CHAPTER V

ON THE STRUCTURE OF P - RINGS

The materials of this chapter are drawn from references [3], [4] and [5].

It is well known that every Boolean ring is isomorphic to a subring of direct sum of rings \mathbb{Z}_2 . (see reference[5]) In this chapter we will show that a p - ring is isomorphic to a subring of a direct sum of rings \mathbb{Z}_p . So to classify p - rings we need only classify subrings of a direct sum of \mathbb{Z}_p . The aim of this chapter is to study the problem of classifying those subrings. We do the complete classification for the finite direct sum case.

Definition 5.1. A ring R is called a p - ring if x^p = x^p and px = 0 for every x in R i.e. a p - ring is just a p^k - ring with k = 1. Therefore, if p = 2 we call it a Boolean ring.

Definition 5.2, A ring R is said to be imbedded in a ring R if there exists some subring S of R such that $R \neq S$

Definition 5.3. The prime radical of a ring R, denoted by Rad R, is the set Rad R = $\bigcap_{P} P$ is a prime ideal of R \downarrow .

If Rad R = $\{0\}$ we say that R is without prime radical or has zero prime radical.

Definition 5.4. Let I be an ideal of the ring R. The nil radical of I is the set $\left\{r \in \mathbb{R} \mid r^n \in I \text{ for some } n \in \mathbb{Z}\right\}$

The nil radical of the zero ideal is refered to as the nil radical of the ring R .

Subring of direct sums.

For the theorem given here on subrings of direct sums neither of the rings considered need be commutative.

Theorem 5.5. A necessary and sufficient condition that a ring R be isomorphic to a subring of a direct sum of rings K_i ($i \in I$) is that for every $b \neq 0$ in R there is a family of homomorphisms $(h_i)_{i \in I}$ where h_i takes R into a subring of K_i such that $h_i(b) \neq 0$ for at least one i.

proof. Consider first the necessity of the condition. Assume that R is isomorphic to a subring of a direct sum of rings $K_{\mathbf{i}}$ (i \in I). Then we may assume that the elements of R are functions f defined on I such that $f(\mathbf{i}) \in K_{\mathbf{i}}$. If f in R is not zero, there is some i such that $f(\mathbf{i}) \neq 0$. We obtain a homomorphism $h_{\mathbf{i}}$ of R into a subring of $K_{\mathbf{i}}$ by taking correspond to any f in R the \mathbf{v} alue $f(\mathbf{i})$. So we get $h_{\mathbf{i}}: R \rightarrow K_{\mathbf{i}}$ defined by

$$h_i(f) = f(i)$$

Thus h_i is homomorphism and satisfies the condition of the theorem.

Turning now to the sufficiency of the condition, let $H = \left\langle h : R \longrightarrow K_{i}^{'} \mid h \text{ is homomorphism, } K_{i} \text{ is subring of } K_{i} \right\rangle$ Let $K_{h} = h (R) \leqslant K_{i}^{'} \quad , \quad i \in I$

Corresponding to each element b of R we define on H the function Y_b with values in K_i (i \in I), as follows:

$$Y_h(h) = h(b)$$

Since h is homomorphism, it follows at once that

$$Y_{a+b}$$
 (h) = h(a+b) a,b $\in \mathbb{R}$
= h(a) + h(b)
= $Y_a(h) + Y_b(h)$
and Y_{ab} (h) = h(ab)
= h(a) h(b)
= $Y_a(h) Y_b(h)$

Let
$$\phi$$
: $R \longrightarrow \Sigma \bigoplus K_i$ defined by ϕ (a) = Y_a

Thus \emptyset is a homomorphism of R into a subring of a direct sum of rings K_i . To prove that this is actually an isomorphism onto its image, we need only show that the function Y_a vanishes identically on H only if a=0. This follows almost at once, for we have assumed that if $a\neq 0$ there is an h on H such that

$$h(a) = Y_a(h) \neq 0$$

Thus R is isomorphic to a subring of direct sum of rings $K_{\mbox{\scriptsize 1.0}}$

Imbedding Theorem

Theorem 5.6 A p-ring R may be imbedded in a p-ring R which contains identity element.

Finite p-rings

To prove the main theorem, we need the following lemmas which the proof c_{an} be seen in references [4] and [5].

- Lemma 5.7. Let I be an ideal of the ring R, and S

 closed under multiplication and disjoint from I then there
 exist an ideal P which is maximal in the set of ideals
 which contain I and do not meet S, any such ideal is prime.
- Lemma 5.8. The intersection of all prime ideals of R which contain a given ideal I is pricisely the mil radical of I.
- Corolly 5.9 The prime radical of a ring R coincides with the nil radical of R that is, the prime radical of R is simply the ideal of all nilpotent elements.
- Lemma 5.10. If A_i is a set of ideals in R having $\{0\}$ as intersection then R is isomorphic to a subring of the direct sum of the rings R/A_i
- Theorem 5.11. A commutative ring R with more than one element. is isomorphic to a direct sum of a finite number of fields if and only if it has zero prime radical and contains a finite number of ideals.
- proof. To show sufficiency, assume that R has zero prime radical and only a finite number of ideals.
- Case (1) If R has no zero divisor, by theorem 2.8, any integral domain with more than one element and only a finite number of ideals is a field, so the conclusion of the theorem is immediate.

Case (2) If R has zero divisors; that is (0) is not a prime ideal in R. Since R has zero prime radical, there exists a set of prime ideals in R having $\{0\}$ as intersection. Furthermore, since this set is necessarily finite, we may assume that if any one of these prime ideals is omitted, the intersection of the others is different from $\{0\}$. Since if $A_1 \cap A_2 \cap \cdots \cap A_n = \{0\}$,

we can find a set say $\left\{A_1, A_2, \cdots A_k\right\}$ s.t. this set is the smallest set such that $A_1 \cap A_2 \cdots \cap A_k = \left\{0\right\}$. That is $A_1 \cap A_2 \cdots \cap A_k \neq \left\{0\right\}$. So we may obtain a set of prime ideals A_j $(j=1,\ldots,k)$ having $\left\{0\right\}$ as intersection, s.t. none of them is $\left\{0\right\}$ or R and having the property that if A_j is any ideal of this set, there is an element of R which is not in A_j but in all A_j for $j \neq i$.

Since $A_i \neq R$, and is a prime ideal, R/A_i is an integral domain with more than one element. Furthermore, under the usual homomorphism $x \to \overline{x}$ of R onto R/A_i , different ideals in R/A_i have different inverse images in R. Since R has only a finite number of ideals, R/A_i also has a finite number of ideals, and by theorem 2.8 shows that R/A_i is a field. By lemma 5.10, the correspondence

$$x \leftarrow \rightarrow (\bar{x}_1, \bar{x}_2, \dots, \bar{x}_k)$$
 _____(1)

defines an isomorphism of R with a subring of a direct sum of the fields R, , x, being the residue class to which x belongs modulo A; We now show that by this correspondence every element of the direct sum of the fields R, appears as the image of an element of R, and hence that R is isomorphic to the direct sum of the fields R, .

Let $(\bar{a}_1, \bar{a}_2, \dots, \bar{a}_k)$ be any element of this direct sum and let b_i be an element of R which is not in A_i but in all A_j for $j \neq i$. Such an element exists since if any one of those prime ideals is omitted, the intersection of the others is different from zero. Then $b_i \neq 0$, and since R/A_i is a field there is an element \bar{x}_i of R/A_i such that $\bar{b}_i \bar{x}_i = \bar{a}_i$. Futhermore by the correspondence (1)

$$b_i \longleftrightarrow (0, \dots \overline{b_i}, 0, \dots 0)$$

 $\mathbf{b_i}$ corresponds to an element with $\mathbf{b_i}$ in the i-th place and zero elsewhere.

If then x_i is any element of R in the residue class x_i modulo A_i we see that

$$b_1^{x_1+b_2^{x_2}+\cdots b_k^{x_k}} \longleftrightarrow (\bar{b}_1^{x_1}, \dots \bar{b}_k^{x_k})$$
 $\longleftrightarrow (\bar{a}_1, \bar{a}_2, \dots \bar{a}_k)$

That is for every $(a_1, a_2, a_3, \dots a_k)$ belonging to the direct sum of the field R/A_i (i = 1, ...k).

To prove the other part of the theorem, suppose that R is isomorphic to the direct sum of a finite number of field F_i ($i=1,\ldots,k$)

First we must prove that R has no nonzero nilpotent element. Let $x \in R$ be any nilpotent element. So

$$x = (x_1, x_2, \dots x_k) \qquad x_i \in F_i$$
And
$$x^n = (x_1^n, x_2^n, \dots x_k^n) = 0 \quad \text{for some } n \in \mathbb{Z},$$
Then
$$x_i^n = 0 \qquad \forall i$$
Since
$$x_i \in F_i \quad \text{which is field, therefore } x_i = 0 \quad \forall i$$

That is, R has no nonzero nilpotent element, so R has zero nil radical and by corollary 5.9 R has zero prime radical.

Hence x = 0.

It remains to show that R has only a finite number of ideals. Claim that every ideal in $F_1 \oplus \cdots \oplus F_k$ is of the form $I_1 \oplus I_2 \oplus \cdots \oplus I_k$ where I_i is an ideal of F_i . Consider the homomorphism

$$(s_1, s_2, \dots, s_k) \longrightarrow s_i \qquad (2)$$
of $F_1 \oplus F_2 \oplus \dots \oplus F_k$ onto F_i

Let I be an ideal of $F_1 \oplus \cdots \oplus F_k$ and I_i be the image of I under the homomorphism in (2), that is I_i consists of all element of F_i which are image of the element of I, then I_i is an ideal in F_i . Hence $I \subseteq I_1 \oplus I_2 \oplus \cdots \oplus I_k$.

Consider the ideal I_1 in F_1 . If b_1 is any element of I_1 there exists an element of I with b_1 in the first position say $(b_1,b_2,\cdots b_k)$. Since $(b_1,b_2,\cdots b_k)(e_1,0,\cdots 0)=(b_1,0,\cdots 0)$. I contains all elements of the form $(b_1,0,\cdots 0)$. Similarly I contains all element of the form $(0,b_2,\cdots 0)$, $b_2\in I_2$ and so on. Hence I contains all sum of these elements that is $I_1\oplus I_2\oplus\cdots\oplus I_k\subseteq I$.

so
$$I = I_1 \oplus I_2 \oplus \cdots \oplus I_k$$
.

Since the only ideals in F_i are (0) and F_i . It is clear that the number of ideals is finite. Hence the isomorphic ring R has only a finite number of ideals, and so the proof of the theorem is completed.

Theorem 5.12. Every finite p - ring contains an identity and is a direct sum of fields \mathbb{Z}_p .

proof. Let R be a p - ring containing a finite number of elements. By theorem 3.19, theorem 3.4 and theorem 5.6, R is commutative ring, R has no non zero nilpotent elements and R contains an identity respectively. Thus R is commutative ring with more than one element has zero prime radical and contains a finite number of ideals. By theorem 5.11 R is a direct sum of a finite number of fields. These fields, being subrings of R, are clearly p - rings also.

We will be done if we can show that \mathbb{Z}_p is the only field which is a p - ring. Suppose S is such a field, the unit element of S being denote by e . Let

$$s^* = \{ m \in | m = 0, 1, ..., p-1 \}$$

Clearly S is subfield of S. The mapping $f: S \longrightarrow \mathbb{Z}_p$ defined by $f(me) = m \qquad \text{for all } m \in \mathbb{Z}_p$

is an isomorphism of S onto \mathbb{Z}_p . Since any finite field with p^n elements is a splitting field of the polynomial $f(x) = x^p - x \in \mathbb{Z}_p[x]$, therefore the finite field \mathbb{Z}_p is the splitting field of the polynomial

$$x^{p}-x = \prod_{r_{i} \in \mathbb{Z}_{p}} (x-r_{i})$$

or $x^p-x \equiv x(x-1)(x-2)(x-3) \dots (x-(p-1)) \mod p$ Since S is a p - ring, every a belonging to S satisfies the equation

$$x^p - x = 0$$

Thus $x^p - x = x(x-e)(x-2e) ... (x-(p-1)e) = 0$.

There exists a unique monic irreducible polynomial $f(x) \in S[x]$ s.t. f(a) = 0 and f(x) divides $x^p - x$. Therefore f(x) is one of its linear factors, and thus a is an element of S. So $S \subseteq S$, hence $S = S \cong \mathbb{Z}_p$.

Remark Let R be any p - ring containing an identity e and let a be any element in R. We denote by < a, e > the ring generated by a and e consisting of all polynomials in a and e. Since $a^p = a$ and pa = 0, this ring is finite, and since it is a p - ring with identity it is expressible as a direct sum of field \mathbb{Z}_p .

Thus there exists a set of non - zero elements $e_1, e_2, \dots e_{\hat{\mathbf{r}}}$ of < a, e > such that

$$e = e_1 \oplus e_2 \oplus \cdots \oplus e_r$$
 and $e = eoe = e_1^2 + e_2^2 + \cdots + e_r^2$.

Thus
$$e_i^2 = e_i$$
 and $e_i \cdot e_j = 0$ $(i \neq j)$ (3)
Let $x \in \langle a, e \rangle$, thus

$$x = x_1 \oplus \cdots \oplus x_r \qquad x_i \in \mathbb{Z}_p$$
$$= x_1 \oplus x_2 \oplus \cdots \oplus x_r \oplus$$

Therefore every element of < a, e> is expressible as a linear combination of the elements e_i ($i=1,\ldots r$) with coefficients in \mathbb{Z}_p . Furthermore the elements e_i are linearly independent over \mathbb{Z}_p . We shall call this set a basis of <a, e>

Infinite p - rings.

Existence of homomorphism.

Let R be an arbitrary p - ring containing an identity e and S be a subring of R with contain e. If a is an element of R not in S, denote by S(a) the subring generated by S and a. The elements of the ring S(a) are expressible as polynomials in a having coefficients in S with degree at most p-1. Now let e_i(i = 1, ... n) be a basis of <a, e > as in the remark. Each integral power of a is a linear combination of the e_i's with coefficients in Z_p, and since e is also such a linear combination, each element b of S(a) may be written in the form

$$b = b_1 e_1 \oplus b_2 e_2 \oplus \cdots \oplus b_n e_n \qquad (4)$$

the coefficients b, being elements of S .

If $c = c_1e_1 \oplus c_2e_2 \oplus \cdots \oplus c_ne_n$ is another element of S(a) it follows that

$$b + c = (b_1 + c_1)e_1 \oplus (b_2 + c_2)e_2 \oplus \cdots \oplus (b_n + c_n) e_n$$

$$bc = (b_1c_1)e_1 \oplus \cdots \oplus (b_nc_n)e_n$$

If b = 0, it follows from (3), (4) that

$$0 = e_i b = e_i b_i \quad \text{and thus}$$

$$b_1 b_2 \cdots b_n = b_1 b_2 \cdots b_n (e_1 \oplus \cdots \oplus e_n) = 0.$$

So
$$e_i b = 0 \implies b_1 b_2 \cdots b_n = 0$$
 (5)

We use this part to prove the following lemma.

Lemma 5.13. Let S be subring of R containing the identity e of R, and let h be a given homomorphism $S \longrightarrow \mathbb{Z}_p$. Then there exists a homomorphism $h': S(a) \longrightarrow \mathbb{Z}_p$ extending $h \cdot \forall \ a \in R$.

proof. If a \in S, we done since S(a) = S. So assume that a \notin S. The symbol P_r will be used to represent the direct sum of the given ring S r times, the elements of P_r being denoted by (b₁, b₂, ... b_r), where each b_i is an element of S. In like manner C_r will be used to represent the direct sum of the ring \mathbb{Z}_p r times. Let

 $K = \{(b_1, b_2, \dots, b_r) \in P_r \text{ s.t. } b_1e_1 \oplus b_2e_2 \oplus \dots \oplus b_re_r = 0\}$

Claim that K is an ideal in P_r . To prove this let $b \in K$, $c \in P_r$

bc =
$$(b_1, b_2, \dots b_r)(c_1, c_2, \dots, c_r)$$

= $(b_1c_1, b_2c_2, \dots b_rc_r)$

$$(b_1e_1 \oplus b_2e_2 \oplus \cdots \oplus b_re_r)(c_1e_1 \oplus \cdots \oplus c_re_r) = 0$$

$$b_1c_1e_1 \oplus \cdots \oplus b_rc_re_r = 0$$

$$Thus bc = (b_1c_1, b_2c_2, \cdots b_rc_r) \in K$$

Now h induced a homonorphism $(b_1,b_2,\cdots b_r) \to (b_1,b_2,\cdots b_r)$ from P_r to C_r , where $b_i \to b_i^*$ by h.

Denote by L the ideal in C_r which is the image of K under the induced homomorphism. Claim that the ideal L cannot contain (1, 1, ...1). For if $(b_1, b_2, \dots, b_r) \longrightarrow (1, 1, \dots, 1)$.

Then
$$(h(b_1), h(b_2), \dots h(b_r)) = (1, 1, \dots 1)$$

 $h(b_1), h(b_2), \dots h(b_r) = 1$
 $h(b_1b_2, \dots b_r) = 1$

Thus $b_1b_2 \cdots b_r \neq 0$

From (5)
$$b_{i}e_{i} \neq 0$$
 $\forall i = 1, ...r$.

Hence $b_1e_1 \oplus \cdots \oplus b_re_r \neq 0$, therefore $(b_1, b_2, \cdots b_r) \notin K$ which is a contradiction. The ideal L cannot contain $(1, 1, 1, \ldots 1)$, therefore L does not include all of C_r . Claim that L consists of all elements $(x_1, x_2, \cdots x_r)$ such that for a certain fixed set

of i's, $x_i = 0$, and for the remaining i's, x_i may take any value in \mathbb{Z}_p .

For if L =
$$\{(x_1, x_2, ...x_r) | x_i \neq 0 \ \forall i = 1, ... r \}$$
.

Let
$$K \rightarrow (b_1, \dots b_r) \longrightarrow (x_1, x_2, \dots x_r) = (h(b_1), h(b_2), \dots h(b_r))$$

$$0 \neq x_1 x_2 \dots x_r = h(b_1) h(b_2) \dots h(b_r)$$

$$= h(b_1 b_2 \dots b_r)$$

Thus $b_1 \cdot \cdot \cdot b_r \neq 0$ which is impossible.

Since L is not identical with C_r , we may assume that L consists of all elements $(0,\dots 0,\, x_k,\, \dots x_r)$ where k>1 and $x_k,\, x_{k+1},\, \dots \, x_r$ are arbitrary elements of \mathbb{Z}_p . We now set up the homomorphism

$$b = b_1 e_1 \oplus b_2 e_2 \oplus \cdots \oplus b_r e_r \longrightarrow b_1 \qquad (6)$$
for any $b \in S(a)$.

Claim that this is the required homomorphism. $h': S(a) \longrightarrow \mathbb{Z}_p. \quad \text{First to prove that } h' \text{ is well - defined.}$ For any given element b of S(a), if b can also expressed as $c_1e_1 \oplus \cdots \oplus c_re_r$, it follows that

$$(b_1-c_1)e_1 \oplus (b_2-c_2) e_2 \oplus \cdots \oplus (b_r-c_r)e_r = 0$$

Therefore $[(b_1-c_1), (b_2-c_2), ...(b_r-c_r)] \in K$, that implies $[(b_1-c_1)^*, (b_2-c_2)^*, ...(b_r-c_r)] \in L$ or $[(b_1^*-c_1^*), (b_2^*-c_2^*), ..., (b_r^*-c_r^*)] \in L$.

From the form we have assumed L to have, it follows that $b_1 - c_1 = 0$ and hence $b_1 = c_1$

Thus (6) defines a homomorphism $S(a) \rightarrow \mathbb{Z}_p$. If x is any element of S, then from (6) we find

$$x = xe = x(e_1 \oplus e_2 \oplus \cdots \oplus e_r) \longrightarrow x$$

and the homomorphism h coincide with h on S . This complets the proof .

To prove the main theorem for infinite p - rings, we need some definitions and lemmas as follows:

Definition 5.14. Let S be a subring of a ring R. For any $b \in R - S$, we shall denote the subring generated by S and b by S(b), i.e. $S(b) = \langle S U | b | \rangle$

Definition 5.15. Let γ be an ordinal. By a γ - sequence in a ring R we mean a one - to - one function a on γ into R - $\{0, e\}$ where e is identity of R. Given a γ - sequence in R and $\beta < \gamma$, we define a subring S_{β} as follows:

$$S_{\beta} = \langle e \rangle$$
 if $\beta = 0$
 $S_{\beta} = \langle S_{0} \cup \{a_{\alpha} \mid a < \beta \} \rangle$

 $\langle S_{\beta} \rangle$ ($\beta < \pi$) will be called the $\overline{\tau}$ - sequence of subrings determined by the $\overline{\tau}$ - sequence $\langle a_{\infty} \rangle$ ($\times < \overline{\tau}$).

Lemma 5.16. Let R be a ring containing an identity e and \mathfrak{F} be an ordinal. Let $\{S_{\alpha}\}$ ($\alpha < \pi$) be a family of subrings of R such that for each $\alpha < \beta < \pi$, $S_{\alpha} \subset S_{\beta}$. For each $\alpha < \beta < \pi$, such that $\alpha + 1 < \pi$, let α be an element of $S_{\alpha + 1}$ such that $\alpha \not\in \emptyset$ S_{α} , If $S_{\alpha} \in \mathbb{F}$ is a cardinal number then $S_{\alpha < \pi} \in \mathbb{F}$, where $S_{\alpha < \pi} \in \mathbb{F}$ denotes the cardinal number of $S_{\alpha < \pi} \in \mathbb{F}$

proof. If $\frac{3}{3}$ is finite then $\begin{cases} 0, e, a_0, a_1, \dots a_{3-3} \end{cases} \subseteq \frac{s_{3-1}}{3}$ $= \bigcup_{x \in S_2} s_x$ Hence $\frac{3}{3} \leq \bigcup_{x \in S_3} s_x$

If 3 is infinite cardinal by theorem 2.27, 3 is limit ordinal.

Since
$$\{a_{\alpha}\}\subseteq S_{\alpha+1}$$

$$\{a_{\alpha}\}\subseteq \bigcup_{\alpha\in S_{\alpha+1}} S_{\alpha+1}$$

Since
$$\frac{1}{3}$$
 is limit ordinal, $\frac{1}{3} \int_{-1}^{3} \int_{-1}^{3}$

Theorem 5.17. Given a ring R containing an identity e, then there exists an ordinal r and a r - sequence $\left\{s_{s}\right\}(s < r)$ in R such that the r - sequence $\left\{s_{s}\right\}(s < r)$ of subrings of R determined by $\left\{a_{s}\right\}(s < r)$ has the property that $\left\{s_{s}\right\} = R$

proof. In the case that $R = \langle e \rangle$, take the ordinal T = 1. $S_0 = \langle e \rangle = R$

Assume that R \neq < e > . First we shall show that there exists an ordinal γ and a family of subrings $\left\{S_{\alpha}\right\}_{(\alpha < \gamma)}$ such that if $\alpha < \beta < \gamma$ then $S_{\alpha} \subset S_{\beta}$ and $\left(\bigcup_{\alpha < \beta} S_{\alpha}\right) = R$

Let C be a choice fn. for R . Let β be any nonzero ordinal such that the subrings S_{k} have been defined for all $d < \beta$ and R - $\bigcup_{A \in \mathcal{B}} S_{k}$ is not empty.

Case 1 $\beta = \hat{J} + 1$ for some ordinal \hat{b} ,
then $\hat{b}_{\hat{b}} = C(R - \bigcup_{k \in B} S_k)$

and we define $S_{\beta} = \langle S_{0} \cup \{b_{\alpha} \mid \alpha < \beta \} \rangle$.

Case 2 β is a limit ordinal. Define

$$s_{\beta} = \bigcup_{\alpha < \beta} s_{\alpha}$$

$$b_{\beta} = C(R - s_{\beta}).$$

We claim that there exists an ordinal & such that

$$R - \bigcup_{\alpha \in X} S_{\alpha} = \emptyset .$$

Suppose the contrary, i.e. for all F, Us C

Take $Y' = \overrightarrow{P}R$ where $\overrightarrow{V}R$ is the power

set of R.

Hence $\bigcup_{x \in S} S_x \subset R$ Therefore $\bigcup_{x \in S} S_x \subseteq R$

a < 8' × - 1

By lemma 5.16 we have $\frac{\sqrt{3}}{\sqrt{3}}$ $\frac{1}{\sqrt{3}}$ $\frac{1}{\sqrt{3}}$

Hence $\overline{R} \supset \overline{P}R$, which is contradiction.

Therefore the assumption is false, hence there exists an ordinal Yand a family $\{S_{\infty}\}$ (∞ of subrings of R such that $\bigcup S_{\infty} = R$

Let
$$\beta = \begin{cases} C(R - \bigcup_{\beta \neq 1} S_{\alpha}) & \text{if } \beta \text{ is a non limit ordinal.} \\ C(R - \bigcup_{\beta \neq 1} S_{\alpha}) & \text{if } \beta \text{ is a limit ordinal.} \end{cases}$$

Observe that $a_{\beta} = b_{\beta}$ by the above construction, we see that $\left\{a_{\alpha}\right\}(\alpha < \gamma)$ is a γ - sequence and γ - sequence $\left\{s_{\alpha}\right\}(\alpha < \gamma)$ of subrings of R determined by $\left\{a_{\alpha}\right\}(\alpha < \gamma)$ has the property that $\left\{a_{\alpha}\right\}(\beta = \gamma)$

Theorem 5.18 If R is any p - ring containing identity e and if a is any non zero element of R then there exists a homomorphism h of R into \mathbb{Z}_p such that $h(a) \neq 0$.

proof. From lemma 5.17 there exists an ordinal find a T-sequence $\left\{ \begin{array}{c} a_{\infty} \\ \infty \end{array} \right\} (\propto < r)$ in R such that $a_{0} = a$ and the T-sequence $\left\{ \begin{array}{c} a_{\infty} \\ \infty \end{array} \right\} (\propto < T)$ of subrings of R determined by $\left\{ \begin{array}{c} a_{\infty} \\ \infty \end{array} \right\} (\propto < T)$ has the property that $\left\{ \begin{array}{c} a_{\infty} \\ \infty \end{array} \right\} (\propto < T)$

If $R = \langle e \rangle$, then R is a finite p - ring, thus it is isomorphic to a direct sum of \mathbb{Z}_p . Thus there exists an homomorphism $h_0: \mathbb{R} \longrightarrow \mathbb{Z}_p$ such that $h_0(a) \neq 0$ for $a \neq 0$ in R.

If R \neq < e > . Let S_0 = < e > and S_1 = <a, , e >, S_1 is finite p - ring, it is isomorphic to direct sum of rings Z_p . Thus there exists an homomorphism h_1 of S_1 onto Z_p such that $h_1(a_0) \neq 0$.

For each $1 < \alpha < \gamma$ we shall define h_{α} on S_{α} so that if $\alpha < \gamma$ then h_{α} is an extension of h_{α} we already have $h_{\alpha}(a_0) \neq 0$.

This will be done by transfinite induction.

Let P(\propto) be the statement "h is an extension of h for \propto < \propto "

Let $\beta<$ ' be any ordinal number such that h_{\varkappa} is defined so that $P(\varkappa$) holds for all $\varkappa<\beta$.

Case 1 $\beta = \delta + 1$ for some ordinal δ .

Since h_{δ} has been defined on S_{δ} , hence by lemma 5.13 there exists h_{δ} on S_{δ} (a) such that h_{δ} (a) \neq 0 and h_{δ} | s_{δ} = h_{δ} .

Put $h_{\beta}=h_{\beta}'$ and $S_{\beta}=S_{\delta}$ (a). Then h_{β} is defined on S_{β} such that $P(\beta)$ holds.

Note By $h = \bigcup_{\alpha < \beta} h_{\alpha}$ we mean that

$$h(a) = h(a)$$
 a $C S_{a}$

This is well - defined since h_{∞} is well - defined.

In this case we put $S_{\beta} = \bigcup_{\alpha < \beta} S_{\alpha}$ and $h_{\beta} = \bigcup_{\alpha < \beta} h_{\alpha}$.

Hence h_{β} is defined on S_{β} .

Therefore for each $\beta <$ 7, h_{β} can be defined on S_{β} such that $P(\beta)$ holds.

Define $h = \bigcup_{\beta \in T} h_{\beta}$ Hence h is well-defined on $R = \bigcup_{\beta \in T} S_{\beta} \quad \text{and } h(a_{\sigma}) \neq 0.$

We are now in a positicen to prove our principal theorem.

Theorem 5.19. If R is any p-ring, it is isomorphic to a subring of direct sum of \mathbb{Z}_p

proof. Apply theorem 5.5, 5.6 and 5.18

Classification of Subrings of direct sum 1.

Theorem 5.20. Let $R = I_p \oplus I_p \oplus I_p$ and K be a subring of R then $K_n = S_1 \oplus S_2 \oplus I_p \oplus I_p$ where S_1 be subring of I_p or K is of type A where by this we mean that there exist at least two indicies i, j such that $x_i = x_j \forall (x_1, x_2, \dots, x_n) \in K$.

proof. We prove this by induction. For n = 1 obvious, so we shall prove it for n = 2.

For n = 2. i.e. $R = \mathbb{Z} \oplus \mathbb{Z}_p$ and K be subring of R then we want to show that $K = S_1 \oplus S_2$ or $K = \{(x, x) \mid x \in \mathbb{Z}_p \}$ where S_1 and S_2 are subrings of \mathbb{Z}_p . Let $\mathbb{T}_i : R \longrightarrow \mathbb{Z}_p$ defined by $\mathbb{T}_i(x_1, x_2) = x_i$ (i = 1, 2)

Then \mathbb{I}_i is homomorphism from R to \mathbb{I}_p . \mathbb{I}_p (K) is subring of \mathbb{I}_p hence $\mathbb{I}_i(K)$ is \mathbb{I}_p or $\{0\}$ since K is a subring of R and the only subrings of \mathbb{I}_p are \mathbb{I}_p and $\{0\}$.

Case 1 If
$$\Pi_1(K) = \{0\}$$
 and $\Pi_2(K) = \{0\}$.
Then $K = \{0\} \oplus \{0\}$.
Case 2 If $\Pi_1(K) = \{0\}$ and $\Pi_2(K) = \mathbb{Z}$.

Then $K = \{0\} \bigoplus \mathcal{L}_p$.

If $\Pi_1(K) = \mathbb{Z}_p$ and $\Pi_2(K) = \{0\}$. Case 3

If $T_1(K) = \mathbb{Z}_p$ and $T_2(K) = \mathbb{Z}_p$. Case 4

Then claim that $K = \mathbb{Z}_p \oplus \mathbb{Z}_p$ or $K = \{(x;x) \mid x \in \mathbb{Z}_p\}$

$$\frac{4.1}{\mathbb{Z}_2 \oplus \mathbb{Z}_2} = \left\{ (0,0), (0,1), (1,0), (1,1) \right\}.$$

The order of a subring K must divide 4, so the order order of K is 1,2, or 4.

If the order of K is 1, $K = \{(0,0)\}$ which is not in this case .

If the order of K is 2, $K = \{(0,0), (0,1)\}$. $K = \{(0,0),(1,0)\}$ and $K = \{(0,0),(1,1)\}$

If $K = \{(0,0),(0,1)\}$ or $K = \{(0,0),(1,0)\}$

again K can't be this case. So $K = \{(0,0),(1,1)\}$

Then K is of type of Δ , so we're done,

If the order of K is 4, clearly K = \(\mathbb{Z} \) \(\mathbb{Z} \) so done.

4.2 for p > 2

Assume that K is not type of \triangle . We must prove that K = $\mathbb{Z}_p \oplus \mathbb{Z}_p$.

To do this we first want to show that $\exists (x_1, x_2) \in K$ such that $x_1 \neq 0$, $x_2 \neq 0$ and $x_1 \neq x_2$.

Since π_1 (K) = π_p and π_2 (K) = π_p , it follows that there exist π , $\pi_p \in \pi_p$ such that (1, π_p) and (π_p , 1) \in K. If $\pi_p \neq 0$, 1 or $\pi_p \neq 0$, 1, then we're done.

4.2.1 If
$$\alpha = 0$$
, $\beta = 0$ we have
$$(1, 0) + (0, 1) = (1, 1) \in K \text{ and}$$

$$(1, 1) + (1, 0) = (2, 1) \in K, \text{ so done}$$

4.2.2 If
$$\alpha = 0$$
, $\beta = 1$
(1, 0) + (1, 1) = (2, 1) \in K, so done

4.2.3 If $\alpha = 1$, $\beta = 0$, then use the same argument above.

4.2.4 If $\alpha=1$, $\beta=1$, so we can find $(x, y) \in K$ such that $x \neq y$.

If $x \neq 0$, and $y \neq 0$, then done.

If x = 0 or y = 0, (assume that x = 0)

we have (1, 1 + y) ∈ K.

if 1 + y = 0, we are back to case 4.2.2 If $1 + y \neq 0$, then $1 + y \neq 1$, so done.

So we can let $(x_1, x_2) \in K$ such that $x_1 \neq 0$, $x_2 \neq 0$ and $x_1 \neq x_2$.

Now, to prove that $K = \mathbb{Z}_p \oplus \mathbb{Z}_p$. Let $(x_1, x_2) \in K$ as mention above, then for any $(x_1', x_2') \in \mathbb{Z}_p \oplus \mathbb{Z}_p$ we shall show that $(x_1', x_2') \in \text{the ring generated by } (x_1, x_2)$, i.e. to prove that $\exists a_1, a_2 \in \mathbb{Z}$ such that $(x_1', x_2') = \sum_{i=1}^{2} a_i (x_1, x_2)^i$.

$$b_{1} = \frac{\begin{vmatrix} x'_{1} & x'_{2} \\ x'_{2} & x'_{2} \end{vmatrix}}{\begin{vmatrix} x_{1} & x'_{1} \\ x_{2} & x'_{2} \end{vmatrix}} = \frac{c_{1}}{\overline{A}}$$

$$b_{2} = \frac{\begin{vmatrix} x_{1} & x_{1}^{1} \\ x_{2} & x_{2}^{1} \end{vmatrix}}{\begin{vmatrix} x_{1} & x_{1}^{2} \\ x_{2} & x_{2}^{2} \end{vmatrix}} = \frac{c_{2}}{A}$$

where
$$c_1$$
 is the determinant $\begin{bmatrix} x_1' & x_1^2 \\ x_2' & x_2^2 \end{bmatrix}$

$$c_2$$
 is the determinant $\begin{bmatrix} x_1 & x_1^2 \\ x_2 & x_2^2 \end{bmatrix}$ and A is the determinant $\begin{bmatrix} x_1 & x_1^2 \\ x_2 & x_2^2 \end{bmatrix}$

 b_1 , b_2 exist and belong to \mathbb{Z}_p since $A = x_1 x_2 (x_2 - x_1) \neq 0$. So b_1 , b_2 satisfy

$$b_1 x_1 + b_2 x_1^2 = x_1^*$$
 $b_1 x_2 + b_2 x_2^2 = x_2^*$

Let \mathcal{T} be the natural homomorphism on \mathbb{L} onto \mathbb{L}_p by a lifting we mean a mapping \mathcal{U} from \mathbb{L}_p to \mathbb{L} such that \mathcal{T} . \mathcal{U} is the identity on \mathbb{L}_p . We know that such a lifting always exist

Therefore
$$a_1x_1 + a_2x_1^2 = x_1 \mod p$$

 $a_1x_2 + a_2x_2^2 = x_2^1 \mod p$

For any $(x_1', x_2') \in \mathbb{Z}_p \oplus \mathbb{Z}_p$, $(x_1', x_2') \in \text{the ring}$ generated by (x_1, x_2) so we conclude that $K = \mathbb{Z}_p \oplus \mathbb{Z}_p$. The proof is completed for the case n = 2.

Assume that the theorem is true for n=k-1 (k - 1 \geqslant 2). To prove for n=k, let

Clearly \mathbb{T}_k is a homomorphism and \mathbb{T}_k (K) is subring of \mathbb{Z}_p so \mathbb{T}_k (K) = 0 or \mathbb{Z}_p . Consider any k-1 subscripts $i_1, i_2, \ldots, i_{k-1}$.

Let
$$\mathbb{I}_{i_1 i_2 \dots, i_{k-1}} : \mathbb{R} \to \mathbb{Z}_p \oplus \dots \oplus \mathbb{Z}_p$$
 defined by

$$\prod_{i_1 i_2 \dots, i_{k-1}} (x_1, x_2, \dots, x_k) = (x_{i_1}, x_{i_2}, \dots, x_{i_{k-1}})$$

Then
$$\mathbb{I}_{i_1 i_2 i_3 \cdots , i_{k-1}}$$
 (K) is subring of $\mathbb{Z}_p \oplus \cdots \oplus \mathbb{Z}_p$

Case 1 If $i_1 i_2 \cdots i_{k-1}$ (K) is of type Δ then K is of type Δ , so done.

Case 2 If
$$i_1 i_2 \cdots i_{k-1}$$
 is of type $S_1 \oplus \cdots \oplus S_{k-1}$ and $i_k(K) = 0$, then $K = S_1 \oplus \cdots \oplus S_{k-1} \oplus \{0\}$,

Case 3 If $i_1 i_2 \cdots i_{k-1}$ (K) is of type $S_1 \oplus \cdots \oplus S_{k-1}$ and some $S_j = \{0\}$, then choose new subcripts $l_1 \cdots l_{k-1}$ so that $l_k = j$

so done.

 $\int_{\mathbb{R}^{2}}^{\mathbb{R}^{2}} \left(\mathbb{R} \right) = \mathbb{S}_{1} \oplus \cdots \oplus \mathbb{S}_{k-1} \quad \text{and} \quad$

 $N_k(K) = 0$. So we are back to case 2 .

Case 4 If $\forall i_1 i_2 \cdots i_{k-1}$, $\forall i_1 i_2 \cdots i_{k-1} = \exists_p \oplus \underbrace{\exists_p \oplus \underbrace{\downarrow_p \oplus \dots + 1}_p}_{k-1 \text{ times}} p$ and $\forall k \in \mathbb{Z}_p$ then claim that $K = \exists_p \oplus \underbrace{\downarrow_p \oplus \dots + 1}_{k-1 \text{ times}} p$

Let $x_1, x_2, \dots x_k \in \mathbb{Z}_p$ be arbitrary. We have that $\exists x \in \mathbb{Z}_p$ s.t. $(x_1, x_2, \dots x_{k-1}, x_k) \in K$, because $\exists x_1, x_2, \dots x_{k-1} \in K$.

Similarly we have that $\exists \, \mathcal{S} \in \mathbb{Z}_p$ such that

$$(1,0,0,\ldots 0,\delta) \in K$$
.

If $\delta \neq 0, 1$,

$$(1,0,0,...0, \delta)^2 = (1,0,0,...0, \delta^2)$$

k-1 times

Thus

$$(1,0,0,...0, \delta^2) - (1,0,0,...0, \delta) = (0,0,...0, a) \in K$$
 $k-1 \text{ times}$
 $k-1 \text{ times}$
 $k-1 \text{ times}$

where $a = \delta^2 - \delta \neq 0$.

Therefore we can find $(0,0,...0,x_k-x) \in K$,

and $(x_1, x_2, ..., x_{k-1}, x_1) + (0,0,...0, x_k - x_1)$

$$= (x_1, x_2, \dots x_k) \in K$$

Since $x_1, x_2, ... x_k$ \mathbb{Z}_p is arbitrary and we can

find $(x_1, x_2,...x_k)$ (K, we conclude that K = p $\underbrace{ p}_{k-times} \underbrace{ p}_{p}$.

If $\delta = 0$, we have $(1,0,\ldots,0,0) \in K$, so done, because $\prod_{2\cdots k} (K) = \underbrace{\prod_{p \in \mathbb{Z}_{p}} \oplus \ldots \oplus \prod_{k=1 \text{ times}} \mathbb{Z}_{p}}_{k-1 \text{ times}} \cdot \text{and we have } (\emptyset, x_{2},\ldots,x_{k}) \in K$

and also have

$$(x_1-x', 0,0,...,0) \in K$$
. So their sum $\in K$.

If
$$\delta = 1$$
, we have $(1,0,0,...0,1) \in K$.

For p-1,
$$0 \in \mathbb{Z}_p$$
, $(p-1,0,0,...0) \in \mathcal{H}_{12\cdots k-2,k}$ (K)

and
$$(p-1, 0, 0, \dots, \beta, 0) \in K$$
.

So assume that $\beta \neq 0$,

$$(1,0,0,...0,1) + (p-1, 0,...0,\beta,0) = (0,0,...0, \beta,1) \in K$$
 $k-1$

and
$$(0,0,0,...,\beta,1)^{p-1} = (0,0,...1,1)$$
.

th

 $k-1$

Then
$$(1,0,0,...0,1)$$
 . $(0,0,...0,1,1) = (0,0,...0,1) \in K$.

So done.

Therefore
$$K = p \underbrace{ \bigoplus \dots \bigoplus \mathbb{Z}}_{k-\text{times}} p$$

Hence the theorem is true for all n $\in \mathbb{Z}_+$.