CHAPTER V
ON THE STRUCTURE OF P - RINGS

The materials of this chapter are drawn from

references [31 § [4] and [ 5] .

It is well known th,t every Boolean ring is isomorphic

to a subring of direct sum of rings -12 . ( see reference{5] )

In this chapter we will show that a p - ring is isomorphic to

a subring of a direct sum of rings —Ep « So to classify

P - rings we need only claseify subrings of a direct sum of

lp. The aim of this chapter is to study the problem of

classifying those subrings. We do the complete classification

for the finite direct sum casee.

Definition 5.1+ 4 ring R is called a p - ring if x = x

and px = O for every x in R i.e. a p - ring is just a
pk- ring with k = 1+ Therefore, if p = 2 we call it a

Boolean ring.

/
Definition 5.2, A ring R is said to be imbedded in a ring R

& e

if there exists some subring S8 of R such that R¥ §

Definition 5.3, The prime radical of a ring R, denoted by

Rad Ry, is the set Rad R = ﬂ{P tP is a prime ideal of R &.

If Rad R = '{03 we say that R is without prime radical

or has zero prime radical ,
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Definition 5.4, Let I be an ideal of the ring R, The nil radical

of I is the set {réR 'rne I for some n & Z‘_

The nil radical of the zero ideal is refered to as the

nil radical of the ring R .

Subring of direct sums.

For the theorem given here on subrings ef direct sums

neither of the rings considered need be commutative.

Theorem 5.5¢ A necessary and sufficient condition that a
ring R be isomorphic to /a ‘subring of a direct sum of rings
Ky (i & 1) is that for every b O in R there is a family

of homomorphisms (h,)

Pie1 where hi takes R into a subring

of K; such that hi(b) £ 0 for at least one i .

proof. Consider first the necessity of the condition. Assume

that R is isomorphic to a subring of a direct sum of rings

K. (i £ I) . Then we may assume that the elements of R

are functions f defined on I such that f£(i) & Ki # If

f in R is not zero, there is some i such that f(i) # 0 .

We obtain a homomorphism hi of R into a subring of Ki by

taking correspond to any f in R the value f(i) . So we get

h, : R—K, defined by
i i

hi(f) = £(1)
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Thus hi is homomorphism and satisfies the condition

of the theorem.
Turning now to the sufficiency of the condition, 1let

4 I
H = -{h ¥ R~ K, | b is homomorphism, K; is subring of Kﬁ

’
Let Ky = h.(R) g/ /K, g ik €T

Corresponding to each element b of R we define on H the

function Y, with values in Ky (i€ I), as follows :

Y, (h)/ & h(b)

Since h is homomorphism, it follows at once that

i
=]

Y (h)y = ﬁ(a+b) a,b

a+b

= " h(a) + h(p)

= Ya(h) + Yb(h)

and ¥ (n) h(ab)

ab

n

= h(a) h(b)

= Y, (h) ¥, (h)
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Let ? : R——aE()‘Ki defined by

Thys @ is a homomorphism of R into a subring of a direct

sum of rings Ki « To prove that this is actually an isomorphism
onto its image, we need only show that the function Ya

vanishes identically on Honly if a = O. This follows almost
at once, for we have assumed that if a # O there is an h

on H such that
h(a) = Ya(h) % 0

Thus R is isomorphic to a subring of direct sum of

rings Ki'

Imbedding Theorem

' | ®
Theorem 5.6 A p=ring R may be imbedded in a p-ring R

which contains identity clement.

Finite p-rings

To prove the main theorem, we need the following

lemmas which the proof can be seen in references [k}

and [5] o
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Lemma 5.7, Let I be an ideal of the ring R, and S C R
closed under multiplication and disjoint from I then there
exist an ideal P which is maximal in the set of ideals

which contain I and do not meet S, any such ideal is prime.

Lemma 5.3, The intersection of all prime ideals of R which

contain a given ideal I is pricisely the mil radical of I .

Corolly 5.9 The prime radical of a ring R coincides with
the nil radical of R that is, the prime radical of R is simply

the ideal of all nilpotent elements.

| !
Lemma 5.10, If JA is a set of ideals in R having 40 (
LOENE. e Ve { |

as intersection then R is isomorphic to a subring of the direct

sum of the rings R/Li

Theorem 5.11. A commutative ring R with more than one element.
is isomorphic to a direct sum of a finite number of fields
if and only if it has zero prime radical and contains a finite

number of ideals.

proofe To show sufficiency, assume that R has zero prime radical

and only a finite number of ideals.

Case (1) TIf R has no zero divisor, by theorem 2.8, any integral
domain with more than one element and only a finite number of

ideals is a field, so. the conclusion of the theorem is immedigte.
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Case (2) If R has zero divisors; that is (0) is not a

prime ideal in R, Since R has zero prime radical, therec exists
a set of pfime ideals in R having go } as intersection.
Furthermore, since this set is nec;ssarily finite, we may
assume that if any one of these priﬁe ideals is omitted,

J

the intersection of the others is different from }O i .
Since if MO AL weit, oee NA. = lol

1 > eow i oo e n '7 5 3
we can find a set say {A1, AE, coe kk } Sota this

set is the smallest set such that ﬁ1f)A? coe r]Ak = {O g, That

~
A1I)A2 sidfw f)Ai ose (lﬂk + {O }. So we may obtain a

set of prime ideals Aj Sa A, «bek) having { 0 } as intersection,
s.t. none of them is {0 } or R and having the property that
if Ai is any ideal of this set,  there is an element of R which
is not in Ai but in all Aj for j + % .

Since Ai # R, and is a prime ideal, Rf;i is an
integral domain with more than one element. Furthermore, under

the usual homomorphism x—x of R onto R/k ’ different
i
ideals in Rfl have different inverse images in R. Since R
%

has only a finite number of ideals, Rfﬂ also has a finite
i

number of ideals, and by theorem 2.8 shows that R/p is
/ i
a fieldse By lemma 5.10, the correspondence
xé———)(iqg ;2, aeey ik) ....._—_____,(1)



22

defines an isomorphism of R with a subring of a direct

sum of the fields %ﬁ 'y Xy being the residue class to which
A 1

x belongs modulo ‘i' We now show that by this correspondence

every element of the direct sum of the fields R/

ﬁi appears as

the image of an element of R, and hence that R is isomorphic to the

direct sum of the fields Rf.é. .
e, §

Let (51, 52, asey Eﬁ ) be any element of this direct
sum and let bi be an ¢lement of R which is not in &i but

in all Aj for j #71i ./ /Such an element exists since if any
one of those prime ideals is omitted, the intersection of

the others is differént from zero., Then bif 0, and since
R/ is a field there is an element X, of R, such that
[A. i /.ﬁi

Eiii = ;i « Futhermore by the correspondence (1)
bilc—-—-'j (O, " eg bi, 0,-..0)
bi corresponds to an element with Ei in the i-th place

and zero elsewhere,

If then X; is any element of R in the residue class Eﬁ

modulo Ai we see that

b1x1+ b2x2 + o..hkxk&___, (b1x1’ .o-bkxk)

c‘_ > (;1 ’I§2' ...5]{)
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That is for every (;1, as9 33, .;.;k) belonging to
the direct sum of the field R/A (1 = T Gask D
i

To prove the other part of the theorem, suppose that
R is isomorphic to the direct sum of a finite number of

field Fi( L= %y wue k)

First we must prove that R has no nonzero nilpotent

element., Let x €R be any nilpotent element. So

X = (x,l, 'J{e' oen x-k) xi 6 Fi
and ~ x" = (x? f xnz, see xi ) = 0 for some nt.f;
Then x: = 0 v/ 1
Since x, ¢ F, which is field, therefore x, = 0 ¥/
i i i
Hence N0 5

That is, R has no nonzero nilpotent element, so R

has zero nil radical angd by corollary 5.9 R has zero prime

radical.

It remains to show that R has only a finite number of

ideals. Claim that every ideal in F1-E:... # F,  is of the

k

form I1[f Iaiﬁ cee éjlk where I, is an ideal of Fio

Consider the homomorphism

(S,I, 52, evoy Sk) —_— Bi .__________(2)

of | ¥, (-szﬁ-}...(QFk onto F,
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1 o Y &1 3
Let T be an ideal of F1Lj "'(3’Fk and Ii be the image
of T  under the homomorphism in (2) 4 that is Ii consists
of all element of Fi which are image of the element of I ,

then Ii is an ideal in Fi « Hence IC I1:§ Ia(fj... @Qlk .

Consider the ideal I,1 in F1 « If b,1 is any element of
I1 there exists an element of I with b1 in the first position
say (b1’b2' ...bk). Since (b1'b9’ .-.bk)(e,l, 0’ o--O) =(b1‘O,ICQO)CI:,

I contains all elements of the form (b1,0, eee0).  Similarly

I contains all element af the form(oQ, b2. 0ees) bzi':I2 and

50 one Hence I contains all sum of these elements that is

11@12@...@Iké ' &0
SO I = 11@‘12( ..'@Ik .

Since the only ideals in Fi are (0) and 7 It is clear

i -
that the nunber of ideals is finites Hence the isomorphic ring R

has only a finite number of idezls, and so the proof of the

theorem is completed,

Theorem 5,12, Bvery finite p - ring contains an identity and

is a direct sum of ficlds Z’p .
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proof, Let R be a p = ring containing a finite number of
elements. By theorem 3%,19, theorem 34 and theorem Sl

R is commutative ring, R has no non zero nilpotent elements
and R contains an identity respectively. Thus R is commutative
ring with more than one element has zero prime radical and
contains a finite number of ideals, By theorem 5.11 R is =
direct sum of a finite number of fields. These fields, being

subrings of R, are clearly p - rings also.

We will be done if we can show that gp is the only

field which is a P = ring. Suppose S is such a field, the

unit element of S being denote by ¢ . Let

*

8 {me[m:O,‘I,...p-"l}

- *®
Clearly 8 is subficld-of S. The mapping f : §— 7 defined by

.
f(me) = m for all m € 7,

*
is an isomorphism of S onto Vi p * Since any finite

field with pn elements is a splitting field of the polynomial

n
f(x) = xP - x & Tp {x] 5 therefore the finite field Zp

is the splitting field of the polynomial

P =
X = x & r, ZTZP (x-ri)
85 xPe x = x(x=1)(%=2)(x=3) ... (x-(p-1i} mod p

Since S isa p = ring, every a belonging to S satisfies the

equation
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Thue x"=x = x(x~=e)(x<26) oeeo (k—(p—1)e] = 0 .

There exists a unique monic irreducible polynomial
. * '
fix) € B [x] et fla) = 0 apd 2Ax) divides xP~x o

Therefore f(x) is one of its linear factors, and thue a is
M e

*
an element of S ., So8<C S , hence S = 8 = ZP-
Remark Let R be any p - ring containing an
identity e and let a be any element in R. We denote
by < ay e > the ring generated by a and e consisting of
all polynomizls in a and @. Since a’= a and pa =0,

this ring is finite, and since it is a p - ring with

identity it is expressible as a direct sum of field Zlf

Thus there exists a set of non = zero elements

11 €5y eesey Of < A, e )  such that

1'
e = 01 @ ea@ ese @er and
e = eo = 92 + 92 + + 62
= e = 1 ) eape by ®
Thus o° = e and e.. e, = O (i £ 3) (3)
i i i i

Let x€ {a, e > y thus

X = :{1 E‘F eon C“;‘% J{ic Zp

= X% G X0 B e Opge,

[
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Therefore every element of < a, e > is expressible as
2 linear combination of the elements e, (i:= 1y wesr)- with

coefficients in Yy p° Furthermore the elements ey are linearly

independent over E‘p « We shall call this set a basis of <a, e>

Infinite p - rings.

Existence of homomorphism.

Let R be an arbitrary p - ring containing an identity e
and S be a subring of R ‘with contain e. If a is an element
of R not in §, denote by S(a) the subring generated by S
and a. The elements of the ring S(a) are expressible as
polynomials in a having coefficients in S with degree at

most p=1. Now let ei(i = 1, eee- ) be a basis of <a, etv

as in the remark, Each integral power of a is a linear
combination of the ei's with coefficients bﬂ‘zp, and
since e is also such a linear combination, each element b

of S(a) may be written in the form

b = b1e1 @ baez @ e ae é_‘ bnen R — ("I')

the coefficiants bi being elements of S .
o : : o i
If ¢ = cye, & €85 F eea Fcpe  is _another element

of S(a) it follows that
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o
£
o]
]

(b,+ c)e, & (b, + c))e, & ces@ (b + ¢ ) e
bc = (b1c,1)e,1 @ ece @ (bncn)en -
If b = 0, it follows from (3) , (4) that

0 = eib = e.b. and thus

b1b2 ...bn = b1b2 ew o bn(e1 !,'1'} a0 @ en) = O e

So eib = m>b1b2o-.bn = 0 e (5

Ve use this part to prove the following lemma.
Lemma 5,13, Let S be subring of R containing the identity e of R,
and let h be a given homomorphism S——aﬂ;. Then there exists

l
a homomorphism b : S(ﬂ)-hlp extending h . YV a &R .

proof. If a& S, we done since S(a) = S. So assume

that a é&s « The symbol Pr will be used to represent

the direct sum of the given ring § r times, the elements

of P being denoted by (b1, by ees br), where each b, is
an element of S. In like manner Cr will be used to represent

the direct sum of the ring 'ZI) r times. Let

K = {(b," baj LR AN | br) 6 Pr Sota b1e1 @ b202 @ Ll N @brer'—'c

Claim that K is an ideal in P . To prove this let b EK, c&pr
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be

b b )
( 1' 2' r)(c.]’ 02, ceey cr) L

= (b,[c,]g bzca' sse brcr)

(b191 fd;i b262 6 e e (‘b brer)((:,le,' 6] 'R @Crer) = o]
ch,]e,] & oo & brcrer = 0
Thus be = (chq, byCsy eee b c ) £ K

W * *
Now h induced a homonorphism (b1,b2, ase br) m->(b1, Doy aee bf )

*
from Pr to Cr s where bi-ha bi by ‘h

Denote by L the ideal in Cr whieh is the image of X under

the induced homomorphism. Claim that the ideal L cannot contain

(1, 1, 1..1). For if (b1' bz' ooe br)-——?(‘l, 1‘ uoo1).

Then (h(b,‘)‘ h(ba)' cow h(br)) (11 1, 0.01)

u

h(b1)o h(ba) oo .h(br) = 1
h(b,'ba-oobr) = 1

Thus b1b2 cos br £0

From (5) bie, #0 Vi=1, cour .
Hence b,e, @ cos '@brer # 0 , therefore (b,!, b,y eee br)(li' K

which is a contradiction. The ideal L cannot contain C1s- B 95 snat)s

therefore L does not include all of Cr' Claim that L consists of

all elements (x1, Xoy eee xr) such that for a certain fixed set
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of i's, x; = 0, and for the remaining i's, x; may take

any value in 7 _ .

For if L = {(x1, X9 ...xr) ’xi 0 ¥ i=1, eeur } .

Let X 1§(b1, ...br)-_§(x1,x2,...xr) = (h(b,), h(b,), ... h(b )

0 #£ X%, cesX

= h(b1) h(ba).;. h(br)
(babs eeab )
Thus b1"'br #0 which is impossible.
Since L is not ddentieal with Cr' we may assume that L
consists of all elements (ORGP0, X0 ...xf) where k > 1

o6 i Z L]
and X0 Xpesq? X. —are  arbitrary elements of p We

now set up the homomorphism

. :
- ] 7 — L
b = b,]e,1 &,bzez@‘.. @brer —-yb,' —_ (6)

for any b & S(a) .

Claim that this is the required homomorphism .
i
h : S(al_;ﬁzp. First to prove that h is well - defined,
For any given element b of S(a)y if b can also expressed as

Caeq () ece ﬁycrer + 1t follows that

(I:n,'-r.:,')e,1 @ (ba-cz) e D eed® (br-cr)er = 0
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Therefore [(b1-c1), (ba-ca), "'(br-cr)nf € x y that

r— X * M y
implies L(b1—01) 3 (bz—ca)' "'(bf'-cr)] t‘ L or

A "

[~ &, (B5m0s)s sows (b.-d)] er .

From the form we have assumed I to have,it follows that

x A x 3%
= = and he =
b,.| c = 0 and hence b,.I c1

Thus (6) defines a homomorphism S(a)—> %. If x is

any clement of S, then from (6) we find

*-
X = Xe = x(e1@e2@...@er)~——}x

1
and the homomorphism h' coineide with hon § .

This complets the proof .

To prove the main ‘theorem for infinite P - rings, we

need some definitions and lemmas as follows :

Definition 5.14%, Let S be a subring of a ring R For any

b ER = 5, we shalllllddR¥GEKES subring generated by S and b

by S(b), id.ee S(b) =<8 U {b|)

Definition 5.15, Let 9 be an ordinal. Ry a ¥ - sequence in a

ring R we mean a one = to - one function a on ¥ into R —{O, eE

where e is identity of R. Given a ¥ - sequence in R and
B<¥® 4, we define a subring SB as follows :
S = < e if B=20

p
54 <sou'{ax{.4<a}>

]
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{SB‘ (B<r) will be called the T - sequence of subrings

determined by the ¥ - sequance 48&. ?(9(< )

Lemma 5,16. Let R be a ring containing an identity e and ¥ be

an ordinal, Let {Sd ‘ (ol < %) be a family of subrings of R

such that for each A< B <y, 8, C SB « For each =

such that &+ 1 < ¥, 1let ay be an element of Sd . such

1

that a4 ﬁ: U S? s | B 3 £ ¥ is a cardinal number
: =
(<™

then }g U S, where 0"?3 ) denotes the cardinal

':-4(3

number of S
P
)
proof. If % is finite then

]}0, ey ao, a1,

I

ocoe B..a“ 3{

—_——
Hence ; £ U S,
ol

3

If is infinite cardinal by theorem 2.27
]

%, is limit ordinal.
since  fa | C s

d\ié_i %] < 52)3 W
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Since } is limit ordinal, b ‘bdﬂ ‘

hence

W1
Ther;efore dqu: g Z J%gi S;

E (&4

Since {%‘25“‘(5) is equipotent toj y hence

Thus j f OT

Theorem 5.17, Given & ring R containing an identity e, then

" there exists an ordinal ¥ and a ¥ - sequence {aa 5 (L<¥F) in
R such that the ¥ - sequence {S.(‘(o{ <) of subrings of R

determincd by { aﬁﬁ (.{< ¥) has the property thatg((/_'rsx.‘ = R

proof. In the case that R = < e > , take the ordinal = 1.

Assume that R # < e) « First we shell show that

there exists an ordinal ¥ and a family of subrings

ﬁs‘* 'l:.o{(‘a.‘ )

such that if A< B <¥ then 5, C sﬁ' and 52,;54 = R
e g
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Let C be a choice fn, for R '+ Let B be any nonzero
ordinal such that the subrings §; have been defined for all

A< B and R = (J §, is not empty.

.n(F
Case 1 B = dh+ 1 for some ordinal 6',
then b, = CR ~L{' §)

) N4p

and we define § =<S°U{bq‘d<5&>.

B
Case 2 B is a limit ordinal. Define
e /
b & C(R =S b
8 (R =- B)

We claim that there exists an ordinal ¥ such that

R - S = £
a\ig'c e p
. 4! C
Suppose the contrary, i.es for all %, \.{'F S_‘ - R
Py
' [
Take '(f = Bo R where \B R is the power

set of R,

Hence f\) - C. R

Jg'ﬂ'
Therefore Lr 8 Z R
de ¥’ =«
¥ I,T—-.‘-"._-..__ )
By lemma 5,16 w2 have J Sy 2 3

of & fF

Hence R 2 l;‘ Ry which is contradiction,.
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Therefore the assumption is false, hence there exists

an ordinal %and a family «{Sﬂ({ (ol ) of subrings of R

such that (/S = R
*Lw

Let (C(R = () 8y ) 4if P is a non limit ordinal,
2]

IC(R -/ 5, /) if B is a limit ordinal .
ALf s

Dhserve that a = T

P

see that {E}* k (X < %) is a ¥~ sequence and .¥- sequence

B by the above construction, we

{Sd_l{ TR of subrings of R determined by ﬂg, i(i< v)

" I3
has the property that ;1»3_.‘?‘: R

Theorem 5418 If R is any p - ring containing identity e and

if a is any non zero element of R then there exists a

homomorphism h of R into Z‘p such that h(a) £ 0 .

proofa. From lemma 5.17 there exists an ordinal +“and a

¥~ sequence a_ s i =
quen 4 ol v in R such that a, a and the

¥ sequence { Sx} (<¥ ) of subrings of R determined by

,{a,; 3(_( <t ) has the property that d% i: R .
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If R=<e ? y then R is a finite p = ring, thus it

is isomorphic to a direct sum of Zp s Thus there exists an
homomorphism h_ : R—jy Ip such that ho(a) #0 for a#0

in R.

IfR#<e) . Let S = <e) and 8, =<a, ,e p

81 is finite p = ring, it is isomorphic to direct sum of rings

Ep - Thus there exists a; homomorphism h, of S, onto ZP
such that h,1(aa0 ) £ 0

For each 1 < & </ ' we shall define h, on 8y so
that if d;< « then h:.(‘ is an extension of h“' we already
have hx'(ao ) # 0.

This will be done by transfinite dnduction.

Let P(X ) be the statement "h‘x is an extension of hx" for

'

o < "

Let B <« ¥ be any ordinal number such that h, 1is defined

so that P(x ) holds for all « < B .

Case 1 B = 5 + 1 for some ordinal 5.
. Since h(.: has been defined on S¢ 4 hence by
lemma 5.13 there exists hd.‘ on Sg( a ) such that

h, (8)) #0 and h, | 2 .
8
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Put hB = h and s[3 = 8 (as. ) « Then hB
is defined on sﬁ such that P(B) holds.
Case 2 B dis limit ordinal.
Note By h = (/ h, we mean that
a8
h(a) = hﬂ (a) a€ sy

This is well - defined since ha. is well = defined.

In this case we put/ 8, = U S and h = ! h, A
P B 3;<P-.r B "}-{P o

Hence hB is defined on Sﬁ.

Therefore for each B < “r, h{3 can be defined on SB
such that P(B) holds.

Define h = (J h Hence h is well-defined o2

p<r B

R = S and h(as ) # 0 . ~

frex B

We are now in a positicen to prove our principal

theorem.

Theorem 5419, If R is any p=-ring, it is isomorphic to a subring

of direct sum of Z

proof . Apply theorem 5.5, 5.6 and 5.18
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Classification of Subrings of direct sum g 4

Theorem 5,20, Let R = I @ I & o @_ _,.Ip and k be a
n=timas

subring of R then 'Ke= S, @5, @ « ¥ S, where S, be subring

of lp or K is of type A where by this we mean that there

exist at least two indicies i, j such that

xi = xj V (x,": ng' lO.xn} e K o

proof. We prove this by induction, For n = 1 obvious,
so we shall prove it forn = 2 .

For n = 2. 1e¢e. R = ¥:@ Ip and K be subring of
R then we want to show that K = S, @52 or

]
K = i(x, x) J X E-' lp ; where S,1 and 52 are subrings of Ep E

Let Tfi : R———->2p defined by

Then H;, is homomorphism from R to Yip . IJ; (K)
is subring of Ii’ hence {i(K) is Ip or 10& since K

is a subring of R and the only subrings of Ip are ZP and

40& i
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If 'ﬂ,‘(K) . l{o} and sz(x) = {of .
Then K = 108 & { Oi .
if Tf,l(:( 5 {0! and ]{2(1{) - L,

P
Then K = {0& @ ﬂ}’ . :&;;;’
If ﬂ:(K) = -Zp and n;(K) = -{0} < ._E;£¥f?%} ?\f
Then X = 7 @ OS . ALY
RP C -< ) b5 /:’.1 ; :; -i-l'\;'l""" .".u"
if Tf1(K) = Ip and ﬂla(:() = Ep ) .

Then claim that K = zp@ ZP or K ={(x;x)[ x & pr

p =2

Le L, - {(0,0),(0,1),(1,0),(1,1)} ,

The order of a subring K must divide 4, so the order

order of K is 1,2, or k4,

this case ,

If the order of K is 1, K = {(o,o)} ‘which is not 4r

If the order of K is 2, K = 4(0,0),(0,1)} ,

g % {co;oa;m,o; pand k= {(0,0),(1,1)]

If K = {(0,0),(0,'1)} or K= {(0;0),(1,0) !

again K can't be this case, B30 K = {(0,0),(1,1)5

Then K is of type of /A, so we're done,

If the order of I is 4, clearly K = 72 612 so done,
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4.2 forp 2

Assume that K is not type of /\. We must

prove that K = Wp@zp .

To do this we first want to show that 3 (x,,

&
le._,,l(suchthatxlfo, x2#0andx1fx2 »

since 7, (K) = 7t> and sz (K) = 'ﬂp , it follows

that there exist o , ge% such that (1,at) and (B, 1) € K.

IfA$0, 1 orP # 0, 1, then we're done.

4.2.1

e

ment above.

such that x # y.

Ifd.-D,ﬂ:O we have
(1, 0) + (0, 1) = (1, 1) &K and

(1, 1) + (1, 0) = (2, 1) & K, so done

1f k=0, ﬁ- 1

(L, 0) + (1, 1) = (2, 1) € K, so done

IfFK = 1,)3- 0, then use the same arqu-

Ifa!-l,Fsl, so we can find (x, y) £ K

If x # 0, and y # 0, then done.

If x = 0 or v = 0, (assume that x = 0)

wehave (1!1"‘Y}E‘_K-
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if 1 + y = 0, we are back to case 4.2.2

If1+y#0, thenl +y ¥ 1, so done.

So we can let (xl. x2) & K such that Xy # 0,

xzﬂoandxlfxz.

Now, to prove that K .

. prove tha -%@Ip Let (x,, X,) €& K
as mention above, then for any (xi. xi)é %@Zp we shall show
that (xJ'_, x;',} € the ring generated by (x]’., le. i.e. to prove

that = ar a, é—lsuch that (xi. xé) = z-z,ai (xlr xz}i.

lettin 4 2
4 9 * *
X xz
bl = 2 g = 01
X, X A
> 2
2 *5
% *
x x!
2 c
P2 = x x° "5
1 1 A
.|
X2 %2
where -xi xi
cl i$ the determinant 2
x5 *2
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x x2
1 1
c2 is the determinant and
* 2
x x2
1 1
A is the determinant 2
{ %2 *2

b, b, exist and belong to IP since A =

1
X, X, (xz— xl) # 0. So bl' b2 satisfy
b.x. +b x2 = x!
171 20 - 1
b.x. +b x2 = x!
Y2 272 2

Let "? be the natural homomorphism onlL onto EP by
a lifting we mean a mappin from I to [| such that 4.u is
g pping . i ) p

the identity on ﬂp' We know that such a lifting alwave exic’

Therefore ax, + a.x

11 7 3 mod p

+
a1x2 a 2x

LSS I S ]

mod p
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L] ] 7 o) ] ' :
For any (x;, x;) € ipu,- ZP' (xl, x5) ¢ the ring
generated by (x,, x,) so we conclude that K = Z?@ Zp' The

proof is completed for the case n = 2.

Assume that the theorem is true for n = k ~ 1

(k =12 2). To prove for n = k, let
ﬂk : R——-—-—';Jp defined by
.ﬁk (Xpr Xpeenene 4 X)) = X

Clearly ]Tk is a homomorphism and 7[;( (K) is subrino

of Zp so ﬂJk (K) = %Oll or Zp. Consider any k-1 subscripts
fye dgrooanany LA o

ret T :R>T ®..... & ] defined by
= === % k-1 times

]/ (X, 0 Xopeeoerrt,)=(x, ,x. ,.
Intdorm B ERSITY £ e M iy

-
-
"

~

Then 111213"“"'1;-1(K) is subring of Zp@-}....@ Zp

Case 1 1If ]fi i i (KY is of type Jﬂ then K is of type ﬂ;, so done.
I B A i '35 |
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Case 2 If i']iZ'"il\. 1(!() is of type 5, & °"®Sk_1 and
T — |
I'Ilk(K) = O ’ th@n K = S1 w ..{'E_.‘ Sk"'1 @ 301 [l
so dong,
Case 3 30 | S ¢ SN .
—_— iiseeed, 4 is of type S, & "'G:/ok-‘1 and
some S, = -'\O'aj 3 then choose new subcripts
g — j
x,laooj-k-,T S0 that a
7_.}4 ¢ K =5,@ -G8, , and
% 2..‘ 'k 1
nlika) = 0 . So we are back to case 2 .
Case U If Vi 457 AN 'N/ . w1~ I,
—_—— ‘1 2 k-1 1112'°.1k“| = PPg) p@ esa +a

k=1 times

and ﬂ;(K) = Zp then claim that K = ~Zp’+ (& ees :l-z_p
k-tlmes.

Let X, 9X5peeeX, 6 -ZLP be arbitrary . We

have that ;_] « € zp Sete (x1,x2, ...x.k_,l,u( )& K, because

T}:a... k-1 (KD = ,@__:_"C* Z

k=1 tlmes
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Similarly we have that '3 é’EZ Zp such that

(1,0,040040, 80 ) & X .
1030y 50

k=1 times

1If J#0, 1,

(1,0‘0’...0g 82) L]
w —— e ——

(1500543405 5)2

k=1 times k=1 times
waun (1‘0’0‘...0' J 2) e (1’0'0""0! és) = (0'0|aoool a) & K
TN bis — -~ e ——
k=1 times k=1 times kil thmss

where a = 62- g/ /&0

Therefore we can find (O!O,---ngk"a( ) e K ,

and (JC,1, xe‘ o--xk‘-1’ d ) + (OQO'QQQO'xk - o( )
= (x1, xaqtatxk) E K
Since X4 xz,...xk .Z.p is arbitrary and we can
find (X,', x?gt.-xk) ‘- K 3 we conclude that K = tp@oo. + {Lp .

k=times

1f §-= O, we have (1,04444,0,0) € K , s0 done,z because

TR AW
ﬁ...k (K) %T...@ IZP o and we have (X , x

a k=1 times

n

2..-.xk) 6 K

and also have
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I
(x,‘-a{ 3 O305eeas0) € x o So their sum & K.

It O = 14 we Have (140,05 55041 €K ,

k-times

FOr p-1, O (5 Z{P 1 (p—1'0,0|.nao) Ei (K)

112¢o-k-2‘k

ﬂnd (P-1, O' O' LN ] E'g? E& K o

o s

If B = 0. So done, since we have that 3 f?é Zp

such that ('“2 » X1 seeX, ) & K and we can find

(x,], X5 ...xk) € x as /Yefore,

So assume that B # 0

(19040y0000471) +/(p=1y O40sa0,P40) = (04040040, ;3&1) € x
k=1

and (0,0,0,.‘. B' 1) P-1 = (0,0,...1* 1) L]

\

th k=1
k-1

Then (1,0,04044041) o (030y000e041,1) = (0,0404.0,1) & & .

So donee.

Therefore K = —IE @ see gzz— o

k—timeso

Hence the theorem is true for all n 6 Z;_ .
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