the direction of the molecules which are
parallel to the surface. Assuming that the molecules at the surface do
not twist in the direction of the field, then the system shows a transi-
tionh to,a twisted state and observation of this effect can provide
information on the elastic constant k22. This geometryvleads exactly
to the same form as Eq. (1.17), the only change being the substitution
of k,,for k. The eguation is

22

R : e Il—‘(kzz/xa)15 erieaa(1.19)

14A. Rapini, M. Papoular, and P. Pincus, C.R. Acad. Sci. B

267(1968), 1230.
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and observation of this effect provides information on kzz%s These
twisted structures have been discussed theoretically by Leslie16.
Twisted nematic and cholesteric structhres have also been considered
by Ericksen17’18’19.

1.3.2 Effect of magnetic field on a cholesteric system: cholesteric-

nematic transition

The -effect of a magnetic field on a cholesteric liquid
crystal which has a helicoidal structure had been explained thoroughly
by de Genneszo. For cholesteric helical structure, de Gennes has
treated the unwinding of a cholesteric helix by magnetic field. Let

the z-direction be the helical axis and the director be written' in the

¢

form

n, = cos ¢(z)‘ - ny = sin ¢(z) , n = 0 ...(1.20)

where in zero field d(z) =. toz..

ISC. Williams, and P.E. Cladis, Solid State Commun. 16(1972),

357.

16F.M. Leslie, Mol. Cryst. Ligq. Cryst. 12(1970), 57.

17J.L. Ericksen, J. Fluid Mech. 27(1967), 59.

18J.L. Ericksen, Q.J. Appl. Math. 25(1968), 474.

19J.L. Ericksen, Z. Angew. Math. Phys. 20(1969), 383.

2OP.G. de Gennes, Solid State Commun. 6(1968),163.
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An external magnetic field applied normal to the helical axis both
distorts the structure and elongatés the period z, = 2m /to.
Taking the applied field along the y-axis, the distortion free energy

per unit volume for xy-plane is
B 9 2 _ 2 2
24 = ;i /‘dz [kzz(az to) XaH Sin ¢ . -.-.......(1.21)

The free-energy minimization is identical with as that for Eq.(1.12).

"It leads to the result

z 22
Cn TTKE EE pewssasslle2)

where K , the integratioﬁ constant for the first integration of

Eq.(1l.21), is determined by

E(K
O - e,
b
k
with 52 = [———gzl teveeeeeea(1.23)
X, B

being the magnetic coherence length corresponding to the ''twist"

elastic constant .k22 and z, the zero-field pitch.

K(k) 1is the complete elliptic integral of the first kind and
E(k) is the complete elliptic integral of the second kind. Since we will
compare Eq.(1.22) with our experimental results in detail, the numerical
vaiues were computed from values of elliptic integrals listed in the
Handbook of Mathemati;alkFunctions (Abramowitz and Stegun). These values

are tabulated in Table 1 and plotted in Fig. 5.
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Table 1 Cholesteric Pitch as a Function of K

| 2.2
= & ke EW

2

o

K K(k) E(k) z/zo
0 1.57079 1.57079 1.00000
0.20 1.65962 1.48903 1.00155
0.30 1.71388 1.44536 1.00396
0.40 1.77751 1.39939 1.00812
0.50 | 1.85407 1.35064 1.01491
0.60 1.94956 1.29842 1.02592
0.65 2.00759 1.27070 1.03390
0.70 | 2.07536 1.24167 1.04438
0.75 215651 1.21105 1.05846
0.80 22872022 1.17848 1.07808
0.85 2.38901 t 1.14339 1.10701
0.87 2.45533 1.12845 1.12293
0.89 02.53333 — 1.11285 1.14259
0.90 2.57809 1.10477 1.15433
0.91 2.62777 1.09647 1.16774
0.92 2.68355 1.08793 .  1.18323
0.93 2.74707 1.07912 1.20143
0.94 2.82075 1.06998 1.22321
0.95 2.90833 1.06047 1.24998
0.96 3.01611 1.05050 1.28411
0.97 3.15587 1.03994 1.33011
0.98 3.35414 1.02859 1.39825
0.99 3.69563 1.01599 1.52773

1.00 e © 1.00000 )
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The logarithmic divergence of the cholesteric pitch z as the magnetic

field approaches a critical value Hc can be clearly seen in Fig. 5.

At H=H , k = K, = 1 and Eq. (1.23) gives
: C
E(Kc) 1 k22 :
K =71 - %ﬂtogﬁ - Lim:o( 2 ) ’
c X H
‘ a c
) mt k.. %
; . O\ 22 2T
so that Hc ( 5 )(;(;-'-) 5 to 'z—o .
v " ;5 .
. 2| k
or B =X [ﬂx ; v (1226)
- c A X
- "o k. "a

 The measurement of critical field can provide information on k22

: _ -6
if X, and t_ (to = 2ﬂ/§o) are known. :Typically, for k22 10 ~ dyne,
4 1 4 5

Xg = 10—6 ergs, and t) @ 10" cm_ : Hc is in the order of 10 =10~ G.
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1.4 Some Recent Lxperiments

In this section, some relevant recent experiments on magnetic
field effects of liquid crystals, especially cholesteric liquid crystals,
are reviewed.

The case of a cholesteric confined between parallel glass plates’

had been studied by Cladis and Kleman21 (see Fig. 6).

\

-”/..r..l-./t,, .
v/

a) b)

.Fig. 6 a) The cholesteric texture when direction of vibration of
incident light is perpendicular to the stripes |
b) Large pitch (low concentration) cholesteric-nematic mixture
held between rubbed glass plates
The cholesteric texture of Fig. 6b appears only when the film

thickness of the optical cell is nearly the same as the helical pitch.

w

21

P.E. Cladis, and M. Kleman, Mol. Cryst. Liq. Cryst. 16(1972),1,
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Cholesteric pitch can therefore be effected by the thickness of the cell.

The variation of pitch with concentration for a nematic-cholesteric
mixture was also studied by Cladis and Klemaé?' The magnitude of the
induced pitch depends inversely on the concentration of the cholesteric
dopapt.

De Gennes's theory on the divergence of cholesteric pitch in a
magnetic ﬁield has been verified by experiments by Meyer22 and Durand
et a123.

Magnetic field effects in a sample of p-azoxyanisole (PAA) doped
with cholesteryl acetate (CA) were studied with a microscope by Meyer.
At 119 oC, a critical field of about 8.3 kG. was obtained for a
cholesteric-nematic system which has a zero field pitch, Z s of 13 um,.
The experimental results were reproduced in Fig. 7 together with the

theoretical curve of de Gennes.

'ZZR.B. Meyer, Appl. Phys. Lett. 14(1969), 208.

23G."Drurand, L. Leger, F. Rondelez, and E. Veyssie, Phys. Rev.

Lett. 22(1969), 227.
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Fig., 7 The helical pitch/ z as a function of magnetic field strengtth.

Dufand_and co-workers studied systems of PAA mixed with low
concentration of cholesteryl decanoate (CD), cholesteryl nonanoate (CN),
cholesteryl chloride (CC), choleste&yl acetate (CA), cholesteryl
palmitate (CP). Using.a different observational technique, de Gennes'

theoretical prediction was again conf irmed.

Durand and co-workers also studied the dependence of Hc on
cholesteric concentration and found a linear dependence. Since the
induced pitch is inwersely proportional to the cholesteric concentration,

the critical field was plotted against inverse pitch in Fig. 8.
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0] 1/201020 m"l

Fig. 8 Linear variation of critical field Hc with inverse pitch which

is proportional to cholesteric concentration

k
The ratio -igg,where k22 is the twist elastic constant and Xa
a

the anisotropic susceptibility,of N-(p-Methoxybenzylidene)-p-butylaniline
(MBBA) doped with 0.365 % cholesteryl propionate to produce a |
cholesterized nematic.with a pitch of approximately 15 um was measured
by Williams and Cladis24 using the magnetic field induced cholesteric
nematic tran;ition and the relation Eq.(1.24). The value of 523 was

: a

2.93 e 0.28 cgs, at room temperature. Measuring the value of the ratio

at different temperatures, Williams and Cladis obtained results which

240. Williams, and P.E. Cladis, Solid State Commun. 10(1972),357.
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were related to the temperature dependence of the order parameter S(t)

as calculated by Maier and Saupezs. Using t = to denote the reduced

T
¢

. K, (t)
temperature and expressing the order parameter in the form S(t) =a 22 s
‘ ky,(t) 2
the scaling parameter o was found to be 0.206 in fittingg to the
a

values of S(t) as calculated by Maier and Saupe.
The, order parameter had been obtained to be S = 0.52 in PAA at

120%} by Alben, McCgll, and Shih26 by measuring the magnetic susceptibility.

1.5 The Scope of the Present Investigation

The objective of the present research is the investigation of the
behaviour of.cholesteric liquid crystals in a magnetic field. 1In
particular, it was intended to study the effects of magnetic field on
the cholgsteric pitch in cholesteric-nematic mixtures with low concentration
of cholesterics.

Firstly, it was planned to investigate thoroughly the properties
of the cholesteric pitch, including the dependence of the magnitude of
the pitch on cholesteric concentration in the mixture, temperature, film
thickness and magnetic field strength. The investigation of the magnetic
field effects of the cholesteric pitch includes verification of de Gennes'
theoretical expression for the dilation of the cholesteric pitch in a

magnetic field and the logarithmic divergence of the pitch near a

254, Maier, and A. Saupe, Z. Naturf. .15a (1960), 287.

26 '
R. Alben, J.R. McCall, and C.S. Shih, Solid State Commun.

11(1972), 1081.
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critical field. These theoretical results, previously confirmed
experimentally by Meyer and Durand's and co-workers, would be‘investigated
in additional systems of nematic cholesteric liquid crystal mixtures.

It was plénned to investigate carefully the dependence of the critical
field on the cholesteric concentration, temperature and film thickness.

Originally, it had been hoped to investigate the behaviour of a
number of iiquid crystal mixtures in the magnetic field using combinations
of 6 or 7 cholesteric systems (CA, CN, CP, CB, CC, CD) with 3 or 4
nematics (PAA, PAP, MBBA) in different concentrations. Th; motivationm
was that, having information on the critical field strength for a large
number of liquid crystal 'mixtures it might be possible to spot some trends
in the values of critical field and their temperature dependence which
may allow some inference to be drawn relating the critical field, and
through it, the elastic constant of the mixture systems concerned with
the molecular structures of and the interaction between the cholesteric
and nematic systems forming the mixtures.

Because this was the first time liquid crystals were studied in
magnetic field in our laboratory, a lot of time was taken in construcing
and installing the experimental set up, therefore there was time to
study only the PAA/CP system fqr cholesteric concentration ranging from
0.2 % to 0.75 Z , Hawever, it had been possible to undertake the complete
range of the intended investigations, including a demonstration of the
logarithmic divergence of the pitch in magnetic field and the dependence

of the critical field on concentration, film thickness and temperature.
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In Chapter 2, the experimental set up and the measurements are
described. The results are also shown in this Chapter. 1In Chapter 3,

the experimental results are discussed and summarized.
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