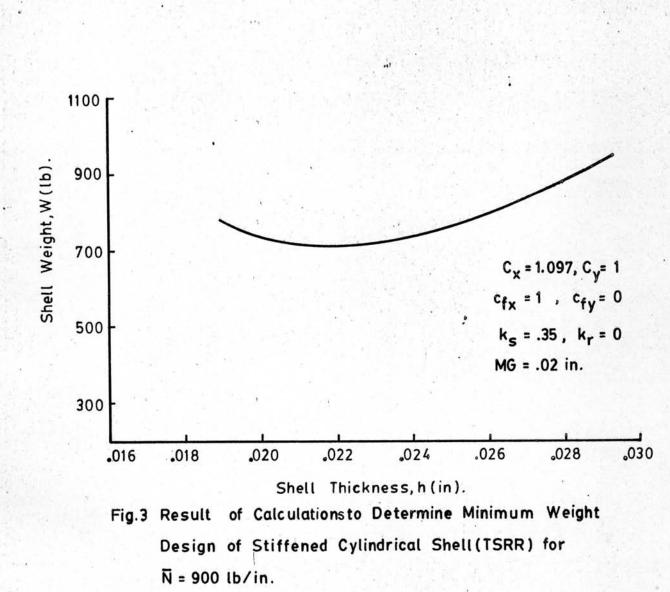
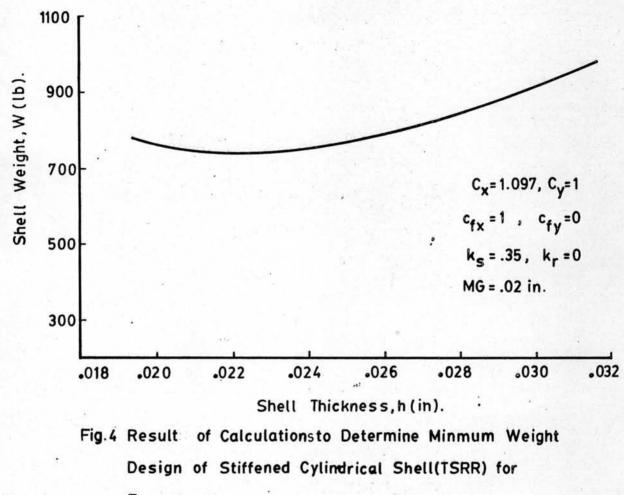
CHAPTER IV

RESULTS AND DISCUSSION

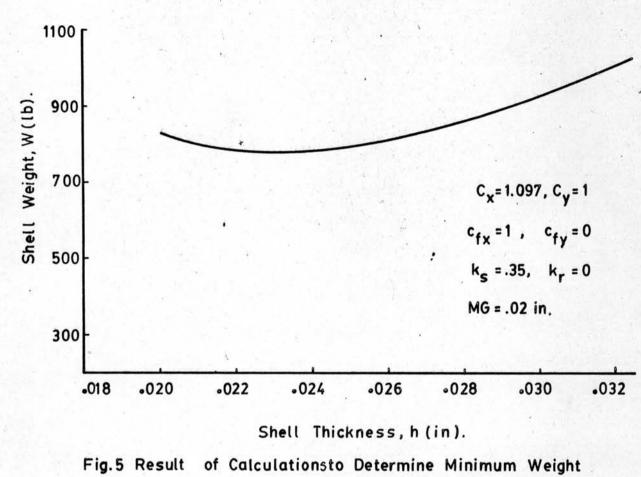
In this rescarch_{an} internally stiffened cylindrical shell is subjected to uniform axial compression, \overline{N} . The shell properties and applied loads are as follows:


 $R = 95.5 \text{ in.}, \qquad L = 291 \text{ in.},$ $\psi = 0.33, \qquad & \phi_0 = 50,000 \text{ psi.},$ $E = E_x = E_y = 10.5 x 10^6 \text{ psi.},$ $\rho_{sk} = \rho_x = \rho_y = 0.101 \text{ lb/in}^3.,$ MG = Minimum Gage = 0.02 in.

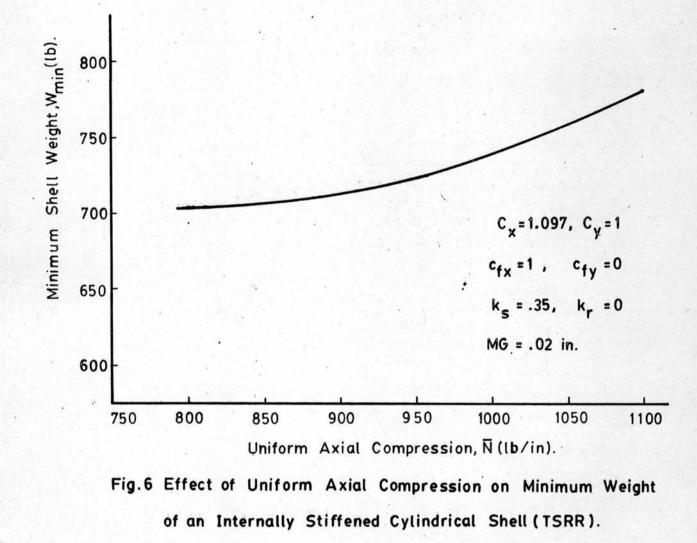
Stiffening members are tee stringers and rectangular rings


(TSRR).

<u>N</u> = 8	300 lb/in.,	<u>N</u> *=	1.233×10^{-8} ,
$\overline{N} = 9$			1.341×10^{-8} ,
$\overline{N} = 1$	C		1.4899×10^{-8} ,
$\overline{N} = 1$	1100 lb/in.,	N *=	1.6389×10^{-8} .


The result of calculations to determine minimum weight of the stiffened cylindrical shell under uniform axial compression of 900, 1000, and 1100 lb/in. are shown in the Figures 3,4, and 5 respectively. The design results indicate that the location of the minimum weight for various axial loads correspond to approximately the same value for h (0.022 in.). The solution of the minimum weight is not unique for each uniform axial compression. This means that there are several combinations of

K


N=1000 lb/in.

*

4

Design of Stiffened Cylindrical Shell(TSRR) for N=1100 lb/in.

36

1.

the design variables for the same minimum weight. The curves of minimum weight against thickness in Figures 3, 4, and 5 have wide flat portion. This implies that large variations in skin thickness (up to about 10 %) yield design configurations with small difference in weight. These results also correspond to the results of V. Ungbhakorn's research.

Results from Figures 3, 4, and 5 are listed in Table 2 and plotted in Figure 6. Figure 6 shows the effect of uniform axial compression on the minimum weight of internally stiffened · cylindrical shells. When the uniform axial load is increased the minimum weight of the stiffened shell is increased at a lower rate. Table 2. Effect of uniform axial compression on the minimum

N (lb/in)	W _{min} (1bs)	% increase in \overline{N}	% increase in W _{min}
800	703.4		
900	711	12.5	1.08
1000	740	25.0	5.20
1100	780	37.5	10.89

weight of stiffened cylindrical shell.

It should be noted that the starting point in Figure 6 which $\overline{M} = 800$ lb/in. and $W_{\min} = 703.4$ lbs. are obtained from Appendix C, case 1 of V. Ungbhakorn's research.

Ungbhakorn, V., op. cit., pp. 80-81.