CIIAPTER V

THE CORRELATION EFFECT AND GENERALIZATION OF BM APPROXIMATION

Similar to the bulk impurity, the correlation effect is
also important in chemisorption. Brenig and Schonhammer (1974)96
have discussed the correlation effect in H-chemisorption and
their calculation is found to agree with the exact computer
calculaticn by Schrieffer and Einstein for one dimensional chain
of three metal atoms plus an adatom containing four electroms.
This effect was also discussed from different point of view by

V7,98 BM worked out the problem

Bell and Madh %ar (1975-1976).
with the use of microscopic Hamiltonian, first introduced by
Madhukar (IBM Research Report No RC5413, unpublished). Their
result is successful in showing the physical content in the

Green function explicitly. In contrast to BM, we will use

Anderson Hamiltonian (BM treated this as a limit of their
Hamiltonizn) for the reason that all parameters in the

Hamiltonian can be evaluated from experimental data, which

then requires no self-consistent calculation. The Anderson
phenomenclogical Eamiltonian has an advantage of being simple

and contains all important physical properties, and the microscopic
structure of the parameters can be separated to be another problem

which may or may not be the same as Bii. In our view point, BM' s

Hamiltonian is the special approximation to the Anderson Hamiltonian.
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Bl decoupling scheme is the special case of our generalized LM
decoupling scheme, shown in 5.3. The comparison of HH, BM, and
BS will be discussed under the use of the matrix formalism. The
formalism is defined and applied to solve the single particle
Green function in 5.1. The HF spproximation is recalculated to
stow the power of the formalism and the detail discussion of this

approximation for H-chemisorption is alsc ziven.

5.1 The matrix formelism for solving single particle Green functions.

In both impurity and chemisorption problem, we have two
setsof state vectors, {|go>} and {|k0>} , so that we can divide the
matrix representation of all measurements of spin ¢ into block form

as we have ciscussed in appendix D.

Frem 4.5.15.a,b,c,d, we can write the system of equations

of motion for single particle Green function into matrix form as

-1 1
.Go —_2“_-10 + U.TU + VU .GU - (5.1.1)

1.

E_T' [¢]

kere g, is the single particle Green function matrix for the

isolated, non-interacting, system and is defined as follows

|311 %12 | -
g = | | (5.1.2)
o 1 .
V21 822 )
wvhere B11 1/z
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and Bon is diagonalized matrix having matrix element (gza)kk'

as follow

Syt /2

(855) S e
22 kk!* g

The single particle Green function of the interacting system

is represented by matrix Ga defined as follow

G G

AN %2

0= i (5.1-3)
G231 G2a

where G11. G12. 621, G22 are defined similar to D2 in

appendix D. The two particle Green function, associated

with the correlation potential U, has the matrix representation

;) (5.1.“)

which has matrix elements T

11 and (T12) as follow

'k

Fnz(lﬂ <<n, =C c? >>

20 (w)

and (T Toko

1
n

+
<<ng=Cy Gy >

12)1k 28 Lo
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In 5.1.4 we have shown explicitly that
(TET)k-: = 0 and (TZZ)kk' = 0 -

The admixing coefficient is given in matrix form as

[011 Va2
Vo= { ; (5¢145)
a
V21 925
where (V12)£k Vo ~and (V21)k£ = VU, é

The Vh and V have previously been defined (see Chapter IV).

k ke,
Since FE%G and Fﬁ&o can be solved by direct

deccupling or by inserting it into a new set of equations of
motion and then decoupling the higher order Green function,

we propose that T,; can be written as function of q} as follow
T = J.A + B .G . (5.1.6)
g 2n 06 g o

Here A, and B, are functions of matrix, which depend directly
on the decoupling scheme, defined to be of type III block form,

Substituting 5.1.6 into 5.1.1, we have

(10- 2n.g, V- 2n.U.gb.BU).qj B gU.(IU +U.Ac)- (5.1.7)

We further define
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[ 1272008434404 %11 B41Y42*U+844B42
KU = and LU= 2Te ° (5.1-8)
021 Tap 822721 %22
The equation 5.1.7 canle rewritten as
(K = Ty )eGy= gy« (I + U.A ) o
Multiplying both sides by the inverse of Kc,and then by the
i -1
inverse of (Ic- Ko 'Lc)’ we get )
-1 -1
G = (I =K oL )K g «(I + U.A ). (5.1.9)
a o g a () o o} 9]
From 5.1.8, we find that
. 849742+U214812
— - Te - E
Kd1.LU = 2m. i o VT W ' (5.1.10)
Eaos¥
22" 21 055 )

which is type II matrix. If we define

-1 -1
Vo= (KWL ) o(K L Doy s
2
(2m)"-844V42822V21% U+Bq4B12855V51

we get A= y £5.1e11)
1 e 2“IU.E11B11

Equation 5.1.9 can then he writen as

- - - - "1 1

i G G AL W

G = |K g+ @O 0 0 0.0 0 g °| o (T4 Beh do (51612}
| i [#] U

& @ 1= A
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g11/(1-2.0.g11B11) 045

-1
Here K_ g = 5 (551.13.2)
024 €22
049  B4qV42B25%U<844B4285;
- -1 an
K pL .ﬁj og = L] . (5.1013.b)
g o 1=2nt.Ueg,. B .
11717 | 85751844 Q22
u y o 1 A g 0 i

"L kNl kg = e—— - 11 12
[¢] ag ag o] g g

1=21.Ueg 4 1B 5
0pq (2m) "2 (852Y 21814V 12822+U+B22Y21811B12822.

(561:13.¢)
This resgult shows that we could find all single particle Green
funetion, i.c.
B 1+U.A
6111 = 11 . 1‘1 L | (5.1.1“’.3)
1-2ﬁoUlg11B11 1 -2 =
2
(2n) .(g22V21g11.(U.A12+(V12+U.B12).g22))
Cop = L2 ¥ v (5.1.1b.1)
(1-2n.U.g11B11).(1 -1)
£ U, otV adUeBon)ol
Gy = Ee . . i - =5, (5e1.14.¢)
1-2ﬁ.U0811B11 1 - A
24 ﬁv 8 1 + U.A
andl G21 - 22 21211 . 11 (5,1414.d)

1-2ﬂ.U¢g11B11 1 - l
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5.2 Hartree-Fock approximation11'12'3?'38'52

o
This approximation has been used to consider G,,(w)
for impurity in metals as shown in 4.6.5.a. This result and
all other single particle Green function will be solved
simultaneously by the matrix formalism, which has been
proposed in appendix D and the previous section. Since

we decouple

LL a
. =n .G . (5.2.‘1
PRJU P ) : )

or we have the matrix element (h11)£2= (ﬁ12)£k =(B12)Rk = 0 and

(311)M =n .. From 5.1.11, we have
(21:)2 = .V
: p—— 2 * 21 (5.2.2)
= . 1 [ o
1—2n.U.g11.n
Therefore 5.1.13.2, b, ¢ and d become
g
Gyq = 112 ' (5.2.3.a)
1-27eUegq4o0=(21) 024V 128,5V 54
2 goaV v
G =g - ’ (5-2-3¢b)
£ 22 " Apw.t n-(2 )2 v v
=enelegqqen=(en) 844712822721
0 11712832
M2 T 5 : (5e2¢34C)
1-2ﬂ-U¢811-n—(2ﬂ) .g11V12322V21
' 22Y21811 -
G21 = . (502.3.d)

2
1-2n.U.g11.n -(2n) -811V12822V21
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a) EEG lies outside the band. There is then a solution

w=w . outside the band where A(w) = 0. As there can not be

%

propagated inside the metal, the state must be loealized near

the adsorbed atom. It is hasically the adatom energy level €
ilo

shifted slightly by the interaction with the metal.

b) €, lies in the band. There is a2 solution w=
0

in the band, where A# 0. The adsorbate density of state is
now approximately

7 Lda

(w—mv)aq-aa

1

for w™w, (5.2.6)

= Q

This corresponds to the virtual state, which has a finite life
time T=ﬁ-11 This life time becomes longer as the chemiscrption

becomes weaker.

In strong chemisorption limit, if e£ lies outside
Lo}

the band, the situation is the same as the case (a) in the wenk
chemisorption However, the situation wculd be different if

€ lies inside the band.
O

¢) € lies in the band with a pair of solutions
the band. This situation resembles the molecular case, namely
that the adsorbate is forming surface molecule. The states are
localized in neighbourhood of the adatom, and so are interpruted

as being a pair of bonding (the lower state) and anti-bonding

(the upper state), due to the coupling of e with the metal bond.
o
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Here we have combined a£ with the Coulomb shift Una to give €os

and self-encrgy of admixing process is

Zo@) = 2maVqa855Vaq o

which is equivalent to that defined in 4,5,17, called chemisorption

function. Thus

1T_1-A(w)

(M-EEU-A(M5;§+ ﬂ?(w)

ﬂz(u’) = 1 (5.2e4)

where A(w) and A(w) are defined in 4.6.3%.2 and b, and are
studied in detail in appendix F.For infinitesimally small A(w),
we know that oz&u)becomes g-function., In the absence of

adsorbate-substrate interaction, V & = 0, the adsorbate level

Z
should be sharp. With this interaction, the adsorbate density

of states pf(w)is shifted broadened, and further distorted due
to the presence of the A(w), Aw).
: . A ’ 52
To discuss the ehemisorption localized state” , we

must find the solution of

w= ¢ =A(w) =0 (5.245)
Lo

In weak chemisorption limit A(w) is small in comparison
to the band width. 1In this situation there are two obvious cases

tc be considered :
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The problem can not be treated properly until self-

consistency has been pchieved. The self consistency is

given by
1 sF g
Ning ) = =« f dm.pzﬁu.ego(na))
-
_:l. o < i
= = f dm.pﬂ(m' € o (né)) +<n, > localized,(5¢247)

<o

where the sccond term is the number of electrons occurring
localized state which has energy level lying below the band.

This term comes directly from the S=-function integration. The

37

number of localized electrons is given by Newns with the uce

of Burley99 theorem that
n > -~ ) (5.2.8)
<%0 1oc. T WE ‘ - s ° =
Lo m£

The self-consistent condition is achieved in the same way as

discussed in chapter IV.

5.3 BM decoupling scheme and its generalization on Anderscn
Hamiltonian.
BM have introduced the microscopic Hamiltonian for
describing the chemisorption of H on transition metal in

97,98

site representation. Their Hamiltonian has been shown
to be equivalent to Anderson Hamiltonian in some limit.

We suggest that it would be better to use BM-deccupling
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\Y\. .
E treat A1 the parameters

in the Hamiltcnian as being a part of different problem .

. L8
Let us go back to the equation of motion of anc and P%; G

wiven by equations 4.5.24k.a and b. Substituting all the two particle

Green functions into the equation of motion again, we have

n.
e 5] 28 AL £k
ol . S5eFels
Prjo= Zm0ki * Sk Tks * Vrerleg * B Vo k,]ovkk kj ) FeTadem)
g
ik P, 2L t
30 = Bn ng + €y £j + Vel 2i0* U.<<(n£§—n£0)cudckacic.cj>>
k (5¢3.1.b)
¥ ii;'("r "rkja “%er ‘nga ! 7e3
nO'
1;% =25 - pies - 1 .rM ¥ 2e oKL
jo n Rj 2j0 £ 3o g fJo
+ o+ ¥ .o ( kk’ kf,)
‘ oV e (s + i
+ U'“(nx.;*' nzc’)ckc.,.::m-I e .cj‘» + E— 2k 23 kj (5¢3¢1ec)

BM have used the following decoupling scheme for the three particle

Green function

<<(n23-nn )c£0 - g j >> = 0 ,
+
ki
and <(n,.+ n C.C.. 3G, 33 =T .,
Ango+ my Jey, w6 " do Lo !

which were not pointed out explicitly in their paper. We note that
this approximaticn is possible only if the system has nearly zero

magnetic moment. This corresponds to the case that UA5<‘UC/£C

(see section 4.7). BM pointed out that their approximation was
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8,100,101 ;
applicable only to the case that V,,  is small.9 ! b This

implies that A is small, and then ﬁ is also small since it
less than A .Uc/éb, where we know that Uc/é.c is not large.
Since in the H-chemisorpticn prolem U is not small, many
authors have suggested that its value must go to infinity.
There is no reason to believe that the BM decoupling is

correct.

Let us define

m =n .= n (5.3.2.&)

(5¢3424b)

and n

n

n_ _+ n
g

so that we can make the approximation

T ¥ £k 2
<< = —<m—>e T =m . ]
mﬁﬁczackﬁcﬂc‘csc>>- Tye £jo o Ljo (5e3e3ea)
+ +
\ ? kg,
<<n_cC c. o C =u= - 2 e=ENe
1 kg 1a 2.(}' y jU ¥ <n:.> ° I}{.QJ 3 rjﬁ.O : (5-3-3.?3)

which is equivalent to the BM approximation in the limit m.= O

I5i
and n = 1. This approximation may be considered as the

fqeneralization of BM approximation.
Since we have already included other correlation into €1

kf« > -
oK and T can be approximated as

and V of the Hamiltonian G
' ko kjo

Lk

: 2 kk' | .
being zero, while T is approximated as follow

£io

k’ o
.Q.jo = nkIC"GRi. 5&]. (5.3"4)



Thus 5.3.1.2, b and ¢ become

(w.sk

ek-EE -Un) .I' "

Substituting these

(o= €,

- T
Uma)

28
e rRJ

22
kJ

(wee ).r

G
tk Ty 3
Ljo= 2w coai Y

n, % i
30— 2n «J Vf.l{

5 1

P -211_'6

23t 2wt

n_
a= 'skj

LR
kE"E o

;’;’U-l- (2_

Le

+ ng.rﬁjo

5
(reVyyen kk

eV K. nkk) G

into 4,5.24.a and b, we have

n_ .¢

e * 9g3
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9 (5-50503)

) GiR'GEJ' (5-3-50b)

(5-3.5-0)

o4
ihy+“2w6ﬁ)”k g 81

)
k.[;ﬁk.(w
{

Ek-Um W+ € k-ZEA -qu
b g
( on k )

V] 2o |+ e+ » 1 . [ e hr K
+ ° i - ° - = =
k Lk w=§ = w=€,-Ums m"'sk-&'g -UnJ 230 k" I W= Um 5 -
ng.(ﬁi.v k"nkk) - . ; .
B -6, =2 - "G i ’ A0
W=EpTey
Defining; T, =8+ 5 = En ’ (5e3e7)
2
2 v i
i v " ik |
. |Jhl | ek | ) £.= 2o L _—— ¢ (5,3.8)
where T, = Be B 1‘: g k'Uma ok W+ g 2 0 Un
v = Z_ - V ; ® n;k (5.3.9)
kp k 3
V., oV Vool
— A.k ky' E = E ° kk k)‘«
and T =7 . g m : (543.10)
m -, =Um _ w+Eg -2 =Un
k  w=ey %°¢,
Vv ,..na
V . ond - ki ki
§ ¥ _k®ik [ ) (543.11)
nm = k* z:—t—:ﬁh N nn = Kk ukgk—2€ ~Un

L
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equation 5.3%.6 becomes

n,v
00 = 1l ca s oPond) 7, il &
i i = 5=s| (0 + n -n’)es . + k Weg &J
(w €=U Eﬂ)ur£jo on ¢ m n h| k
+ (E red E ).G‘o 06 . ® (5.3.12)

5.4 The correlation effect in H-chemisorption.

Several authors have studicd the correlation effect

90-98

in impurity and chemisorption problems. We will now
discuss the relation of three decoupling schemes : the Hubbard
decoupling scheme as applied to the impurity problem by Hewson

90~-93

(HH), Bell=Madhukar (BM) decoupling scheme which was

applied to the microscopic, self-consistent, Hamiltonian by
BMg?'98 which we have applied to Anderson Hamiltonian as
discussed in 5.3, and Brenig-Schonhammer (BS) self-energy
matrix methcd in weak and strong chemisorbed decoupling

96 All of these schemes will be discussed under the

scheme.
use of the matrix formalism as proposed in 5.1 and appendix D.
The dependence of Ag and Bc on V will now be given.

g

First, we adopt the admixing process, i.e

then the two particle Green function can be written independent

of the single particle Green function (see 4.5.9), that is
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Equation 5.1.7 now becomes

(o] (e] F
GG = gc .(IU + U.J\O_) . (5.1}01)

This result is common to all three approximations as the first
fundamental Green function which can be calculated exactly
without any approximation on Anderson Hamiltonian (or saying
that it is exact as Anderson Hamultonizn is exact in the

limit of VQ = 0).

k

Let us define the number matrix N, as

49 P12

N = 9 (5."".2)
Toq e

where the matrix elements corresponding to the spin o electron
number are

3 v 3
Daqky = 05 0 (Myp)gpe = Dy (ny0)ie = Bgye v (Bop)pgen™ Do

(
If we define the new isolated single particle matrix g', as
having the physical meaning of being an electron propagator of
spin ¢ when the isolated adatom has an electron of spin g

already oceupied, and it having the following form

(81 P2]
gc - O . (5"“"3)
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1£2n

1 — -
where B 7 woemo 209 BT = B :

o]

wevget Ay =T, (5).(2n.N0(1).g& ) = I;(5).(2nepy .q,(1).(5.4.4)

The non-hybridized Green function G¢° is then given as

(o]
Gc =g

g + an.U.gﬁ'Ic(s).NO’ (1)09;.0 - (504-5)

The sub-=-matrix of Gg are

) o] () o] ,
19 = Bqq + 2reUer BB 1Y Gmmlpn + G2 ® 04210397031+ (54446)

The first equation of 5.4.6 is equivalent to equation 4.5.10

From 4.5.25+a and b, we find that the HH approximation

corresponds to matrix expression

(1)

a

Ag1) - Aij and B* '’ = (2n)2.A3 N, (5.4.7)

o
Substitutinz this into 5.1.7, we get

(T = 21eg (I + UA)aV)uc = g (I +U.A%) .
g ag ag a g [9) a a g

Using 5.4.5, we can write the above equation as

(I - 2n.6%.V_ )@ =6° .
a o O fo] a
We can solve it to get
o] -1 o
GU = (IU - EEQGU Dvc ) .Gc . (5.LI'.E)
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Since Gg is the type I matrix and VU is the type II matrix, the
matrix GZ.V is type II matrix (see appendix D). IEquation Selte8
o
thus becomes
EECGOI‘{! -GO -+ (2T()2.G2.V00GOOVU .Gg
G = G + - -~ - v (5.4.9)

o] 0
where }1 = (2“'G0'V6)12(2“'GU°V§)21
s (2m)2.60.7, @0 Vs = (21)24G2 V. BaoVaqe  (5.4.10)
- g4t 1202 2F— *¥117 1252221 kbl
The sub-matrix is given as
(2n)E [ SV 5 O a0
a -G 4 111222 2111 _ s 2 [ . (5.4.11.3)
11 11 sy 1 -2
1 1
2 o]
(21'[) o £ ot 4 V 48
G - " 2221711 1222 , (5.4.11.b)
22 22
1 = A
1
2n Go V.8
G - 2. 22 3 (5.14.11.‘:)
12 1 = A
1
o
bk o p - S 8 ML
22 21, 11
Goy = T, ’ (5.4.11.4)

where equation S.lte11.a equivalent to the equation 4.5.27¢8.
All single pa ticle Green functions of the HH approximation are

obtained.

The second approximation, the BM approximation, has
been discussed in some detail for Anderson Hamiltonian in 5:3.

From equation 5.3%.13, we have



93

(2) - :
AO_ — En.IU(s).go.(NU(‘I) + Vocgo .NU(1) + VU -gmo .NU(Z)_}\U(z).EnG'VU)
(5e4.12.2)
and B2 (21)°.T_(5)eF o(V N (Meg_ oV -v "GN _(1).V),(5.4.12.b)
g = - 5 .gc. U. g -',mc o 0. gnc' 0 -0, e Te °

where g , g and By, are the renormalized Green functions define
o}

mo

as follows

g9 %12 €n1q C12 Fn11 %12 ]
go= 0 v gmc - 0 9 8110 = O g e (5.’4’.13)
{721 &2 21  Bmp2; V21 Bnop
The matrix elements are
§ . ./2n 8 /2m
” ki ' ki !
(Bq) gy = B (Bpapdiger = ——— + (Bppp)i= g -2
w-eR-U—Z‘A m-Ek-qu e k-‘eg-Un

while (g22)kk" (gmﬂ)gE and (gnﬂ)g2 can be defined arbitrarily

since all matrix in 5.4.12 are projected by I, (5) such that

the terms involving these matrix elements disappeared at

(2) S B(2) (2)
o g o

the result A « Since the matrix elements of B
are given that only B11 is not zero, applying this to the
equation 5.1.11, we get

(2n)2

8917122221
:\2 = e (5.4.1"}')
‘1--(211:)«.U.g:,‘,113,1,.I
Defining EI = 21I.V12322V21 + U-B11 ' (5.”’.15)
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-1 -=1
- U'g A — U.g A
ok i SO 117412 (5.5, 16)
17 G op 2°TM2P28 T hov p
Mt Wl AN I
and from 5.1.1%.a, we get
I
€11 G e ks M
Gqq = * J
1-2n.g11.21 1-2ﬁ.g1ﬁo?1

which can be simplified with the use of the definition 5.4.16 to be

8 s g' a
11 . (1-f:) + 11 - f“ . ‘(.501'*017.:3)

1"‘211-811.21 1—2‘:{.3‘}”.2-&

Gqq =

Similarly, from 5.1.14.b, ¢ and d, we have

2 - ==,
(21) eg5pV 51804 (TaB 1844045 * Vq2) 82p

G = 7 +
22 22
1*211.8111121
- 1 -_
2 £11 g 49 g
= gaa + (2“) 'EZEVZ‘I. 1 2 z n(1-f2) + . 2 l " 0f2 ! .‘112{_:22—
| 1meTeBqq051 TeReB oy A
(564617.1b)
| E 5 g! G |
G = 1 o (1= ) + i -f 1 PPN -4 - (50“01703)
12 1-2 " 2 S 2 12522
i n.g11.¢1 -4ﬁ.&11. A l
e g g! o
G = Fa V.0 i Ll (1=£,) + 11 £ - (5e4017d)
21 22721° | 5 - 1 Bt e )
Ml I s e L

A1l single particle Green functions are now solved. The Green

functions are now used to determine,
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¥ 11 T
gy = <Gy Oy>= s+2 fdweF(w )e thi(m +is)-Gji(m—is)} ’

where Gji ie shown to be the function of B This system of

equations gust bhe solved self-consistently. We have the system

of equation in matrix form

. (5.4418)

b

]

H
' ‘z""'l
P

and the self-consistent condition is that N must satisfy

N, = F{NB? and N = F[NU] ' (5.4419.2)
d.
or N_- F[FLN °1l 40 e S5elte194b)

This problem is very complicated involving a lot of numerical
work., Note that the approximation shows explicitly the meaning

of two pole prepagators.

The third decoupling scheme is that BS scheme, which

is piven in appendix ®. Unfortunately, this decoupling scheme

provides only connection between Piic and Gzn as shown in E41,

-

but not the connection hetween Pﬁlﬂ and GEQ « Thercfore we can

not use the matrix formalisme However, if we work self-consistently

only with n, o we need not to know any other Green function. 35
-U -

use the self-energy matrix formalism to solve the Green function

GEE . From E31 and E37, Gzi also shows two pole property.
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BM have shown the connection between their result and

98

BS's weak coupling limits, i.e.

nb) = (2 G) = RV .nl) . (5.4.20)

We do not believe this to be correct since BS derive m(w) in such
a way that it is consistent with n_ only,96 while BM treats

98

all ngj self-consistently.

BS have shown that the photoemission spectra can be
explained by a two pole Green function.96 The simplest
approximation that hnas this property is HH approximation.
Although BM and its generaliged yield a complicate function,
the resulting Green function does show the two pole property
explicitly. BS approximation produces a Green function which

also shows two pole property,however, it is not shown explicitly.

HF, HH, BM and BS approximations,as we have shown, are
general and appliecable to both magnetiec dimpurity and

chemisorption problems.

We have seen that there are many methods which yield
the same result that the Green function has twc poles when the
correlation effect is considered. It is to be interpreted thnt
there exist two propergator , which do not interact with others
directly, but do interact with extended electron. In weak
coupling limit, the indirect interaction between the propergator

is small. Therefore each propergator can independently develope
\
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into a virtual bound state of small width (see Fig S5.4.1.2).
This has been shown in generalized BM expression 5.4.18.a.
When vﬂk becomes stronger the generalized BM approximation
fails since the indirect interaction is no longer small. 1In
this case BS approximation is better. The splitting of + and -
peaks is due to the formation of(classical) chemical bond
between the nearést-neighbor metal atoms and the adatom.

When Vﬂg is very large the problem can be better treated

ns MnH molecule adsorbed on metal surface.

The BM decoupling has been shown by BM to be correct to

98,100,101

order Vi in weak coupling limit. If we generalized

k

the BM scheme more than the previous generalization we have done
by keeping cnly the approximation S.3%.3.2 and b, which is

equivalent to

+ + + +

1€, >> = n <<¢_.cC

<<n_ c _Cc =cC -c 3 C
2+4 Pg Q¢ Yo Sg +0 PC Qo po So

)),

and applying all two particle Green function in 5.3.1.a, b, ¢
to equations of motion again,we find that the two particle are
closed without any additional approximation. All two particle

Green function's equation of motion are the following

'.R 2
2k Px. v k

& + )
Lig" " kjo ky *Tojo’ °

28 Gs (5.4.21.2a)
(w-Eﬁ-U).I‘g jo = 2n

a‘%+ﬁ.(v2k.(r

. n. 0 o
; s Je L8 T , nvk v k=~ )
(et )eTyso = 2x CkgtVigeTigork' = (Vg el gs ~ViggTiege) o+ (5e402100)
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Lagk Vk"g k 1

g
n "o
(w+€kn"'Eg‘Ek‘n 1 TR il k k 1 (5.4.22.b)
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"k ! k' Lkl \ k"y ¥ kM
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Rk TR T ke T T2n  RgTAR ey # Y, ary o +vk2.rlz e (5.4.22.4)

Since rank and ordcr of this system of equatinns are equal, there
exist an unique set of solutirns. Thus the tw particle Green
function can be written explicitly independent of the single particle

Green function, or B 1is zero matrix.
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