CHAPTER II

LITERATURE REVIEW

2.1 Introduction_to the M&ssbauer Effect

An  atomic nucleus can undergo transitions from its ground
state to its excited states and vice versa. These transitions are often
accompanied by an absorption or emission of a quantum of electromagnetic
radiation, BSuch a quantum or photon emitted by one nucleus‘may be absorbed
by another nucleus of the same kind (isotope) exciting the latter to a
higher level. This process is called '"resonant absorption" and only

occurs when the emission and the absorption lines sufficiently overlap

(Fig. 2.1). The two lines do not, coincide exactly owning to a recoil

- momentum which is imparted to the emitting nucleus, consuming a part of

the transition energy, leaving a somewhat smaller energy for the photon
than the energy difference between the nucleér levels. If the emission
and absorption lines are narrow, the recoil energy may be.sufficient to
prevent any overlap of the two lines and resemnant absorption does not
occur.

;

In order to see the situation clearly, let us consider a free
nuclear system, of mass M, with two levels, ground state A and excited
state B, separated by an energy ET' If the system decays from B to A
by emission of a photon of energy EY , momentum conservation demands

that the momentum -; of the photon and the momentum P of the recoiling

system be equal and opposite, Hence the recoiling system receives an
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energy ER s given by
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In this derivation, it is assumed that.the recoiling system can be
treated nonrelativistically. Energy conservation connects ET . EY 3

and ER by the requirement that

E, = EY + B {2.1.2),
Since ER is very small compared to EY = EY can be replaced by
the transition eneréy E, in eq. (2.3:.3): ¢

Fy
b Y Y (2.1.3),

2Me

For a quick evaluation, eq. (2.1.3) can be rewritten into the numerical

Ay

form (May, 1971)

5.37 x 10" E,i (in KeV)
Eg (in ev) = ' (2.1.4),

A

where A 1is the mass number of the decaying nucleus.

Since the excited state B has the mean life T , and
according to the Heisenberg uncertainty relation, the energy in the
state cannot be measured exactly. It canr be measured only to

within an uncertainty given by

1.7 = & s (2.1.5),

where 2mh is Planck's constant. The uncertainty is given by the

numerical relation (May, 1971)
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P (1o et)’ = 6.58 x 16°°/1 (sec) (2.1.6),

“

Thus the decaying state B ;annot be characterized by one well é.efined _~.-.
energy ET only, but that the energy E of the state is distributed .
about the center gnergy ET having the full width of the energy
distribution of Breit-Wigner shape at half-height I' as shown in

Fig. 2.2 a. The energy of the stable ground state, according to eq.
{2.1.5), is sharp since T is infinite. Photons emitted in the
transition from B to A thus show & distribution in energy EY 5
centered around E_ - ER » and displaying a "natural line shape” of"

T
width 1 (see Fig. 2.2 b).

N

. When & photon of energy EY and momentum -f) strikes a
target of mass M , initially at rest,thé entire momentum -1'; is
tranformed to the target.‘ It thus recoils and the energy of recoil ER
is given by eq. (2.1.3). This energy must be supplied by the gamma ray.
Then only an energy 'ET - ER is avialable for the excitation of internal
dégrees of freedom. In order to excite a level of energy ET ,» the
incoming gamma photon must have an energy ET + ER » a8 shown in Fig. 2.2 c.
Resonant absorption can occur only if some of the incoming photons possess
enough energy to reach the state B and at the same time provide the
energy ER for the recoiling system., Thus only the overlappi'ng part of the

spectra 2.2b and 2.2c is responsible for resonant absorption (see Fig.

2.2 d). The condition for overlap is

2R 2 T : (2.1.7)

-
P

For a typical case (STFe) s the transition energy is 1k.4 KeV with -~

a mean life T of 107! sec. Equations (2.1.4) and (2.1.6) give
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eV ,and I' = 6,58 x 102

3 eV respectively. Thé

ER = 1.95 x 10
recoil energy is indeed small compared to the transition energy. It i%,
however, very large compared to the natural linewidth. As a result, the
gamma-ray emission line does not overlap the absorption line, and'nuclear

resonance absorption cannot be observable, as shown in Fig. 2.3.

In the case of atomic radiation, i.e., light resulting from
electronic transitions, the energy of the emitted quantum is th times
-smaller while the inherent line-widths are the same as in the nuclear case.
11

The recoil energy (order of 107"~ eV) is thus smesller than the linewidth,

so that resonant absorption is readily observable.

When the emitting atom is confined-in a crystal lattice, the
recoil momentum connot be absorbed solely by the atom, since the atom is bound
to the crystal. The total energy of the fYy-=-transition ET must be con-
served and can only be shared betyeen

1) the energy of the Yy - photon , EY 3

2) the lattice vibrations ;

3) the translational kinetic energy of the individual atom;-

L) thé translational kinetic energy of the solid as a whole.

The third of these possibilities is eliminated by the high chemical binding
‘

energy (order of 1 - 10 eV) s Which is considerably greater than the free

recoil energy ER . For the second possibility to occur, the atom must be

able to excite one or more of the vibrational modes of the lattice. When °

this occurs, the atom is said to have emitted a phonon. There exists also

a finite probability that no phonon is emitted. Since the vibrational

energy levels of the crystal lattice are quantised : only discrete energy
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increments are allowed and unless the reco’il energy corresponds closely

to one of the allowed increments it cannot be transferred to the lattice. ‘'

-

When%rcecoil does not produce a momentum change corresponding to the energy
increment, the recoil momentum is imp’inrted directly to the crystal as a

whole. This is the least likely. Equation (2.1.3) becomes

- i E

E =

H N

g 2 ‘ ; (2.1.10)’
2m ¢ i

c
where m, is the crystal mass. Even in a fine powder the crystalline
system contains at least 1015 atoms (Greenwood and Gibb, 1971). This.

decreases ER by a factor of 1015.

For a typical 57Fe case (I' = 6.58 x 10~2 eV) , eq. (2.1.10)

becomes

E. = 1.95x 10737102 = 1.95'x 10718 ey (2.1.11).

Combining eqs. (2.1.2) and (2.1.11) giveg approximately

E

E = E. (1~ c b ) = B (1= 10'22) (2:3.38).
Y T 2 T
2mcc 2

This correction for‘ the recoil is negligible and t.hg emission is said

to be '"recoilless". By the same reasoning one can see that gometimes

the absorption of the photon can also océur without emission of phonons.

The two lines would have the very narrow natural linewidth I'. The condition

for overlap (eq. (2.1.7)] 4s fulfilled and thus the resonant absorption

can be observed.




of Y - quanta, the "Mdssbauer effect" ,was first recognized by =«
Mossbauer (1958) when investigating the nuclear resonant scattering

of the 129 - KeV gamma ray from 1911r at low temperatures.

The possibility of zero-phonon emission is commonly expressed
as the Mossbauer fraction £ which indicates the number of zero-phonon
emissions to the total number of> Y - emissions. This fraction depends
on the energy of the photon and the temperature as can be seen as follows.
We again consider an atom confined in a crystal lattice; It performs a
thermal vibration about its equilibrium position q with displacement
Aq. We can therefore only be certain of finding the atom to within an
interval 2Aq. The Héisenberg uncertainty relation, then, leads to an

uncertainty Ap in the linear momentum p given by

2hqhp = h (2.1.13).
We now let the atom emit a photon with momentum R? given by
Ex _ .
PY o (2.1.18),

According to the previous discussion! the recoil momentum is imparted
to the crystal either directly or via excitation of phonons.; If P% is
of the order of magnitude of Ap , it is impossible to tell whether the
recoil momentum has been imparted to the atom or not. It is thus
impossible to distinguish between the vibrational state of the atom
before and after the emission. It must be concluded that the momentum

is imparted to the crystal as a whole, without excitation of phonons.

Thus if
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: A g h/28q ‘ | (2.1.15)_“’ :

there is a good chance for zero-phonon emission, With 2Aq = 10-]'1 m
aad B > 30" .24 . ve obbain P, = 10723 Js m™! which is the

momentum associated with a photon of 20 KeV by eq. (2.1.1k).

From éq. (2.1.15) , we can see that since the thermal
displacement Aq increases with increasing temperature, the Mossbauer
fraction will decrease as the temperature increase. We also see that
increase 61‘ the photon energy lowers the value of f . For various
nuclei embedded in a crystal of their own element, the Mdossbauer
fraction at 0°K is given as a function of the energy (see Fig. 2.4).

The temperature dependence of f for l57Fe is shown in Fig. 2.5.

The actual expression for the Mossbauer fraction f is

£ = exp [—-;‘-PY <(8)>] v(z'.1.16)

(Kittel,1963). Here < (Aq)2> is the mean square of the displacement -

Aq of the atom from its equilibrium position. For a Debye solid this

disp;la.cement is given by (Wohlfarth, 1967)

, O/T

<(8q)> =19;' Equ' { 1+ 4 (%') f :ix_ 1} (2.117) ,

(o)

where M is the mass of the emitting or absorbing nucleus, K is

Boltzmann constant, © is the Debye temperature and T is the absoluyte

temperature. Combining with eq. (2.1.16), we obtain

N - 2 /T 25
a3 g gt ST L
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where ER is the free atom recoil energy as described in eq. (2.1.1). "
The term 1 between the curly brackets is due to the zero—point
vibrations that still have to be present at 0°k owning to the uncer-

tainty relation.

For high temperatures, T 2 g— » We can ignore the first
term and- expand the second to get
_ .6ER‘I'

f = exp [ - ;e?- ] (2.1.19)

(May, 1971). According to eq. (2.1.19), £ will decrease exponentially

as T increases.

For low temperatures, T << 6 , we can extend the upper

limit of the integral to infinity (Wertheim, 1964) and obtain

| j° xdx =~ _ 1r2
a o -1 6 :
This gives
£ = exp[-2 %‘1{1 +l§:722£3_2. } (2.1.20).

In the limit of zero temperature this factor depends only on the ratio
of the free atom recoil energy to ‘the Debye temperature,

£f = exp [-%i% ] : | (2.1.21).
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A simple calculation using eq. (2.1.4), for a nucleus of mass 100 in
« I

a lattice with a Debye temperature of Lpo°K , gives
ph \ g 30

Eq (in Kev) 2

B e e v

(2.1.22).

‘This shows why the Mossbauer effect is limited to low energy gammasa
rays. Because of the square in the exponent, the Mossbauer fraction
drops off rapidly when ET exceeds 65 KeV. To date the Mdssbauer

effect has nét been observed for gamma-ray energies greater than 155 KeV.

For a given temperature the value of Aq will be smaller when
the Debye temperature of the solid is higher. This property may be used
to increase the Mossbauer >fraction, i.e., by embedding the emitting atoms
in a solid with strong intera.tomicv forces thus having a high Debye

temperatures. Such solids usually show a great mechanical hardness.

So far, we have described the mecha.nism by which a y-ray photon can
be emitted without recoil and the same arguments apply to resona.nt
absorption. To see whether this property has any real utility we must
see if a stable isotope exists which combines suitable lifetime and
energy in its first excited state. The most advantageous combination
is found in > 7Fe which has been used in‘ more experiments than all other

'
isotopes used to date. Its properties are summaried in Table 2.1.

00040 W
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.’til
Properties Ground state First excited 3
state o e U el
o
Energy (KeV) 0 14,41
3 1% b i
Spin and parity 5 5
Magnetic moment (nm) 0.0903 -0.153
Quadrupole moment (barns) 0 ‘ 0.29
Mean life (sec) Stable 1.4x1077
57

Table 2.1. Properties of Fe (internal conversion

coefficient = 9.7 % 0.2 , natural asbundance = 2.19 %).

Next consideration must be given to the cross section, oo ’

for absorption of the gamma ray by the resonant isotope, which is given
by (May, 1971)

2L.o% 1 : :
& 2 B e v
Op = 2T 211 oy 1+ a (2.1.23),

where IA and IB are the nuclear spins of the ground and the excited
state, respectively, o is the internal conversion coefficient, and
2™ is the wave length of the gamma ray. Using the relation between

# and ET. in eq. (2.1.23), we obtain the expression
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A"‘
2 S5 x 1071 - Mgr 1 . 4 *
Eq (KeV) A L

The energy dependence of the absorption cross section (due to line

shape of the absorption line) can be expressed as

(r_/2)?
o(E) = o £

: (2:2:25),
2 2
® (B-Ep)” + (r,/2)

r where ET is the transition energy g.nd I’a is the full width of the
| resonance at half maximum absorption. In 57F‘e, from eq. (2.1.24), the
: cross section is 2.2 x 10-18 cm2 s, Wwhich is about 200 times greater
than that for the next most important pff:cess, photoelectric absorption.
As a result, the resonant absorption process can dominate-even when the .

resonant isotope is a minor constituent of the absorbing solid.

In conclusion, the relevant orders of magnitude of the energy

terms are given in Table 2.2.

Mossbauer y-ray energies (EY) 10" - 10° ev

Chemical ©binding 1~ 10 ev
Free atom recoil energy (ER) lO-h S4qp eV | ;.

Lattice vibration phonon energies 10732 1071 v

Heisen‘t;erg natural linewidths (T) 10-9 - 10“6 eV

Table 2.2. Some typical energies in MOssbauer effect

(Greenwood. and Gibb, 1971).

X
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The natural line widths of Mdossbauer Y - rays permit a high intrinsic
resolution of 10-10 to 10.1)4 of the Y - ray energies. However, in

the presence of free gtom recoil and thermalbroadening effects, the

resolution drops to 10-6 to 1077,

It is importaht to emphasize that Y - ray energies cannot be
measured with this accuracy on an absold%e scale, indeed these energies
are seldom known to better than 1 part in 1oh. In order to benefit from
the precisenéss of the natural linewidth, it is customary to have as a
reference, an absorber in which the absorbing nuclei have the same
chemical environment as the emitting nuclei in the source. ﬁy comparing
the Mossbauer absorptions by the nuclei in the reference with the absorptioP
by -the same nuclei in an unknown, the shift in the nuclear levels caused
by the change in environment surrounding the nuclei can be measured. The
principle by means of which’this'measﬁrémént iﬁ'5asedfis—£he""Doppler

effect".

A basic setup for a Mossbauer experiment and a typical result

are sketched in Fig. 2.6. In the experiment to be described, the source

and absorber are made from identical materials so that the energy levels

of the radioactive nuclei and absorbing nuclei are the same.  The source
is moved with a velocity V with respect to the absorber. The gamma

rays then undergo a Doppler shift AE,

LA

&8 % 23R, (2.1.26).

Fig. 2.6 displays only the simplest case, single line source and single

line absorbgr, both showing the same natural linewidth. At large velocities,
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no - resonant absorption occurs. The velocities at which resonant
absorption becomes vanishingly small depend on the linewidths and the
center of the transmitﬁed line is at zero vélocity if the centers of
the emission and absorption lines are the same. In this case the
transmitted line has a Breit-Wigner shape, but has an obseryed width
of 2T . This broadening results from the overlap of the emission

and absorption lines.

2.2 The Use of the MBSsbéuer Effect in the Study of the Magnetic

Hyperfine Structure

This application of.the Mossbauer effect to the study of the
hyperfine structuﬁe depends on the narrowness of the linewidth of the
gamma-emission and the shift in nuclear levels of the absorbing nuclei
when it finds itself in a different environment from that of the emitting
- nuclei. The salient point is that the linewidthg encountered are small
compared to the characteristic energy of interaction between the nuclei
with their surrounding electrons : those which arise from the coupling
of_the nuclear magnetic dipole mpﬁent with the magnetic elecﬁrons of the
atom. A velocity spectrometer of the type discussed in Chapter III can

be used to observe directly the magnetic hyperfine splitting of the

_nuclear energy levels.

/// To obtain a Mossbauer spectrum df a magnetic hyperfine splitting,

we proceed as follows.

1) The radiéactive material which will constitute the source

is incorparated into a host where its nuclear levels remain unsplit.

]
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o
An& cubic, diamagnetic metal will be a goog choice proyided the radio-“
isotope enters the lattice substitutionally.

2) This source is then mounted on the "velocity transduce;"
which provides the motién for the Doppler shift.

3) A stationary absorber is now placed between the source

and the detector.

Since the nuclear levels in the absorber are split by magnetic
.hyperfine interaction, there will b¢ a number of different energies at
which resonant absorption takes place. The counting rate at the detector
will drop whenever the Déppler velocity applied to the source brings the
energy of emitted Y - ray into coincidence with an absorption energy in 7

the absorber.

- The magnetic splitting arises from the interaction qf the nuclear
magnetic dipole moment ﬁ with a magnetic field, gl , due to the atom's

.

own electrons. The Hamiltonian of the interaction is
5 -
S = -1 - - u I-% (2.2.1),

and the energy levels which are obtained are
MHm, !
\ (2.2:28),

Em=-8unHmI=-—I_— ’mi=I’00-,-I

- >
where g is the nuclear g - factor, pn the nuclear magneton, I the

nuclear spin, and oy the magnetic quantum number. According to eq.
(2.2.2) there are 2I + 1 equally spaced levels; the splitting between

adjacent levels is gunH and the splitting between the lowest and the

highest level is 2gunHI.
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: This interaction splits the degenerate I levels. For »57Fe
’; . -'_ -3- = l- bt
. nucleus Iexcited 25 ) and _I-ground 0 the first level is split

into four sub-levels, the second into two (Fig. 2.7). The gemma transition

in 57Fe from the excited to the ground state is of the magnetic dipole

; type andAm = 1, 0. Due to this condition only six transitions are

' possible. The relative inténsities of the transition (for absorption)

are given by [(‘Ig‘mgLM/ Ieme) ] \ Fg (6) where (IsmgLM/ Ieme) is the

Clebsch-Gordon coefficient describing the vector coupling of Ie and I8

through the radiation field IM ; € 1is the angle between the direction

| of the magnetic field (axis of quantization) and the direction of

* . observation and the radiation pattern Fﬁ (6) is given by Fi(e)- « 8in°0 and

, Fil (0) « (1 + c032 ®) for a magnetic dipole transition. For an
unmagnetized a.bs.orber and with a single line source the relative intensities

have to be averaged over € and the ratio Sf the transition is 3 = 2 : 1 :

1: 2 : 3. When the absorber is magnetized perpendicular to the y = ray

direction the intensity ratio is '3 : 4 : 1 : 1 : L : 3.



3. Magnetie “mrrine Field in CoFe .0, Spinel Ferrite \
s
Before the theory is presented several properties of the spinel ferrites

will be given. They have the usual chemical formular such as MO.Fe 03, where b
' Fe 'yields a trivalent ion Fe>' and M is a divalent ion, often Zn, ﬂ1
ca, F’é, Ni, Cu, Co, or Mg. Férrites have the spinel crystal structure in
vhich théi-'e are tm; typés of sités of magnetic ions : one is tetrahedrally
: mzrroundéd by four oxygén ions, and is called a tetrahedral site, or A site,
3 wﬁ:eréas tﬁe other is surrounded octahedrally by six oxygen ions, and is
" LI octahedral, or B site. A unit cell of the spinel lattice has
eight A sités and sixteen B lités. The eight A sites form the A
sublattice while th§ s:l.-xtéén B onég form the B sublattice. Since the

following A sites are shared by four unit cells each,

. = ¥/ 1 1 1
( » 0y 2) ’ (" 2| 0 ) 9-.(0; '2'3 5) ’ (O. ""2-| E) ? (Eo 0, - E') ’
1 3 1 1 1
( 2! )9 (0, 2’ 'E)s (0’ ‘T )9 ( o "'é" 0). ("2"9 '5'. o)l

3.1 : A |
(- 5» 5» 0) eand (- =5 0),
they contribute'a.ltogether three possible occupation sites to the unit

cell. The other five sites are at

: v

: A X 35 1
(0. oo 0), (]:‘L_’ o~ 'IJ‘;' I:l.;)s (‘ ]st 1]‘;’ ]]";)' (%n ]}'s - 'I;') and (" Ep bt R’o - E)-
- The sixteen octahedral sites of the B sublatfice are located at

¥ S (R 173 % i 1+3 S ‘3 .8
(B‘s B E)’ (E. '5'. §)’ (a" Eo 'é')o (B'p F’ E)’

3.3
(= % E's 3—)' (= gs % B')o (= B‘: “Es "'), ,(' B'o a'o )'
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The diagram of tetrahedral and octahedral sites in the spinel structure

is shown in Fig. 2.8.

Spinel ferrites can be categorized as being normal, inverse

" or mixed depending on how the divalent and trivalent magnetic ions are

arranged among the +two types of interstitial sites which form the two
sublattices in the spinel structure compounds. Fig. 2.9. 1is a schematic -

illustration of the normal and inverse spinel structﬁres. If the divalent

!

ions. enter only into the tetrahedrally coordinated sifes forming the K

sublattice and the trivalent ions enter only into the octahedrally

coordinated sites, the spinel is said to be a normal ferrite. An example

of a normal spinel compound is MgAlQOh. When oﬁly trivalent ions enter
into the A sublattice and equal numbers of the divalent and trivalent

ions enter réndomly into the B sites, the spineliis in the inverse

spinel arrangement. NiFeEOh is an example of a ferrite having the inverse
arrangement. if, however, both the trivalent and divalent ions enter into
both sublattices, the spinel is said to be a mixed spinel. qut mixed
spinels result when nonmagnetic ions are substituted for some of the
magnetic ions on the B sublattice. Cobalt ferrite, CoFeéOh, is an
example of a mixed ferrite which.does not contain any nonmagnetic cations.
The degree of mixing or number of divalent Co ions entering into the A

sublattice in what would normally be an inverse arrangement depends on

the prior heat treatment of the CoFe,0) crystal., Sawatzky, et al.(1969),
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Fig 2.8+ A spinel structure., The circles with A represent
tetrahedral sites, the circles with B are fer ectahedral and the
. black circles indicate oxygen ions. Only twe ectants ef a unit cell
is shewn. The ether ectants have either eof these structures and are

arrangeai{so that ne twe adjacent ectants have the same cenfiguration.

(b)

Fig. 2.9, Spinel structures. (a) Nermal spinel structure and
(b) inverse spinel structure. A circle with the number 2 indicates_

a divalent ien and the ene with the nuﬁber 3 indicates a trivalent

ien while a sol1iq det stands fer an exygen ien.
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. have indicated that the temperature at whigh the crystal was being formed is
+
related to concentration of 002 ions on the A sublattice and the

relationship is approximated by
o i

x (1 +x)/(1 - x)2 a' jeT ‘ (R.3:%)s

If x is the concentratioﬁ of 002+ ions on the A sublattice, then
i g 2+ [
the cation arrangement is (Cox ) Co F°1+x] q‘ , where () .
denotes the A sites and [ ] denotes the B sites.
Tang (1977) has proposed an extension of a molecular field method

introduced by Kaneyoshi (1970) for studying the hyperfine fields

in the mixed ferrimagnetic compound CoFezoh. The molecular field occurs
resulting from the superexchange interactions between the magnetic ions
at the sites of the crystal. The interactions between the magnetics ions
situated on the nearest neighbor A and B sites should be larger than
interactions between ions on the nearest neighbor A-A sites and between
ions on the nearest neighbor B-B sites since the angle of A-anion-B is
favourable for the superexchange mechanism while the angles of A-gnion—A
and B-anion-B are not. In addition, the next-nearest-neighbor covalent-
spin-transfer interaction for the Cc2>'_" ions on next nearest neighbor

B-B sites should bp taken into account. For the CoFe Oh spinel
ferrites, this means that there are five exchange integrals (or coupling

constants):

(.)"')(Fe e3+)’ :

ng) (002+ 2+) (2) (C02+ F3+ (3)(Fe b °2+) :

J iJ =3 - il
Co JT) (the subscript i(j) denotes the fact that the

» Co

(5) 2+
and JJJ' (CoJ i
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’ Ay
ion is on the A(B) sublattice and ' denotes the nearest neighbor

Liohe
B

lattice). To account for the observed spin arrangement, the four inéer-..
lattice superexchange interactions must be antiferromagnetic in nature, while
the intralattice interaction Jggz is ferromagnetic. Therefore, if we
assume the spin Hamiltonian of CoFe20h is Heisenberg-like, the

Hamiltonian becomes

vl 52 B, SR (2) %1%
. j(H ‘253 Sk b a.icJ-ZijJiJ byt B, e,

(3) 3 A/ (4) %
- 2z JiJ Bi. Cjbicj ifj Jij Bi § ¥y

i,J
o 39 & W e ‘ (2.3.2)
WL 33T 3 T il

<>
In eq. (2.3.2), A; 1is the spin operator for a Co2+ ion located on the

i-th site in A sublattice;

'ii is the spin operator for a Fe3+ ion located on the

i-th site in A sublattice;

E is the spin operator for a Co2+ ion located on the

J
J=th site in B sublattice;

B is the spin operator for a Fe3+ ion located on the

J

J=-th site in B sublattice,
+
and 8, bi are the site occupancy operators for a 002 M Fe3 ion on

the i-th site of the A sublattice, and cJ, dJ are the site occupancy

operators for a Co2+ Fe3+ ion on the j=th site of the B sublattice

respectively. Remember that



egP=

o
'9.1 = 1 if tHe i-th site is occupied by’ a Co°' ' ion, 8

= 0 if the i-th site is not occupied by a 002+ ionu, " ‘ « et :
b, = 1 if the i-th site is occupled by a ‘Pe>" ton, e

Ll s & 4 ﬁhe i-th site is not,
/etc, |

. . :
and that all the sites must be occupied by either a 002 ion or a Fe3+

ion, the site occupancy operators &, and 'bi are related to each other.

The two relationships are

&y 1l - bi s

Tt At : ta.d9):

(2]
1]

The configuration averages (denoted by a subscript r ) of these sites
; o4
are in turn related to x, the concentration of Co ion on the A

sublattice, iae.,’

i'r
<hH>. = b = 1-x
ir
l A
- X
<. S
cJ o 5
1+ x .
< a A3 = . .
dJ>r d = ; (2¢3.4)

To obtain the effective fields acting on an individual spin

/

located on any site k, we introduce the mean field approximation

b 4 - - > > -
25 A ﬁj‘ = G <Bperoogg, c dhp (23.5),
i!J isd . i,J 5

where < > denotes an ensemble average., With this approximation,



o

» - ¢ 2+ _ 3+ 3+
the effective magnetic fields acting on the Coi ’ Fei ’ FeJ and

Coi+ spins are . : & ‘. ’i

: L (1) % (2)

Hooo (K) '= 3: f5. p ey );J“ ‘<DJ> 4, (2.3.68),
e Sy () 3, ,

B (ii) = )j Iy <Cp e+ ); N i <;DJ? aJ . (2_.37.“@_),‘

Bore (BJ) = §J(2) <A> a, + z J?‘* <'f> b (2.3.6¢),

B, J
and
AR (3) (5) ‘

Heff(cj) z JiJ <Ai> a, + 1 JiJ <Bi> b, + §'JJJ' <3 .84, . (2.3.6d).

It should be understood that the above effective fields are

+
for a CoFe Oh ferrite having & definite arrangement of Co2+ and Fe3
+
ions on the A and B sublattice. Since any arrangement of the 002
3 2+

and Fe ¥ ions is possible as long as the concentration of the Co
ions on the A sublattice is x, the effective fields ﬁust be averaged
over all possible arrangements, i.e., a configuration average must be
taken. | : | »

The configuration averages can be calculated by using a trick

introduced by Kaneyoshi (1970). He used the fact that in the Neel-Weiss

. <>
molecular field approximation, the ensemble average of a spin Sk’

é§k> = 8 E%(S BH .o (§k)) .  (2.3.7a)

can be rewritten as
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g

o) O : :
d> = 8 st(SBE) 8(x - H .(8,)) az . (2.3.70),

> where:Eg(X) is the Brillouin function ; S, the spin quantum number;
Heff (§k), the effective field acting on a spin Ek located on the k=th
site; 6(X), the Dirac delta function and B = (kBT)-l. Here, He

+ introduces the auxiliary function defined by
o -1
6 (E) = [E-n8, B)] (2.3.8a),

which is related to a § - function through

> i )
S(E - Heff(sk)) = éifo e 3 [Gk (E + i€) = Gk(E - 1e)](2.3.8b).

Eq. (2.3.7b) can be rewritten as

ol : st(sBE) {e:,: %E[Gk(-E ;, i€) - G (E - 1e)]} dE (2;.9).

3 _
Thus the configuration average of <Sk> reduces to finding the

configuration averages of the auxiliary function G (E ¢ ie).

After performing the configuration averages, we get

«®> =2a{B sy +Buez)} EERCERUSE
«B> = 52L- B{'BB(BBE'*_) +BB(BBE}_)} , - (2.3.100),
<<.E»-r " %'D{IBD(DBE:) * IiD‘BBExj} - Ky 3. 10e ),

= <<t > -;- _C{BC(CBE;'.'l +BC((;BE:')} (2.3.104),
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)

Where A, C and B, D are the spin quantum number of Co2+ and Fe3+

ions on the sites in the two sublattices, respectively, and where

‘Bt = Z, J(l)(o) «<T > & Pl(_c) + Z2J(2)(0) «<D 55 Pl(d)

2
1 (&) oy (1) * :
t\/1°2(d) KB I2{: |J (k) << D 5., - J. (K) << C >>r| (2.3.11a),

B =2, 73)0) << & »» _Bi(e) + zza(“)(o) «b>» _r(a)

2
:\/Pz(d) %B Izé lJ(h)(K) <«< D > & R J(3?(K) <«< s> rl (2.3.11b),
Eg = 2, J(-z)(o) << R > ‘r Pl(a) + Zl JU")(O) << B >> v Pl(b)
s {p.(v) & ZIJ(h)(K)<< o 22 )<< A >> |2 (2.3.11c)
* - NA ) B » - (K A » o3 edlc )y
Bt = 2.5 (0) «<Bo> p_(a) + 2.3 (0) <<§>$ P_(b)+2 J(s)(o)P (c)
& , g d : o F 3 X

A , 2 2
t‘/Pz(w T, IZCIJ(3)(K)<< B - J‘l)(x)<<?&>_>rl2 + Pa(c)%3(<<5>>r)§|J(5)(K)|

(2.3.114).

In the egs. (2.3.11a) - (2.3.114), Zy (Za) is the number of A(B) sites on
the nearest neighbor shell of a B(A) site, N, (NB) is the number of sites

in A(B) sublattice (note also that NB = ZNA), and Pl(a.) = a, Pl('b) = b,
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Pl(c) = ¢, and Pl(d) = d which are related to x by the eq. (2.3.4)

and Pz(a) = (a - 32), A Pz(d) = (4 - dz), respectively.

Egs. (2.3.10a) - (2.3.10d) form a set of simultaneous nonlinear
algebraic .equations. The behaviour of the configuration averages spins as

the temperature is changed can be determined by numerical ﬁethods.

The effective local magnetic fields acting on any given site in

the A and B sublattice, would be the configuration averagé of egs.

(2.3.6a) - (2.3.6d).A11 of the quantities in these equations are replaced

by their configuration averages. This means that

; > (1) 2 (1 - %) (2) > (1+x)
<Heff (Ai)>r NBJ <<c>>r 3 +NBJ. <<1>>>r 5 (2.3.12&)',

r 2

“Bepe (ii)>r ) NBJ(3) <<E>? T (l:£)+ NBJ(h) <«B>> (132) (2.3.12b),

% (2) + (4) *
err (D . NAJ <<p>> P Xt NAJ <<B>> r(1-x) (2.3.12¢),

A
=o]
—
(=)
N

[}

% i w abhd + 3]k
<Heff(cj)>r N,J «<B> x +NJ <<B>> (1-x)
(5) % (1-x)
- NBJ <<C> s (2:3.288),

where values of < g, > e < bi> ur <c,> and < d have been expressed

>
i by A o J r
in term of the concentration, x, of cobalt ions on the A sublattice.

A

. We can rewrite the effective local magnetic fields acting on ﬁhe

+ : : s g
Fe3* ions from egs. (2.3.12b) and (2.3.12¢) as . rd



~3h=

i 3) (4) 3+
H ff(Fe A)>r [J << c¢>B T J << Fep '»r]

(3) (4) 3+ -
NB[ << C°B >>r -J << FeB »rJ (2.3.138.).

™

3+ = () 3+ F () . o 3+
<Heff(FeB )>r = NA J <<FeA .-k NA [J << FeA >

e 2a) 2+ ] . (2.3.13b).

<< Co, >>
X BV

: - 3+ i 3% ¢
<
However, the dependence of Heff (FeA ) >.and <H (FeB ) > -on the

eff
+ +
concentration x are not immediately evident since << FeZ >>r s << Feg >>
<< CoA+ >>r and << Co]23+ »r are also dependent on x. Significance of

egs.-(2.3.13a) and (2.3.13b) in light of some experlmenta.l data taken

by Sawatzky, it al. (1969) will -be given in Chapter VI.
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