CHAPTER IIIX

PROPERTINS OF J - RINGS

The materials of this chapter are drawn from references [h]

and Lﬁ J.

In this chapter, we shall prove two important pronerties
of J - rings that are used in the followings chapter. The two
properties of J -~ rings are J - ring has no nonzero nilpotent

elements and J - ring is a commutative ringe.

Definition 3,1, A ring I with identity is called a J - ring if

————

there exist an integer’ m $ 1 such that x" = x for all x € 2 .

Definition 3.2. The Jacobson radical of a ring R, denoted by

rad N is defined as follows

/
rad I = F\{M l M is maximal ideal of R 3

Definition 3,3. An element x of a ring R is said to be an
idempotent if x2 = ¥ and nilpotent if x" = O for some

positive integer m .

Theoren 3, If R is8 J = ring,then R has no nonzero nilpotent

elements |

proof Let x be a nilpotent element of R, therefore there
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exists a positive integer m such that X =0 « Since R is J - ring,

there exists a positive integer n > 1 such that x" = x.

Case (1) : n>2 m

m
e
Hence x = O ,_k”:§““<b .

e
./ 7 \
o P/7AAN
[ ‘:'/ \’\\\ |
\ .
Case (2) : n {m oA T
-r}_’ '\,_-_k
0 = X = X 4 X = Xa X
m-n4+1

If m=n+1 £ n , then as in case (1) we get x = 0 ,

If m-n+1 D n , continue this process until we are in

case (1), Thus we conclude that x = 0

Theorem 3,5, If the ring R is finitely generated, then each

proper right ideal of R is contained in a maximal right ideal.

proof . Let I be any proper right ideal of R, a finitely
generated ring, say R = (a1, By eee an). We define a family

of ideals of R by taking

y4 = { J|1CJ J is a proper right ideal of R }

-
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This family is obviously nonempty, for I itself belongs

to 04' o Now consider an Arbitrary chain { Iik of ideals
in GA Claim that (Q}Ii is again a member of 04 « To prove
this , let the elements a, b £ UI:I. and r & R, Then there

exist indices i and J for which a £ I1 s bETI As the collection

j L]
y or IJ Q-Iia' Suppose

{Iik forms a chain, either I, C I

i

j° But Ij is in right
ideal of R, hemce a~b €1, C (JI, ambr€1,C Uz, .

that IiQ I, , 80 that both a, b € 1

Therefore (J Ii is a right ideal of R .

Next we must verify that LJIi is a proper right jdeal of R .
Suppose not, 1i.e. assume that (}Ii = R = (aq, 8,9 e an).

Then, each generated a, would belong to some right ideal I

k

1} ]

there exists right ideal If containing all I, ‘'s. Thus

"

8138,y seel a}l lie in Iy Consequently Iir = R o Which is

cleary impossible, Therefore V) I:L € 04‘ and I C U Ii o

By Zorn's Lemma, the family 04' contains a maximal elements
M + It follows directly from the definition of 04 that M is

proper right ideal of the ring R with I C u .

000309
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Cclaim that M is a maximal right ideal. To prove this,
suppose that J is any right ideal of R with MC J & R . Since
N is a maximal element of the 0+ N J can not belong to 0+ .
Accordingly, the right ideal J must be improper, which is to say
that J = R « We can thus conclude that M is a maximal right ideal

of R, completing the proof.

Theorem 3.6 In a ring R with identity each proper right ideal is

contained in a maximal right ideal.
proof Use theorem 3.5, since R = (1) .

Theorem 347 Every right ideal I of J - ring R is a two sided

ideal of R.
proof By theorem 3.4, R has no nonzero nilpotent element.

Indeed, if x £ O , the condition X = x necessarily implies
that x" £0, for allm > 1. Suppose that e 1s any idempotent

element of R 3 then for any x ERr.

(xe - exe)® = (ex - exe)2 = o,
so that xe ~ exe = 0 = ex - exe .
Therefore, ex = exe = xe ,

consequently e £ cent R .

1t follows that every idempotent of R must be in the center,

Given any a & I , with a” = a, claim that e = ‘n—1 is an

idempotent element of R ¢
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n-2 . n-=1

Hence, o1 £ cent R and so, for every r in R we get

/ Ne=2
where r = a ra

Let I be a right ideal and a € I , then ar& I, this shows

that ra £ 1, also making I a two ~ sided ideal of R.

Theorem 3.8, An element of a J-ring is invertible if and only if

it belongs to no maximal ideal.

proof. Suppose a is invertible and a € M a maximal ideal.
So there exists a  'ER such that e~ . 1 € M , which implies

that M = R, contradict to the maximality of M. Hence a ¢ M.

To prove the converse, assume that a ¢} M, for every
maximal ideal M., Let I be the right ideal generated by a, by

theorem 3.6 I'is not a proper right ideal.

Hence I = R = (a) # Since 1 & R,
therefore 1 = ar for some r ( R .
Let J be the left ideal generated by a, Claim that T = J .

Since I = +ax [.x € R } s and by theorem 3,7 I i=s
also left ideal, therefore JC I , Similarly we can prove that
IS£J. Hence I =J = R. There exist 8 £ R such that sa = 1 = ra .

Obviously r = 8 = a-1 « So a is invertible.
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We get the following result . The proof of this resulti

is obtained by applying theorem 3.8

Theorem 3.9, Let I be an ideal of J - ringe Then I C rad R

if and only if each element of the coset 1+I has an inverse

in R .

proof. We assume that I { rad R and there is some element
a &I for which 1+a is not- invertiblc. By theorem 3,8 , the
element 1+a must belong to some maximal ideal M of the ring R
Since a &€ rad Ry, a is also contained in M, therefore

1 = (1+a) = a 1lies in M.

But this means that M = R , which is clearly impossiblc-

To prove the converse, suppose that each member of 1+1
has an inverse in R, but I & rad R. By definition of rad R,
there exists a maximal ideal M of R with I¢ M » Now if a is

-

any clement of I which is not in M.

Therefore (M, a) = R .
Then the identity element 1 can be expressed in the form
1 = m+ra for suitable choice of m&M and r& R .

Thus m= 1= ra & 1+I ,

so that m possesses an inverse, which is impossible,
since no proper ideal contains an invertivle element.

Therefore I Crad R .
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Corollary 35.10 In J - ring, en elenent a <~ rad R if

w

»nd only if 1=-ra is invertible for each r R.
proofs  Apply thcorem 3.9. by letting I = (a).

Corollary 3.11: If R is a J - ring tken the only idempotent

element in rad R is ©

proof, Let the clement a ¢ rad R with az = a .

Taking r = 1 in *he preceding corollary, we see that

1~ a has an inverse in R 3 say (1 - a)b = 1, where
b € R . This loagdB irmediately to
& = a(1-a¥v / {awaz)b = W0, which completes the
proof.
Theorem 3.72 7~* T La = division ring of characteristic p > O

m
p a prime, Suppose that a ¢ R - cent (R) is such that af = a

for some m > O . Then there exists an x 3 O¢R for which

-1
1. ax WEHda

A
-

2. Xax | (- 2;(33 » the extension field obtained by

adjoining 2 to Ep the prime subficld.

m
proof Since a® - a = 0. a is algebraic over Zp. The

cxtension fiecld ‘?p -11 is finite ficld and theref--

LS

p" elements for some n &:Ezl_ . Furthermore, each r ¢ 'Zp(a)
n
satisfies r’ = r. Now. define the function f : R—>R by settin-~
f(x) = xa -~ ax for all x in R,

Using induction we can prove that
k & ¥
T i k=
K = 3 RO etk ki ya
i=o

£
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Jhen k = p we get
(%) = xaP- aPx ;

because p J(E) for 0 £i L p. 3imilarly we get

n n n
£P (x) = xaf - aP x
n OB .
But a? - a, £ (x) = Xa = ax = f(x) for
n
all x € R, i.0. £P =),

Tor each element v éné?P(a) s consider the function 1r

on R defined by
lr(x) = rx

Claim that f commutes with all sitch 1r

& 8 lr)(x) = f(rx) = rxa - a(rx)
= rxa = rax
:(lrn £)(x)
Therefore fol = = 1 of for every r ian(a) o TFronm

I
theorem 2,13 . The polynamial y° -y g 7 p [¥) factors

g

completely in Zp (a), we have

B e | 1 (y = r)
r €7 (a)
V
& gl (y - r)

0+r€2':’p(a)
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This identity requires only that y commute with all

n
elements 1r & pr(a) « Dut i‘olr = lro f and £ = £

ﬁe thereby obtain

ot s o Y ey
“op red,(a) (£ 3.

If, for every r #Z O in an(a) s it happens that
(f - 1r)(x) = 0

implies x = O, this loads f = O, This mecans that
xa - ax = 0 for all-x &/ R yheace a lies in the center of I ,

contrary to hypothesis. Counsequently there must exists sone

0 ¢ reZ’p(a) and some X # 0 in R for which (f-lr)(x) =0,

that is Xa = ax ;o 4 and B0

) Sl
xax

r+a E—Zp(a)

-1
Since r ¢ O , certainly the product xax £ a .

Corollary 3.13 »5 in theorem 712 4, xax '= a # a for some

integer k €& Z* .
Te 1
proof . Since aPf ~ = 1, the clement a hus finite order as

* i~
a member of the multiplicgtive group R . Let & be the order of a ,

. 5=l
then, in the field pr(a) , each of the & eclements 1, a, az,..sa

is a root of the polynamial y - yezp(a) »
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“his polynomial can posscss at mos* 8 roots in & p(a) and.

1, @3 seed”

clearly

Cons

2 £k 48~

Lemma 3.14%,

exist -elenc

-1 ; a1
are all distinct. DBut xax 15 Z IJ(a) and
(xa}!:m'1 ) 8 = xasx"‘l = :nc—q |
-1 k |
equently xax S | for some k with
s

If ¥ is a finite field and 0 #xX g I , then there
T

2

nts a, b & F such that of = a2+ b

proof. -Iirst we consider the case where characteristic FF = 2
F has 2" eclements and any element of I' satisfies the equation
n
Xa = =
n n=1 2
no L = o(2 = {0(2
2n--'I
Therefore the lemma is »nroved by letting a = « and

b = 0,

i 51 2l
. n
contain »

a

defined by

he characteristic of F is odd prime p, then ¥ will

clements, Tet f be the mapping of T into itsclf

f(}C) Ly X

%
where T denotes the multiplicative group of T,
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Then f is a jroup homomorphism, with

ker £ = ‘jxe g PR L

Since char # 2, 1T and =1 are necessarily distinct.
=
This implies that, for each P € f(I ) there exist exactly

2 2
two elements 0(1, .7(;2 in F# which "1 = a(z = T, s 4in fact

q° Hence, half of the elements of F’t will be square ,
n
call these ’ 1 eeeay where the integer k = (p - 1)/,
RN P Iy

For these elements we are done since r’i = d‘i + O2 e . Given

0 fz X € F , asswie that o is not a square and consider the

set

If & - F’i is._not a square for any value of i y then

the set S which contains k distinct elements, mnust coincide with

% o
the k non - squares of F , But £ € 7 5 yielding

oL = L = P 5 for some choice of i .

Therefore F’i = 0, -contradiction s:i.ncer,i EF o

50 we can conclude that of = Pi is squarc for some i

therefore ol - = . for suitable integers i and j .
?’ i PJ

i.0. .9(=‘:~,i+'r,j
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Thus, of is the sum of two squares in F.

Corollary 3.1§ If F is a finite field and O # &«& F, then ther:

exist clements 2, b in F such that 1 + 9.2- a?o2= 0

proof .  From lemma 3014, there exist clements c, A &F
such that A = 6% 8t

and eithor ¢ ¢ O or d 4 0, suppose ¢ ¢ O . GSince the

2 -1 4 % 2 =
element ¢ €F , ¢ £ ¥//and alsoc &T y let b° = ¢

and a = c-1dr. S50 aa = c“zd2 2
Therefore .ﬁba = (02+ dz) c-z = i c"2d2 = 1
54 N oo b = O

Theorem 3,16 (”eddegggrg), Zvery finite division ring is a field

proof , Suppose that the theorem is not true for all finite
division rings, Jet R has minimal order among the set of
non commutative division rings, so that any division ring with

fewer elements than R will be commutative,

Claim that if there exist elements a, b & R satisfying
abk & bka and ab 3 ba , then bk € center of R « To

: e .
prove this, consider the centralizer of b in R .

c(v) = {xer | mfo vl
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C(bk) is a division subring of R, If C(bk) g R 4 then
by our hypothesis C(bk) would necessarily be commutative, Tut
a, b both lie in C(bk) end a, b do not commute, This entails

that C(bk) = R therefore bX & centR

*
Now, to prove the theorem, since the multiplicative group R
is finite, eévery non - zero element of R must have finite order,

as a result, the set

5 = .{' me I+ ' for some ¢ é centR , c¢" & centR f

is not empty., Let n be the mininal integer in S, Then there exists

an eclement a & centR such that anc— cent R « e assert
¢

that n is a prime number. To Prove this, supnose hat

n = n,.n with 1¢{_n1, n

12> € ms

2
=
It would follow that a ¥ centR
n, n
n.,a n
)

(a = a & centR

which. implies that n, €S , -contradicting the minimality

-

of n . Ilence n is a prime number,

Apply theorem3,12 and corollary 3,13 to obtain an element

' thgouwm 3.2
W
x &R an integer k > 1 such  that
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Observe that

X ax = x(xax ) x 1 = xakx A
2
= (xax-1)k = ak
n=1
50, by induction, xn-‘Ta x-(n-1) = ak

Since we know that n is prime, from the Little Fermat

Tieorem, we know that thore exists an integer u satisfying

e Z g AR Therefore,
Ne1
ak : / a'I+un . L
= ar = ra
where r = (an)u & _centR é
setting b = o s WG get . ba 8 e s
! . I -

and x q& cent 'R“,-'Sirnce ' xax # a, we see that b :? centR ,

5ince ab ¢ ba  implies that r 2 K.

On the other hand, since r and a® both lie in centR
thus rial = (ra)™ - (bab-1)n
= banb-1
n
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Dy the same reasoning rt = 1 . Because n is prime, the
order of r must be n, Gince
n n, n n -1 n -1, n
b = »"b = (rb) = (a ba)” = a ba |,
n n
we conclude that ab = ba, By our note, since a

commutes with b° but not with b, necessarily b’ € centR . .,

We now assert that whenever an element y of R satisfying

yn = 1, then it must be of the form y = ri, where O £1i £ n-1,

Indeed, the extecnsion Tield cent 2(y) contains at most n roots
of the polynomial 2 A/, Dut, since r is of prime order n, the
elements 1, r2, .....rn-'T comprise n distinct roots of z = 1
in this field. Therefore 'y = ri for some i, Because y &centR .,
cent R(y) = cent R ., Since the multiplicative group of a finite

field is cyeclic, thus centR 1is cyclic, say with generator s .

Accordingly,

for suitable j and 1 ,

Furthernore claim that, n divides neither j nor 1 , To
sece tiis, suppose that j = mnk 5 then

n 53 Enk

Thus a



; i =kn
As the clement & lies in cent R we would have (az" )% = 1 .
o ; -~k - TR : a
"herefore as = r for some integer i , or
ik T B s .
a = rs €centR |, which is impossible, Therefore n does

not divide j, in a similar fashion, one is able to establish

that n does not divide 1 ,

Set B B ¥ &' = 3Bl ' then
I _ 511 P . dn‘
Trom ba b 4/ ra
we et (ba b—1)l = (ra)l = rlal
50 batb=7 /) Af
but al =0
hence  be b-q. - rlc
and bt eKoaN U
(br-l)j sl ehde!
pdp=dt R T
but b .1 d
50 r=ily = ad o=
r-jldc = cd .
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Let t = pdt & centR therefore cd = tde .

Claim that t ¢ 1, to prove this, suppose that r-9% - 1
This inplies that n f Jl, since n is a prime number; either n /j

or n|l , resulting in a contradiction, Ve can also slhow that

tn _ (r-Jl)n & (rn)-gl o s

50 we nroduce two elenents ¢y d &R with the following
properties :

) " & gl =" & centR

2) ed < / jEae with ¢t é'dentR

3) t ¢ but TN 7o,

From the relations, we ghall brove by induction that

(c-1d)m & t1+2+'“bm'1 o Migm =l 2
Mozim'si By lond)° -u ek et - b o=h Sto. tc™%a?
Assume that it is true for m= k=1, k>3, consider m = k
(c"1d)m = {c-1d)k-1'(c—1d)

t1+2+“'k-2 o (k=1) dk-1 c-qd

t1+2'+.-lk_-2 c"' (k-‘l‘ dk—z £ C-1dd

t1+2+...k;-2 tk-1 c-k dk 5
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Therefore we have (c_qd)m = t1+2+"‘m-1 e an
. ¢m=1)/p  emgm
S0 (Cu‘ld)n = tn(n-‘l )/2 '
If n is odd prime, then (n-‘l)/2 is an integer, -so
gn(n=1)/, L (tn) n—1/2 } 1,
whicl implies that (c-qd}n = 1. Deing a solution of the
oquation ¥y = 1, it follows as before that ¢ la s pt & centR
-1 - -
for somec choice of i, /Rut them d ¢. = (¢ 1d.) 1 & cent R

and so using (2) ebove we got

-1

t - ¢ te- ” (dc_1 w1

d e

= dc-10d-1 = 3

an obvious contradiction, - Tiwus, ithe theorem is proved,

at least when n is an odd prime.

If n = 2, then t2

i

1 and, of course t f 1

so t = <1, Then e¢d = -dc ¢ dc, that is cd 4 -
consequently, the characteristic of R is different from 2.
Applying corollary 3,15 to the field cent R, wec can find

elenents x; (i=1,2) in centR satisfying

cd



lie have

2
(c+dx1+ cdxa)

which,

And

becarse R

ience

I

n

"

(c+dx

2
¢ +dx.¢c + cdx

1

1

+ cedx

2

¢~ .+ dex

+ cdxa)(c+dx

2

1

is division ring,

2

+ dxchx

-2
= aC X

1

+ ecdx.)

2
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(o cdx1 + dx,]dx1 + cdxzd}ac,1

2

2

leads to c+dx

4

- decx

g5

c(c+dx1+ cdxa) + {ic4 dx1+ cdxa) c

2

ek cdx1+ czdx

2

2 2
2¢ - dex,+ C dx

2c

1

2

2
+ e+ dx. ¢ + cdx.C

+ dAcxX

0,

1

1

- cadx

2

2

cdxecdx2

+ daxf +

1

U

2
a cxan

+cdx =0
2

1
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Which is a contradiction since char R # 2 was shown

already. This completes the proof of ‘edderburn's Theorem,

Theorem 3.77+ Tet R be a J - ring, If R forms a division ring,

then R is commutative, o

proof, As a first step, let us show that R is of characteristic

P > 0,4 P aprime, If char R = 2, then there is nothing to
prove; thus it may be assumed that char R ¢ 2, Consider any
element a ¢ O in Ry Dby hypothesis there exists an integer n > 1
for which a’ = a, lhence (2a)™ = 2a. Trom this, we obtain

(En- 2)a = 0, with Zn- o0k 0. Therefore, there exists a

least positive integer p/ 'such that pa = O, which implies that
char R = p, p a prime by remark 2,3 .

Lot Z e theprime-subfiold of R. GSince a® = a, the

*

element a is algebraic over Zp and hence, the extension Zp(a)

constitutes a finite field say with pm elements, 1In particular,

n
a itself lies in Z (a) , so that a® = a.

If we now assume that a %_cont R, then all hypothesises

ol theorem3.12 and corllory 3,13 will be satisfied 3 thus there

thecum 3.( 2
exists an element b € R and an integer k > 1 satisfying

1 -1 k
ba b = a %

a , Similar reasoning apvplied to the extension

1 .
jzp(b) gives that b®® - b  for some integer 1 > 1 .
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p:.‘l p}1 :
t 12 B alypd Iy
ke ! { i=0 j=0 rij [ ri'j e P g

Clearly W is a finite set which is closed under addition
and multiplication, W is also subring of R, by remark 2.4 w
is finite division ring, Hence by Wedderburnt's Theorem W is

commutative. We have

ab = ba for a, b Ew

contradicting the relation ba b_1 = ak £ a.

lHence for every a £ R, a€cent R so that R must be

commutative,

Lemma 3.18. Let R be a J = ring, For all a, b&E R, the

element ab - ba lies in rad R.

proof., Obviously R has proper ideals, and by theorem 3,6

R has a maximal ideal M. By remurk 2.7 R/H has no
nontrival ideals and by remark 2,5 R/M becomes a division

ring. Being a homomorphic image of R, R/H inherits the

property that > = x. Thus by theorem 3.17 R/H is

commutative, In other words
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(a+M)(b+M) = (b+M)(a+M) for all a, b in R

Or equivalently ab - ba & M . As this relation
holds for every maximal ideal of R , it follows that

ab - ba = rad R

Theorem 3,19, (Jacobson) I1f R is a J - ring, then R

is commutative,

proof. Suppose that the element x E radR and n > 1
satisfies the property that > ax for every x in R.
As was shown in theorem 3,7, e = xn-1 is an idempotent

element., Since radR forms an ideal of R, the element e
will be in radR . DBut according to corollary 3,11 , O

is the only idempotent belonging to radR 3 hence the

element
' n-1
a = X
= 0
and so
n
x = xX
N
= XaX



This implies that radR = %0% ¢ Lemma 3,18
tells us that ab - ba £ rad R = { 0‘ for all a, b im"
Re. The net result is that any two elements of R commute,

thereby completing the proof.
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