CHAPTER III
SEMIRINGS

This chapter will study congruences and partial congruences on

semirings, skew rings, P.R.D.'s and semifields.
3.1. Semirings-.

First we shall give the same definition of a semiring as given

in[S] without assuming additive identity and multplicative zero.

Definition 3.1.1 A'semiring is a triple (S,+,*) where S is a set and +

(addition), « (multiplication) are binary operations on S such that

i) (S,*) and (S,+) are semigroups,

ii) x(y +2) = xy + x2 and (x + y)z = xz + yz for all x,y,z £ S.

Remark: A semiring is an'algebraic system.

Example Let (S,*) be a semigroup. Define a binary operation + on S by

x+y=x for all x,y ¢ S (or x + y = y for all x,y € S). Then clearly

(S,+,*) is a semiring.

Remark: Let (S,+,+) be a semiring. If + is commutative then we shall

call S an additively commutative semiring. If . is commutative then we
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we shall call S a multiplicatively commutative semiring. If + and - are

commutative then we shall call S a commutative semiring.

/
Definition 3.1.2 Let S,5 be semirings. A semiring homomorphism from S

I
to S is a map ¢:S * S such that ¢(a + b) = ¢(a) + ¢$(b) and ¢(a.b) =

¢(a). ¢(b) for all a,b € S.

Remark: A semiring homomorphism is an operation preserving map.

This section will consider the following categories :
1) The category ﬂdr of semirings and semiring homomorphisms.

2) The category ﬂér 5 of semirings and semiring isomorphisms.
v ]

We shall define naturally equivalent contravariant functors from
ﬁdr to éﬁ by using congruences and quotient semirings which are defined

below.

Remark: We can prove that if p is an operation preserving equivalence
relation on a semiring (S,+,”) then the set S/p of equivalence classes
of S can be made into a semiring in natural way and the natural projection
map T:5 + S/p is an onto semiring homomorphism. Hence the definition of
a congruence on an object (S,+,:) in,ﬁjr (or ﬂir,i) is the same as the

definition of an operation preserving equivalence relation on the semiring

(8,+,°).

Definition 3.1.3 A quotient semiring of a semiring S is a pair (X,¢)

where K is a semiring and ¢:S -+ K is an onto semiring homomorphism.
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Example (S/p,m) is a quotient semiring of a semiring S where p is a

congruence on S.

Theorem 3.1.4 Let S be a semiring and (K,$) a quotient semiring of S.

Let p = {(a,b) € S x S|¢(a) = ¢(b)}. Then p is a congruence on S and

there exists an isomorphism ¥:S/p - K such that the following diagram
-3

0|1 \

-.—.-..._-...—_.-H K
P

Proof. It is similar to the proof of Theorem 2.1.2.

commutes

S/p

o
Definition 3.1.5 Let (X,$) and {K,$) be quotient semirings of a semiring

AN
S. Say that (K,$) is strongly eguivalent to (K,$) iff there exists an

/
isomorphism ¥:K * K sueh that the following diagram is commutative

7N
1
Kk ——— K

. S l‘.l
Write this as (K,$) = (K,$)

Remarks: 1) = is an equivalence relation on the set of quotient semiring
of a semiring.
2) For each quotient semiring (K,$) of a semiring S,

(Ky9) = (S/p,m) where p = {(a,b) € S x S|¢(a) = ¢(b)}.
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3 / /
Proposition 3,1.6 Let ¢:5 + S be a semiring homomorphism. If p is

/ o
a congruence on S then($ x ¢) l(p) is a congruence on S,

Fix a semiring S 1let C(S)

the set of congruences on S,

Q(s) the set of equivalence classes of

quotient semirings of S under:=,

We define natural relations € on C(S), Q(S) as € on C(8), Q(s)
in Section 2.1 respectively. Then the proof that (C(S),C) and (q(s),C)
are posets is similar to the proof that (C(8),C) and (4(8),€) in

Section 2.1 are posets respectively.

Theorem 3.1.7 For each semiring S the posets C(S) and Q(8) are

isomorphic.

Proof. It is similar to the proof of Theorem 2.1 5 and the

isomorphism has the same form as in Thecrem 2.1.5.

We can show that for each semiring 5 (C(8),< ) ard (g(8),S)
are lattices as we showed that for each semigroup S (C(8),<) and

(@(8),&€ ) are lattices respectively.

We define contravariant functors C, Q from xdr to éa as the
contravariant functors C,q from Edg toéz in Section 2.1 respectively.
The proof that C is naturally equivalent to Q is similar to the proof

that C is naturally equivalent to Q in Section 2.1.
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Remark: C is the congruence functor of‘ﬂar.

Now we shall define naturally equivalent covariant functors from

A to Gj? using equivalence classes of congruences and
3

equivalence classes of quotient semirings which are defined below.

Definition 3.1.8 Let 91 and p2 be congruences on a semiring S. BSay

that pl is equivalent to Py (p. ™ 92) iff there exists an automorphism

1
f:3 + S such that (f x f)(f).,) = pis

Remark: “ is an eguivalence relation on the set of congruences on a

semiring.

Definition 3.1.9 Let (K,$) and (K:¢§ be quotient semirings of a

1

i
semiring S. Say that (K;$) is weakly equivalent to (X,¢) iff there

7 i
exist isomorphisms f:5 »+ S and f:K - K such that the following diagram

:

i’

—_—s K

is commutstive. £

e

Write this as (K,¢) Vv (th)-

Remarks: 1) ~ is an equivalence relation on the set of quotient

semiring of a semiring.

2) (K,9) = (Ef,q;) implies that (K,p) ~ (K,0).
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*
Fix a semiring S let C (8)

the set of equivalence classes of

congruences on S under v,

*
Q (s) the set of equivalence classes

of quotient semirings of S under ",

We define binary relations < on C*(S) and Q*(S) as € on G*(S) and
Q*{S) in gection 2.1 respectively. Then the proof that (C*(S),s )
and (Q*(S}, §) are quasi-ordered sets is similar to the proof that
(C*(S), <) and (Q*{S), €} are quasi-ordered sets in Ssction 2.1

respectively.

* *
Theorem 3.1.10 For each semiring S the quasi-ordered sets C (S), Q (S)

are isomorphic,

Proof. It is similar to the proof of Theorem 2.1.8 and the

isomorphism has the same form as in Theorem 2.1.8.

* =
We define covariant functors C ,Q from £d N to C@ as the

¥ %
covariant functors C ,Q from /éL 5 to C? in Section 2.1 respectively.
3

* *
Then the proof that C is naturally eguivalent to Q@ is similar to the

* *
proof that C is naturally equivalent to Q@ in Section 2.1.

Next we shall consider some theorems which use congruences on

semirings.

Theorem 3.1.11 Every additive congruence on WJ is a multiplicative

congruence also ie, p is a congruence on (ﬂ4,+) iff p is a congruence

on (!N s+s')-
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Proof. Let p be a congruence on the semigroup (ﬂq,+). We must
show that p is a congruence on the semigroup (|N,' ). Clearly p is an
equivalence relation on ’N . Let x,y ¢ N such that x p y¥. To prove
that (n'x) p (n.y) VnelN by induction. If n = 1 then clearly
(n.x) p (n.y). Suppose (k.x) p (k.y). We shall show that
((k +1) x) p ((k + 1) *Y). Because (k.x) p (k.y), (k.x + x)p (k.y + x)
Since (k.y + x) p (k.y + y) and p is transitive, (k.x + x) p (k.y + y) ie.
((e'+ 1).x) p ((k +1).y). Hence n.x~ n.y Ynel!N. Thererore p is a

congruence on (N,-). Thus o is a congruence on (N ,+,:). 4

Corollary 3.1.12 Let mo,noa }N be such that m < o and <(m0,no)> denote

the congruence on the semiring (N ,+,+) generated by (mo,no). Then

<{mo,no)> = {(a,a)|a eiN } u

{(a,p) e N xIN |Fx ¢ IN-:-, s+km =b+kn_ and b > m_ or atkn =b+km and a 3 mo}

Corollary 3.1.13 Let p be a congruence on (.FN,-P,'}. Then p is generated

by one element,

Definition 3.1.14 Let (S,+,*) be a semiring. Sey that (S,+,+) is

additively cancellative (A.C.) iff x +y =x+zory +x =2 + x implies

that y = z for all x,y,z € S. Say that (S,+,.) is multiplicatively

cancellative (M.C.) iff x.y = x.2 or y.x = z.x implies that y = z for all

X,¥, Z € 8.

Definition 3.1.15 Let S be a commutative semiring and x € S. Then x is

said to be additively cancellative iff x + Yy =X+ 5?‘ implies that y = z
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for all y,z € S. And an additively cancellative x is said to be partially

additively cancellative iff for each s € 5 s.x is additively

cancellative ,

Theorem 3.1.16 There exists an extension semiring of an A.C. and M.C.

commutative semiring S with a partially additively cancellative element
such that every partially additively cancellative element in S has an

inverse.

Proof. Let S be an A.C. and M,C, commutative semiring with a

partially additively cancellative element a. Let U = the set of partially

additively cancellative elements of S. Then clearly U is an ideal in S.

; . £ / /
Define the binary operations +, « on S x U by (s,u) + (&,u) = (s + s, u + u)
and (s,u) . (s4d) = (ss + uuﬁ sl + f1). Then (S x U,+,*) is a commutative

7\
semiring. Define a(relation “on S X U by (s,u) ™~ (;,J) iff s+u=298+ u.
We shall show that ~ is a congruence on 8 * U. Clearly Vv is reflexive and

. y 't " p LA ! '/
symmetric. Let (s,u) » {s,u) and (s,u) ~ (s,u). Thens +u =s +u and

/ " & / / ﬂ" / ra 7 ¥ o ’
s+u=s+u sostu+u=s+u+u=s+u+u=s+u+u hence

il / " / ’ # ¥ Y Y 4
(s +u) +u=(s+u) +u. SinceucU, s+u=s+u ie (s,u) v (s,u).

/
Therefore ~ is transitive. Let (s,u) (stu) then s +u = s + u. Let

/

¥ I '] i ¥ & VA 4
(syu) eSxUsos+s+u+u=s+s+u+u ie. (s,u) + (s,u) ~

' /! '] 17 oy i AT i | LA 4 r
(syu) + (s,u). Becsuse ss + su = ss + su and us + uu = us + uu,

' 4 &’ oy ' B i/ 7 Y a Fl Vi V] & &/
ss + uu + su + su=ss + uu + su + us ie. (ss + uu, su + sﬁﬁ v (SS + uu,

VA Iy Py ;7
su + su) so (s,u).(s,u) ~ (s,u).(s,u). Hence v is a congruence on S x U.

Next we shall show that (SxU)/~ is an extension semiring of S

such that every slement in U has an additive inverse, Fix u e U, Define
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$:S+ (8xU)/~ by ¢(a) = [(a + u,u)] . Clearly ¢ is a 1-1 homomorphism
Hence S is isomorphic to a subsemiring of (SxU)/v . Now we shall show
that V x € U. x has an additive inverse in (8xU)/~ . We have that
Vxeu [(x,x)] is the identity of ((SxU)/%,+). Let x € U C S.

[(x +uu)], ¢(x) + [(u,x + w] = [(x + u,u)] +

[(x + 2u, x + 2u)] . Hence - ($(x)) = [ku, x + u)] e (sxU)/~

Because ¢(x)

[('l.l o X F u)]

]

#

Remark: The above construction can be applied to any ideal of U.

Review 1) Let S be a commutative semiring with multiplicative

identity 1. Then S is embeddable in a ring iff S is A.C.

2) Let R be a commutative ring with multiplicative identity 1.
Then R is an integral domain iff R is M.C. ie x.y = x.z implies that

y =z for all y,z € R, x € R\{O}.

Next we shall show that it is not true that for each commutative
semiring S with 1 if S is A.C. and M.C. then S is embeddable in an

integral domain.

Theorem 3.1.17 There exists a commutative semiring S with 1 which is

A.C. and M.C.and cannot be embedded in an integral domain.

Proof. Let R be an integral domain and x € R be such that
2
X + 1 = 2x. Because xa- 2x +1 =0, (x - 1)2= 0 sox~-1=0ie. x=1.
We shall construct a commutative semiring with 1 which is A.C. and M,C.

and contains an element x such that x2+ 1l =2x and x # 1. Then clearly
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such a semiring cannot be embedded in an integral domain. Let !No [X]
be the semiring of polynomials with coefficients in INO. Define a
relation v on NO[X] as follows: say that F A~ G if J K,L ¢ ”\L[}C]

such that F+(X°+ 1)K + 2XL = G +(X°+ 1)L + 2XK. Clearly ~ is a
congruence on !NO[X] . Let 5§ = INO[X] /v. Define binary operations +,:
on S as follows: given a,B € S choose Fe a, Gec B8 then let o + B =
[F + G] and a.f = [FG] . Hence (S,+,) is a commutative semiring
with multiplicative identity [1] . Clearly S is A.C. Now we shall show
that S is M.C. Let a,8,y € S be such that a.y = B.y and y# 0. Must

show that =B . Choose F e o, Ge Band H ey soH#O0. Then F.H~ G.H

[

so 9§ K,L ¢ INo [(x] such that

F.H + (x2+ 1).K # 2X.L = G.H + {x2+ 1) JLiw 20 Lt

- If H is invertible then done. We may assume that H is not invertible.

We can consider (*) as an equation in Z [X] . We get that

(F -@G6).H = (X-1)2.(L-K) ...... R R e fa ]

Since 7 15 U.F.D., Z[X] is U.F.D. (by Theorem in [3]). Since & # 0

and H is not invertible, H has irreducible factors. Let P be an irreducible
factor of H. Since Z [X] is a U.F.D., P must be an irreducible factor of
R.H.S. of (*¥). Hence either P = X-1 or P is an irreducible factor of
L-XK. IfP=X-1thenX-11is a factor of Hso H= (X - 1).Q for

some Q €¢Z [X] . Then H(1) = 0 which is a contradiction. Hence

P#X~-1. So P is an irreducible factor of L - K. Hence H|(1-K) , so

I R eZ [x] such thet L - K = H.R then (**) becomes
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: (FP-G).E = (X~ 1)2.R.H IR, .

Because (***) is an equation in Z [X] and Z [X] is M.C. and H # O,

we have that

F-GC = (X~ 1)2.3

Because R ¢Z[X] , 38,7 ¢ |N° [X] such that R =S - T so we have

F -6 = (X-l)z{s T)

Hence @ v G ie. & = B. Therefore 5 is M.C.

Let x = [K] so x € S, Claim that x2+ 1 = 2x. DNote that if

X2+ 1 ~ 2X then [X]2 ¥l/= 2[X] ie. x2+ 1 = 2x. So to prove the claim

we must show that X2+ 1v2X, Let K=1, L =2 then we get that X2+ 12X
so we have the claim. To finish the proof we must show that x # 1 ie.

X % 1. Suppose not, so X v 1 then 3 K,L e N,[X] such that

X = (X2+ LK+ 2XL = 1 + (X2+ 1)L + 2X¥. Consider this to be an

equation inZ[x] . Hence X - 1 = (X - 1) K

case 1 L -K=0 so X~-1=0 which is a contradiction

case 2 L - K # 0. Because deg (X - 1) = 1 but deg(X - 1)?

(L = Kn 3> 2 which is a contradiction. Therefore X ¥ 1 ie. x # 1.

3.2 Semi-modules

In this section we shall work with left congruences on a

semiring S. But everything that we prove for left congruences can be
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'similarly proved for right congruences. As in Section 3.1, we shall

consider the categories ﬂdr and Adr 5"

We shall define naturally equivalent contravariant functors
from !ﬁr to gg- and neturally equivalent covariant functors from

ﬁdr 5 to QQ by using the following pairs which are defined below.
3

1) double left congruences and double left semigroup-spaces,

2) multiplicative left congruerices and multiplicative left

semi-modules,

3) additive left congruences and additive left semi-modules.

Definition 3.2.1 A double left congruence on & semiring (8,+,°) is an

equivalence relation p on 8 such that x p y implies that (a + x)p(a + y)

and (a.x)p(a.y) for all a,x,yv ¢ S.

Definition 3.2.2 A multiplicative left congruence on a semiring (S,+,*)

Pl

is an equivalence relation p on S such that x o ¥y implies that (a + x) p

(a +¥)y(x +2) p (y +2) and (a.x) o (a.y) for all a,x,y ¢ S.

Definition 3.2.3 An additive left congruence on a semiring (S,+,*) is

an equivalence relation p on S such that X p y implies that (a + x) p

(a +y),(a.x)p(a.y) and (x.a)o(y.a) for all a,Xx,y € S.

Definition 3.2.4 ILet S be a semiring. A double left S-space is a triple

(M,+,+) where (M,+) and (M,:) are left S-space such that r(s + m) =

r.s+r.m for allmeM, r,s ¢ S.
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Definition 3.2.5 Let (S,+,*) be a semiring. A multiplicative left

S-semimodule is a triple (M,+,*) where (M,+) is a semigroup, (M,-)
is a left S-space such that r.(n +n) =r.n+r.am for all r € S,

m,n € M,

Definition 3.2.6 Let (S,+,*) be a semiring. An additive left S-semimodule

is a triple (M,+,+) where (M,+) is a left S-space, (M,”) is a semigroup.

Remark: For each semiring §, S is a double left S-space and multiplica-

tive (additive) left S-semimodule.

Next we shall only work with double left congruences. But
everything that we prove for double left congruences can be similarly

proved for multiplicative left congruences and additive left congruences.

/
Definition 3.2.7 Let S be a semiring, M,M double left S-spaces and

/
¢:M ~ M a map, Then ¢ is said to be double left S-equivariant iff

¢(s +m) = s + $(m) and ¢(s.m) = s.é{m) for all s e S,m e M.

Remarks 1) If ¢ is a bijectively double left S-equivalent map then
¢_l is double left S-equivalent. We shall call a map a double left

S-space isomorphism.

2) If p is a double left congruence on & semiring (S,+,")
then the set S/p of equivalence classes of S can be made into a double

left S-space in natural way and the natural projection map T:S * S/p
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is an onto double left S-equivariant map.

Definition 3.2.8 Let S be a semiring. A quotient double left S-space

is a pair (K,$) where K is a double left S-space and $:S - K is an onto

double left S-equivariant map.

Example (S/p,m) is a quotient double left S-space where p is a double

left congruence on S.

Theorem 3.2.9 Let S be a semiring and M a double left S-space. Let

$:S > M be an onto double left S-equivariant map and
p ={(a,b) e 5 x S|¢(a) = $(b)} . Then p is a double left congruence
on S and there exists a double left S-space isomorphism § from S/p onto

M such that the following diagram commutes

S
/ \

v

Proof. It is similar to the proof of Theorem 2.1.2.

Y |
Definition 3.2.10 Let S be a semiring. Let (K,$) and (K,$) be quotient

¥
double left S-spaces. Say that (K,0) is strongly equivalent to (K,¢3

iff there exists a double left S-space isomorphism §:K + frsuch that the

following diagram commutes
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Write this as (K,$) = (K’,qf)

Remarks: 1) * is an equivalence relation on the set of quotient double

left S-spaces.

2) For each quotient double left S-space (X,$), (K,p) = (S/p,m)

where o = {(a,b) € 8 x 8{¢(a) = ¢(v)}

Fix e semiring S, let LC(S) = the set of double left congruences

on S,

L(8) = the set of equivalence
classes of quotient double left

S-spaces under =,

We define natural relations € on LC(S), LQ(S) as € on C(S) and
Q(S) in section 3.1, respectively. Then the proof that (LC(S),< ) and
(LQ(S),< ) are posets is similar to the proof that (C(S8),<) and (Q(S),C)

are posets, respectively.

Theorem 3.2.11 For each semiring S the posets LC(S) and LQ(S) are

isomorphic.

Proof. It is similar to the proof of Theorem 3.17, and the

isomorphism has the same form as in Theorem BelaTs
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‘Remark: Fix a semiring S .Let P3P, € LC(S). Then pllﬁ P, =

2

g.1.b.{p } and the double left congruence on S generated by

1°P2
P, Up, = l.u.b. {pl,pz}. Hence LC(S) is a lattice. Therefore LQ(S)

is a lattice also.

We define contravariant functors LC and LQ from 25r to éﬁ as
we defined the contravariant functors C and @ from Xﬁr to éZ in Section
3.1, respectively. Then the proof that LC is naturally equivalent to

IQ is similar to the proof that C is naturally equivalent to Q.

Definition 3.2.12 Let p, and P be double left congruences on a

semiring S. Say that p. is equivalent to pz(pl " 92) iff there exists
a semiring automorphism ¢:S5 + S such that (¢ x ¢)(01) =Py

Remark: < is an equivalence relation on the set of double left

congruences on a semiring.

! !
Definition 3.2.13 Let (K,$) and (K,$) be quotient double left S-space

AR /
where S is a semiring. Say that (K,¢) is weakly equivalent to (K,¢)

iff there exist a semiring automorphism f:S + S and a double left

/ o
S-space isomorphism f:K + K such that the following diagram commutes

f
s , S
6 ¢
K > K‘r
/
f

Write this as (K,¢) ~ (Kf,dﬁ’)
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Remarks: 1) v is an equivalence relation on the set of quotient double

left S-spaces.

F )
2) (K;9) = (K,0) implies that (K,6) v (K,b).

~

[}

*
Fix a semiring S, let LC (S) = the set of equivalence classes

of double left congruence on S,

*
LQ (S) = the set of equivalence

classes of quotient double left

S-spaces under ~,

# * v
We define binary relations € on LC (S) and 1Q (S) as € on C (S)
* *
and Q (S) in Section 3.1, respectively. Then the proof that (LC (8),<)
%
d (LQ (8),¢) are quasi-ordered sets is similar to the proof that

* *
(C (8),¢) and (Q (S),s) aré quasi-ordered sets.

*
Theorem 3.2.14 For each semiring S, the quasi-ordered sets LC (S) and

LQ (8) are isomorphic.

Proof. It is similar to the proof of Theorem 3.1.10 and the

isomorphism has the same form as in Theorem 3.1.10.

We define covariant functors LC and LQ from 25 (59

as we defined the covariant functors C and Q from ,Ej N to <§2 in

Section 2.1, respectively. Then the proof that LC is naturally

* E3
equivalent to LQ is similar to the proof that C is naturally equivalent

*
to Q .



3.3 ©Skew Rings.

Definition 3.3.1 A skew ring is a semiring (R,+,+) such that (R,+) is

a group. We shall let O denote the additive identity of (R,+).

Remark: A skew ring is an algebraic system.

Examples 1) Let (G,+) be a group with 0 as its identity. Define a
binary operation +« on G by x.y =0 for all x,y € G. Then (G,+,*) is

a skew ring which we shall call a zerc skew ring.

2) Bvery ring is a skew ring.

4
Definition 3.3.2 Let R,R be skew ring. A skew ring homomorphism from

!
Rto R is a map ¢:R + R such that ¢(a + b) = ¢(a) + ¢(b) and

$(a.b) = ¢(a).¢(b) for 21l a,b & R.

This section will consider the following subcategories of Eﬁr:

1) The category 51 of skew rings and skew ring homomorphisms.

2) The category gﬁo of skew rings and onto skew ring

homomorphisms.

3) The category eﬂi of skew rings and skew ring isomorphisms.

We shall show that e%v has a congruence set so we shall define
naturally equivalent contravariant functors from e%o to 8& by using

congruences, ideals and quotient skew rings which are defined below.
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Remark: If p is an operation preserving equivalence relation on & skew

ring R. then the set R/p of equivalence classes of R can be made into a
akew ring in natural way and the natural projection map w:R + R/p is

an onto skew ring homomorphism. Hence the definition of a congruence on
an object (R,+,») in gﬂp is the same as the definition of an operation

preserving equivalence relation on the skew ring (R,+,*).

Definition 3.3.3 An ideal I of a skew ring R (I ¢ R) is an additive

subgroup of R such that a3 + i - a e T and a.i, i.a e I for all

g e R, Xe Ia

Exemples 1) Let p be a congruence on a skew ring R. Then

[0]p = {a ¢ R|apo} ¢ R.

2) Let I be an ideal of a skew ring R. Then

{(a,b) € R x Rla - b € T} is a congruenceé on R.

Definition 3.3.4 A quotient skew ring of a skew ring R is 2 pair (K,9)

where K is a skew ring and ¢:R - K is an onto skew ring homomorphism.

Examples 1) (R/p,m) is a quotient skew ring of a skew ring R where o
is a congruence on R.

2) Let I be an ideal of a skew ring R. Let
p= {(a,b) eR>R|la-be I} and R/I =R/p. Then (R/I,n) is a

quotient skew ring of R.

Theorem 3.3.5 Let (K,b) be a quotient skew ring of a skew ring R and
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p = {(a,b) € R x R|¢(a) = $(b)} . Then p is a congruence on R and

there exists an automorphism Y:R/p+ K such that Vom = ¢.

-Proof. It is similar to the proof of Theorem 2.1.2.

Theorem 3.3.6 Let ¢:R = R be an onto skew ring homomorphism. Then
ker¢ ¢ R and there exists a natural isomorphism y:R/kerd - R’ such

that the following diagram is commutative

7N

R/keté [ Seximzud 'R

v

Proof, It is similar to the proof of Theorem 2.3.3.

]

We shall call the above Theorem the first isomorphism Theorem of Skew

ring theory.

/
Definition 3.3.7 Let (K,¢) and (K:@) be quotient skew rings of a skew

ring R. Say that (K,¢) is strongly equivalent to (Kt{) iff there exists

/
an isomorphism ¥:K + K such that the following diagram is commutative

R
A
/
K_E_'_’K'

Write this as (K,s) = (¥,4).
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Remarks 1) = is an equivalence relation on the set of gquotient skew

rings of a skew ring.

2) TFor each quotient skew ring (K,¢) of a skew ring R,

(K,6) = (R/p,m) where p = {(a,b) € R x R|¢(a,) = ¢(b)}.
3) For each quotient skew ring (K,¢) of a skew ring R,
(k,6) = (R/ker ¢,m).

/
Proposition 3.3.8 Let ¢:R + R be & skey ring homomorphism. If ﬁ is

/ =107 . LR
a congruence on K then (¢ x ¢) (p) is a congruence on R. If I is an

/ - 4
ideal of R then ¢ 1(1) isan ideal of K.

7
Proposition 3.3.9 Let ¢:R = E be an onto skew ring homomorphism. If p

/
is a congruence on R then (¢ x ¢)(p) is a congruence on R . If I is an

/
idezl of R then ¢(I) is an ideal of R.

Proof. It is similar to the proofjof Proposition 2.3.6.

Fix a skew ring R let C(R) the set of congruences on R,

I(R)

the set of ideals of R,

Q(R) the set of equivalence
classes of quotient skew rings

of R under =,

We define natural relations € on C(R), I(R), Q(R) as Con C(G),
N(G), Q(G) in Section 2.3, respectively. Then the proof that (C(R).C ),
(I1(R),S), (Q(R),S) are posets is similar to the proof that (C(G),E),

(v(G),<), (Q(G),£) are posets respectively.
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Theorem 3.3.10 For each skew ring R the posets C(R), Q(R), I(R) are

isomorphic.

Proof., It is similar to the proof of Theorem 2.3.7, Theorem
2.3.8 and the isomorphisms have the same form as in Theorem 2.3.T,

Theorem 2.3.8.

Proposition 3.3.11 Let Il,I be ideals of a skew ring R. Then

2

e I,} is the ideal of R generated by I.U I

Tyt I LLak 12]1l ) S0

1" 2 H St 2

Proof. It is standard.

Proposition 3.3.12 Let pl,p2 be congruences on' & skew ring R. Then

pl+ Py = {(al,bl)+(ag,b2)|(al,bl) 3 pl’(aE’bQ) £ p2} is the congruence

on R generated by plu Ppoe

Proof. We can show that p.+ p, 1is an equivalence relation on
4 =
R as we showed that Py+P5 is an equivalence relation on G in the procf
e

of Proposition 2.3.14. Let (a,b) e p.+ o, and ¢ € R. Then a = a + a,,

1 1

b = b+ b, where (al,bl) € Pys (ae,bz) € Py So.(c + a, c +Db) =(C*'ala

o
c + b1)+(a2,b2) € Py* Pos (a + a,b + ¢) .‘al,bl)(a2+ ¢, bt c) €

+ L
Dl 92 Hence pl+ 02

is the congruence on R generated by ¢

is a congruence on R. It is easy to show that

+ i . #
p.+ P u02

32 1

We shall show that (C(R),C), (I(R),) and (Q(R),S) are lattices
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.for all skew rings R. Let R be a skew ring. Let 11,12 e I(R). Then

Ilf_l I, = g.l.b.{Il,Ia} and L+ I, = l.ub. {11,1:2} . Hence (I(R),C)

is a lattice. Let P sP, € C(R). Then plfl Py = g.l.b.{pl,p2} ang

Pyt Py = l.u.b. {pe,pz} . Hence (C(R),C) is a lattice. Therefore

(Q(R),£) is a lattice also.

We define contravariant functors C,I,Q from.ga' to éﬁ as the
contravariant functors C,N,Q from .iy to é& in Section 2.3, respectively.
Then the proof that C,I,Q are naturally equivalent is similar to the proof

that C,N,Q are naturally equivalent in Section 2.3.

Remark As a result we see that C is the congruence functor of é?i and

&?L has a congruence set and ideals of a skew ring are congruence sets

with respect to I.

Next we shall define covariant functors C,Iid'from é&b togc
as the covariant functors C’N ,Q@ from gPL to in Section 2.3
respectively. Then the proof that C I,Q are naturally equivalent
covariant functors is similar to the proof that C,N,Q are naturally

equivalent covariant functors in Section 2.3.

Now we shall define naturally equivalent covariant functors from
éRE to CD using equivalence classes of congruences, equivalence classes
of ideals and equivalence classes of quotient skew rings which are

defined below.
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‘Definition 3.3.13 Let pl and p2 be congruences on a skew ring R.

is equivalent to p, (p.,v p,) iff there exists an automorphism
—ss 2 1 2

Say that pl

f:R » R such that (f x f)(pl) = Py

Remark: " is an equivalence relation on the set of congruences on a

skew ring.

Definition 3.3.14 Let Il and 12 be ideals of a skew ring R. Say that

Il is equivalent to I2(Il Y 12) iff there exists an automorphism

f:R = R such that f(Il) 7 [Eas

Remark: " is an equivalence relation an the set of ideals of a skew

ring.

Definition 3.3.15 Let (K,6) and (K,¢) be quotient skew ringsof a skew

ring R. Say that (K,$) is weakly equivalent to (K,4) iff there exist

isomorphisms F:R - R and f:K -+ Kf such that the following diagram is

commutative F
_

R R
/
¢ ¢
£
K —— K

Write this as (K,$) ~ (KZJ).

Remarks: 1) ~ is an equivalence relation on the set of quotient skew

rings of a skew ring.
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2)  (K,$) = (K,¢) implies that (K,$) v (Kot).

*
Fix a skew ring R let C (R) the set of equivalence classes

of congruences on R under ",

*

I (R) = the set of equivalence classes
of ideals of R under v,

* 4 i

Q (R) = the set of equivalence

classes of quotient skew rings

or R under v .

* * * *
We define binary relations < on C (R),I (R), Q (R) as € on C (G),
* * *
N (G), @ (G) in Section 2.3 respectively. Then the proof that (C (R),<),
* * :
(I (R),g),(Q (R),g) are quasi-ordered sets is similar to the proof that

* * ¥
(c (G),s), (N (G),s), (@ (G),&) are quasi-ordered sets respectively.

*
Theorem 3.3.16 For each skew ring R the quasi-ordered sets C (R),

* *
I (R), @ (R) are isomorphic.

Proof. It is similar to the proofs of Theorem 2.3.15 Theorem

2.3.16. and the isomorphisms have the same form as in Theorem 2.3.15,

Theorem 2.3.16,

* * *
We define covariant functors C ,I ,Q from (‘rﬂi to @ as the
- " o 10 @
covariant functors C ,N ,Q from i to in Section 2.3
* % *
respectively. Then the proof that C ,I1 Q@ are naturally equivalent

* *  *
covariant functors is similar to the proof that C ,N ,Q are naturally
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équivalent covariant functors in Section 2.3.

Remark: We can prove that the following subcategories of g& have

a congruence set as we proved that éﬁﬂ has a congruence set:
1) The category of rings and ring-homomorphisms.

2) The category of commutative rings and ring-homomorphisms.

Next we shall consider some Theorems which use ideals

(ie. congruence sets)

be skew rings. Let R = R, X R, and define binary

Let R, and R 1 >

A | 2
operations +, * on R as follows: (xl,x2)+(yl,y2) = (xl+ Yo%t y2) and

(xl,xz)'(yl,yg) = (xl.yl,xz.yg). Then clearly (R,+,*) is a skew ring.

Let S = {(x,0)lx € R} and S,= {(0,y)|y e Ry} . Then
1) S, and S, are ideals in R,

2) sln S5 = {(0,0)} »

3) Sl and 82 generate R.

.S, such that

Theorem 2.3.1T Let R be a skew ring having two ideals S 5

1
sln S, = {0} and 8 S, generate R. Then R & S, x S,.

1’ 1 2

Proof. Claim 1. V 51 € Sl EVSZ € 32 51.52 = 52.32 = 0.

To prove this, let s. e S_and S, € S

1 1 Because S, 4 R and 82 gR,

o 1

s.s, € S, and s.s., € S SO s

12 1 172 2 12 € 81(] S, = {0} hence s.s, = 0.

12
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‘Similarly s 0. Hence we have the claim 1. Claim E.WS1 € S1

i

\fs2 € 82 sl+ 52= 52+ Sq- To prove this, lets Sq € S1 and 52 € 82.

Then sl+ S, sl € 82 and S,= 59 52 £ Sl hence sl+ S,= 89= 52 € S1 n 52
= {0} . Therefore sl+-52- sl— 52 =0 ie. sl+ 52 = 52 + sl hence we

have the claim 2.

Define ¢: 8, X 8, > R by d(a 2,58, ) = a+ a, b’(al a, 1 8, X 8,-

Clearly ¢ is well—defined. First we shall show that ¢ is 1-1. Let

(al,az),(bl,b2)€ §,% 8, be such that a + a, = b,+ b, then -b +a, =

- n = = = ie. = .
b,- a, € 5 NS, {0}  so a,;= b, and a,= b, ie (al,az) (bl’b2)

Hence ¢ is 1-1. MNext we shall show that ¢ is onto. Because Sl 9 R,

82 ¢ R and S1 52 generate R, R = Sl+ 52. Let a € R then 3&1 E Sl’

€ S, such that a = a_.+ a.. So (al,a

x =
a, 5 1+ 85 Yy es S, and ¢(al,a2)

2 1 2

a,*+ a, = a. Hence ¢ is onto. Lastly we shall show that ¢ is a

z 3 3 ‘
homomorphism. Let (sl,sz),(sl,sg) € 8, XS, then ¢\sl,s ) + ¢(s 2) =

(s,+ 5,) + ()+ 5p) = (54 1) + (sy+ 5,) = 6((s+ s0), (s 5)) =

¢((sl,52) + (s&,s;)) (by the claim 2.) and ¢(51’S2)'¢(31’s;) =

(s, 5,).(sy+ 55) = 5,57+ 5,8 + 5.5, l = s8] ( /) =
s, sy).(sy+ s5) = 575 _8251 t 5.5, + 8,8, = 88, + s2s = ¢(s 51,32 s) =
$((s,,8,)" ) ( “+ 58, =

5155, sl,s because S,8,+ 5.5, = 0). Hence ¢ is a homomorphism.
Thus R & S, X S #

1 =0
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Remark! We see that ideals (congruence sets) are factors in the

direct product of skew rings.

Definition 3.3.18 Let R be a skew ring and S a subskew ring of R.

Then R is said to be an extension of S by a skew ring T iff S ¢ R

and R/S = T.

Lemma 3.3.19 Let R be a skew ring and A = {x y|x,y € R}. Then for

each a,B € A a+B = B +w.

Proof. Let «,8 ¢ A so o a,b,c,d € R such that a = a.b,
B= c.d Then (a +c).(d +b) = (a+c).b=2a,d+c,d+a.b+c.b
and (a + c).(d +b) =a.(@a+b)+c. (Ad+Db) =a.d+a.b+c.d+ec.b
so a.d + a.b + ¢c.d + ¢c.b = a.d + ¢c.d + a.b + ¢c.b and therefore

a.b+c.d=c,d+8agbie. a+B= B +a,

Theorem 3.3.20 Let R be a skew ring. Then there exists an exact

sequence of skew rings and skew ring homomorphisms

0 » 3 ’ » R s » T —— 0

such that T is a ring and S is a zero skew ring.

Proof. Let S= {xeR|xy=yx=0 Y yeR}. Claim that S
is a skew ring. To prove this, let a,b € S and Y € R. Then ay = ya =
0 = by = yb, hence (ab)y = a(by) = a0 = 0 = 0b = (ya)b = y(ab) and
(a-b)y=ay-by=0=ya-yb=y(a-b). so ab, a - b ¢ 8.

Therefore S is a skew ring. So we have the claim. By definition of S,
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.8 is a zero skewring. Next we shall show that S @ R. Let x € S and

r,y €R. Then (r + x - r)y=0=y (r + x - r) and (rx)y = 0 = y(rx)
sor+x-r, rx € S. Similarly xr € S. Therefore S§ R. Put T = R/S.
Then T is a skew ring. We must show that T is a ring ie. + is .
commutative. Let a,8 € T. Choose a € @ and b € B. We shall show that
[a+b] = [b+a] de. (a+b)-(b+a)es. LetyeRso((a+hbd)-
(b +a)) y=ay + by - ay - by. By above Lemma, ay + by = by + ay so

ay + by - ay - by = 0. Therefore ((a + b) - (b + a))y = 0. Similarly
y((a + b)=(b + a)) = 0. Hence (a + b)-(b + a) € S. Therefore [a - b] =
[b + a]. Hence a + B = B + a. Thus T is a ring. Define ¢:S =+ R by ¢(s)=s
and Y:R > T by y(r) = [r]. Then ¢ is a 1-1 homomorphism and ¥ is an onto

homomorphism. Because ker ¥ = Im ¢ ,

) ]
0 > > R > T >0

is an exact sequence of skew rings and skew ring homomorphisms. #

This theorem shows that every skew ring is an extension of a

zero skew ring by a ring.

Theorem 3.3.21 Let I be an ideal of a skew ring R. Then there exists

a bijection between the set of subskew rings of R containing I and the set
of subskew rings of R/I, and this bijection takes maximal subskew rings
to maximal subskew rings, ideals to ideals and maximal ideals to maximal

ideals.

Proof. It is similar to the proof of Theorem 2.3.19 and the

bijection is the same form as the bijection in Theorem 2.3.19.
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Definition 3.3.22 Let R be a skew ring. Then R is said to be simple

iff the only ideals of R are R and {0}.

Example Let R be a zero skew ring such that (R,+) is a simple group.

Then R is a simple skew ring.

Corollary 3.3.23 Let I be a maximal ideal of a skew ring R.

Then R/I is simple.

Lemma 3.3.24 Let R be a skew ring and a € R. Let B be the set of all
of finite sums of terms of the forms re&s,ra, as, na, b + ras - b,
b+ra-b, b+as -b, b+na->ob where b,r,s e Rand n eé?. Then B

is the ideal of R generated by & which denoted by <a>.

Proof. It is standard.

Theorem 3.3.25 Let R be a simple skew ring. Then for each a € R\{0},

¢ £ R ¢ can be written as a finite sum of terms of the forms ras, ra
as, na, b + ras - b, b+ ra - b, b+ as - b, b + na -b where b,r,s € R

and n € Ef .

Proof. Let a € R\{0}. Since R is simple, <a> = R or {0}.

Because a # 0 and a € <a> , <a> # {0}. soC & R = <a>. Therefore c¢
can be written as a finite sum of terms of form ras, ra, as, na,
b+ras -b, b+ra->b,b+a -b, b+ na->ouwhere b,r,s e R and

neZ. #
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Corollary 3.3.26 If R is a simple ring then for each a,b € RN0}

/ /
there exist meN sT3sT;55;,8; € R for all i 611 .2l and

/ /
r.as, + r.a + as, + na.
1 1 1 1 1

n e z such that b

n
([ o I =

i

Proof. Let R be a simple ring. Let a,be RN{0}. Then

finite
/ / / 4 . .
{z r.as.+ r.a + as, + na|r/),r.,.s,.,s, € R, neZ} 1s the ideal
; i3 i i 7 & g ol o ¢

of R generated by a = <a>. Because R is simple, <a> = R or {0}.Since
a#0 and a € <a>,<a> # {0} so b € R = <a>. Therefore 9m EIN 5

ri,r;,si,s; € R Vi e {1,2,...,m} and —Tne Z such that

m
/ /
b= I r.as, + r.a + as, + na. #

Corollary 3.3.27 If R is a simple ring with multiplicative identity 1 then

for each a ¢ R\{0} there exist n E‘N’ri’si £ R for all 1 € {1.2, s 03
n

such that 1 = ZiUESass B
" 31,
i=1

Proof, Let R be a simple ring with 1. Let a € R\{0}. Then

finite

{z riasi’ r..s; € R} is the ideal in R generated by a = <a>.
i

Because R is simple, <a> = {0} or R. Since a # 0 and a € <a>,

<a> # {0} so le R =c<a. Thereforea n EIN 5 ri,s:L e R for all

n
ief{l,2,...,n} such that 1= £ r.as.. #
i=2 *+ %
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3.4 Modules.

In this section we shall work with left congruences on a skew

ring. But everything that we prove for left congruences can be

similarly proved for right congruences. As in Section 3.3, we shall

consider the categories 31, gH'o and g‘)lpi.

We shall define naturally equivalent contravariant functors
from (ﬁto & , naturally equivalent covariant functors from eﬁ}lo to
gg and naturally equivalent covariant functors from e%ai to @ by
using
1) double left congruences, double left semigroup-spaces and
double left ideals,
2) multiplicative left congruences, multiplicative left modules

and multiplicative left ideals,

3) additive left congruences, additive left modules and additive

left ideals.

Definition 3.4.1 A double left congruence on askew ring R is an

equivalence relation p on R such that x p y implies that (a + x)p(a + y)
(a.x)p(a.y) for all a,x,y € R.

Definition 3.4.2 A multiplicative left congruence on a skew ring R

is an equivalence relation p on R such that x p y implies that

(a + x)p(a + y),(x + a)o(y + a) and (a.x)p(a.y) for all a,x,y ¢ R.
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Definition 3.4.3 An additive left congruence on a skew ring R is an

equivalence relation p on R such that x p y implies that (a + x)p(a + y),

(x.a)p(y.a) and (a.x)p(a.y) for all a,x,y € R.

Definition 3.4.4 Let R be a skew ring. A double left R-space is a

triple (M,+,.) where (i4,+) and (iI,.) are left R-spaces such that

r.(s +m) =r.s + r.m for all m ¢ M,r,s € R.

Definition 3.4.5 Let R bte a skew ring. A multiplicative left R-module

is a triple (M,+,.) where (M,+) is a group and, (M,.) is a left R-apace
such that r.(n +m) = r.n + r.mand (r + s).m = r.m + s.m for all

r,s ¢ R, myn € M,

Definition 3.4.6 Let R be a skew ring. An additive left R-module is

a triple (M,+,.) where (M,+) is a left R-space and (i,.) is a semigroup.

" Remark: For each skew ring R,R is a double left R-space and

multiplicative (additive) left R-module.

Definition 3.4.7 A doutle left ideal I of a skew ring R is an additive

sutgroup of R such that for each x ¢ I, y ¢ R y.x € I.

Definition 3.4.8 A multiplicative left ideal I of a skew ring R is an

additive sutroup of R such that for each x € I, YERy+x-yelIand

¥.X% € T

Definition 3.4.9 An additive left ideal I of a skew ring R is an

additive subgroup of R suclh that for each x € I, yeR y.x,x.y e I.
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We shall only work with double left congruences and everything
that we prove for double left congruences can be similarly proved for

multiplicative left congruences and additive left congruences.

/
Definition 3.4.10 Let R be a skew ring, M,M double left R-spaces and

/
¢:M » M a map.Say that ¢ is double left R-equivariant iff ¢(s + m) =

s + ¢(m) and ¢(s.m) = s.¢(m) for all se S, me M.

Remarks: 1) If ¢ is a bijectively double left R-equivariant map then
¢-1 is double left R-equivariant. We shall call such a map a double

left R-space isomorphism.

2) If p is a double left congruence on a skew ring R then
the set R/p of equivalence classes of R can be made into a double left
R-space in natural way and the naturel projection map ¢:R > R/p is an

onto double left R-equivariant map.

3) If p is a double left congruence on a skew ring R then

[0]p = {a € Rla p 0} 1is a double left ideal of R.

L) If I is a double left ideal on a skew ring R then

{(a,b) e R x R| -a + b € I} is a double left congruence on R.

/ /
Proposition 3.4.11 Let ¢:R > R be a skew ring homomorphism. If p is

! -
a double left congruence on R then (¢ x ¢) l(pf) is a double left
— 7
congruence on R. If T’ a double left ideal of K then ) l(I) is a

double left ideal of R.
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?roPOSition 3.4.12 Let ¢:R + H’be an onto skew ring homomorphism. If

p is a double left congruence on R then (¢ x ¢)(p) is a double left

i
congruence on R. If I is a double left ideal of R then ¢(I) is a

double left ideal of ﬁ.

Definition 3.4.13 Let R be a skew ring. A quotient double left

R-space is a pair (K,$) where K is a double left R-space and ¢:R =+ K

is an onto double left R-equivariant map.

Example (R/p,m) is a quotient double left R-space where p is a double

left congruence on a skew ring R.

Theorem 3.4.14 Let R be a skew ring and M a double left R-space. Let

¢$:R > M be an onto double left R-equivariant and
p= {a,b) eR xR|¢(a) = ¢(b)}. Then p is a double left congruence on
R and there exists a double left R-space isomomorphism y from R/p onto

M such that the following diagram commutes.

R
/N
Rfp ———— N

U
Proof. It is similar to the proof of Theorem 2.l1.2.

‘g
Definition 3.4.15 Let R be a skew ring. Let (K,$) and (K,d) be

quotient double left R-spaces. Say that (K,$) is strongly equivalent

Lo /s
to (K,¢) iff there exists a double left R-space isomorpshism y:K + K
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such that the following diagram commutes:.

R
y V:
B el i
Y
Write this as (K,$) = (K’,dh’)-

Remarks: 1) = is an equivalence relation on the set of quotient

double left R-spaces.

2) For each quotient double left R-space (K,4),

(K,¢) = (R/p,m) where p = {(a,b) € R X R|¢(a) = ¢(b)}

the set of double left ideals

Fix a skew ring R, let LI(R)

of R,

LC{R) = the set of double left congruences

on R,

the set of equivalence

LQ(R)
classes of quotient double left

R-spaces under =,

We define natural relations € on LI(R), LC(R) and LQ(R) as € on
I(R), C(R) and Q(R) in Section 3.3 respectively. Then the proof that
(LI(R),C),(LC(R),C) and (LQ(R),E) are posets is similar to the procf

that ((I(R),<),(C(R),C) and (Q{(R),S) are posets respectively.
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Theorem 3.4.16 For each skew ring R, the posets LI(R), LC(R) and

LQ(R) are isomorphic.

Proof. It is similar to the proof of Theorem 3.3.10 and the

isomorphisms have the same form as in Theorem 3.3.10.

Remark: Fix a skew ring R, let I_,I, € LI(R). Then I1r1 I, = g.l.b.{Il,Ia}

172 2
and the double left ideals of R generated by I,u I, = l.u.b. {11,12}.

Hence LI(R) is a lattice. Therefore LC(R) and LQ(R) are lattices also.

We define contravariant functors LI,LC and LQ from éﬁt to éﬁ
as we defined the contravariant functor I,C and Q from e%. too(f in
Section 3.3, respectively. Then the proof that LI,LC and LQ are
naturally equivalent contravariant functors is similar to the proof that

I,C and Q are naturally equivalent contravariant functors.

! 1 ana 1 srem b, t0 &
We define covariant functors LI, LC and LQ from 5 to
zf.fgﬂpg
as we defined the covariant functor I,C and Q from 2 to in
AT, AL G LT
Section 3.3, respectively. Then the proof that LI,LC and LQ are
naturally equivalent covariant functors is similar to the proof that

P 3 - /
I,C and Q are naturally equivalent covariant functors.

Definition 3.4.17 Let I, and I, be double left ideals of

1 2

skew ring R. Say that I, is equivalent to I, (I, ~ I2) iff there

1

exists an skew ring automorphism ¢:R + R such that ¢(Il) =I,.
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Remark: " is an equivalence relation on the set of double left ideals

of a skewring.

Definition 3.4.18 Let Py and oy be double left congruences on a skew
ring R. Say that Py is equivalent to pz(plm 92) iff there exists an

skew ring automorphism ¢:R + R such that (¢ x ¢)(pl) = pye

Remark; < is an equivalence relation on the set of double left

congruences on a skew ring.

Y
Definition 3.4.19 Let (K,$) and (K,$) be quotient double left R-spaces

TR 4
where R is a skew ring. Say that (K,¢) is weakly equivalent to (K,¢)

iff there exist a skew ring automorphism f:R + R and a souble left R-space

’ i/
isomorphism f:K -+ K such that the following diagram commutes.

Write this an (K,¢) v (Ki¢5-

Remarks; 1) ~ is an equivalence relation on the set of quotient double

left R-spaces.

2) (K,4) = (K,¢) implies that (K,$) ~ (K,4).
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*
Fix a skew ring R, let LI (R) = the set of equivalence classes
of double left C - sets

on R,

the set of equivalence classes

=
Q
£
—
]

of double left congruences on R,

*
LQ (R) = the set of equivalence
classes of quotient double left

R-spaces under ",

We define binary relation < on LI*(R), LC*(R) and LQ*(R) as < on
I*(R), C*(R) and Q*(R) in Section 2.3 respectively. The proof that
(LI*(R),s),(LC*(R),Q) and (LQ*(R),Q) are quasi-ordered sets is similar
to the proof that (I (R).<),(C (R),<) and (Q (R),¢) are quasi-ordered

sets, respectively.

*
Theorem 3.4.20 For each skew ring R. the quasi-ordered sets LI (R),

% *
LC (R) and LQ (R) are isomorphic.

Proof. It ds similer to the proof of Theorem 3.3.16 and the

isomorphisms have the same form as in Theorem 3.3.16.

+

* * *
We define covariant functors LI , LC and LQ from %i to
69 *  * * é?b
as we defined the covariant functors I ,C and Q from 3 to
* *
@ in Section 3.3, respectively. Then the proofs that LI , LC and
*
1Q are naturally equivalent covariant functors is similar to the proofs

® % #*
that I , C and Q@ are naturally equivalent covariant functors.



117

3.5 Positive Rational Domains (P.R.D.'s)

Definition 3.5.1 A positive rational domain (P.R.D) is a triple (D,+,°)

where D is a set, + (addition) and - (multiplication) are binary

operations on D such that
i) (D,+) is a group,
ii) (D,+) is a semigroup,

iii) x(y +2) = xy + xz and (x + y)z = x2 + yz for all

X,¥,2 € D.
We shall let 1 denote the identity of (D,*).

Remark: A P.R.D. is an algebraic system.

Examples 1) Let (G,°) be a group. Define a binary operation + on G
by x+y=x forallx,ye G (orx+y=y for all x,y € G). Then

(G,+,*) is a P.R.D.

2) le,ﬂ{+ are P.R.D.'s.

/ /
Definition 3.5.2 Let D,D be P.R.D.'s and ¢:D - D a map. Say that ¢

is a P.R.D. homomorphism iff ¢(a + b) = ¢(a) + ¢(b) and ¢(a.b) =

¢(a). ¢(b). for all a,b € D.

Remark: A P.R.D. homomorphism is an operation preserving map.

This section will consider the following subcategories of ,é’r:

1) The category 50 of P.R.D.'s and P.R.D. homomorphisms.
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2) The category %0 of P.R.D.'s and onto P.R.D. homomorphisms.

3) The categorng)i of P.R.D.'s and P.R.D. isomorphisms.

First we shall show that i) has a congruence set so we shall
define naturally eauivalent contravariant functors fromiﬁo to ég by using

congruencess C-sets and quotient P.R.D.'s which are defined below.

Remark: If p is an operation preserving equivalence relation on a P.R.D. D
then the set D/p of equivalence relation p on D can be made into a P.R.D.
in natural way and the natural projection map ¢:D + D/p is an onto P.R.D.
homomorphism. Hence the definition of a congruence on an object (D,+,*)

in gz)(SZL or goi) is the same as the definition of an operation

preserving equivalence relation on the P.R.D. D.

Definition 3.5.3 A C - set B of a P.R.D. D (B ¢ D) is a multiplicative

subgroup of D such that

i) for.each b e B, d e D d ‘bd ¢ B,

ii) for each b e B, d e D (4 + l)_l(d +b), (1L + d)-l(b + d) e B.

We shall now prove the following two properties of C - sets of a
P.R.D. D.

1) If Bg D then for each d ¢ D, b e B (d + b)(d + 1)7(C rs

)-l

(b +d)(1 + 4 e B

2) Let D be a P.R.D. and B a multiplicative subgroup of D.

Then B ¢ D iff
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a) for eachde D, be B a" 4 e B,

L -1
b) for each x,y € D [if x ly € B then (x +2z) (y + z),

(z+x)"Mz+y) eB forallzeD).

Proof. 1) Let B9 Dand d € D, b€ B. Then (d + b)(d + 1)'l=
(@ 1ile + 1) a wu)la+ 1) & 3 oy d sad 11). Similarly we cah

show that (b + d)(a + d)'1 € B.

2) Assume that B @ D then ava~L ¢ Band (a + 1)-1(d +b),
=3 v v
(L+4d) (b+4d)eB d € D, b € B. We must show that Vx,y € D
[if x-ly € B then (a + z)-l(y +2), (z + x)_l(z +y) €eB V 2 E D]-
Let x,y € D be such that x—ly E B. Let z € D. Then y-lx € B, y_lz €D
- X . =1 -1 = =1
and hence (x + z) l(y +2)=(x+2z) lyy l(y + z)"(} Xty 2 )) l(y (y + 2))=

-1

(y-lx +y z)-l(l + y_lz) € B. Similarly, we can show that

(z + x}_l(z + y) € B. Therefore &) and b) are true. Assume that a) and
are true. en dbd " € € Dyb e B an X,y €

b) t Then dbd > ¢ B YV @ aV D

[if x-ly € B then (x + z)(y + z)_l, (z + x)(z + y)_l eB Vze D].

We must show that (4 + l)-l(d + b), (1 + d)-l(b + d) € B. Vd € D,b '€ B.

Let d € D, b € B. Then d_l(db) = b € B and hence (1 + d)_l(b +d) =

(1 +a)" e ra) (b + a)) = (a1 + a)) " 2(a(b + 4)) =.{a + aa)~X(ab + ad) € B.

Similarly we can show that (d + 1)-1(d + b) € B. Therefore B € D. #

Examples 1) Let p be a congruence on a P.R.D. D. Then

[l]o = {ace Dla p 1} ¢ D.

2) Let Bbe a C - set of a P.R.D. D. Then

{(a,b) € D x D|a_1b € B} is a congruence on D.
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.Definition 3.5.4 A quotient P.R.D. of a P.R.D. D is a pair (K,$) where

K is a P.R.D. and ¢:D » K is an onto P.R.D homomorphism.

Examples 1) (D/p,m) is a quotient P.R.D. of a P.R.D. D where p is

a congruence on D.

2) Let Bbe a C - set of a P.R.D. D. Let

p = {(a,b) e Dx Dla-lb ¢ B} and D/B = D/p. Then (D/B,v) is a

quotient P.R.D. of D.

Theorem 3.5.5 Let (K,$) be a quotient P.R.D. of a P.R.D.D and

o = {(asb) € D x D|¢(a) = ¢(b)}. Then p is a congruence on D and there

exists an isomorphism y:D/p + K such that the following diagram is

B
57 - T S

v

commutative

Proof. It is similar to the proof of Theorem 2.3.2.

/ '
Definition 3.5.6 Let D,D be P.R.D.'s and ¢:D > D a P.R.D. homomorphism.

Then kernel of ¢, denoted by ker ¢ , = {d € D|¢(d) = 1}.

!
Theorem 3.5.7 Let ¢:D > D be an onto P.R.D. homomorphism. Then

4
ker & ¢ D and there exists a natural isomorphism y:D/ker ¢ =+ D

such that the following diagram is commutative
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D
D/ker ¢—mon——s D.
v

Proof. It is similar to the proof of Theorem 2.3.3.

We shall call the above Theorem the first isomorphism Theorem of P.R,D

Theory.

r
Definition 3.5.8 Let (K,$) and (K,J) be quotient P.R.D.'s of a P.R.D. D.

I /
Say that (K,¢) is strongly equivalent to (K,$) iff there exists an

/
isomorphism §:K + K such that the following diagram is commutative

e, s I

L
Write this as (K,9) = (K,9).

Remarks: 1) = is an equivalence relation on the set of quotient

P.R.D.'s of a P.R.D.

2) For each quotient P.R.D. (K,$) of a P.R.D. D, (K,é) = (D/p,n)

where o = {(a,b) € D x D|[¢(a) = ¢(b)}.

3) For each quotient P.R.D. (K,$) of a P.R.D. D,

(K,¢) = (D/ker ¢,m).
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/ /
-Proposition 3.5.9 Let ¢:D > D be a P.R.D. homomorphism. If p is a

’ " ’
congruence on D then (¢ x ¢) 1(&) is a congruence on D. If B is a

/ =1, 4 .
C - set of D'then ¢ (B) is a C - set of D.

Proof. It is standard.

/
Proposition 3.5.10 Let ¢:D - D be an onto P.R.D. homomorphism. If p

/
is a congruence on D then (¢ x ¢)(p) is a congruence on D. If B is a

C - set of D then ¢(B) is a C - setof D/

Proof. It is similar to the proof of Proposition 2.3.6.

Fix a P.R.D. D,let C(D) = the set of congruences on D,

the set of C - sets of D,

12
o}
n

&
o

g
]

the set of equivalence classes of quotient

P.R.D.'s of D under =.

We define natural relations € on C(D),B(D),Q(D) as € on C(G),
N(G), Q(G) in Section 2.3, respectively. Then the proof that (C(D),C),
(B(D),S), (Q(D),s) are posets is similar to the proof that (C(G).,<C),

(N(G),C), (Q(G),E) are posets respectively.

Theorem 3.5.11 For each P.R.D.D the posets C(D), B(D), Q(D) are

isomorphic.

Proof. If is similar to the proof of Theorem 2.3.7. Theorem
2.3.8 and the isomorphisms have the same form as in Theorem 253505

Theorem 2.3.8.
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‘Proposition 3.5.12 Let BfBé be C - sets of a P.R.D.D. Then Bl'Bz =

= BB
{bl.b2|bl € B,,b, € 32} is the C - set of D generated by B, .

172 2

Proof. First we shall show that B1.82 & D. Let x,y ¢ Bl'BQ

-1
then x = b1b2’ ¥y =ccy for some bl,c1 € Bl,bg,c2 5 Bz. Soxy =

. S
blbe(c c.) = b.b.c

1% 1P2%5 cl Let x € B, .B

B A 2o n
= bye, (e "(bye,7)e,) € B, B 1 Es

1 2"

_ e | E
and d € D then x = b,b, for some b, € By,b, € By- Sod xd=d (blbzld —

(d-lbld)(d_lbed) € BB, and (1 + ol +d) = (1 % &) (bb, + a) =

1 )-1( 1 -1 )—l

b+ b 1

=1
s+ by d) = (bl +b

-1, .-1.\y-1 s BRI, - S
(bl(bl + by a)) (bl(b2+ b7 d)) = (bl + by

-1
i o1 ST . T T I R,
(1 + b 7a)(1 + b d) (b, ¢ b,7d) = ((1 + v,7d) (b, ™+ b 7d)) e
-1.,-1 -1 ;
RIR
((r + bl d) (b2+ b1 d))e Bl'EQ Similarly we can show that

2], .
al
(@ +1) (a+x)e B,.B,. Hence B,.B, § D. Clearly B, B;.B,,B, < B, .B,.

€ B. We want to show that B..B.< B.

Next let B 9 D be such that B_C€ B,B 1B,

165 2

Let bl € Bl’ b2 € B2 then bl € B, b2 € B. Since B is a multiplicative
subgroup of D, b1b2 € B. Hence Bl'BEQ B. Therefore BIB2 is the C - sets of
D generated by Blu B2.

Proposition 3.5.13 Let 01,92 be congruenceson a P.R.D.D. Then

P, P

= i b, . i
1P {(a.l a,,0; b2}|(al,bl) €0, (a2,b2) € 92} is the congruence

on D generated by plU 02.

¢

Proof. We can show that p is an equivalence relation on D

1'P2

as we showed that pl.p2 is an equivalence relation on G in the proof of
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‘Proposition 2.3.11. Let (a,b) € P P, and c € D. Then a = a,8,,

b = b.b, where (al,bl) N (&2’b2) € P, So (c.a,c.b) =

(cal’Cbl)(a2’b2) € p,.p, and (ac,be) = (al.bl){agc,bzc) € P Py

Since (az,be) € Py, (ala2+ c, ab, + c) €p, < Py-P,. Since (al,bl) € Pys

" c B y 2 i3
(alb c,blb2+ c) ep o 02 Because p1 p2 is transitive,

2 S =]

(a + c,b + ¢) = (ala2+ ¢, byb, + c) ¢ p,P,+ Similarly we can prove that

(c +a, c+b)ce 01.02. Hence 91.02 is a congruence on D. It is easy to

show that p..p, is the congruence on D generated by plU Pye #

12

We shall show that (C(D),&), (B(D),¢€) and (Q(D),C) are lattices

for all P.R.D.D. Let I be a P.R.D. Let Bl,B2 ¢ B(D). Then By N 32 =

g.1.b. {Bl,Bz} and B. .B

= L] - - C i i -
1°B5 159908 {Bl’B2} Hence (B(D),C) is a lattice

Let p € C(D). Then p, N p, = g.1.D. {pl.pz} and p,.p, = 1.u.b.

1°P2
{pl,p2} . Hence (C(D),S) is a lattice. Therefore (Q(D),C) is a lattice.

also.

We define contravariant functors C,B,Q fromga toc% as the
contravariant functors C,N,Q from Kﬁf to é{ in Section 2.3, respectively.
Then the proof that C,B,Q are naturally equivalent is similar to the

proof that C,N,Q are naturally equivalent in Section 2.3.

Remark: As a result we see that C is the congruence functor of@ ,@

has a congruence set and C - sets of a P.R.D. are congruence sets with

respect to B.
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Lo !
Next we shall define covariant functors C, B, Q from gqoto (&fas the
! erea s, 0
covariant functors C, N, Q from 5 to in Section 2.3, respectively.
/ e
Then the proof that C, B, Q are naturally equivalent covariant functors

/ / !
is similar to the proof that C, N, Q are naturally equivalent covariant

functors. in Section 2.3

Now we shall define naturally equivalent covariant functors from
gﬁ, to‘i@ using equivalence classes of congruences, equivalence classes
i
of C-sets of a P.R.D. and equivalence classes of quotient P.R.D's which

are defined below.

Definition 3.5.14 Let P and s be congruences on a P.R.D.D. Say that

Dl is equivalent to pz(pl ~ 02} iff there exists an automorphism f:D - D

such that (f x f)(pl} = 02.

Remark: v 1is an equivalence relation on the set of congruences on

a P.R.Ds

Definition 3.5.15 Let Bl’B2 be C - sets of a P.R.D. D. Say that Bl is

equivalent to B2(Bl " B2) iff there exists an automorphism f:D - D

such that f(Bl) = B,.

Remark: " is an equivalence relation on the set of C - sets of a P.R.D.

')
Definition 3.5.16 Let (K,$),(K,$)be quotient.P.R.D.'s of a P.R.D. D. Say

that (K,$) is weakly equivalent to (Kt{) iff there exist isomorphisms

¥ ’
f:D -+ D and f:K + K such that the following diagram is commutative
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I 1
Write this as (K,0) v (K,0) .

Remarks: 1) ~ is an equivalence relation on the set of quotient

P.R.D.'s of a P.R.D.

2) (K,¢) = (Ig,ct;) implies that (K,¢) ~ (KI,J)-

n

*
Fix a P.R.D.D, let C (D) = the set of equivalence classes of

congruences on D under v,

*
B (D) = the set of equivalence classes of
C - sets of D under ~,
*
Q (D) = the set of equivalence classes

of quotient P.R.D.'s of D under %,

* * *
We define binary relations € on C (D), B (D), Q (D) as § on
* * #*
c (¢), N (G), Q (G) in Section 2.3, respectively. Then the proof that
* * *
(c (D),s), (B (D),s), (Q (D),g) are quasi-ordered sets in similar to

* * *
the proof that (C (G),s) (N (G),s), (Q (G),¢) are quasi-ordered set.

respectively.

* *
Theorem 3.5.17 For each P.R.D.D the quasi-ordered sets C (D), B (D),

*
Q (D) are isomorphic.

Proof. It is similar to the proofs of Theorem 2.3.15,
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‘Theorem 2.3.16 and the isomorphisms have the same form as in Theorem

2.3.15, Theorem 2.3.16.

_ *  * % gi) @?
We define covariant functors C , B , Q@ from i to
) * * * A{f y
as the covariant functors C , N , Q from i to G? in Section

* * *
2.3 respectively. Then the proof that C , B , Q@ are naturally

* * *
equivalent covariant functors is similar to the proof that C , N , Q

are naturally equivalent covariant functors in Section 2.3.

Remark : We can prove that the following subcategories ofx have

a congruence set as we proved thatgo has a congruence set:

1) The category of additively commutative P.R.D.'s and P.R.D

homomorphisms,

2) The category of multiplicatively commutative P.R.D.'s and

P.R.D. homomorphisms,

3) The category of commutative P.R.D.'s and P.R.D. homomorphisms.

Next we shall consider some theorems which use C - sets

(congruence sets) of P.R.D.'s.

Proposition 3.5.18 Let C be a C - set of the P.R.D. @F. Then

C = {1} or ¢l+.

Proof. Assume that C # {1}. Let xe C\N{1}. Claim that C
must contain an element z in Gl+ such that z > 1. To prove this,

we have that x > 1 or x < 1. If x > 1 then done. We may assume that
®
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x < 1 then i > 1. Because C is a multiplicative group, % € C. Hence
+ +
we have the claim. We must show that C = Q. rLet Y eql o LFoye sl

then done. We may assume that y > 1 or y < 1.

case 1 y > 1. Let z € C be such that z > 1. So z- -+

n
as n*= . Therefore anoe[N such that zo>y. Since z € C,
B % zno- + zno—
z & . Because y >1 and z > y, —y——%EQ.Letd= -?T{—
n
o
+ R - +
so d EQD and y = I +g ! Because C is a C - set of ﬁl and

%o
%z: e B ¥y e L

case 2 y < 1 then i >.1. So by case 1, % € C. Hence y € C.

Therefore C = dl*. #

Z +
Remark: We can prove that if C is a C - set of the P.R.D.[R" then

+
¢ = {1} or R as we proved the previous Proposition.

Definition 3.5.19 Let D be a P.R.D. Then D is said to be simple iff the

only C - sets of D are {1} and D.

+ a
Examples dl 2 m1+ are simple P.R.D.'s.Let G be a simple group. Define
on operation on G by x + y = x for all x,y € G (or x +y =y for all

X,y € G). Then (G,+,*) is a simple P.R.D.

Definition 3.5.20 A sub-P.R.D. of a P.R.D.D is a subset of D such that

it is a P.R.D.

Definition 3.5.21 Let B be a C - set of a P.R.D.D which is different
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from D. Then B is said to be a maximal C - set of D iff for all

/ U /
C - sets B of D [BC B implies that B = DJ.

Definition 3.5.22 Let A be a sub-P.R.D. of a P.R.D. D which is

different from D. Then A is said to be a maximal sub-P.R.D. of D iff

for all sub-P.R.D.'s A of D[AC Aimplies that A = D].

Theorem 3.5.23 Let B be a C-set of a P.,R.D. D. Then there exists a

bijection between the set of C - sets of D containing B and the set of
C - sets of D/B and this bijection takes maximal C - sets to maximal

C - sets.

Proof. It is similar to the proof of Theorem 2.3.19.

Remark: We can define a bijection between the set of sub-P.R.D.'s of
D containing a C - set B of D and the set of sub-P.R.D.'s of D/B as we
defined the bijection in the ahove theorem. This bijection takes maximal

sub-P.R.D.'s to maximal sub-P.R.D.'s.

Theorem 3.5.24 Let S be a commutative semiring. Then S can be embedded

into a commutative P.R.D. D iff S is M.C. Furthermore, if S is also A.C.

then the smallest P.R.D. containing S must be A.C.

Proof. The proof of the first part is in [h] where it is shown that
((s x 8)/~v,+,*) is a commutative P.R.D. where n is an equivalence on S x S
defined by (a,b) ~ (c,d) iff ad = cb, and +,* are binary operations on S

defined as follows: given a,B € (S x S)/v choose (a,b) € a, (c,d) € B
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"and then let a + B = [{ad + cb,bd)], a.B = [(ac,bd)]. Next we shall
show the second part. Assume that S is A.C. Let a,B,y € (S x S)/v

be such that @ + B = a + y. Choose (a,b) € B, (c,d) € B and (e,f) € Y.
Then [(ad + cb,bd)] = [(a,b)] + [(c,d)] = [(a,b)] + [(e,£)] =

[(ar + eb,bf)] so (ad + cb)bf = (af + eb)bd ie. adbf + cbbf =

afbd + ebbd. Since * is commutative and S is A.C., cbbf = ebbd.
Because + is commutative and S is M.C., cf = ed ie. [(c,d)] = [(e,f)].

Therefore B = Y. Hence (S x S)/~ is A.C. #

Remarks: 1) The commutative P.R.D. in the previous theorem is the
smallest P.R.D. containing S up to isomorphism and we shall call it

the fractional P.R.D.

2) Let @,+[X] =@;[X]\{0} where @;LXI is the set of
polynomials with coffecients in dl;. Then ¢Q+[XJ is a M.C. commutative

semiring. By the previous Theorem, dl*[x] can be embedded into its

fractional P.R.D. which is denoted by Q7 (x).

Definition 3.5.25 Let D be a commutative P.R.D. and x € D. Then a
n

rational expression of x is an expression of the from L aixil
i<e

where a.i e D and ni EZ V ix

Let D be a commutative P.R.D. and x € D. We shall define a
set Bx' Let y e D. Then y ¢ Bx iff 53 u,v € D satisfying the

following two properties;
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l) y = W T and
- mi
2) E}rational expressions of x for u,v u = I a;x and
i<e
|
v = X such that L a = L b,s
. ol . o
J<eo 1 1

We can prove that Bx is a C - set of D.

4+
Remark: We have that GQ+(K) is & commutative P.R.D. and X + 1 adl (%)

so B is a C - set of (7(X). Now we shall show that B

4l 1 has the

X+

féllowing properties:

1y 11 € BY o (To prove this, X + 1 = (1.(x+1)1}.(1.(x+1)°)‘1 €

By, so {1} # By ;)
= L
2) 2 ¢ 3X+1 (To prove this, suppose 2 € BX+1 so 2 = uv = where

il 5 +

u= I a. (X+1) " and v= I b, (X+1) J' for some a,,b eql () s E;Z >
i 1 3 J 573 g
i,3¢/N such that I a, = I b,. Suppose a.= ¢ AT B .yﬂl
> o ; 1 3 J 1 474 N
n

for some ci’dixj'xj € GPIX]. Then 2 = ngkyl)( i ai(x+l) i).(&gfkyl)

m, _ / n, / m
(£b,(x+1) )7t = ( za.(x+1) 1)( Tb, (x+1) 9) where . ,b, ¢ @*[x]
i i e ¢ J ity
+ J
1 /
and I a, = z bi . Hence we may assume that ai’bj €¢1+[X] k{i,J.
i J
Then we have that
m n,
to(x+1) db, = T (x+1) ', i)
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.= L agk)xk and b, = I
i i 3 1 J

Because a,,b, € @I+[X], a
e c

(1)

where agk), b;l} ELQ; and not all aik) are 0 and not all bj

are 0. Look at the equation (*) and consider the terms of degree O,

we have that E (2b(0‘) = 'L ago) . Because L a, = I b,,
J i i J
J i 1 J
z aio) = I béo) so z 2b§0) = I b;o) . Hence I bgo) =0
i J J J J ,
so L ago) = 0 . Therefore a.go) =0 Vi 5 5;0) =0 V.j . Next
i
we shall show that I bgk)= o= I agk) Y k. We shall prove this by
J i
induction on k. Assume that L bga) =0= L aia) Vc: € k. We shall
J a4
show thet T blEL) o NEELD e that a{®= 0 = b%
J bad, i J
J i
Va < k, V i,j. Then look at the eguation (*) and consider the terms
of degree k + 1, we get that 1 2b(k+l) = L agk+l). Because I b, =
J s 4 J
J i J
L a, z b§k+l) = I a§k+l) so L b§k+l) = I 2b§k+1). Therefore
i J i J J
+
L b(k 1) =0= L a€k+l) « 'Thus I b(k) =0= £ agk) kfk. Hence
J - J B
| i J i
agk) =) = b(k) \ji,j,k, which is a contradiction. Hence 2 ¢ B,..).
i J X+1
1) and 2) implies that {1} C B C Q*(x) ie. Q*(x) is not
simple.

Theorem 3.5.26 There exists an extension P.R.D. of Ql+ which is not A.C.
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Proof. Put D = ¢l+(X)/Bx+l . Then D is a P.R.D. Fist we

1}
™
+
=

shall show that D is not A.C. ie. Eﬂa,e,y € D such that ¢ + ¥y

but « #8. Put @ = [X],B=a+aandy = [1]. Thena + [1]

(x] + [1]

Suppose B

[X + 1] = [1] soc B+y= a+a+ [1] =a + [1] Ok Y

Y. Then [2] .a=a +a = a. Because @ € D and D is a

P.R.D, [2] = [l]. So 2 € BX+1 which is a contradiction. Hence a # B.

Therefore D is not A.C. DNext we shall show that D is an extension

P.R.D. of ¢l+. Define ¢: QF+ by ¢(a) = [a]. Clearly ¢ is a P.R.D.
homomorphism. So ker ¢ s(af. By Proposition 3.5.18, ker ¢ = [1] or Gl+.
If ker ¢ = al+ then [1] = [2] which is a contradiction. Hence

ker ¢ = {1} so ¢ is 1-1. Therefore Q* « o(@). Thus D is an

extension P.R.D. of Q+ which is not A.C. #

Theorem 3.5.27 There exists an A.C. P.R.D. which can not be embedded is

a field.

Proof. Let k be a field and x an element of k such that x2+ 1 =gy
Then (x - l)2= x2+ 1-2x=0 so x=1. So we want to construct an A.C.
P.R.D. having an element x such that x2+ 1 =2x and x # 1. Such a P.R.D.

cannot be embedded in a field.

We have that ﬂl+[X] is a commutative semiring. Define a binary

realtion ~ on (D."'[X] as follows: say that F~ G iff 3 Kl,Kgs @.TX]

2 2 .
such that F + (X + 1)K1+ 2XK2 G+ (X°+ 1)K2+ 2XK1. Clearly ~ is a

GQ+[X]/m . Then S is-a semiring in a

congruence on Ql*[x]. Let S

natural way,
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Note that x2+ 1~ 2x (Just let K1= 1 and K,= 2). Let

2
X = [X] SO x2+ 1 =2x in S. Claim that x # 1 ie. X ¥ 1. To prove
this, suppose not. Then X v 1. Hence EaKl,K2 € Gf{x] such that

2 it 2 ~
x+(x+1)rc+2mc2- 1+(x+1)5c2+ 2XK1 Mt e L

Since @+[X] C®R[x] we can consider the equation (*) to be an equation
in GJ[K] where we can subtract, Subtracting we get that X - 1 =

2 2 ; ; e N
(X" 1)(Ky- Ky) = 2(K;- K;) = (X = 1)7(K,- K;) which is a contradiction.

So we have the claim.

Just as we construct the fractional field of an integral domain
we want to construct a fractional P.R.D. of S. To do this we must show
that S is M.C., Let «,B,y € S be such that ay = By and vy # 0. We must
show that @ = B, Choose Fe o, Ge Band Hey. IfF =G thena =B
so done. Hence we may assume that F # G. Then FH v GH 5023 Kl,K2 €

QL *[x] such that

- = 2 1 *%
FH+(X+1)K__L+ 2XK2— GH + (X +-4)K2+2XI*’1 AT )

case 1 deg H = 0. Because H Edl+[X], H#0, soHisa
nonzero constant. Divide both sides of the equation (*¥) by H and

we get that F v G. Therefore ¢ = B so we are done.

case 2 deg H > 0. Consider (**) to be an equation in(ﬂ[x]
where can subtract. Subtracting we get that (F - G)H = (X = 1)2(K2-K1)

Since deg H > 0, H has irreducible factors. Let P be an irreducible
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- factor of H. Sinceﬂlﬁq is a U.F.D, either P=X - 1 or P is an
irreducible factor of Ky- Kj. If P =X -1 then H=(X-1)q for
some Q ¢ GQ[X]. Hence H(1) = O which is a contradiction since
H e QQ+[X]. Hence P is an irreducible factor of K,- K,. So we see
that every irreducible factor of H is an irreducible factor of Kz— Kl.

HL for some L edl[X] . So the equation

(X - 1)2LH

Hence H|(K2-K1) so K,- K

(**) becomes (F - G)H

Cancelling H (remember H # 0) we get that
2
F A/ MEASEIIL seseses el (FH¥)

Because L EGQ[X], L = Ly- L, for some L ,L,e Gl+[x]. So (*#**) becomes

2

N 2
F/=//G % (X"+ 1~ 2X)(L2- Ll)

Hence F v G therefore @ = 8 . So we have that S is M.C.. Clearly S is

a commutative semiring. Next we shall show that S is A.C. Let

@,B8,y € S be such that « + y =B +y . Choose Fe a, Ge B, He y.

Then F + HV G + H. Clearly F~ G. Hence a = 8. So S is A.C. By
Theorem 3.5.24, there exists an A.C. P.R.D. D containing S. We prove that
ax € S€ D such that x2+ 1 =2x and x # 1. Hence D cannot be embedded

in a field. #

Theorem 3.5.20 Every finite semigroup has an idempotent.

Proof. See [2].
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Corollary 3.5.29 For finite P.R.D. with the multiplicative identity 1,

Lob: L= I,

Proof. Let (D,+,°) be a finite P,R,D. with the multiplicative

identity 1. So (D,+) has an idempotent e ie. e + e = e, Hence 1 +1 =1

#

Let D.,D. be finite P.R.D.'s.Let D = D. X D

1°05 1 5 and define binary

operations +," on D as follows (xl,xg) B (yl,ye) = (xl+ ¥pa¥Xp* y2) and
(xl,xz).(yl,yz) = (xl.yl,xz.yg). Then (D,+,*) is a P.R.D. Let

B,= {(x;,1)|x ¢ D;} and B,= {(1,y)|y e D,}. Then

1) B, and B, are C - sets of D. (To prove this, let (xl,l),(yl,l)

€ B, then clearly (Jt:l,,l).(yl,l)"1 ¢ B, Let (a,b) ¢ D and (x,1) € B

1 1

1

VA1

then ((a,b) + (1,1)) ~.((a,b)+(x,1)) =((a + 1,b + 1)) (a + x,b+1) =

((a + l}-l.(a + x),1) € B . Hence B, ¢D. Similarly we can prove that

B, 9 D).

2) Blf\ 52 = {{1.1)},

3) B1,82 generate D.

4) B.,B

1 satisfy (a

+ Bl)'(a2+ 82) = aja, + BiB2

2 1

1

for all al,Bl € B, and u2,82 € B,. (To prove this, let (xl,lJ,{yl,l) €

B. and (1,x2), (1,y2) € B

" , then (x.,1).(1,x.) + (yl.l)-(l,yz) =

17 2
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[ ((xl,l)'(ylsl))'((l,x2)+(l,3'2)) = (2% ¥yl + 1)e(1 # 1.x,+ y,) =

(x;+ y1,1)*(1,x,* y,), by Corollary 3.5.29. Hence ((x1,1)+(y;,1))-

((l,x2)+{l,y2)) — (xl)l)(l,x2)+(ylal)(lsy2)) .

Theorem 3.5.30 Let D be a finite P.R.D. having two C - sets Bl,B2

such that B n B, = {1}, B, and B, generate D and (al+ 82)'(a2+ 82) =

g X .
a .0, + 81.82 for all al,Bl € Bl’ a2,82 £ B2. Then D Bl B2

Proof. First we shall show that B1 and B2 are P.R.D.'s.

Let a,b € B,. Then a +b = (1 + 1)'1(a +b) = (1 + 1)‘1(1 +b)(1 + b)'1

(a + b) € B,. Because B is a P.R.D. Similarly we can prove that

1 i 1
32 is a P.R.D. Claim that V*ﬁ_s Bl’ a, € 32 a).a,% ay-2,- To prove

; =F el 8
this, let a; € B ,a, € B,. Then a).8,.8,7 .8, € Blfl B, = {1} so

¢ D, B

= a,.a.. Hence we have the claim. Because B. and B2 generate D,

a_.a o8y i

R
D= Bl.BE.
Define $:B,x B, > D by ¢(xl,x2) = Xy.X5. Clearly ¢ is well-

defined. We shall show that ¢ is 1-1. Let (xl,xz},(yl,ye) € Bl X B2 be

e -1 = -1 s
such that x,.x, = y,.y, so Yp ¢+ Xp = ¥yeX, €B) N B, = {1} therefore

¥,= x; and y,= x, ie. (xl,x2) = (yl,yz). Hence ¢ is 1-1. Next we shall

show that ¢ is onto. Let d eD. By the claim, D = Bl'BQ so d = b.l.b2

for some be B, b, € B,. Then ¢(bl’b2) = b,.b, = d. Hence ¢ is onto.

Lastly we shall show that ¢ is a homomorphism. Let (xl,xg),(yl,yz) £ B1><B2
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then ¢(x;,%,) + ¢(y;,¥,) = x %+ ¥, = (kg ¥y ) (x4 ¥,) =
o (x+ ¥y %+ ¥,) =0((xg,x,) +(y;,¥,)) and é(x;.x5) ¢(yvy,v,) =
(x10%5) (g -¥p) = (xqey) e (x505,) = 00 2y 5%50y5) = 0((x5%5) (v 53,))

(by the claim). Hence D= B, x B_..
1 2 #

Remark : We see that C - sets of a finite P.R.D. D are factors in the

direct product of D.

Theorem 3.5.31 Let D be & finite P.R.D. Then D = Dlx D2 where Dl is

a P.R.D. having the property that x + y = x for all x,y € Dl and D2 is

1}

a P.R.D. having the property that x + y =y for all x,y € D2.

Proof. Let D= {z ¢ Dlz + 1 = 2z} and D, = {ze D|z + 1 = 1}.

First we shall show that Dl,D2

Then (a+b) +1=a+(b+1)=a+hb

Then Dl# @, D2# @ since 1 ¢ D1{1 D2.

are P.R.D.'s. Let a,b € Dl'

and a.b+1=(a+1).b+1=a.b+b+1=a.b+b=(a+1).b = a.b.

Therefore a + b € D and a.b € D,. Let ae D, . If a = 1 then e w e Dl.

We may assume that a # 1. We have that ans Dl V n e"q. Since a £ D and

(D,*) is a finite group, Eﬂn e NM1ls a®= 1 ie. R B DT S

€ D.. Hence D, is a P.R.D. Let a,b e D Then (a +b) +1 =a+ (b +1) =

L 1 2°

a+l1=1 anda.b+1l=a.b+(a+1)=a.(b+1)+1=2a.1+1=1. So

a + b, a.b € D2. We can show that a-l € D2 V a e D2 as we showed that

-1 -
a € Dl k{a > Dl' Hence D2 is a P.R.D.
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Next we shall show that \fx,y €D X +y =x and \f X,y € D2

1
-1

Then x.y_l € D. so x.y-l+ 1=x9 %

x+y=y. Let x,ye D 1

l.
- -1 2 -1
Therefore x + ¥y = (x.y + 1).y = (x.y 7).y = x. Let x,y € D,. Then

x.y_l e D, so x.y_l+ 1 =1. Therefore x +y = (x.y-1+ 1)y = 1oy = ¥s

Now we shall show that Dl and D2 satisfy all conditions of

' / !
Theorem 3.5.30. Clearly Dlrw D, = {1}. Claim that d +d +d = d

!
Vd,daD. To prove this, we can show that 1 + d +1 =1 VdED

1

! it I
sinced + 1 € D Let 4,4 € D. Then d.d % ED sol+d.d +1=1.

1
’ i f__l ! / /

Therefore d+ d + d = (1 +# d.d + 1)d = 1.4 = d. Hence we have the

claim. We shall show that D1 4 D and D2 94 D. Let a € Dl, x €D,

-1

Then x —ax + 1 = x T o, Wi ide x-l.(a +1).x = x-l.a.x, and
(x+ 1) T(x+a)t 1= (x+1)  ulx +a) + (x+ 1) Tu(x+1) =

(x + 1)"1.(x +a+x+1) = (x+ 1)_1.(x +a+l +x+1) = (x+ 1)-1.

(x +a+1) = (x+ l)-l.(x + a). Therefore x-l.a.x, (x + 1)-1.(x + a)

€ D.. Similarly we can prove that (1 + x)-l.(a + x) € D.. Thus Dl_é D.

1 1

Let a € D,»X € D. Then x-l.a.x +1 = x-l.a.x + x-l.x = x_l.(a ¥+ 1)ex =
x—l.l.x =1, and (x + 1)-1.(x +a)+1=(x+ l)—l.(x +a) + (x + 1)_1.

o 1) = (x + 2 e s+ % 21) = (% * 1) e +1) = 1. Thererore
x_l.a.x, (x + l)"l.(x +a) € D,. Similarly we can prove that (1 + x)-l.

(a + x) € D2. Thus D2 ¢ D. DNext we shall show that D = Dl'DE' Let 4 € D.
Then d + 1 € D, and (d + D0a+1=(@+1)a+(@a+r1)(a+1) =
(@+1)7 . (a+a+1)=(a+1) (a+1) =11de. (a+1) aen,.

2

Because d = (d + 1).(d + lTl.d € D,.D, hence D, and D, generate D.
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Lastly we shall show that &{al’bl e Dy, \fag,be € D2(a1+ bl).(a2+ 02) =
a,.a5+ bl'b2’ Let al'bl € Dl and a,,b, € D,. Tren a,.a; + bl'b2 =

(al+ ul). a,+ (ul+ al) . o, = a8, + bl.32 + bl.b2+ al.b2 = aj.a,* by.at

bl.b2+ (al+ tl).(az+ u2) = aj.a,+ by.at ol.b2+ a).a,* b1.32+ al.b2+ bl‘bE =
+ e -~ = 1 1 1

a, .a ¢+ Ll.b2+al.u2+ bl.12 (a1+ ul).(a2+ 02). By Theorem 3.5.30,

D =D, xD,. p

Definition.3.5.32 Let B be a C - set of a.P.R.D. D. Then B is a prime

C - set iff if (a + 1)'1(3 +x) eBor (1 + a)—l(x + a) € B then a € B.

Theorem 3.5.33 Let B be a C - set of a P.R.D. D. Then B is a prime

C - set iff D./B is A.C,

Proof. Assume that B is a prime C - set. Let a,B € D/B be such

that ¢ + y = B + y. Choose a € a, b e f and c € y. Then [a + c] = [b] +*

1.,-1

[c] = [b + c], hence (a + c)fl(b +c¢c) e B ie. (b-l.a +b,” c)

-1

(L+ot.c) eB sobt. aeP. Trerefore [a] = [b]. Eence D/T is A.C.

Assume that D/L is A.C. Let a,b € D be such that (a + 1)_1.
(a +v) eBso [a] +[1] = [a+t] = [a] +[v]. temce [1] = [v]

ie. b € B. Therefore B is a prime C - set. #

3.6 P.R.D, modules.

In this section we shall work with left congruences on a P.R.D.
But everything that we prove for left congruences can be similarly

proved for right congruences also. As in Section 3.5 we shall consider
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the categories @, ﬂo’ ﬂi‘

We shall define naturally equivalent contravariant functors from
c@to x , naturally equivalent covariant functors from @o tox and

naturally equivalent covariant functors from cﬁgi to @2 by using

1) double left congruences, double left C - sets and double

left semigroup-spaces,

2) multiplicative left congruences, multiplicative left C - sets

and left semimodules,

3) additive left congruences, additive left C - sets and left

P.R.D. modules.

Definition 3.6.1 A double left congruence on a P.R.D. D is an equivalence

relation p on D such that x p y implies that (a + x) p (a + y) and (a.x) p

(a.y) for all x,ya e D.

Definition 3.6.2 A multiplicative left congruence on a P.R.D. D is an

equivalence relation p on D such that x p y implies that (a + x) p (a + y),

(x + a) p (y + a) and (a.x) p (a.y) for all x,y,a € D.

Definition 3.6.3 An additive left congruence on a P.R.D, D is an

equivalence relation p on D such that x p y implies that (a + x) p (a + y),

(a.c) p (a.y) and (x.a) p (y.a) for all x,y,a € D.

Definition 3.6.4 A double left C - set of a P.R.D. D is a multiplicative

subgroup B of D such that for each d e Dy b e B, (d + 1%t (e + 1) & 3.
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Definition 3.6.5 A multiplicative left C - set of a P.R.D. D is a

multiplicative subgroup B of D such that for each d e D , b e B

(a1 08+ B), (1 +a) L+ a) e B

Definition 3.6.6 An additive left C - set of a P.R.D. D is a

multiplicative subgroup B of D such that for each d e D, be B

T b.d & B and 4 17 (b4 4 &5

Definition 3.6.7 Let D be a P.R.D. A double left D-space is a triple

/
(M,+,*) where (M,+) and (M,°) are left D-spaces such that d.(d + m) =

!
d.d + d.m and 1.m = m for all m € M, d,dre D.

Definition 3.6.8 Let D be a P.R.D. A left D-semimodule is a triple

(M,+,*) where (M,+) is a semigroup and (M,") is a left D-space such

den +d.m and 1l.m = m for all m,n € M, d € Ds

that d.(n + m)

Definition 3.6.9 Let D be a P.R.D. A left D-module is a triple (M,+,")

where (M,+) is a left D-space and (M,°) is a group.

Remark : For each P.R.D. D,D is a double left D-space, a left

D-semimodule and a left D-module.

Now we shall only work with double left congruences. But everything
that we define and prove for double left congruences can be similarly
defined and proved for multiplicative left congruences and additive left

congruences.

Definition 3.6.10 Let D be a P.R.D, M,M'double left D-spaces and ¢:M =+ M
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‘a map. Then ¢ is said to be double left D-equivariant iff ¢(d + m) =

d + ¢(m) and ¢(d.m) = d.¢(m) for all d e Dme M.

Remarks: 1) If ¢ is a bijectively double left D-equivariant map then

¢-l is double left D-equivariant. We shall call such a map a double left

D-space isomorphism.

2) If p is a double left congruence on a P.R.D.D then the set
D/p of equivalence classes of D can be made into a double left D-space
in natural way and the natural projection map m:D * D/p is an onto

- double left D-equivariant map.

3) If p is a double left congruence on a P.R.D.D then [l]p=

{d € D|d p 1} 1is a double left C - set of D.

4) If B is a double left C - set of P.R.D.D then

lab) & D x Dla-lb e B} is a double left congruence on D.

Definition 3.6.11 Let D be a P.R.D. A quotient double left D-space is

a pair (K,$) where K is a double left D-space and ¢:D > M is an onto

double left D-space equivariant map.

Example. (D/p,m) is a quotient double left D-space where p is a double

left congruence on D.

Theorem 3.6.12 Let D be a P.R.D. and (K,$) a double left D-space. Let

p = {(a,b) € D x D|¢(a) = $(b)} . Then p is a double left congruence
on D and there exists a double left D-space isomorphism ¢y from D/p onto

K such that vJom = ¢.

Proof. It is similar to the proof of Theorem 3.5.5.
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Definition 3.6.13 Let (K,¢) and (K,$) be quotient double left D-spaces.

!
Say that (K,¢) is strongly equivalent to (K,dﬁ iff there exists a douule

r
left D-space isomorpiiism §:K + K such that the following diagram is

D
commutative
/
b '

K ——— K
[
Write this as (K,$) = (K,¢).
Remarks: 1) = is an equivalence relation on the set of quotient double
left D-spaces.
2) For each quotient double left D-space (Ky9),

(K,6) = (D/p,m) where p = {(a,b) € D x D|¢(a) = ¢(b)}.

/
Proposition 3.6.14 If ¢:D > D is an onto P.R.D. homomorphism and p is

a double left congruence on D then (¢ x ¢)(p) is a left double congruence

'
on D.

Proof. If is similar to the proof of Proposition 3.5.10.

’
Proposition 3.6.15 If ¢:D » D is a P.R.D. homomorphism and o/ is double

/ £
left congruence on D then (¢ x ¢) 1(¢) is a double left congruence on D.

Proof. It is standard.

Fix a P.R.D. D,let LB(D) = the set of double left C - sets

af D.5

LC(D) = the set of double left congruences

on D,
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LQ(D) = the set of equivalence
classes of quotient double

left D-space under .

We define natural relations € on LB(D), LC(D) and LQ(D) as & on
B(D), C(D) and Q(D) in Section 3.5, respectively. Then the proofs that
(LB(D) £),(Lc(D),C) and (LQ(D),L) are posets are similar to the proofs

that (B(D),E) (c(D),g),(c(D),E) and (Q(D),C) are posets, respectively.

Theorem 3.6.16 For each P.R.D. D,the posets LB(D), LC(D) and LQ(D) are

isomorphic.

Proof. It is similar to the proof of Theorem 3.5.11 and the

isomorphisms have the same form as in Theorem 3.5.11.

Remark : Fix a P.R.D. D,let B ,B, € LB(D). Then B, N By = g.l.b.{Bl,Bz}

2 2

and the double left C - set of D generated by Blu B2 = l.u.b. {Bl’Bz}'

Hence LB(D) is a lattice. Therefore LC(D) and LQ(D) are lattices also.

We define contravariant functors LB, LC and LQ from 0@ to rx
as we defined the contravariant functors B,C,Q frorn@ to éf in Section
3.5, respectively. Then the proof that LB,LC and LQ are naturally
equivariant contravariant functors is similar to the proof that B,C and Q

are naturally equivariant contravariant functors.

/ /
We define covariant functors LB, LC and LQ! from @o to C% as

; . / - .
we defined the covariant functors B'; C’, Q from ‘fjo to C% in Section 3.5,
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! /
respectively. Then the proof that LBi LC and LQ are naturally equivariant
b /
covariant functors is similar to the proof that B, C and Q arenaturally

equivalent . functors.

Definition 3.6.17 Let D be a P.R.D. and B double left congruence

125

sets of D. Say that B, is equivalent to B, (Bl " BE} iff there exists

a P.R.D. automorphism ¢:D > D such that ¢(Bl) = B,.

Remark : v is an equivalence relation on the set of double left

congruence sets of a P.R.D.

Definition 3.6.18 Let D be a P.R.D. and Py Pp double left congruences
on D. Say that Py is equivalent to Py (p1 N 92) iff there exists a

P.R.D. automorphism ¢:D -+ D such that (¢ x ¢)(ol) =0,

Remark ¢ " is an equivalence relation on the set of double left

congruences on a P.R.D.

[ |
Definition 3.6.19 Let (K,$) and (K,$) be quotient doutle left D-

’

I}
spaces. Say that (K,¢) is weakly equivalent to (K,$) iff there exist

a P.R.D. automorphism f:D -+ D and a left double D-space isomorphism

' i’
f:K >+ K such that the following diagram is commutative.

£
| PR
I
¢ ¢
e/ :

Write this as (K,$) ~ (KZ¢3-
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Remarks: 1) ~ is an equivalence relation on the set of quotient

double left D-spaces.

/ /
2) U(K.9) = (K’,cb) implies that (K,$) ~ (K,¢3.

the set of equivalence classes of

[}

*
Fix a P.R.D. D,let LB (D)

double left congruence sets of D,

*
LC (D) = the set of equivalence classes of
double left congruences on D,
*
LQ (D) = the set of equivalence classes of

quotient doutile left D-Spaces under "v.

We define binary relations < on LB*(D),LC*(D) and LQ*(D) as € on
B*(D), C*(D) and Q*(D) in Section 2.5 respectively. Then the proofs
that (LB*(D),G), (LC*(D),<) and (LQ*(D),Q) are quasi-ordered sets are
!

*
similar to the proofs that (B*(D),s) (c (D),<) and (Q (D),<) are quasi-

ordered sets are quasi-ordered sets, respectively.

* *
Theorem 3.6.20 For each P.R.D. D,the quasi-ordered sets B (D), C (D)

*
and Q (D) are isomorphic.

Proof. It is similar to the proof of Theorem 3.5.17 and the

isomorphisms have the same form as in Theorem 3.5.17.

* * *
We define covariant functors LB , LC , and LQ from @i to@
: ) * * *
as we defined the covariant functors B , C and Q from.ng'to é? in
* * *
Section 3.5, respectively. Then the proof that LB , LC ~and LQ are

naturally equivalent covariant functors is similar to the proof that
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*
B .C and Q are naturally equivalent covariant functors.

3.7 Semifields

We shall give the same definition of a semifield as given in [h]

‘without assuming that +,° are commutative.

Definition 3.7.1 A semifield is a triple (S,+,°') where S is a set

and + (addition),*(multiplication) are binary operations on S such that

i) (s,*) is a group with zero 0, ie.(S\{0},*) is a group and

a.0 = 0 =0.a for all a€ 8,
ii) (S,+) is a semigroup,

iii) x(y + 2) = xy + xz and (x + y)z = x2 + yz

Remarks: 1) A semifield is an algebraic system.

2) Let (S,+,") be a semifield. Since (S\0},

S| > 2.

Examples Let (G,*) be a group with zero O.

for all x,y.,2 € S.

*) is a group,

1) Define a binary operation + on G by x + y = 0 for all

X, € G, Clearly (G,+,*) is a semifield. We call this semifield a

null semifield.

2) Define a binary operation + on G by
0 ifx#y

X+y =
X ifx=y

Then (G,+,°) is a semifield. We call this semifield an
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‘almost null semifield.

3) Define a binary operation + on G by x + y =y for all
x,7 € G (or x + y = x for all x,y € G) Clearly (G,+,*) is a

semifield.

Definition 3.T7.2 Let S,S'be semifields. A semifield Lomomorphism

’ ’
from S to S is a map ¢:S = S such that for each x,y € S

/ #
i) ¢(x) =0 iff x = 0 where 0,0 are multiplicative zeroes

!
of S,S respectively,

ii) ¢(x + y) = ¢(x) + ¢(y) and ¢(x.y) = ¢(x).6(y).

Remark: A semifield homomorphism is an operation preserving map.
This section will consider the following categories:

1) The category ﬁﬁf of semifields and semifield homomorphisms.

2) The categor;'ﬂdf o °f semifields and onto semifield
3

homomorphisms.

3) The category Réf ; Of semifields and semifield
3

isomorphisms.

We shall show that ﬁdf,has a congruence set so we shall define
naturally equivalent contravariant functors from QJf to éﬁ by using

congruences, C - sets and quotient semifields which are defined below.

Proposition 3.7.3 p is a congruence on an object (s,+,°) in,ﬂjf b B 5 4

p is an operation preserving equivalence relation on the semifield
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(S,+,*) such that x p O iff x = 0 for all x € S.

Proof. Assume p is a congruence on (S,+,*). Then P is an
operation preserving relation on (S,+,-) such that (S/p,+,*) is a
semifield. Clearly 0 p O. Suppose — x € s\M0} such that x p O.
So \fy €S yp O. Theny p z E{yy ze S. Lencep =8 x S. So
S/e has only one element which is a contradiction. Therefore x p 0

implies that x = 0, Hence x p 0 iff x = 0.

The converse is clear . 4

Theorem 3.7.4 Let S be a semifield and let O denote the zero of S.

Then exactly one of the following four cases must occur :

i) x+0=0=0#x for all x € S,
ii) x+0=x=0+x for all x€ S,
iii) x+ y=y¥ for-all X,y € S,
iv) x +y BEix for all x,vy € S,
Proof. Since 1 # 0, if one case occurs then the othersdo not occur.

1. DNote that either 9 x € S\M0} such that x + 0 =0
oerES\{O} x+0#0.
case 1.1 x € S\ {0} such that x + 0 = 0. Lety be an arbitrary
element in S. Then yx_l(x +0) = yxﬁlﬂ soy + 0 = 0. Therefore
V y € S y+0=0,
case 1.2 k{x e S\{0} x+ 0 #0. Claim that O + 0 = 0. To prove

this, let 2 = 0 + 0. Then 0 = 0.z = 0.(0 + 0) = 0 + 0. So we have
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the claim. Let x ¢ S\{0}., Let y=x+0 soy#0, Tueny + 0 =

(x +0) +0 (0+0) =x+0=y. ilence 3y e S\{0} such that

I
te
+

y + 0 = y. Let z Le an arbitrory element in S. Then zy_l(y + 0)

-1

Zzy y soz + 0 Z. ThereforeVzeS z +0 = z,
Yy ¥

2. lote that either = x € SN{0} such that 0 + x =0 or V

x € S\N{0} 0 + x # 0.

case 2.1 —x e S \{0} such that a + x = 0. Similar to case 1.1,

we can prove that Vyas 0O+y=0.

case 2.2 Vx e SM0} 0+ x # 0. Similar to case 1.2, we can prove

Vzes 0 +2z = 2.

i) If case 1.1 and case 2.1 occur then we have that

x+0=0=0+x VxeS.

ii) If case 1.2 and case 2.2 occur then we have that

x+0=x=0+x VxeS.

iii) If case 1.1 and case 2.2 occur then we shall prove that
X+ y=Y% VX,:{ES. Letx,yESthenx+y=(O+x)+(O+y) =

0+ (x+0)+y=0+0+y=0+y=y.

iv) If case 1.2 and case 2.1 occur then we shall prove that

ve Sthenx +7v=(x+0)y+0)s=

~ o

X +y=x Hx,ye S. Let x,

x+(0+y) +0=x+0+0=x+0 = x. i

We shall call a semifield satisfying case i an «-semifield,
a semifield satisfying case ii a O-semifield, a semifield satisfying

case iii a rightzero semifield, a semifield satisfying case iv a left
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zero semifield.

Lemma 3.7.5 Let S be a semigroup. Suppose that there exists an element
leS such that x.1 = x for all x ¢ S and for all x ¢ S there exists
an element x-le S such that x.x_l= 1. Then l.x = x for all x € S

and x Tx =1 for all x ¢ S, so S is a group.

Proof. Claim that if y2= y then y = 1. To prove this, let

o =1 \2 -1 -1 -1
y2= ¥y so y = yey 1= 1. Let x € S then (x lx)d =X lxx X =X J1l.x
& X i By the claim 2% <. =F%e htve that l.x = (xx-l).x = x(x_lx)
= x.1 = x. it

Theorem 3.7.6 Let S be a O-semifield. If there exists an element x

in S\ {0} sue¢l: that x has a right additive inverse then every element of

S has an additive inverse.

Proof. Let x € S\{0} be such that x has a right additive inverse.
Then Jy € S such that x + y = 0. Let z be an arlLitrary element in S.
Then z + zx_ly = zx-l(x + ) = 2x71.0 = 0 therefore z has a right

additive inverse. Hence v z € S 2z has a right additive inverse. By

above Lemma, v z € S z has an additive inverse. #

By the above theorem we have that if S is a O-semifield then
either every element has an additive inverse in which case S is a skew
field or no nonzero element of S has a right (left) additive inverse.

Remarks: 1) For each skew field (F,+,*), 4 is the only congruence on F.

2) Let S te a O-semifield which is not a skew field. Then for
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each x,7v € S\M0O} x +y # 0 and x.y # 0. Therefore (S\MO0},+,*) is

a P.R.D.

3) Let (S,+,*) be a left (right) zero semifield. 'e can show
that
i) If p is a congruence on (S,+,*) then p\{(0,0)} is a
congruence on the group (S\{0},-).
ii) If p is a congruence on the group (S\{0},*) then

p U {(0,0)} is a congruence on (S,+,*).

Definition 3.7.7 Let S be a semifield and O multiplicative zero of S.

AC - set Eof S (E 4 8) is a multiplicative subgroup of (S\{0},*)

sucih that

i) for each x € E, 2 ¢ SN0} a_l.x.a € E,

[
o
—_

-

0 iff z +1

ii) for each x € E, 2z e S [z +x

0 iff 1+ z

[}
o
—

-

iii) for each x € E, 2 €S [x + z

iv) for each x e E, 2 € S [z +1#0and1l+2z #0

implies that (z + 1) .(z + x), (1 +2)™F [(x +2) ¢ E].

Remarks: 1) A semifield S is not a C - set of S.
2) For each skew field F, {1} is the only C - set of F.

3) If S is a O-semifield which is not a skew field then

Eis a C - set of S iff E is a C - set of the P.R.D. (SMO0},+,*).

4) If S is a left (right) zero semifield then E is a C - set

of S iff E is a normal subgroup of the group (S\{0},*).
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Examples 1) Let p be a congruence on a semifield (S,+,°). Let
[1] = (e e S|a o 1}. Ve shall show that [1]pq S. Clearly [1] is

a multiplicative subgroup of (S:{0},-) and.kfa.e sv{0}, x ¢ [l]p
a-l.x.a € [l]p . Let x e [l]p and z € S. Assume that z + x = 0.
Since (z + x)p(z + 1),z + 1 = 0. Assume that z + 1 = 0. Since

(z + x)p(z + 1), z + x = 0, Similarly we can prove that \fx € [1]p .
zeS[x+2z=0 iff 1+2=0] . Letxce [1]p and z € S.

Assume that z + 1 # 0 and 1 + z # 0. Since (z + x)p(z + 1) and

(x +2)p(1 +2),(z + 1) .(z + x) and (1 + 2)t (x+2) ¢ [l]p :

Therefore [1]p 4 5.

2) Let E be a C - set of a semifield (S,+,*). Let
p = {(a,b)e s ~{0} x s\{o} Ia—l.baE}b{(0,0}}.. We shall show that p
is a congruence on S. Clearly p is an equivalence relation on S. If
S is not an »-semifield then we are done. We may assume that S is an
w_gsemifield. Let (a,b) € pn{(0,0)}, and ¢ € S. If ¢ = 0 then clearly
(ac,be),(ca,cb),(a + c,b + ¢),(c + a,c + ) € p so we are done. lence

we may assume that ¢ # 0. Clearly (ac,ve), (ca,cb) € p. Let d = ab_l,

e=cbl., Ifd+e=0 then ab~t+ cbl =0 and & + ¢ = 0. Because

ab™r ¢ E and E < S, 1+ cb™ > =0 g6 b +¢ =0, hence (a + c,b +¢) e p.
If e + d = 0 then we can show that (¢ + a,c + ©) € p. Hence we may
assume that d + e # O and e +d # 0. So (b + c)_l.(a +c) =
(1+e)tovH(a+e) = (e+ e)l.(d + e) ¢ E. Similarly we can prove
that (e + l)-l.(e +d) € E. Therefore (a + c,b +c), (c +d,c +D) €p

Thus p is a congruence on S.
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Definition 3.7.8 A quotient semifield of a semifield S is a pair

(K,¢) where K is a semifield and ¢:S * K is an onto semifield

homomorphism.

Examples 1) (S/p,m) is a quotient semifield of a semifield S where

P is a congruence on S.

2) Let E be a C - set of a semifield S. Let
o = {(a,b) € S\{0} x 50} a™ b ¢ E} u {(0,0} and S/E = S/p .

Then (S/E,m) is a quotient semifield of S.

Theorem 3.7.9 Let (K,¢) be a quotient semifield of a semifield S and

p = {(a,b) e 8 x5 | ¢(a) =4¢(b)}. Then ¢ is a congruence on S and

there exists an automorphism ¢:S/p -+ K such that the following diagram

S
s/p —— K

v

is commutative

Proof. It is similar to the proof of Theorem 3.5.5.

Definition 3.7.10 Let S,s'be semifields and ¢:S - s'a nomomorphism. Then

kernel of ¢ , denoted by ker ¢, = {d € S|¢(d) = 1}.

/!
Theorem 3.7.11 Let ¢:S + S be an onto semifield homomorphism. Then

ker ¢ 9« S and there exists a natural isomorphism y:S/ker ¢ SI such

that the following diagram is commutative.
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S/ker ¢ -

Proof. First we shall show that ker ¢ 4 S. Because ¢(0) =0 # 1,
0 ¢ ker ¢. Clearly ker ¢ is a multiplicative subgroup of (sN{0}y) and
Y x € ker ¢, a € S\{0} a t.x e Ker 4. Let x € ker ¢ and z € S.

Then ¢(x) = 1. Assume that z + x = 0 so ¢(z + 1) = ¢(z) + ¢(1) =

¢(z + x) = 0 therefore z + 1 = 0. Assume that z + 1 =0

¢(z) + ¢(x)

1}

so ¢(z + x) = ¢(z) + ¢(x) = ¢(z) + ¢(1) = ¢(z + 1) therefore z + x = O.
Similarly we can prove that Vx e Ker ¢, z € S [x +2 =0 iff z + 2z = 0].
Let x e ker $ and z € S. Assume z + 1 # O and 1 + z # 0. Then

o((1 +2) L (x +2)) = (6(2) + 8(2)) 1. (8(x) + 6(2)) = (1 + o(z)

(1 +# ¢(z)) =1 hence (1 + z)-l.(x +z) € ker ¢ . Similarly we can

prove that (z + l)-l.(z + x) € ker ¢. Hence ker ¢ < S.

¢ .
Define y:S/ker ¢ - S as follows: given a € S/ker ¢ choose & € «

and then let y(a) = ¢(a). Then clearly ¢ is an isomorphism such that

yor = 4.

We shall call the above theorem the first isomorphism Treorem of

semifield Theory.

I
Definition 3.7.12 Let (K,$) and (K,$) be quotient semifields of a

o
semifield S. Say that (K,$) is strongly equivalent to (K,$) iff there
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f
exists an isomorphism ¥:K » K such that the following diagram is

commutative .

K ——— K

A
Write this as (K,$) = (K,).

Remarks: 1) = is an equivalence relation on the set of quotient semifields

of a semifield.

2) For each quotient semifield (K,$) of a semifield S,

(K,6) = (8/p,m) where p = {(a,b) € 8 x S[¢(a) = ¢(b)}.

3) For each quotient semifield (K,$) of a semifield S.

1

(K,6) = (S/ker ¢,m).

] ]
Proposition 3.7.13 Let S,S be semifields and ¢:S * S an onto semifield

homomorphism. If p is a congruence on S then (¢ x ¢)(p) is a congruence

'
onS. IfE<S then ¢(E)< s,

Proof. It is similar to the proof of Proposition 3.5.10.

/
Proposition 3.7.14 Let ¢:S + S be a semifield homomorphism. If J is a

/ - /
congruence on S then (¢ x ¢) l(5) is a congruence on S. If E a S then

¢

Proof . It is standard.
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the set of C - sets of S,

Fix a semifield S, let E(S)

the set of congruences on S,

Q
—
9]
—
1}

O

—

[47]
1]

the set of equivalence
classes of quotient semifields

of S under .

We shall define natural relations € on E(S), C(S), Q(S) as € on
N(G), c(G), Q(G) in Section 2.3, respectively. Then the proof that
(E(8),2), (C(8),C), (Q(S),£) are posets is similar to the proof that

(n(G),S), (c(G),2), (Q(G),£) are posets, respectively.

Theorem 3.7.15 For each semifield S, the posets E(S), C(S), Q(S) are

isomorphic.

Proof. It is similar to the proofs of Theorem 3.5.11 and the

isomorphisms have the same form as in Theorem 3.5.11.

Proposition 3.7.16 Let S be a semifield and El,E2 C - sets of S. Then

- | .
El.E2 = {al.aalale El,aEE E2} is the C - set of S generated by ElU E2.

Proof. First we shall show that E1°E2 is a C - set of S.

Note that\ax,y € S[x.y = 0 implies that x = 0 or y = 0]. Because 0 ¢ E

i I
and 0 ¢ Es» 0 ¢ El'EE’ Let a,b € El'E2 then a = 8,85, b= bl'bE
-1 o =1 o,
for some al,ble El’ 8,06 E,. Soa .b= (al.a2 '(bl'b2) =
%, TR PR, P | = :
a, .(al%bl).bz = (a2 .(al .bl).a2).(a21b2) € El'EE' Hence El.E2 is a

multiplicative subgroup of (S\{0},*). Clearly-bla e S\{0}, x ¢ E|.E,
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-1 =
a4  .X.a e El'EQ' Let a € El'E2 and z € S. Then a = al.a.a for some

e E.. Assune that z + a = 0 then a-lz + a, = 0 (since al# 0).

8 € Bj.ey e By 1

-1 -1 = -
Because E, < S and a,’z+a,=0, z+a),= al(a1z+l)—a1.0-0.

Since El 4 S and z + a1 =0, z+1=0. Assume that z + 1 =0 then
Z +a1= 0. Therefore a(z+l=0then a.;lz +za.2 =0, Soz +a-=

s , ol
al(al z + 32) =" Slml}arly we can prove that Vx € E:L.EI2 s

z € S[x +2 =0 if!1:j-z = 0]. Let a ¢ E and z € S. Then a = a-a,

for some a, € El’ a, € E2. Assume that z + 1 # 0 and 1 + z # 0. Then

. ~ .

al(al Z + 32) =z +a#0 and al(a2+ a .z) =a+2 #0 so

=1 -1 -1 -1 -1
a, "z + ag# 0 and a, +a’z # 0. Because E2 45, 1+ a z) .(a2+ 8, z)

S -1 -1 -1 =1 -1
€ E,. Since (al +a ) T.(1 + a; z) = (1 + z) .(a1+ z) and El

o R | -1 -1 b -1, -1
(al +a) z) .(1 + a; z) £ E,. So (1 +2) .(a.la.2 +z) = (al(a.l *a, z))

oy o i S =~ WA, T . | =]
(al(a2+ a) z)) = (al +a z) .(a2+ a z) = (al + a z) (1 + a )

a8,

-1

1+ &Elz)-l(&2+ ailz) € E,.E,. Hence (1 + z)_l,{a +2) ¢ E,-E,.

Similarly we can show that (z + 1)_1.(2 +a) e E,.E,. Therefore E .E, 9 S.

Let E be a C - set containing E. and E,_.

Clearly E, € E,.E, and E, € E,.E 1 A

1552 2 2°

Since E is a multiplicative subgroup of (S\{0},*), E,-E, € E. Hence E,.E,

is the C - set of S generated by Elu E,. #

Proposition 3.T7.17 Let S be a semifield and p1,92 congruences on S.

- = ’a') . i
Then o, P, ((31 > bl b2)|(al,bl) €05 (ae,bz) € p2} is the

congruence on S generated by Py L 02 .
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Proof. It is similar to the proof of Proposition 3.5.13.

Remark ¢ Fix a semifield S, let E ,E, ¢ E(S). Then E, n E, =

g.l.b.{El,Ez} and E .E, = l.u.b. {El,Ez} therefore E(S) is a lattice.

Let p,,0, € Cc(S). Then o, N o, = g-1.b. {pl’p2} and p,.p, = l.u.b.

{pl,pa}. Therefore C(S) is a lattice. Hence Q(S) is a lattice also.

Now we define covariant functors E, C, Q from }éf to g as ve
definedthe covariant functors N, C, Q from ,ﬂto x in Section 2.3,

respectively. Then the proof that E, C, Q are naturally equivalent covariant

functors is similar to the proof that N , C, Q are naturally equivalent.

Remarks: As a result, we have that C is the congruence functor of Mr’
,Jf has a congruence set and C - sets of a semifield are congruence

sets with respect to E.

Now we define covariant functor E', C: Q: from )df,o to % as
we definedthe covariant functors N: C: QJr from Jo to éﬁ in gSection
2.3, respectively. Then the proof that E’, C: Q’ are naturally equivalent
covariant functors is similar to the proof that N. C, Q are naturally

equivalent covariant functors.

Next we shall define naturally equivalent covariant functors from
}df 5 to @ by using equivalence classes of congruences, equivalence
]
classes of C - sets and equivalence classes of quotient semifields

which are defined below.
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‘Definition 3.7.18 Let S be a semifield and E,,E, C - sets in S. Say

that E, is equivalent to E, (El N E.) iff there exists a semifield

a2l B 2
automorphism ¢:S =+ S such that ¢(El) = E,.
Remark : n is an equivalence relation on the set of C - sets of a

semifield.

Definition 3.7.19 Let p be congruences on a semifield S. Say that

1°P2
is equivalent to p, (pl " p2) iff there exists a semifield

&
automorphism ¢:S + S such that (¢ x ¢)(01) = Py

Remark: ~ is an equivalence relation on the set of congruences on a

semifield.

.
Definition 3.7.20 Let (K,¢), (K,b) be quotient semifields of a semifield.

Say that (K,$) is weakly equivalent to (K,J) iff there exist semifield

!
isomorphisms f:S + S and F:K - K such that the following diagram is

commutative 3

g > 9

¢ Jd:’
F !

K s 'K

7
Write this as (K,¢) (K,¢5-
Remarks: 1) ~ is an equivalence relation on the set of quotient

semifields of a semifield.

2) (K,$) = (Kﬂ¢3 implies that (K,¢) ~ (Ki&).
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*
Fix a semifield S, let E (S) = the set of equivalence classes

of C - sets in S under %,

*

C (S) = the set of equivalence classes
of congruences on S under ",

* -

Q (S) = the set of equivalence

classes of quotient semifields

of &8 under ",

: * * *
We define binary relations gonE (S), C (S) Q (S) as € on
* * * .
N (¢), C (G), Q (G) in Section 1.3, respectively. Then the proof that
* * *
(E (8),¢) (C (S8),s) (Q (8),g) are quasi-ordered sets is similar to

(N*(G),é), (C*(G),é) (Qf(G),é) are quasi-ordered sets, respectively.

*
Theorem 3.7.21 For each semifield S the quasi-ordered sets E (s),

* *
Cc (s), Q (8) are isomorphic.

Proof. It is similar to the proofs of Theorem 3.5.1T and the

isomorphisms have the same form as the isomorphisms of Theorem 3.5.1T.

; et 4 9,
Now we define covariant functors E , C Q from £4 to

2
&, @
as define the covariant functors N , C , Q from 5 to in
, * % %
Section 2.3, respectively. Then the proof that E , C , Q@ are
naturally equivalent covariant functors is similar to the proof that

* * *
N,C, Q are naturally equivalent.

Remark: We can prove that the following subcategories of )gff have

a congruence set as we proved that Qdf ‘has a congruence set :
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1) the category of additively commutative semifields and

semifield homomorphisms,

2) the category of multiplicatively commutative semifields

homomorphisms,

3) the category of commutative semifields and semifield

homomorphisms.

Lastly we shall consider some theorems which use C - sets of

semifields (congruence sets).

Definition 3.7.22 A subsemifield of a semifield S is a subset of S

which is a semifield.

Definition 3.7.23 Let E be a C - set of a semifield S. Then E is said

to be a maximal C - set of S iff E is a C - set of S such that EC E

/

implies that E = E.

Definition 3.7.24 Let A be a subsemifield of a semifield S and A # S.

'}
Then A is said to be a maximal subsemifield of S iff A is a subsemifield

/ /
of S such that AC A implies that S = A.

Theorem 3.7.25 Let E be a C - set of a semifield S. Then there exists

a bijection between the set of C - sets of S containing E and the set
of C - sets of S/E and this bijection take maximal C - sets to maximal

C - sets.

Proof. It is similar to the proof of Theorem 3.5.23 ,
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Remark: We can prove that for each C - set E of a semifield S there
exists a bijection between the set of subsemifields of S containing E
and the set of subsemifields of S/E and this bijection take maximal

subsemifields to maximal subsemifields as we proved in Theorem 3.7.25.

Definition 3.7.26 Let S be a semifield. Then S is said to be simple

iff S has only one C - set {1}.

Examples 1) Let G be a simple group. Define binary operations + and-
on G u {0} by a.0=0=0.a and a + b =0 for all a,b € G U{0}.Tken

(G u{0},+,*) is a simple semifield .

2) Q; > @:’ H_; and ﬂ: are simple semifields.

3) A skew field is simple.

Remark: If E is a maximal C - set of a semifield S then S/E is

simple.

Proposition 3.7.27 Let (S,+,") be a null semifield such that (S\{Q},")

is not a simple group. Then there exists a nontrivial congruence on S.

Proof. Let N be a nontrivial normal subgroup of (s~{0},*).
-Define p = {(a,b) & SN0} x S\{O}Ia_l.b e N} u {(0,0)}. We shall show
that p is a congruence on S. Clearly p is an equivalence relation on

S. Let (a,b) ¢ p and ¢ ¢ S. Because S is a null semifield,

(a + c,b + ¢c) =(0,0) € p and (¢ + a,c + b) = (0,0) e p. Ifaborc =20

then clearly (a.c,b.c),(c.a,c.b) € p. so we are done. Hence we may
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assume that a,b,c # 0. Because e~ lb ¢ N, (c.s)“l.(c.b) € N and
(a.c)-l.{b.c) e N so (c.a,c.b), (a.c,b.c) € p. Hence p is a congruence
on S. Because —n € N such that n # 1, (n,1) € p. Hence p is a '

nontrivial congruence on S. ' #

Proposition 3.7.28 Let (S,+,') be an almost null semifield. Then there

exists only one congruence A on S.

Proof. Let p be a congruence on S. We must show that p =4 .
Suppose not, so - (a,b) € p such that a # b. Then (a + a)o(a + b).

Therefore a p 0 which is a contradiction. Thus p = A . #

Corollary 3.7.29 If S is an almost null semifield then S5 is simple.

Wedderburn's Theorem says that if F is a finite skew field then
F is a field. For a proof see in [3]. In this thesis we shall generalize

Wedderburn's Theorem.

Theorem 3.7.30 If S is a finite O-semifield such that + is commutative

then * is commutative ie. S is a commutative semifield.

Proof. Let S be a finite O-semifield such that + is commutative.

case 1 S is a skew field then by Wedderburn's Theorem, S is a

field so * is commutative

case 2 S is not a skew field. Then (SMO},+,*) is a P.R.D.

n
o
x
o

Therefore SM0} is a finite P.R.D. By Theorem 3.5.31, S\{0}

where x + y = X Vx,yeDl a.ndx+y=ny,yeD2. Letx,yEDl.
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Then x + ¥y = x. Since + is commutative, y + x =x+y soy=y t+x=
x +y = x. Therefore D,= {1}. Similarly we can show that D= {1}
Therefore S\{0} = {(1,1)}. So s = {0,1}. Because 0.1 = 1.0 =0 = 0.0

and 1.1 = 1, S is a commutative semifield. #

Remark : Let S be a left (right) zero semifield. Suppose + is
commutative. We have that 1 =1 + 0 =0+ 1 =0 which is a contradiction.

Hence + is not commutative.

3.8 Semifield-modules.

In this section we shall work with left congruences on a semifield.
But everything that we prove for left congruences can be similarly proved

for right congruences also. As in section 3.7, we shall consider the

categories ﬂﬂ;, }d;,o’ Aﬁf,i

We shall define naturally equivalent contravariant functors from

}éf to G/ s naturally equivalent covariant functors from df 2 to 39
3
and naturally equivalent covariant functors from ,fo 3 to by
3
using

1) double left congruences, double left C - sets and quotient

double left semigroup spaces,

2) multiplicative left congruences, multplicative left C - sets

and quotient left semimddules,

3) additive left congruences, additive left C - sets and quotient

left semifield modules.
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Definition 3.8.1 Let S be a semifield. A double left congruence on S

is an equivalence relation p on S such that for each a,x,y € S

i) xp 0 iff x =0,

ii) x p y implies that (a + x)o(a + y) and (a.c)p(a.y).

Definition 3.8.2 Let S be a semifield. A multiplicative left congruence

on S is an equivalence relation p on S such that for each a,x,y € S.

1) xp 0 a5 0l

ii) x p y implies that (a + x)p(a + y), (x + alp(y + a) and

(a.x)p(a.y).

Definition 3.8.3 Let S be a semifield. An additive left congruence

on S is an equivalence relation p on S such that for each a,x,y € S
i) xp O gliTrex =0,
ii) x p y implies that (a + x)o(a + y) , (a.x)p(a.y) and

(x.2)p(y.a).

Definition 3.8.4 A double left C - set of a semifield S is a

multiplicative subgroup E of (S\{0},*) such that
i) for each x e E, 2z € S [z +x=0 iff z + 1= O],

ii) for each x e E, z € S [z +1#0 implies that (z + 1)'1-

(a + x) € E].
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‘Definition 3.8.4 A nmultiplicative left C - set of a semifield S ig

@ multiplicative subgroup E of (S\{0},*) such that
i) foreachx e B, zeS[z+x =0 1ffz +1 = 0].
ii) for each x € E, z ¢ § [x +2=0 iff 1+ 2z = 0],

iii) foreachx € E, 2eS[2+1#0 and 1 + 2 # 0 implies

that (z +1)™(z +x) , (1 +2) L (x +2) ¢ E]

Definition 3.8.5 An additive left C - set of a semifield S is a

multplicative subgroup E of (57{0},*) such that
i) for each x ¢ Eglz e s\{0} z_l.x.z e B,
ii) for each x ¢ B.zesS'[z+x=0 ifrz + 1= 0],

iii) for each x e BaigieeS [z + 1 # 0 implies that (z + l)'l.

(z + x) ¢ Eﬂ. .

Definition 3.8.6 Let S be a semifield. A double left S-space is a

triple (M,+,*) where (M,+) and (M,*) are left S-spaces such that
r«(s +m) = r.s + r.m, l.m=m for all r,s ¢ S, m € M, and there
*

* *
exists an element m in M such that r.m =m for all r €8, then

. *
we shall call m the zero element of M.

Definition 3.8.7 Let S be a semifield. A left S-semimodule is a

triple (M,+,+) where (M,+) is a semigroup and (M,+) is a left S-space
such that (a +d).m= a.m + am, a.(m + n) = a.m + a.n l.m=m for

/ *
all a,ae S, m,n€ M and there exists an element m in M such that
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* *
-a.m =n for all a € S then we shall call m the zero element

of M.

Definition 3.8.8 Let S be a semifield. A left S-module is a triple

(M,+,) where (M,+) is a left S-space and (M,+) is a group with zero.

Remark: For each semifield S, S is a double left S-space, a left S-

semimodule and a left S-module.

Now we shall work with double left congruences. But everything
that we define and prove for double left congruences can be similarly
defined and proved for multiplicative left congruences and additive left

congruences.

L
Definition 3.8.9 Let S be a semifield and M,M double-left S-spaces.

/
Then a map ¢:M + M is said to be double left S-equivariant iff

¢(r +m) = r + ¢(m),6(r.m) = r.¢(m) for all r e S, m € M and ¢(a) =
0 iff a = 0 for all a € M where O,OIare the zero elements of M,M’
respectively.

Remarks: 1) If ¢:M > Mfis a bijective double left S-equivalent map
then ¢-l is also double left S-equivariant. We shall call such a map

a double left S-space isomorphism.

2) If p is a double left congruence on a semifield S then
the set S/p of equivalence classes of S can made into a double left
S-space in natural way and the natural projection map m:S > S/p is

an onto double left S-equivariant map.
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3) If p is a double left congruence on a semifield S than

[1] = {a€ slap 1} ia a double left C - set of S.
P

4) If E is a double left C - set of a semifields S then
{(a,b) € 570} x snio}atb e E}u{(0,0)} is a double left

congruence on S.

Definition 3.8.10 Let S be a semifield. A quotient double left S-space

is a pair (K, $) where K is a double left S-space and ¢:5 * K is an onto

double left S-equivariant map.

Example (S/p,m) is a quotient double left S-space where p is a double

left congruence on S.

Theorem 3.8.11 Let S be a semifield and ¢:S + M an onto double left S-

S-equivariant map. Let p = {(a,b) € § x S|¢(a) = ¢(b)}. Then p is
a double left congruence on S and there exists a double left S-space

isomorphism ¥ from S/p to M such that the following diagram is commutative.

Proof. It is similar to the proof of Theorem 3.7.9.

LA
Definition 3.8.12 Let (K,¢), (K,$) be quotient double left S-space

where S is a semifield. Say that (K,¢) is strongly equivalent of

£y ’
(K,4) iff there exists a double left S-space isomorphism ¥:K + K such

that the following diagram is commutative. =
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A |
Write this as (X,4) = (K,4).

Remarks: 1) = is an equivalence relation on the set of quotient double

left S-space.

2) For each quotient double left S-space (K,¢), (K,¢) = (S/p,m)

where p = {(a,b)e S x S|¢(a) = ¢(v)}.

) 1
Proposition 3.8.13 Let S,S be semifields and ¢:S = S an onto semifield

homomorphism. If p is a double left congruence on S then (¢ x ¢)(p) is
f
a double left congruence on S. If E is a double left C - set of S then

]
¢(E) is a double left C - set of S.

/ I
Proposition 3.8.14 Let S,S be semifields and ¢:S > S a semifield

I -
homomorphism. If p is a double left congruence on S then (¢ x ¢) 1(5) is
r I
a double left congruence on S. If Eis a double left C - set of S then

=
$ l(E) is a double left C - set of S.

Fix a semifield S, let LE(S) = the set of double left C - sets of

S,

LC(S) = the set of double left congruences

on S,
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Lo(S) = the set of equivalence
classes of quotient double left

S-spaces under ",

Ve define natural relations € on LE(S), LC(S), LQ(S) as C on E(S),
c(s), o(s) in section 1.3, respectively. Then the proof that (LE(S),C),
(Lc(s),C), (LQ(s),C) are posets is similar to the proof that (E(S),C),

(c(s),¢) (Q(s),C) are posets, respectively.

Trheorem 3.8.15 For each semifield S, the posets LE(S), LG(S), LQ(S) are

isomorphic.

Proof. It is similar to tle proof of Theorem 3.T7.15 and the

isomorphisms are the same form as in Theorem 3.T7.15.

We define contravariant functors LE, LC and LQ from ﬁdf to éﬁ
as we defined the contravariant functors E, C and Q from Aﬂ;'to Sﬁ in
Section 3.7, respectively. Then the proof that LE, LC and LQ are naturally
equivalent contravariant functors is similar to the proof that E, C and Q

are naturally equivalent contravariant functors.

/ / ’
We define covariant functors LE, LC and LQ from,ﬁﬁ

> to 573 as

we defined the covariant functors E: ¢’and Q!from Xd; v to éf in

Section 3.T, respectively. Then the proof that LE: Lc and Ld are

f,

naturally equivalent covariant functors is similar to the proof that E: ¢

and Q’ are naturally equivalent covariant functors.

Definition 3.8.16 Let S be a semifield and El’E2 double left congruence

is equivalent to EE(EIQJ E2) iff there exists

sets in S. Say that E1
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a semifield automorpnism ¢:S + S such that ¢(E1) =E,.

Remark: “~ is an equivalence relation on the set of double left

C - sets of S.

Definition 3.8.17 Let P19P5 be double left congruences on a semifield
S. Say that Py is equivalent to Py (pl " p2) iff there exists a .

semifield automorphism ¢:S + S such that (¢ x ¢)(pl) = poe

Remark: "~ is an equivalence relation on the set of double left

congruences on S.

Definition 3.8.18 Let (K,¢),(K:J) te quotient double left S-spaces . Say

that (K,9) is weakly equivalent to (K:¥3 iff there exist a semifield

automorphism f:S + 5§ and a double left S-space isomorphism £1K > K such

that the following diagram is commutative
f
—_——

' -
R e————— o
1 o
™ =
S~

P
Write this as (K,¢) v (K,9).

Remarks: 1) ~ is an equivalence relation on the set of quotient double
left S-spaces.

2) (K,4) = (K,¢) implies that (K,0) ~ (K,4).

*
Fix a semifield S, let LE (S) = the set of equivalence classes

of double left C - sets of S,
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»*
LC (8) = the set of equivalence classes
of doulle left congruences on S,
*
LQ (S) = the set of equivalence

classes of quotient double left

S-spaces under v,

* * *
Ve define binary relations < on LE (S), LC (S), LQ (S) as g on
* * *
E (S), C (S), @ (S) in Section 3.7. respectively. Then the proof that
* * *
(LE (8),<), (LCc (8),<), (LQ (S),<) are quasi-ordered sets is similar to

* % *
(E (8),<),(Cc (8),<), (Q (S),5) are quasi-ordered sets, respectively.

*
Theorem 3.8.19 For each semifield S, the quasi-ordered sets LE (S),

* *
LC (S), LQ (S) are isomorpkic.

Proof. It is similar to the proof of Theorem 3.7.21, and the

isomorphisms have the same form as the isomorphisms of Theorem 3.7.21.

We define covariant functors LE . LC and LQ from ,Qi to QQ
as we defined the covariant functors E s C* and Q from ,@5 to @
in Section 3.7, respectively. Then the proof that LE 3 LC* and LQ*
are naturally equivalent covariant functors is similar to the proof

* % *
that E , C and Q are naturally equivalent covariant functors.
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