CHAPTER III

PROPERTIES OF J - RINGS

The materials of this chapter are drawn from references $\begin{bmatrix} 4 \end{bmatrix}$ and $\begin{bmatrix} 5 \end{bmatrix}$.

In this chapter, we shall prove two important properties of J - rings that are used in the following chapter. The two properties of J - rings are J - ring has no nonzero nilpotent elements and J - ring is a commutative ring.

Definition 3.1. A ring R with identity is called a \sqrt{y} - ring if there exist an integer n > 1 such that $x^n = x$ for all $x \in \mathbb{R}$.

Definition 3.2. The Jacobson radical of a ring R, denoted by rad R is defined as follows:

rad $R = \bigcap \{M \mid M \text{ is maximal ideal of } R \}$.

<u>Definition 3.3</u>. An element x of a ring R is said to be an <u>idempotent</u> if $x^2 = x$ and nilpotent if $x^m = 0$ for some positive integer m.

Theorem 3.4. If R is J - ring, then R has no nonzero nilpotent elements.

proof. Let x be a nilpotent element of R, therefore there

exists a positive integer m such that $x^m = 0$. Since R is J - ring, there exists a positive integer n > 1 such that $x^n = x$.

$$x = x^n = x^m \cdot x^{n-m} = 0$$

Hence x = 0

$$0 = x^{m} = x^{n} \cdot x^{m-n} = x \cdot x^{m-n}$$

$$= x^{m-n+1}$$

If $m-n+1 \le n$, then as in case (1) we get x = 0.

If m-n+1 > n, continue this process until we are in case (1). Thus we conclude that x = 0

Theorem 3.5. If the ring R is finitely generated, then each proper right ideal of R is contained in a maximal right ideal.

proof. Let I be any proper right ideal of R, a finitely generated ring, say $R = (a_1, a_2, \dots a_n)$. We define a family of ideals of R by taking

$$A = \{ J \mid I \subseteq J \quad J \text{ is a proper right ideal of } R \}$$

This family is obviously nonempty, for I itself belongs to A. Now consider an arbitrary chain $\{I_i\}$ of ideals in A Claim that UI_i is again a member of A. To prove this, let the elements A, $b \in UI_i$ and $r \in R$. Then there exist indices i and j for which $a \in I_i$, $b \in I_j$. As the collection $\{I_i\}$ forms a chain, either $I_i \subseteq I_j$ or $I_j \subseteq I_i$. Suppose that $I_i \subseteq I_j$, so that both A, A is an A is in right ideal of A, hence A is a right ideal of A.

Next we must verify that $\bigcup I_i$ is a proper right ideal of R. Suppose not, i.e. assume that $\bigcup I_i = R = (a_1, a_2, \dots a_n)$. Then, each generated a_k would belong to some right ideal I_{i_k} , there exists right ideal $I_{i'}$ containing all $I_{i'}$'s. Thus $a_1, a_2, \dots a_n$ all lie in $I_{i'}$. Consequently, $I_{i'} = R$. Which is cleary impossible. Therefore $\bigcup I_i \in A$ and $I \subseteq \bigcup I_i$.

By Zorn's Lemma, the family A contains a maximal elements M. It follows directly from the definition of A that M is proper right ideal of the ring R with $I \subseteq M$.

Claim that M is a maximal right ideal. To prove this, suppose that J is any right ideal of R with M \subset J \subseteq R . Since N is a maximal element of the \nearrow , J can not belong to \nearrow . Accordingly, the right ideal J must be improper, which is to say that J = R . We can thus conclude that M is a maximal right ideal of R, completing the proof.

Theorem 3.6 In a ring R with identity each proper right ideal is contained in a maximal right ideal.

proof Use theorem 3.5, since R = (1) .

Theorem 3.7 Every right ideal I of J - ring R is a two sided ideal of R.

proof By theorem 3.4, R has no nonzero nilpotent element. Indeed, if $x \neq 0$, the condition $x^n = x$ necessarily implies that $x^m \neq 0$, for all m > 1. Suppose that e is any idempotent element of R; then for any $x \in R$.

$$(xe - exe)^2 = (ex - exe)^2 = 0$$
,
so that $xe - exe = 0 = ex - exe$.
Therefore, $ex = exe = xe$,

consequently e & cent R .

It follows that every idempotent of R must be in the center. Given any a \in I, with $a^n = a$, claim that $e = a^{n-1}$ is an idempotent element of R:

$$(a^{n-1})^2$$
 = a^{2n-2} = a^n . a^{n-2} = a^{n-1}

Hence, $a^{n-1} \in cent R$ and so, for every r in R we get $ra = ra^{n-1}a = a^{n-1}ra$ $= a(a^{n-2}ra) = ar'$

where $r' = a^{n-2}ra$.

Let I be a right ideal and a \in I, then ar \in I, this shows that ra \in I, also making I a two - sided ideal of R.

Theorem 3.8. An element of a J-ring is invertible if and only if it belongs to no maximal ideal.

proof. Suppose a is invertible and a \in M a maximal ideal. So there exists $a^{-1} \in R$ such that a.a⁻¹ = $1 \in$ M, which implies that M = R, contradict to the maximality of M. Hence a \notin M.

To prove the converse, assume that a

M, for every maximal ideal M. Let I be the right ideal generated by a, by theorem 3.6 I is not a proper right ideal.

Hence I = R = (a). Since $1 \in R$,

therefore 1 = ar for some $r \in R$.

Let J be the left ideal generated by a. Claim that I = J.

Since $I = \{ax \mid x \in R\}$, and by theorem 3.7 I is also left ideal, therefore $J \subseteq I$. Similarly we can prove that $I \subseteq J$. Hence I = J = R. There exist $s \in R$ such that sa = 1 = ra. Obviously $r = s = a^{-1}$. So a is invertible.

We get the following result. The proof of this result is obtained by applying theorem 3.8

Theorem 3.9. Let I be an ideal of J - ring. Then I C rad R if and only if each element of the coset 1+I has an inverse in R.

proof. We assume that I C rad R and there is some element a E I for which 1+a is not invertible. By theorem 3.8, the element 1+a must belong to some maximal ideal M of the ring R. Since a E rad R, a is also contained in M, therefore 1 = (1+a) - a lies in M.

But this means that M = R , which is clearly impossible.

To prove the converse, suppose that each member of 1+I has an inverse in R, but I & rad R. By definition of rad R, there exists a maximal ideal M of R with I M. Now if a is any element of I which is not in M.

Therefore (M, a) = R.

Then the identity element 1 can be expressed in the form 1 = m+ra for suitable choice of $m \in M$ and $r \in R$. Thus $m = 1 - ra \in 1+I$,

so that m possesses an inverse, which is impossible, since no proper ideal contains an invertible element. Therefore I \subseteq rad R .

Corollary 3.10. In J - ring, an element a & rad R if and only if 1-ra is invertible for each r R.

proof. Apply theorem 3.9; by letting I = (a).

Corollary 3.11. If R is a J - ring then the only idempotent element in rad R is 0

proof. Let the element a \in rad R with $a^2 = a$.

Taking r = 1 in the preceding corollary, we see that 1 - a has an inverse in R; say (1 - a)b = 1, where $b \in R$. This leads immediately to

 $a = a(1-a)b = (a-a^2)b = 0$, which completes the proof.

Theorem 3.12 Let R be a division ring of characteristic p > 0 p a prime. Suppose that $a \in R$ - cent (R) is such that $a^{p^m} = a$ for some m > 0. Then there exists an $x \neq 0 \in R$ for which

1. $xax^{-1} \neq a$

2. $xax^{-1} \in \mathbb{Z}_p(a)$, the extension field obtained by adjoining a to \mathbb{Z}_p the prime subfield.

proof Since $a^{p^m} - a = 0$, a is algebraic over \mathbb{Z}_p . The extension field \mathbb{Z}_p [a] is finite field and therefore p^n elements for some $n \in \mathbb{Z}_p$. Furthermore, each $r \in \mathbb{Z}_p(a)$ satisfies $r^{p^n} = r$. Now, define the function $f : R \longrightarrow R$ by setting f(x) = xa - ax for all x in R.

Using induction we can prove that

$$f^{k}(x) = \sum_{i=0}^{k} (-1)^{i} {k \choose i} a^{i} x a^{k-i} \qquad k \geqslant 1.$$

When k = p we get

$$f^{p}(x) = xa^{p} - a^{p}x$$

because $p \mid {p \choose i}$ for $0 \le i \le p$. Similarly we get

$$f^{p^n}(x) = xa^{p^n} - a^{p^n}x$$

But $a^{p^n} = a$, $f^{p^n}(x) = xa - ax = f(x)$ for all $x \in \mathbb{R}$, i.e. $f^{p^n} = f$.

For each element $r\in \mathbb{Z}_p(a)$, consider the function $\mathbf{1}_r$ on R defined by

Claim that f commutes with all such l_r .

$$(f_0 l_r)(x) = f(rx) = rxa - a(rx)$$

= rxa - rax

Therefore fol = l_p of for every r in $\mathbb{Z}_p(a)$. From theorem 2.13. The polynamial y^{p^n} - $y \in \mathbb{Z}_p[y]$ factors completely in $\mathbb{Z}_p(a)$, we have

$$y^{p^n} - y = \iint_{\mathbf{r} \in \mathbb{Z}_p(u)} (y - \mathbf{r})$$

$$= y \iint (y-r) .$$

$$0 \neq r \in \mathbb{Z}_p(a)$$

This identity requires only that y commute with all elements $r \in \mathbb{Z}_p(a)$. But fol = l o f and f^p = f, we thereby obtain

$$f^{p^n}$$
 - $f = f \circ \iint_{p(a)} (f - 1_r)$

If, for every $r \neq 0$ in $\mathbb{Z}_p(a)$, it happens that $(f - l_p)(x) = 0$

implies x=0, this leads f=0. This means that xa-ax=0 for all $x\in R$, hence a lies in the center of R, contrary to hypothesis. Consequently there must exists some $0 \neq r \in \mathbb{Z}_p(a)$ and some $x \neq 0$ in R for which $(f-l_r)(x)=0$, that is $xa-ax=rx \qquad \text{and so}$ $xax^{-1}=r+a\in \mathbb{Z}_p(a)$

Since $r \neq 0$, certainly the product $xax^{-1} \neq a$.

Corollary 3.13 As in theorem 3.12, $xax^{-1} = a^k \neq a$ for some integer $k \in \mathbb{Z}_+$.

proof. Since $a^{p^n-1}=1$, the element a has finite order as a member of the multiplicative group R^* . Let s be the order of a, then, in the field $\mathbb{Z}_p(a)$, each of the s elements 1, a, $a^2, \dots a^{s-1}$ is a root of the polynamial $y^s-y\in\mathbb{Z}_p(a)$.

This polynomial can possess at most s roots in $\mathbb{Z}_p(a)$ and 1, a, ... a^{-1} are all distinct. But $\max \in \mathbb{Z}_p(a)$ and clearly

$$(xax^{-1})^s = xa^sx^{-1} = xx^{-1} = 1$$

Consequently $xax^{-1} = a^k$ for some k with $2 \le k \le s-1$.

Lemma 3.14. If F is a finite field and $0 \neq \infty \in \mathbb{F}$, then there exist elements a, b $\in \mathbb{F}$ such that $\alpha = a^2 + b^2$.

 $\frac{\text{proof.}}{\text{F}}$ First we consider the case where characteristic F = 2. F has 2^n elements and any element of F satisfies the equation

$$x^{2^{n}} = x$$

$$x = x^{2^{n}} = (x^{2^{n-1}})^{2}$$

Therefore the lemma is proved by letting $a = x^{2^{n-1}}$ and b = 0.

If the characteristic of F is odd prime p, then F will contain p^n elements. Let f be the mapping of F into itself defined by

$$f(x) = x^2$$

where F denotes the multiplicative group of F.

Then f is a group homomorphism, with

$$\ker f = \{x \in F^* \mid x^2 = 1 \} = \{1, -1\}$$
.

Since char f \neq 2, 1 and -1 are necessarily distinct. This implies that, for each $\beta \in f(F^*)$ there exist exactly two elements α_1, α_2 in F^* which $\alpha_1 = \alpha_2 = \beta$, in fact $\alpha_2 = -\alpha_1$. Hence, half of the elements of F^* will be square, call these β_1 , β_2 , ..., β_k where the integer $k = (p^n - 1)/2$. For these elements we are done since $\beta_1 = \alpha_1^2 + 0^2$. Given $0 \neq \alpha \in F$, assume that α is not a square and consider the set

$$S = \left\{ \left\langle -\beta_{i} \right| i = 1, 2, \dots, k \right\}$$

If α - β is not a square for any value of i, then the set S which contains k distinct elements, must coincide with the k non - squares of F*. But $\alpha \in F$, yielding

Therefore $\beta_i = 0$, contradiction since $\beta_i \in F^*$.

So we can conclude that $\alpha - \beta_i$ is square for some it therefore $\alpha - \beta_i = \beta_j$ for suitable integers i and j.

i.e.
$$\alpha = \beta_i + \beta_j$$

Thus, \propto is the sum of two squares in F.

Corollary 3.15 If F is a finite field and $0 \neq a \in F$, then there exist elements a, b in F such that $1 + a^2 - a b^2 = 0$.

proof. From lemma 3.14, there exist elements c, d \in F such that $\alpha = c^2 + d^2$

and either $c \neq 0$ or $d \neq 0$, suppose $c \neq 0$. Since the element $c \in F$, $c^{-1} \in F$ and also $c \in F$, let $b^2 = c^{-2}$ and $a = c^{-1}d$. So $a^2 = c^{-2}d^2$.

Therefore $3b^2 = (c^2 + d^2) c^{-2} = 1 + c^{-2}d^2 = 1 + a^2$.

Theorem 3.16 (Wedderbern). Every finite division ring is a field.

proof. Suppose that the theorem is not true for all finite division rings. Let R has minimal order among the set of non commutative division rings, so that any division ring with fewer elements than R will be commutative.

Claim that if there exist elements a, b \in R satisfying $ab^k = b^k a$ and $ab \neq ba$, then $b^k \in$ center of R. To prove this, consider the centralizer of b^k in R.

$$C(b^k) = \left\{ x \in R \mid xb^k = b^k x \right\}.$$

 $C(b^k)$ is a division subring of R. If $C(b^k) \nsubseteq R$, then by our hypothesis $C(b^k)$ would necessarily be commutative. But a, b both lie in $C(b^k)$ and a, b do not commute. This entails that $C(b^k) = R$ therefore $b^k \notin cent R$

Now, to prove the theorem, since the multiplicative group R* is finite, every non - zero element of R must have finite order, as a result, the set

 $S = \{ m \in \mathbb{Z}_+ \mid \text{for some } c \notin \text{centR} , c^m \in \text{centR} \}$ is not empty. Let n be the minimal integer in S. Then there exists an element a $\notin \text{centR}$ such that $a^n \in \text{centR}$. We assert that n is a prime number. To prove this, suppose that

 $n = n_1 n_2$ with $1 \le n_1$, $n_2 \le n$.

It would follow that $a^{n_1} \notin cent R$

 $(a^n 1)^{n} 2 = a^n \in cent R$

which implies that $n_2 \in S$, contradicting the minimality of n . Hence n is a prime number.

Apply theorem3.12 and corollary 3.13 to obtain an element theorem 3.12 an integer k > 1 such that

 $xax^{-1} = a^k \neq a$.

Observe that

$$x^{2}ax^{-2} = x(xax^{-1})x^{-1} = xa^{k}x^{-1}$$

$$= (xax^{-1})^{k} = a^{k^{2}}$$
so, by induction, $x^{n-1}a x^{-(n-1)} = a^{k^{n-1}}$

Since we know that n is prime, from the Little Fermat Tieorem, we know that there exists an integer u satisfying

$$k^{n-1}$$
 = 1 + un . Therefore,
 a^{n-1} = a^{1+un} = $a \cdot a^{un}$
= ar = ra
 $r = (a^n)^u$ $\in cent R$.

Setting $b = x^{n-1}$, we get $bab^{-1} = ra$ and $x \notin cent R$. Since $xax^{-1} \neq a$, we see that $b \notin cent R$. Since $ab \neq ba$ implies that $r \neq 1$.

On the other hand, since r and a^n both lie in cent R, thus $r^n a^n = (ra)^n = (bab^{-1})^n$ $= ba^n b^{-1}$

= aⁿ

By the same reasoning $r^n = 1$. Because n is prime, the order of r must be n. Since

$$b^{n} = r^{n}b^{n} = (rb)^{n} = (a^{-1}ba)^{n} = a^{-1}b^{n}a$$

we conclude that $ab^n = b^n a$. By our note, since a commutes with b^n but not with b, necessarily $b^n \in centR$.

We now assert that whenever an element y of R satisfying $y^n = 1$, then it must be of the form $y = r^i$, where $0 \le i \le n-1$. Indeed, the extension field cent R(y) contains at most n roots of the polynomial $z^n = 1$. But, since r is of prime order n, the elements 1, r^2 , r^{n-1} comprise n distinct roots of $z^n = 1$ in this field. Therefore $y = r^i$ for some i. Because $y \in \text{cent R}$, cent R(y) = cent R. Since the multiplicative group of a finite field is cyclic, thus centR is cyclic, say with generator s. Accordingly,

$$a^n = s^j, b^n = s^1$$

for suitable j and 1 .

Furthermore claim that, n divides neither j nor l. To see this, suppose that j = nk; then

$$a^n = s^j = s^{nk}$$

Thus
$$a^n(s^{-k})^n = 1$$
.

As the element's lies in cent R we would have $(as^{-k})^n = 1$. Therefore $as^{-k} = r^i$ for some integer i, or $a = r^i s^k \in \text{cent R}$, which is impossible. Therefore n does not divide j, in a similar fashion, one is able to establish that n does not divide 1.

Set
$$c = a^{1}$$
, $d = b^{j}$, then
$$c^{n} = a^{n1} = \int_{a}^{11} = b^{nj} = d^{n}.$$

From $bab^{-1} = ra$

we get $(bab^{-1})^{1} = (ra)^{1} = r^{1}a^{1}$

so $ba^{1}b^{-1} = r^{1}a^{1}$

but $a^{1} = c$

hence $bcb^{-1} = r^{1}c$

and $br^{-1} = cbc^{-1}$
 $(br^{-1})^{j} = cb^{j}c^{-1}$

but $b^{j} = d$

so $r^{-j1}d = cdc^{-1}$

 $r^{-j1}dc = cd$

Let $t = r^{-j1} \in centR$, therefore cd = tdc.

Claim that t \neq 1, to prove this, suppose that $r^{-j1}=1$. This implies that $n \mid jl$, since n is a prime number, either $n \mid j$ or $n \mid l$, resulting in a contradiction. We can also show that

$$t^n = (r^{-j1})^n = (r^n)^{-j1} = 1.$$

So we produce two elements c, d $\in \mathbb{R}$ with the following properties :

1)
$$c^n = d^n = x \in cent R$$

2) cd = tdc with t
$$\in$$
 cent R

3)
$$t \neq 1$$
 but $t^n = 1$.

From the relations, we shall prove by induction that $(c^{-1}d)^m = t^{1+2+..+m-1} c^{-m}d^m , m \geqslant 2$

For
$$m = 2$$
, $(c^{-1}d)^2 = c^{-1}dc^{-1}d = c^{-1}tc^{-1}dd = tc^{-2}d^2$

Assume that it is true for m = k-1, $k \geqslant 3$, consider m = k

$$(c^{-1}d)^{m} = (c^{-1}d)^{k-1} (c^{-1}d)$$

$$= t^{1+2+\cdots k-2} c^{-(k-1)} d^{k-1} c^{-1}d$$

$$= t^{1+2+\cdots k-2} c^{-(k-1)} d^{k-2} t c^{-1}dd$$

$$= t^{1+2+\cdots k-2} t^{k-1} c^{-k} d^{k} e$$

Therefore we have
$$(c^{-1}d)^m = t^{1+2+\cdots m-1} c^{-m} d^m$$

 $= t^{m(m-1)/2} c^{-m} d^m$
So $(c^{-1}d)^n = t^{n(n-1)/2}$

If n is odd prime, then (n-1)/2 is an integer, so $t^{n(n-1)}/2 = (t^n)^{n-1}/2 = 1$

which implies that $(c^{-1}d)^n = 1$. Being a solution of the equation $y^n = 1$, it follows as before that $c^{-1}d = r^i \in \text{cent } R$ for some choice of i. But then $d^{-1}c = (c^{-1}d)^{-1} \in \text{cent } R$ and so using (2) above we get

$$t = c^{-1}tc = (dc^{-1}d^{-1})c$$

= $dc^{-1}cd^{-1} = 1$

an obvious contradiction. Thus, the theorem is proved, at least when n is an odd prime.

If n=2, then $t^2=1$ and, of course $t\neq 1$ so t=-1. Then $cd=-dc\neq dc$, that is $cd\neq -cd$, consequently, the characteristic of R is different from 2. Applying corollary 3.15 to the field cent R, we can find elements x_i (i=1,2) in cent R satisfying

$$1 + x_1^2 - x_2^2 = 0 \quad (\alpha = c^2 = d^2)$$

We have

$$(c+dx_1 + cdx_2)^2 = (c+dx_1 + cdx_2)(c+dx_1 + cdx_2)$$

$$= c^2 + dx_1c + cdx_2c + cdx_1 + dx_1dx_1 + cdx_2dx_1$$

$$+ c^2dx_2 + dx_1cdx_2 + cdx_2cdx_2$$

$$= c^2 + dcx_1 - dc^2x_2 - dcx_1 + d^2x_1^2 + d^2cx_2x_1$$

$$+ dc^2x_2 - d^2cx_1x_2 - c^2d^2x_2^2$$

$$= c^2 + d^2x_1^2 - c^2d^2x_2^2$$

$$= c^2(1+x_1^2 - c)(x_2^2)$$

$$= 0$$

which, because R is division ring, leads to $c+d\mathbf{x}_1+cd\mathbf{x}_2=0$. And

$$c(c+dx_1 + cdx_2) + (c+dx_1 + cdx_2) c = 0$$

$$c^2 + cdx_1 + c^2dx_2 + c^2 + dx_1c + cdx_2c = 0$$

$$2c^2 - dcx_1 + c^2dx_2 + dcx_1 - c^2dx_2 = 0$$
Hence
$$2c^2 = 0$$

Which is a contradiction since char R \neq 2 was shown already. This completes the proof of Wedderburn's Theorem.

Theorem 3.17. Let R be a J - ring. If R forms a division ring, then R is commutative.

<u>proof.</u> As a first step, let us show that R is of characteristic P > 0, P a prime. If char R = 2, then there is nothing to prove; thus it may be assumed that char $R \neq 2$. Consider any element $a \neq 0$ in R, by hypothesis there exists an integer n > 1 for which $a^n = a$, hence $(2a)^n = 2a$. From this, we obtain $(2^n - 2)a = 0$, with $2^n - 2 \neq 0$. Therefore, there exists a least positive integer P such that P and P and P and P are P are P and P are P are P are P and P are P are P are P and P are P and P are P a

Let Z_p be the prime subfield of R. Since $a^n=a$, the element a is algebraic over Z_p and hence, the extension $Z_p(a)$ constitutes a finite field say with p^m elements. In particular, a itself lies in $Z_p(a)$, so that $a^{p^m}=a$.

If we now assume that a $\not\in$ cent R, then all hypothesises of theorem3.12 and corllory 3.13 will be satisfied; thus there exists an element $b \in R$ and an integer k > 1 satisfying ba $b^{-1} = a^k \neq a$. Similar reasoning applied to the extension $\mathbb{Z}_p(b)$ gives that $b^p = b$ for some integer 1 > 1.

Let
$$W = \begin{cases} \sum_{j=0}^{m} \sum_{j=0}^{1} \mathbf{r}_{ij} a^{j} b^{j} \mid \mathbf{r}_{ij} \in \mathbb{Z}_{p} \end{cases}$$
.

Clearly W is a finite set which is closed under addition and multiplication. W is also subring of R, by remark 2.4 W is finite division ring. Hence by Wedderburn's Theorem W is commutative. We have

ab = ba, for $a, b \in W$ contradicting the relation $ba b^{-1} = a^k \neq a$.

Hence for every $a \in R$, $a \in cent R$ so that R must be commutative.

Lemma 3.18. Let R be a J - ring. For all a, b \in R, the element ab - ba lies in rad R.

proof. Obviously R has proper ideals, and by theorem 3.6 R has a maximal ideal M. By remark 2.7 R/M has no nontrival ideals and by remark 2.5 R/M becomes a division ring. Being a homomorphic image of R, R/M inherits the property that $\mathbf{x}^n = \mathbf{x}$. Thus by theorem 3.17 R/M is commutative. In other words

(a+M)(b+M) = (b+M)(a+M) for all a, b in R

Or equivalently ab - ba \in M . As this relation holds for every maximal ideal of R , it follows that ab - ba \in rad R

Theorem 3.19. (Jacobson) If R is a J - ring, then R is commutative.

proof. Suppose that the element $x \in radR$ and n > 1 satisfies the property that $x^n = x$ for every x in R. As was shown in theorem 3.7, $e = x^{n-1}$ is an idempotent element. Since radR forms an ideal of R, the element e will be in radR. But according to corollary 3.11, e0 is the only idempotent belonging to radR; hence the element

$$e = x^{n-1}$$

= 0

and so

$$x = x^{n}$$

$$= x \cdot x^{n-1}$$

This implies that radR = $\{0\}$. Lemma 3.18 tells us that ab - ba \in rad R = $\{0\}$ for all a, b in R. The net result is that any two elements of R commute, thereby completing the proof.