CHAPTER II

PRELIMINLLIES

In this chapter we will give some definitions and theorems

which will be basic tools for our investigation. The materials of

this chapter are drawn from references [4] ’ LB] ' [6] ' [?]

and [8] .

Algebrg

A ring (R, +, » ) consists of a nonempty set R together

with two binary operations + and o called addition and multiplication

respectively such that the following conditions are satisfied.

1)
2)

3)

k)

5)

6)

where

R +/b =—b.a.a
(a+Db)+c = a+ (b+c)

There exists an element O in R such that

a+ 0=a for every a in R

for each a &€ R there exists an element -a & R

such that a + («a) = 0
(asd) .c = a.(bec) and
a.(b + ¢) = 8.b + a.c and

(b + C) oA = b.a 4+ Caa

a, b, ¢ &£ R



A ring R is said to be division ring provided that the

set R - {Ok is a group under . ,If R = {Ok forms a
commutative group then R is called a fields A field which does
not posses any proper subfield is called a prime field. It can
be shown that each field F contains a unique prime subfield.

An element a # O of a ring R is called a zero divisor of R if

there exists some b # O in R such that a.b = 0 , A commutative

ring R with identity is said to be an integral domain if R has

no zero divisors. If there exists a positive integer n such that
na = 0 for alla € a ring R, then the smallest positive integer with

this property is called the characteristic of the ring R. If no

such positive integer exists (that is n = O is the only integer
for which na = 0 for all a in R) then R is said to be of

characteristic zero.

The following remarks can be easily proven.
Remark 2.1, If R is a division ring then R has no zero divisors.

Remark 2.2, If R is a ring with identity having no zero divisors

then the characteristic of R is either O or a prime number.

Remark 2.3, If R is division ring then the characteristic of

R is either a prime number or O,

Remark 2,4, BEvery finite subring of a division ring is a

division ring.



A subring I of the ring R is said to be a two - sided ideal
of R if reé R and 2 ¢ I imply both ra € I and ar €1 .
From now on we shall call a two - sided ideal an ideal, The ideal
I is said tobea prime ideal if for all a, b in R, a.b €1
implies that a € I or b&€ I « 4dnd the ideal I is said to be
a maximal ideal provided that I # R  and whenever J is an ideal

of R with I JC R then J = R .

Again, the following remarks can be proved easily

Remark 2.5, If R is a ring with identity and R has no non-trival

iderls then R 1is division ring,

Remar:” 2.6. A commutative ring R with identity is an integral

dom2in if and only if the zerec ideal {05 is a prime ideal of R .

Remark ..7. Let R be a ring with identity and M a maximal
ideal of X then R/M has no non -~ trival ideals.
The following theorem is used several times later on. So

we shall give the proof.

Theorem 2.8, An integral domain with more than one element and

only a finite number of ideals is a field.
proof, Let 8¢ 0 ¢ integral domain 8 y and t an arbitrary
element of S . We shall show that there exist an element x of 8

such that ex = § . For each positive integer i)



let 8, = {ys‘]yes']

Then Si is an ideal of S,since a € Si’ b £8S

Since S has only a finite number of different ideals,

for certain positive integer m, n we must have
S = s with m < n
m

Hence in particulary t's being an element of Sm is

also in Sn sy that is there exists an element z of S such that

£ sm = 2 sn
t Sm— % Sm = (0]
sT(t-zs""™) = 0

Since 8 & 0 as s+ 0 and S is intenral domain,

therefore & BB = o)
t = bt Sn-m
Ifn-m=1 we got x = 2 ,
Nem="

While if n - m > 1 we set x = = s . Hence in
either case, there exists an element x of S such that sx = t and

therefore S is a field.



Definition 2.9, Let !Ri{, 4 be a family of rings
L iced

The complete direct sum of the rings Ri y denoted by {EQCE} Ri ‘

consists of functions a defined on g? such that for each element
ie g? a (i) 1lies in Ri .

Y. (+)R, =J?Ia=§ -1;{1)“"
teg® % =t L S )

Addition and multiplication may be introduced in the set

%égﬁ R, by means of the corresponding operations in the
S

individual components i.e.

(a + b) (i) a(i) + b(i)

I

ab (i) a(i) b(i) for all i€ 56

It follows that the resulting set with the above operations

comprises a ring, the zero element of & @)Ri is-the function

0 =§-“*LJR1 defined by taking 0(i) 0 € Ri for iE;gp 3
€§ " -

similarly, the nagative = @ of a function a E_EFi}Ri is
U

given by the rule (-a*(i) = = a(i) .

: ' 1
Definition 2,10, B BIEE is a subfield then F is called

!
an extension field of F ., An element r & F is said to be

algebraic over F if there exist element agy B4y 8 ces 3 in F ,

21
n n=1

not all zero , such that a,r +a.r H Eme 8L = 0 .
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!
F is said to be a splitting field for f(x) over F provided that

f(x) can be factored completely into linear factors in F [ﬁx‘l .

The theorems on extension fields, stated in the following

can be found in reference [5 ].

Theorem 2.11, (Simple Algebraic Field Extension)

If r& F2F is algebraic over F , then there exists a
unique monic irreducible polynoemial f(x) € F [x] such that
f(r) = O . Furthermore, if g(x) is a polynomial in F [x ]

for which g(r) = 0 4 /then £(x) | &(x) .

Theorem 2.12, Let Fl be an extension field of F and r & F’

be algebraic over F of degree n . Then the elements 1, Ty eee rn-‘1

form a basis of the vector space F' over F .

Theorem 2,13, If F is a finite field, then F has exactly pn

elements for some pfime number p and ng 7 $ " Moreover, every
element of F is the root of the polynomial

L '
f(x) = xP - x €r[x].

Theorem 2,14 _  The multiplicative group of a finite field is

cyelie



Theory of Numbers

Let a, b be two integers not both O, if ¢ is the greatest

integer that divides a and b , we call ¢ the greatest common

divisor of a and b . It is usually denoted by the symbol
(a, b). If (a,b) = 1 we say that the two numbers are

relatively prime. If m is some positive integer, the number of

integers in the sequence 1, 2, «se m = 1, m which are relatively

prime to m will be denoted hy ¢Km) y and it is known as

Euler ' s Q)- function. / When m = p a prime then , (F(p) = p=1

Theorem 2,16, (Buler's [Theorem)

For any integer a that is relatively prime to m one has

the congruence J?(m) = 1 7 nod(m)
proof . See roference [ﬁ].

Theorem 2,17, (Dirichlet)

If a 20 and b are integers such that (a, b) = 1, then
there are infinitely many primes of the form a n + b , where

n is a positive interer.

proof , 5ee reference [6 The



Set Theory

Definition 2413, A choice function on a set of nonempty sets

#& is a function = A-—-— (_,1‘7‘5( such that for each A & 54'
0@ (AE A .

Axiom of choice : ©=very family of nonempty sets has a choice

function,

Definition 2.19, A partial ordering defined on a set I is a

relation r on ¥ satisfying
1) Reflexive law N N3 ra Mdaé I

2) intisymmuetric law : a rb and b ra = a=01

¥ a, b/clEn
3) Transitive law +—ar b and brc = arec
Y 0 Y

(Xy r) dis called a partially ordered set. A partial

ordered set is said to be well - ordered if every nonempty subset

of it has a smallest element,

7ell -~ crdéring Theorem : Bvery set can be well ordered:s

proof. See reference LS] .

Definition 2,20, If A is a well = ordered set and if a £ A .

The initial segment of X determined by a is the set Ia gy defined

as follows

—
n

- { X &£ A X 2 a &
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If x< y and 4if there is no element between x and Y

we say that x is an immediate predecessor of y s Or y is an

immediate sucessor of %,

Definition 2.21, Let A be a set and suppose that A can be

well - ordered in such a way that ¥ x & A X = IY . Then

A is called an ordinal number .

Definition 2.22, Let o and fbe ordinal numbers we say

that o¢ <P if and only “if o c_;rz .

Definition 2,23 Let [a'be a non = zero ordinal npumber, if
P has naq_immediate predecessor, hat is, if P is not ecual

to oAU L%H for any ordinal o , then \3 is called a

limit ordinal. Otherwise P is called a non limit ordinal,

Remark, 1. @ is an ordinal, ?ij ? ﬁ is an ordinal, and

{¢ﬂ U 1{ ¢ﬁﬁ - [ ¢ ,'{¢%i is | an ordinal. It is customary
to denote ¢ by O {¢ﬁ by 1, {¢ P ‘{¢%ﬁ by 2 and so on .
e shall define 0y to be a set of all finite ordinals. Tt can be

shown that (v is a limit ordinal,

2, Let (Ay £) and (B, ¢ ) Y%e disjoint well - ordered

sets let ¢ = 2 U and £ he defined on ¢ as follows :

-

for x, y €C 4y x £y 4if and only if

i) . x € A and yei:r and x £y in A or

il) x € B and y€B and x 2y in B or



il

iii) x € A and y € B

Then (C, £ ) is a well - ordered set .

Definition 2,24, Tet &£ and p be ordinal numbers, and let A
and B be disjoint well - ordered sets such that o 1is ordinal of
A and P is ordinal of B . Ve will define ol + B to be the

ordinal number of the well - ordered set (AUD , £ ) .

r

Dy using this definition’, it can be seen that

s 1 = gcu‘{ocﬁ

Trans©inite Tnduction for Ordinals

Let '(¥) be a/statement' for each ordinal § , Suppose
that for eacl: ordinal X we have [ P( ry} s Y P k] = P(X) .

Then P(¥ ) is true for all ordinal § .

Definition 227 , Let - be a set, The cardinal of [ , denoted

by X 1s the smallest ordinal 8 with 3 XX (/> weans equipotent

i.e ﬂ 1 -« 1 onto map between the two sets)
The following are facts about cardinals. The vroof of these
facts can be found in reference [§].

E—
£ P () (P(X) = power set of X for every

>4l

‘"theorem 2,26,

Theorem 2,27, Jach infinite cardinal number is a liinit ordinal,
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proof, Let X be an infinite cardinal number, Since « is a
cardinal, X is also an ordinal, Suppose that oKX is not a limit
ordinal, Hence there exists an ordinal p. such that ﬁ-+ 1 =64 S

We will show that r; is equipotent with F; + 1

Since P + 1 is infinite, 15 is also infinite.

befine ; S r,,l_ 1~ P by
£(p) 5 0
£ (n) = n.+ 1 for n € ;;
f fx) = x . x € P_w

Then P is eguipotent with P+ 1, 4.0, P equipotent
with X , then X is not-a cardinal, contrary to our hypothesis,

wiiere KX is a limit ordinal,
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