CHAPTER II
SEMIGROUPS -

This chapter will study congruences and partial congruences on

semigroups and groups.

2.1 Semigroups
This section will consider the following categories :
1) The category Ebg of semigroups and semigroup homomorphisms.

2) The c&tegory_&&g 5 Oof semigroups and semigroup isomorphisms.
3

First we shall define naturally equivalent contravariant functors
from ﬂﬁg to 55 by using congruences and quotient semigroups which are

defined below.

Remark: We can prove that if p is an operation preserving equivalence
relation on a semigroup (S,7) then the set 8/p of equivalence classes

of S can be made into a semigroup in natural way and the natural projec-
tion map T : S + S/p is an onto semigroup homomorphism. Hence the

definition of a congrucence on an object (S,*) in,ﬂjg(or ﬁdg i) is the

]

same as the definition of an operation preserving equivalence relation

on the semigroup (S,+).

Definition 2.1.1 A quotient semigroup of a semigroup S is a pair (K, ¥)

where K is a semigroup and ¢ : S + K is an onto semigroup homomorphism.
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Example (S/p,M) is a quotient semigroup of a semigroup S where p is

a congruence on S.

Theorem 2.1.2 Let (K,y) be a quotient semigroup of a semigroup S and

p = {(a,b) € 5 x s|y(a) = ¥(b)}. Then p is a congruence on S and there

exists an isomorphism wﬁS/p + K such that the following diagram is

o 2K,
IO

&
G;o'—“"‘;‘"*“* =

v

commutative

Proof, Clearly p is a congruence on S since ¥ is an onto semigroup

*
homomorphism. Define $:S/p = K as follows: given a £ S/p choose a € a

*
and let Y(a)

1}

*
v(a){ Then y*s an isomorphism such that Yorm = w.

=k

F A
Definition 2.1.3 Let (X,¥) and (K,)) be quotient semigroups of a

| B . = _!!.
semigroup S. Say that (K,y) is strongly equivalent to (K,y) iff there

/
exists an isomorphism wﬁK =+ X such that the following diagram is

S
7N\
/
K K

» 007164

commutative

]

!

Write this as (K,p) = (K,Wﬁ.

Remarks : 1. = is an equivalence relation on the set of quotient

semigroups of a semigroup.
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2. For each quctient semigroup (K,y)of a semigroup S,

(K,9) = (S/p,m) where p = {(a,b) € 5 x s|u(a) = ¥(b)}.

/
Proposition 2.1.4 Let y:S + S be a semigroup homomorphism. If o is &

/ = 4
congruence on S then (¢ x ) l(p) is a congruence on S.

Fix a semigroup S, let C(S) the set of congruences on S,

[

the set of esquivalence classes of

Q(s)

quotient semigroups of S under =

Now we shall define natural relations on thesze sets making them

into posets.

1) Let C on €(3) be set inclusion. Then clearly (C(5),C) is
a poset.

2) Let C on Q(S) be defined as follows: given a,8 e Q(S)
choose ( ,wl) € O, (Kg,wz) € B then say that o € B iff there exists an
First we shall

onto semigroup homomorphism ¥:K -+ K_ such that ¢o¢l= 2

1 2 I
. : ) - L 7ihetd 2 od
show that € is well-defined. Let “{1"“1) E (h2,¢2) and (Kl,wl) = (K2,¢2).
S, /
Suppose 53 an onto homomorphism w:K1+ Kl such that ¢owl= wl. We must show
/ L !
that 3 an onto homomorphism w*:K2+ K2 such that ¥ o$2= $,. Because

& t . e
(K1,¢1) = (K2,¢2) and (Kl,wl) = (Ke,w2), T an isomorphism n:K,> K osueh
/

F Y O 4
that nop.= Y. and Eaan isomorphism n:K. -+ K. such that noy. = ¢
2 "1 2 1

5* Define

* [: * *
] :K2 - K2 by ¢ = nawon. Then ¢ dis an onto homomorphism such that

* /
¥ o¥,= ¥,. Hence C is well-defined. Next we shall show that (Q(S),C)
is a poset. Clearly C is reflexive. Let a C 8 and R C a. Choose

¥

I f ‘i
(K,9) € a and (X,9) € 8. Then J an onto homomorphism ¢:X - K such that

* / **f ** 7
yoy = ¢ and Ea an onto -homomorphism ¥:K - K such that yop = ., We shall
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*
% %
show that yop = id.. Let k ¢ K soJa ¢ S such that y(a) = k then
#*
k3

* * / *
Yoy (k) = Jovou(a) = yoy(a) = y(a) = k. Hence oy = 1d, . Therefore
* *® / '
Yis 1-1. Thus ﬁiis an isomorphism such that Yoy = . Hence o = B,

.

ie. € is antisymmetric. Clearly € is transitive. Therefore (Q(S),C)

is a poset.

Theorem 2.1.5 For each semigroup S, the posets C(S) and Q(S) are

isomorphic.

Proof. Let S be e semigroup. Define y:Q(S) » C(S) as follows:

given a e Q(S) choose (K,n) e a'and let y(a) = P, Where

Py = {(a,b) € 8 x 3|n(a) = n(b)}. First we shall show that Y is well-
* -

defined. Let (Kl’nl) = (Ke,nzlsﬂJEaan isomorphism VK > K, such that

*
¢0n1= Ny. Then clearly o= Pse Hence Y is well-defined.

Next we shall show that ¢ is 1-1. Let a,8 € Q(S) be such that
w(a) = ¥(B). Choose (Kl,nl) e o, (Kg,an c 8 Then_pa = Pge Define
w?Kl > K, as follows: given k ¢ Kl thenfa 8 € 5 such that nl{a) =k,

*

let (k) = nz(a). Because pa(_; Pgs w*is well-defined. Since ,oBC P
' e

w*is 1-1. Clearly w*is onto. Because N, N, are homomorphisms, Y is
a homomorphism . Hence ¥ is an isomorphism such that ﬁBnlz n,» ie. a = B.
Thus ¢ is 1-1.
Next we shall show that y is onto. Let p € C(S). Then (8/p, %)
is a quotient semigroup of S, and ¢([S/p,n]) = {(a,b) € 8 x 5| na) = #(b)}

= {(a,b) € S x S|apb} = p . Hence y is onto.

Next we shall show that y is isotone. Let a,B € Q(S) be such that

17 * /
@& B. Choose (K,n) € @, (K,n) € B. Then an onto homomorphism ¥:K + K
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* '
such that ¥ on = n .Clearly Py S P+ Hence p(@)C P(B). Thus ¥ is isotone.

B8
Lastly we shall show that ¥~ is isotone. Let P10, € C(S) be

such that plg Poe Define tb’:S/pl -+ S/p2 as follows: given y € S/pl choose

a € Y and then let W(y) = (2] 5+ Because 0,S 0y, v is well-defined.

Clearly ¥' is an onto homomorphism such that lbfoﬂl= m,. Thus w"l(pl)g li'—l(pe) .

Therefore w‘l is isotone. Hence ¥ is an isomomorphism, ie. Q(S) is

isomorphic to C(S). ‘ . it

We shall show that for each semigroup S (C(8),¢), (a(s),C) are
lattices. Let S be a semigroup. For each p,,P, € c(S) denote plﬂ P, by
plf\ P, end the congruence on S generated by e,U p, by pr Pye Let
PisPy € c(S). Then Dl/\ Py= g.l.b.{pl,pe} and pr Py = l.u.b{pl,pz}.
Hence (C(S),S) is a lattice. Let ¥:Q(S) = C(S) be the isomorphism in
Theorem 2.1.5. Let a,8 € Q(§) then ¥(a),0(8) € c(58). So ¥(a) A ¥(8) =
g-1.b.{¢y(a) ,¥(B)} and ¥(a) VU(B) = 1. u.b.{¥(a),¥(B)}. Therefore
[(srv(@)Aw(8),m)] = »7H¥(x) A 9(B)) = g.1.b.{a,8) ana
[(s/w(a) v w(a),n')] = v (@) V ¥(8)) = L.wb.{a,8} . Hence (Q(S),C)

is a lattice.

Now we shall define contravariant functors from,é to % :
g
s

1) Let S,S'be in Ob Ag and ¥:S > S a semigroup homomorphism.
Then c(s),c(s’) are in Ob c%. Define c(w):c(s') + c(s) by C(¥)(p) =
(v x ¥)"L(p) Voe C(Sf). Clearly C(¥) is an isotone map. Since
C(ids) = idc(s) VS in Ob/dg and C(¥on) = c(n)oC(¥) V semigroup
homomorphisms ¥,n whenever VYon is defined, C is a contravariant

functor from /dg to % .
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2) Let S, g be in 0b ﬁé and ¥:S - S a semigroup homomorphism.
Then Q(S), Q(S) are in Ob &l . Define Q(‘P).Q(S) + Q(S) as follows: given

[(s/bx) ™ (p),m)]

a € q(s) choose (K,n) € o and then let Q(¢¥)(a)
! )
where p = {(x,y) € S % 8[n(x) = n(y)}. First we shall show that Q(¥) is

well-defined. Let (Kl’nl) = (Kz,ne) then p.= P o (¥ x 'b)_l(pl) =

3" 2

(v x 9)7Hp,). Thererore (8/(¥)™Mp,),m,) = (5/(x¥)(p,),m,).

Hence Q(¥) is well-defined. Next we shall show that Q(¥) is isotone.

Leta,B € Q(S) be such that @ € 8. Choose {Kl,nl) e @, (K,.n) €8

2
then P, G p,. So (¥ x zb)"l(cl) AL lb)']“(pe). Therefore
(5/(¥xv) (o 1)s™) S (S7(¥s)S (02),“) ie. Q(¥)(e ) ¢ Q¥)(p,).
Hence Q(¥) is isotone. Lastly we shall show that Q is a contravariant
functor from }é to % .  Clearly Q(ld ) = 1d V S in 0b fd
Let ¢:5 > S and w S > S be semlgrcup 1mnomorphisms. Then &olb 8> ..#
is a homomorphism. Let a ¢ Q(SJ choose (K,n) € @ then (Q(‘P}OQW’))(“) =
a(w) [(s7(#) (o), 1] = [s ) Lo (wx0) (o) ,m)) = [(s/(Woumilon) ™ (p) 1)) =
Q(‘PZ)W(“)- Therefore Q(V¥)of (ll') 'Q(Ielod’) Hence Q is a2 contravariant

functor from }jg to g{’

Next we shall show that C is naturally equivalent to Q. For
each S in 0b ng, define fS:C(S) 2> Q(S) be the map in Theorem 2.1.5.
Then fs is an isomorphism. We shall show that f is a natural equivalence
from C to Q. Let S,S; be in Ob }ég and ¢:S5 * Sla semigroup homomorphism.

So we have f,, f_/and the following diagram

S s
£
s 2§ (R - I, a(s)
$ C(¢) p A Q(¢)
3

s eld) =————3 "igld)
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‘We must show that Q(¢)ofy/= fSOC(¢). Let p € 0(5) then (Q (¢)of50(p)
(@(8)) [(s70,m] = [(s/(4x) ™ (p),m] = 2508 x 9)7H(p)) = 250C(0)(0) -

So Q(¢)ofsf= fsoC(p). Hence f is a natural equivalence from C to Q.

Remark: We see that C is the congruence functor of ,Xﬁg.
Now we shall define naturally equivalent covariant functors from
‘Qig i to QD using equivalence classes of congruences and equivalence
3

classes of quotient semigroups which are defined below.

Definition 2.1.6 Let o1 and 05 be congruences on a semigroup S. Say that

P, is equivalent %o o, (pl v 02) iff there exists an automorphism f:S > S
such that (f X f)(pl) =/ 0ps

Remark: Vv is an equivalence relation on the set of congruences on a

semigroup.

Definition 2.1.7 Let (K,) and (K,$) be quotient semigroups of a semigroup

L |
S. Say that (K,$) is weakly eguivalent to (K,¢) iff there exist.isomorphisms

/ |
f:5 + 8 and f:K - K such that the following diagram is commutsative :

J
K

Il 7
Write this as (K,¢) ~ (K,0)

f
—_—
!
f
e

= ‘j;‘“m

Remarks: 1) ~ is an equivalence relation on the set of guotient semigroups

of a semigroup.

2) (K,$) = (K,§) implies that (K,$) » (K,8). (Just let £ = id )

*
Fix a semigroup S let C (S) = the set of equivalence classes of

congruences on £ under v
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*
Q (8) = the set of equivalence classes of

quotient semigroups of S under ~,

We shall define birnary relations on these sets making them into

quasi-ordered sets,

*
1) Let the binary relation g on C (8) be defined as follows:

*
given a,8 € C (S) say that @ < 8 iff there exist o. & G, po& B such that

1
*
plg P, .« Clearly < is well-defined and (C (S),<) is a quasi-ordered set
%*
2) Let the binary relation < on Q {S) be defined as follows:
#* £
given a,8 € Q (8) say that o/s B iff there exist (K,n) e «, (K,n) ¢ B,
/
an onto homomorphism P:K —+ Xjand an automorphism ¢:5 + S such that
*
Yon = ﬁbwﬂ Clearly < is well-defined and (Q (8),<) is a quasi-ordered set.

% %
Theorem 2.1.8 For each semigroup S the quasi-ordered setgC (s), @ (s)

are isomorphic.

* % ®
Proof. Let S be a semigroup. Define ¥:C (S)~» Q (8) as
) %
follows: given a € C (S) choose p & o and then let vla) = [(s/0,)]
*
First we shall show that ¥ is well-defined. Let p1 Y 92 thenfa an

’
automorphism ¢:S + S such that (¢ x ¥)(p.) = p Define y:S/p. - S/p
1 T 2

2.
/
as follows: given B ¢ S/pl choose s € 8 and then let y(B) = [¢(s)]2-
/
.Since (¢ x w}(pl) € py5 ¥ is well-defined. Since Py & (¥ x ¢)(p1),
4 i /
¥ is 1-1. Clearly ¢ is an onto homomorphism such that wonl = néow .

*
Hence ¥ is well-defined.

*
Next we shall show that ¢ is 1-1. Let pl, p2 be congruences on:

S such that (S/pl,ﬂz) " (S/pz,ﬂe) so: 7 an isomorphism ¢:S/ol > 3/92
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. 1 /
and an automorphism P:S =+ S such that Yom, = ﬂ20¢. We want to show that

1
} /
(¢IX ¢J(Dl) =0, Let (a,b) ¢ Py then nl(a) = wl(b) so n2o¢?a) = gzow(b)

ie. (y(a) ,w?b)) € p,. Therefore (v x w’)(pl)g py- Let (a,b) € P, then

’ /
JIx,y € 8 such that wkx) = a, Y(y) = b then woﬁl(x) = wonl(y) SO

, SO (a,b) e (¥ x ¢3(01)- Hence
*

! / J /
po & (¥ x ¥)py). Thus (¥ x y)(p,) =¢,. Sop, ~p,. Therefore ¥ is

wl(x) = ﬂl(y) therefore (x,y) € p

1—14

= *
Next we shall show that ¢ is onto. Let a ¢ 9 (S) choose (¥,n) £ a

*
then define p, = {(a,b) £ 5 % Sin{a) = n(b)}. so [p“] e C (S) and

w([pu]) = [(SXpa,w)l = [(¥,n)]'2 a. Therefore y*is onto.

* #
Next we shall show that ¢ is isotone. Let a,8 € C (S) be such °

that a < 8. Then p, <a e 8 ‘such that pl‘; Define

1p2 02-
w:s/pl > S/p2 as follows: given y € S/pl choose a £ vy and then let

v(y) = [a]Q. Since 5. C p ¥ is well~defined. Clearly ¥ is an onto

i) 2"

homomorphism such that &owl = 1,50 ids. Hence [(S/pl,ﬂl)] S [{Sfpesjz)]
*
ie.} is isotone.

% *
Lastly we shall show that _1is isotone. Let a,B e Q (S) be

such that a € B then E}(Ki,nl) € a,(:e,ne) € B, an onto homomorphism

! ) /
w.Kl +* K2 and an automorphism ¥:S - S such that wonl = n20¢- Clearly
) %1 #
(p x W)(pl) € p,. Hence % “is isotone. Thus C (S) is isomorphic to
*
Q (s). #

Now we shall define covariant functors from,ﬂﬁg 5 to CQ.

£l

/ /
1) Let S,3 be in Ob dg i and Y:S -+ S a semigroup isomorphism.
2
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Then C*(S), C*(és are in Ob(i). Define C*(w):C*(S) > C*(SB as follows:
given a € C*(S) choose p ¢ @ and then let (C*(w))(a) = [($ X w)(ﬂ)]-
First we shall show that C*(w) is well-defined. Let P, v P, SO = an
isomorphism w?S -+ S such that (¢*x w;(pl) = p2. We want to show that

(¥ x 9)(py) % (¥ x ¥)(p,). Define VS8 by b= Voboh Y . THen ¥

is an isomorphism such that (wfx ¢3($ X w)(ol) = (yp x w)(pz). Hence
C*(w) is well-defined. Next we shall show that C*(¢) is isotone. Let
a,B € C*(S) be such that a < 8 then 53 Py €8, 0, E B such that 91§; Por
Clearly (¢ x ¢)(Ol) C (¥ x w)(ag). Hence C*(w)(a) < c*fw)(a). Therefore

%
C (¢ is isotone. Lastly we shall show that C is a covariant functor

*
from ,d . to@ Clearly €/ (idl) = ia 4 S in Ob;é s
1 S " g,1
¢ (8) ! Vi

o

N
Y:S -+ S and ¢ 5 + S Dbe semigroup isomorphisms. Then Yo¥:5 > S is a

H

semigroup isomorphism . Let o ¢ C*(S) choose P € O then C*(¢g¢)(03 =
[woq, x yop)(p)] = [(¥' x lol x 9)(e)] = c W)[(v x ¥)(p)] =
(C (¢)oC (p))(a) Hence ¢ f¢0$) =@ (¢)oc (). Therefore e

covariant functor from ﬂd . to Ci).

!
/ ﬁd /
2) Let 5,5 be in Ob i and :S5 + S a semigroup isomorphism.
i ® (59 : * % ¥
Then Q (S), Q (S) are in 0b . Define Q (¢):Q (8) = Q (8) as follows:

given a € Q*(S) choose (K,n) € a and then let Q*(w)(u) = [(S/("b % 4o ),w)]
o

*
where B ® {(a,b) € S x s|n(a)= n(b)}.First we shall show that § (y) is
well defined. Let (K ,n ) ~ (KE’nQ)' Then by the proof of Theorem 2.1.8 .,
Py v P, hence (¥ x ¥)(p;) v (¥ x ¥)(e,) therefore

® . = }
(S/(¢xw)(ol)’“i) v (S/(¢x¢)(02J’ﬂ2) ie. Q is well-defined. Next we shall

* #
show that ¢ (g) is isotone. Let a,8 € Q (S) be such that a < B then by the

proof of Theorem 2.1.8 ,[pu] < [pB] hence [(§ x w)(pa)] < [(v x ¢)(ps)]
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‘therefore [(S/(ww(pa),nu)] < [S/(‘bxw(ps)’“ﬁ)] . Hence

Q*(IP)(G) < Q*{IJJ)(B) ie. Q*(QJ} is isotone. ILastly we shall show that

* *
Q is a covariant functor from d N 7. @ . Clearly 9Q (ids) = id

*
B Q (s)
» / 1 ¢ &
VS in Ob dg 5 Let $:S + S and ¥:5 + S be semigroup isomorphisms.
3

! i #
Then YoyY:S + S is a semigroup isomorphism. Let @ € Q (S) choose

(Ryn) ¢ @ then ( ()o@ (1))(@) = @ W [(S/ yyy(o 1] =
x

[(s"/ufxw')o(wxwma},n”)] = [(s7(vopxuoy)(s,),m] = (" (Wob))(a). Hence

% 2 #* *. *
Q ($)oq () = q (Pop). Therefore § is & covariant functor from

’dg i to @.

* *
Next we shall show that C is naturally equivalent to @ . For

. ¥ % *
each 5 in Ob dg ; » define £5:C (s) + Q (S)to be the map in Theorem 2.1.8.

*

*
Then £ is an isomorphism. We shall show that f is a natural equivalence

[}

%

# s ’

from C to Q . Let S,51in 0b ﬁjg 5 and ¥:S + S a semigroup isomorphism.
3

#*

*
So we have fg, I‘S; and the following diagram

y fis 3S
5 C (§) —————— 3 (3)
*
v c (y) . Q2 (y)
LS,
* Y *
/ C'(8) ————————p Q (S)

* * * * *
We must show that Q (y)ofy = fq.«o C (). Let a € C (8) choose p £ a

* *

then (Q (v)ot,)(a) = @' (¥) [(s/0,m)] = [(s‘/(w)(p),n)] = £ [(wx)(%a)] =

#* % %
(fs oC (¥))(a). S0 Q (lp)of: = f;;o C*(r.p). Hence I‘* is a natural

[



* *
-equivalence from C to Q .

*
Hence there exist naturally equivalence covariant functors C , @

from z’g,i to @ .

Next we shall consider properties of semigroups and give some

theorems.

we have that ([N,+) is a semigroup. For each pair (m,n) of
elements in IN » we shall define a new semigroup denoted by [me )

Let m,n € N. put s=m+ n. ‘Let N(m &) = {1,2,..4,8-1}. We shall -
]

. oy . i
define a binary operation x on ;T\l L
Vi,

) making UN(m n}’*) is a

semigroup. For each i,j € i'N, let
(m,n)

i+j-s
A, o) IR k3 N——— ] and
(i,J)
n
0 i+ J<s,
1 =
(i,3) et . .
min n{i,j) otherwise,
t i - i . i
hen i + ] l(l’J)n S'N(m,n) Define % on [N(m,n) by

i®xj=1+] - l(i g7 By [2]( IN{m n)’*) is a semigroup and the

cardinality =m + n - 1.

25

*



Theorem 2.1.9 IN iff m = pand n = g.

(man) - (PsQ)

Proof. Assume that IN = [N . Let y: N
— ( (p,a)

m,n) (myn) ~  (p,a)

be an isomorphism. We shall show that m = p. Suppose that m # p.

Assume that m > p. Claim thet Va eN ) [& <m implies that

]

y(a) < p]. Tt suffices to show that Va EN(m n)[\v(a) 3 p implies that
L]

a3 m] . Let a ElN(m o3 be such that ¥(a) > p so P(a) % a = ¥(a).

[}
w

Because ¥ is an isomorphism, a * tp"l(q} = w_l(np(a.) *#q) = tb-l(\b(a))

so & > m. Hence we have the ¢laim. By the claim, we have that m § p

I

which is a contradiction. Hence m = p. Becausem+n-1=p+q -1,

n=gq.
Conversely, if m = p and n = g then clearly !N (m,n) = !N(P,QJ'
#
Theorem 2.1.10 Let {S,¥) be a semigroup with one gererator. Then
S EJIN or IN, for some m,n L-‘.:N.
\m,ﬂ)
Proof. Let x be a generator of S. Consider {n x}n el
case 1 m # n implies that m x # n x. Define ¢:N =g by ¢(m) =m x .
Clearly ¢ is an isomorphism ie, S = N .
case 2 dn # n such that mx=nx. Letejdﬁ ={kefN|3 aeNs dx = xx}
[
thenoﬁ #@. Let m = min@q; ; Let?%= {k e NN {m}|k x = m x} then
é%# @. Let s = min$ . Put n = s-m. Claim that S = N To prove

(myn)°

this, for each a e § let 5 = {k eN|a = k x} and k, =min S_, then

B

kaE N (m,n)o Define w:s - lN(m,n) by W(a) — ka. Then clearly w (ol
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isocmorphism. Hence S EIN(m a)"

Now we shall find a2ll guotient semigroups of (EN,+}, Let (S,¢)
be a quotient semigroup of (‘N,-l-). Then ¢: N » S is an onto homomorphism.
We know that N is the semigroup generated by 1. We shall show that S is

the semigroup genersted by ¢(1). Let s &8 'thena n ¢N such that

#(n) =s. So 9(n) = H1 + 1+ ... +1)=&1) + ¢(1) + ... + &(1) =n 91).
- ~— - ~— —— -~
n times n times
Hene S = <¢(1)>. By above Thecrem, S = N or IN{ ‘ /) for csome rf,mf alN.
Theorem 2.1.11 Let mooR € IN' be such that @ < n- Let <(m0,n0) >

denote the congruence on (IN ,+) generated by (mo,no). Then

<(mo.no)> = {(a,a)]a eN} v

{(a,b) € INxN|3x N5 either a+im = b+kn  and b>m or a+kn =b+km and a>m }

Proof. Let p = {(a,a){a cN } u

3 - | X | = L 1 = 1 = y &
{(a,b) e NxXN |Fxk ¢ fNa either a+km =b+kn . and ozm _Or atkn =b+km and am ]

First we shall show that p is a congruence on {‘N ,+). Clearly p is
reflexive and symmetric. Let (a,b),(b,c) e p If a=Db or b = ¢ then
then clearly (a,c) € p. We may assume that a # b and b # ¢c. Then

Jx ¢ N such that either (a + km =b + kn  and b > mo) or

/
(a+kno=b+kmo a.ndazmo) and 9 k ¢ N such that either
! / / /
+ = +
(b km =c+kn andc2m) or (b+ kn +c+km andb >m)
case 1 a+km =b+kn,b>mn andb+k§n=c+k;1,c>,m.Then
0 o o o o} o

/ '/
Then & = b = k(no— mo) and b - ¢ = k(no— mo) soa-c¢=(k+ k)(no— mo)

/| / .
therefore a + (k + k) m,=C o+ (x + k)no and ¢ » m ie. (a,c) € p
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’ /
.case 2 a + kmo =b + kno, b > m, and b + kno =c + kmo, b2 m. Then

o
I
oy
]

’ / J’IN
k(n -m)and b-c=k(m-n). Ifk> k thenk - k€ ‘
o (o] Q o

Since a - ¢ = (k - thow mo), a+ (k - k)mb =c + (k - ks n_. Because

/ y
b-c= k(mo— no) <0,c>b3m. Therefore (a,e) e p. If k < k them

’ / /
¥ -keN. Sincea-c= (k- k)(mo— no), a + (k - k)no =c+ (k - k)mb.

Because a - b = k(no- mb) >0, a>b> m_. Therefore (a, ¢) e p. If

/
k =k then a + kmo= c + kmo ie.a = ¢. Therefore (a, ¢) € p

! !
case 3 a+kn=b+km,a>m and b+ km =c +kn , c >m . Then
et e o] o] o] o Q [0}

¢ ie. (a,c) e p

! !
a-b=%(m-n)and b -¢=k(n-m). Ifk =X% then a
o o o o

! / < / /.
If k > k then k - k ¢N. /Since a - ¢ = (k - k) (m-n), 2 +(k - k)n =

! / ¥ N N
¢+ (k-k)m. So (a, c) ep. Ifk>k thenk -k €N, Since

' / /
a-c¢= (k= k)(no— mo), a + (k = k)mo =b + (k = k)no. So (a,c) € p.

! !
meand b +kn =c¢c +Xkm ,b 2>m . Then
o] 0] o]

case b a+kn=Db+ km , a
paciind SN o [o) o]

W

a—b=k(mo—n}a.ndb-r_-

7 /
e ¥ o = (k + - 5
k(mO qo), soa-c¢c=(kx+k (mb no)

o
/. ‘ i
Therefore a + (k + Ko = c + (k + ’-.i)mO ie. (a, c) ep »
Hence p is transitive. ZLet (2, b) € p and ¢ € IN . Then
Eak ¢IN such that either (a + kmo= b + kno and b > mb) or (a + kno =
b + anda:,»mo). Assume that a + km = Db + kn_ and b 3 m, Then
c+a+lkm =c+ b+kn andb+c>bym so (c +a,c+b)eop.

Hence p is a congruence on (N ,+).

Next we shall show that p is the smallest congruence on (IN,+)

/
containing (mo,no). Let p be a congruence on (N ,+) containing (mo,no).

/

Let (a,b) € p. Assume that a > b. Claim that (mo+ k(no- mb),mo) € D

for all k € IN. We shall prove the claim by induction, if k = 1
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I 7
then (mo+ k(no- mo),mo) = (no,mo) € p. Suppose (mo+ k(no-mo),mo) € p
’
so (m + (k + 1)(n_~ m,),n ) = (m +k(n_- m )+ (n-m ), m+ (n-m)) e p
' Since (n,m)) € ¢ and o’ is transitive, (m + (k + 1)( ) ) € o
nce (n_,m_ P and p is transitive, m n-m).m)ep.
/
Hence (m°+ k(no- mo),mo) Ep Vk EIN « So we have the claim. Because
(a,b) € p,a k € IN such that (a + Jm0= b+ _kno and b > mo) or
(a + kno= b + km and a > mo). Since a > b, a + km = b + kn so b 3 m .
Y
If b= m  then by the claim, (b + k(no- mo),b) e o’ so (a,b) € p. Assume
that b > m . Then by the claim (m0+'k(no- mo),mo) € 0. Because p is a
/
congruence on [N and b - m_ e N Sp = m, + m +k (no- mOJ, b - m o+ moJeo

2 i /
so (a,b) = (b + k(no- n, b) € p. Hence p € p. Thus p = <{m°,n0)>. #

Theorem 2.1.12 Let p be a congruence on (IN »+). Then p is generated by

one element.

Proof. Let m: lN =¥ fN/p be the natural projection map. Hence
(lN/p »T) is a quotient semigroup of N . Then IN o = N or N;’p = W(m a)

3
for some myn e N . 1¢ N /o =N then P =A=<(1,1)> so we are done.
We may assume that lN/p =z N K0B for some myn ¢ [N . ILet ¢:]N > N tngn)
be defined as follows:

P if p g m,
¢(p) =

m+ k ifp>ma.ndp=m+in+kforsomeislNo,

k e {0,1,...,n-1}.

Then clearly ¢ is an onto homomorphism. Let p*= {(a,b) ¢ N x IN] ¢(a)=¢(b)}.
Then (IN(m,r.)’(p) = (IN/D*,N*) where ?r*: N » N{p* is the natural projection

map. Hence (fN/p,n) = ( fN/p*, 11*). By Theorem 2.1.5., p = p*. Claim
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.that p = <(m,m + n)>. To prove this, clearly (m,m + n) € p so

. *
<(m,m + n)> ¢ p. We shall show that p € <(m,m + n)> . Let (a,b) e p =p

so ¢(a) = ¢(b). If a = Db then (a,b) € <(m,m + n)> so we are done. We

may assume that a =m + in + k and b =m + jn + k for some i,J ¢ mt,

i#jeandke {0,1,..., n = 1}. Therefore if a > bthena =b + (i - j)n

soa=b+Invherel=1i-jelN . Soa+Im=b+1Im+1n=5+1(m+n).
Therefore (a,b) € <(m,m + n)> . Similarly if b > a then (a,b) e<(m,m + n)>

Hence ¢ € <(m,m + n)> . Thus p = <(m,m + n)>. 4

Definition 2.1.13 Let 8 be & commutative semigroup and a2 € S. Then a is

said to be cancellative iff for each x,y € 3 x.a8 = y.a implies that x = y.

Theorem 2.1.14 Let 3 be a commutative semigroup containing at least one

/
cancellative element. Then there exists an extension semigroup S of S
/
such that every cancellative element in S has a inverse in 8.

m

Proof. Let S be a commutative semigroup. Let U = {a S|a is

cancellativel. Then U # ¢ . Clearly U is a subsemigroup of S. Define

a binary operation. on S x § by (x,u)-(xﬂ&) = (x.x: u.d) Then (S x Us*)

is a commutative semigroup. Define n = {((s,u),(s,u)) ¢ (S><U)x(SXU)|su§§h}.
Claim that v is a congruence on S X U . To prove this, clearly ~ is

) < /o /oy,
reflexive and symmetric. Let (s,u) v (s,u) and (s,u) ~ (éiﬁﬁ then

1 ! /¥ vl . - i !/ x & ry
su = su and su = su. Because * is commutative, suu = suu = suu = suu and

V1 g c=d / ;2 7
hence (su)u = (su)u. Since ue U , su = su ie. (s,u) (s,uS. Hence " is

s (Y o ] 1 d
transitive. Let (s,u) v (s,u) and (s,u) € Sx U Then su = su so susu’ =

Loy . . rw fa A LA 4 L8 1
susu. Because + is commutative, ssuu = ssuu hence (ss,uu) v (ss,uus.
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b A ]
Therefore (s,u)(s,u) v (s,u)(s,u) Thus * is a congruence on S x U ,

Hence (8x U/v,*) is a commutative semigroup.

Next we shall show that S is isomorphic to a subsemigroup of
Sx U/~ and every cancellative element in S has an inverse. Let u,ufE U
then (su,u) ~ (suﬂd) b{s € S, Fixue U. Define $:5> S* y/v by
¢(s) = [(su,u)]. Then % is well-defined. Next we shall show that ¢ is
1-1. Let s

€ S be such that ¢(31) = ¢(s Then (slu,u) v (szu,u)

3shp 2)+

so s,uu = s,uu. Because uu e 1 , ${= S,- Hence ¢ is 1-1. Now we
shall show that ¢ is a homomorphism. TLet a,b €S then ¢{(a).¢(b) = [{au,u)]-
[(bu,u)] =Kau.bu,uu)] = [(abuu;uu)] =\ kabu,u)] = ¢(a,b). Hence ¢ is

a homomorphism. Therefore S 2 9(8) and 9(S) is a subsemigroup of SX U /v .

Thus S x U/ is an extension semigroup of S and V uedU [(u,u)] is the

n
]

[(uu,u)] . Because
[(u,u)] =

[(uusu)] . [(u,uu)] P (¢{u))-l= [(u,uu)] .« Thus every cancellative

identity of S x U/v . Letw e y ¢ 8 then ¢(u)

[(u,uu)J e 8 xU/~ Dand  [(uguu)l . [(uu,u)]

element in S has an inverse. #

Remark: The above construction can be applied to any subsemigroup of U.

2.2 Semigroup-spaces.

In this section we shall work with left congruences on a semigroup
S and left S-spaces. But everything that we prove for left congruences and
left S-spaces can be similarly vroved for right congruences on a semigroup
S and right S-space. As in Section 2.1, we shall consider the categories

ﬂjg and ﬂﬂg 1 First we shall define naturally equivalent contravariant
3
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functors from 258 to&g by using left congruences and quotient left

semigroup-spaces are defined below.

Definition 2.2.1 A left congruence on a semigroup (S,+) is an equivalence

relation p on S such that x p y implies that (a.x) o (a.y) for all

X, ¥s8.€ 5.

Definition 2.2.2 Let S be a semigroup and X a nonempty set. A left action

of Son X is a map » :SXX = X such that (s.r).x = s.{(r.x) for all s,r ¢ S,

x € X. Then (X,*) is said to be a left S-space.

Remark: For each semigroup (S,*), (S,*) is a left S-space.

Definition 2.2.3 Let (X,«) and (Y,*) be left S-spaces and ¢:X » Y a map.

Then ¢ is said to be left S-equivariantiff ¢(s.x) = s x ¢(x) for all

8 €5, x € X.

Remarks: 1) If ¢ is a bijectively S-equivalent map then ¢_l is also left

S-equivariant. We shall call such a map a left S-space isomorphism.

2) If p is a left congruence on a semigroup (S,) then the set
S/p of equivalence classes of S can be made into a left S-space in natural
way and the natural projection map m:S + S/p is an onto left S-equivariant

map.

Definition 2.2.4 ILet S be a semigroup. A gquotient left S-space is a pair
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(X,9) where X is a left S-space and ¢:S + X is an onto left S-equivariant

map.

Example (S/p,m) is a quotient left S-space where p is a left congruence

on S.

Theorem 2.2.5 Let S be a semizroupand (X,$) a quotient left S-space.

Let. - p = {(a,b) € S x s|¢(a) = ¢(b)}. Then p is a left congruence on
S and there exists a left S-space isomorphism ¥ from S/p to X such that

the following diagram commutes.

Proof. It is similar to the proof of Theorem 2.1.2

Definition 2.2.6 Let (X,$) and (Y,y) be quotient left S-spaces. Say that

(X,$) is strongly equivalent to (Y,p) iff there exists a left S-space

isomorphism n:X + Y such that the following diagram commutes .
S
/ X
X n Y
—..—_____+ -

Write this as (X,$) = (Y,y)



3k

‘Remarks: 1) = is an equivalence relation on the set of quotient left
S-spaces.
2) For each quotient left S-space (X,9), (X,9) = (S/p,m)

where p = {(a,b) € S x S|¢(a) = ¢(b)}.

£y
Proposition 2.2.7 Let $:S - S be a semigroup homomorphism. If p is a
-1
)

’ .
left congruence on S then (¢ x ¢ {&) is a left congruence on S.

Fix a semigroup S let LC(S) = the set of left congruences on S,

La(s) the set Pf eaquivalence classes of

3

quotient left S - spaces under

We define natural relations C on LC(S) and La(S) as € on C(8)
and Q(S) in Section 2.1 respectively. Then the proof that (LC(S),<C)
and (LQ(S),S ) are posets is similar to the proof that (C(S),C ) and

(Q(8),€ ) are posets respectively.

Theorem 2.2.8 TFor each semigroup S, the posets LC(S) and LQ(S) are

isomorphic.

Proof, It is similar to the proof of Theorem 2.1.5 and the

isomorphism has the same form as in Theorem 2.1.5.

Remark Fix a semigroup S, let pl,p2 ¢ LC(S). Then plf\ 05 =

g.l.b.{pl,pz} and the left congruence on S generated by p1U Py =
1.u.b.{pl,92}. Hence LC(S) is a lattice. Therefore LQ(S) is a

lattice also.
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We define contravariant functors LC and LQ from‘Ejg‘maég as we
defined the contravariant functors C and Q from !dg to éﬁ in Section 2.1
respectively. Then the proof that LC is naturally equivalent to LQ is

similar to the proof that C is naturally equivalent to Q in Section 2.1.

Next we shall define naturally equivalent covariant functors

from)qs z to@.
gsl

Definition 2.2.9 Let Py and Py be left congruences on a semigroup S.

Say that Py is equivalent to p_. (pl N p,) iff there exists a semigroup
= [ =4

automorphism ¢:5 = S such that (9 x ¢)(Dl) =Py

Remark: <~ is an equivalence relation on the set of left congruences on

a semigroup.

: o
Definition 2.2.10 ILet (X,$), (X,9) be gquotient left S-space. Say that

A
(X,4) is weakly equivalent to (X,9) iff there exist a semigroup

/ /
automorphism f£:S > S and a left S-space isomorphism f:X + X such that

the following diagram commutes.
f

B A ——

¢ J
f‘,
X

X —

¢J'

/

Write this as (X,¢) ™ (x’,{)



Remarks: 1) ~ is an equivalence relation on the set of quotient left
S—spaces.

2) (X,8) = (X,¢) implies that (X,¢) «»ixf,qs')-

the set of equivalence classes

1}

*
Fix a semigroup S, let LC (8)

of left congruences on S under 7,

the set of -equivalence classes

LQ*(S)

of quotient left S-spaces. under <.

* * * o
We define binary relation < on LC (S) and LQ (S) as < on C (8) and @Q(S) in
* *
Section 2.1, respectively. Then the proof that (LC (8),<) and (LQ (8),<)
* *
are quasi-ordered sets is similar to the proof that (C (S),<) and (Q (8),<)

are quasi-ordered sets.

*
Thecrem 2.2,11  For each semigroup S, the quasi-ordered sets LC (S) and

*
Lo (8) are isomorphic.

Procof., It is similar to the proof of Theorem 2.1.8, and the

isomorphism has the same form as in Theorem 2.1.8.
L]

. * * d !
We define covariant functors LC and LQ from 2.1 toﬁig as
2
* *
we defined the covariant functors C and Q from,Qﬁi & to(ﬁ? in gection
]
#* #
2.1,  respectively. Then the proof that LC is naturally equivalent to LQ

. *® *
is similar to the proof that C is naturally equivalent to Q .
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2.3 Groups

This section will consider the following subcategories of ,258:

1) The category)zfof groups and group-homomorphisms.
2) The category ﬂ o Of groups and onto group homomorphisms.

3) The categoryggyi of groups and group isomorphisms.

We shall show that ){7 has a congruence set so we shall define
naturally equivalent contravariant functors frmm)ér to éﬁ by using
congruences, normal subgroups and quotient groups which are defined

below.

Remarks: 1) If p is an operation preserving equivalence relation on a

groy o (3,*) then the set G/o of equivalence classes of G can be made

into a group in natural way and the natural projection mep m:G + G/p is
an onto group homomorphism. Hence the definition of a congruence on an
object (G,+) in A{f is the same as the definition of an operation

preserving equivalence relation on the group (G,-).

2) Let p be a congruence on a group G. Then [l]p= {aeG|apl} ¢ G.

3) Let N be a normal subgroup of a group G (N ¢ G). Then

{(a,b) € G x G| &l ¢ N} is a congruence on G.

Definition 2.3.1 A quotient group of a group G is a pair (K,¢) where X is

& group and ¢:G + K is an onto group homomorphism.

Examples 1) (G/p,m) is a quotient group of a group G where p is a

congruence on G.
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2) Let N be a normal subgroup of a group G. Let
p = {(a,b) € G X G|a_lb € N} and G/N = G/p. Then (G/N,r) is a quotient

group of G.

Theorem 2.3.2 Let (K,$) be a quotient group of a group G and

p = {(a,b) € G x G|¢(a) = ¢(b)}. Then p is a congruence on G and there

exists an isomorphism ¥:G/p + K such that the following diagram is

G
AN
o :('

iy
G/p ——————— !

commutative

Proof, It is similar to the proof of Theorem 2.1.2,

’he following result is well-known, it is called the first

isomorphism theorem of group theory.

. Theorem 2.3.3 Let 4:G * G be an onto group homomorphism. Then ker ¢

¢ G and there exists a natural isomorphism w:G/kev¢+ ¢’ such that the

following diagram is commutative

Glcer ¢ ¥ |

Proof. Clearly ker ¢ ¢ G since ¢ is an onto group homomorphism .

/
Define ¢:G/ker¢+ G as follows: given a £ G/ choose a € o and let

kerd
¥(2) = ¢(a). Then ¢ is an isomorphism such that yor = ¢. #
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; ‘1 '
Definition 2.3.4 Let (K,$), (K,4) be quotient groups of a group G.

4
Sey that (K,$) is strongly equivalent to (K,$) iff there exists an

/
isomorphism ¥:K + K such that the following diagram is commutative

G
¥
lP ¥
S (S » K
i
Write this as (K,$) = (K,$).
Remarks: 1. = is an equivalence relation on the set of quetient groups

of a group.

2. For each quotient group (X,$) of a group G, (K,$) = (G/p,m)
where ¢ = {(a,b) € 6% G|¢(a) = ¢(b)}.

3. For each quotient group (X,$) of a group G, (K,$) = (Gfker¢,“).

F !
Proposition 2.3.5 Let $:G > G be a group homomorphism. If p is a

I} = !’
congruence on G then($ X ¢)"7(p) is a congruence on G. TIf N is & normal

I - /
subgroup of G then ¢ l(N) is a normal subgroup of G.

/
Proposition 2.3.6 Let $:G > G be an onto group homomorphism. If p is

i
& congruence on G then (¢%¢)(p)is a congruence on G. If N is a normal

/
subgroup of G then ¢(N) is a normal subgroup of G.

Proof. Assume that p is a congruence on G. Clearly (¢ x ¢)(p)

are reflexive and symmetric. Next we shall show that (¢ x ¢)(p) is

transitive. Let (a,b),(b,c) € (¢ x ¢)(p) then 3 (x,y),(yiz) € p such

that a = ¢(c), ¢(y) =1 = ¢(y3, c =¢(z). So ¢(y§-1) =1 ie. y%rlek£r¢
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(P /
therefore yy 1 k for some ke ker ¢ so y = ky. Since (x,y)e p »

(kx,ky) € p. Because (ky,z) = {y’,z) € p and p is transitive, (kx,z) € p
Then (a,c) = (¢(x),9(2)) = (¢(kx),0(z)) = (¢ x ¢)(kx,z) € (¢ x ¢)(p).
Hence (¢ x ¢)(p) is transitive. Let (a,b) € (¢ x ¢ )(p) and c € G)
Then clearly (ac,bc), (ca,cb) € (¢ x ¢) (p). Hence (¢ x ¢){p) is a

/
congruence on G. The proof of the second part is standard. #

the set of congruences on G,

Fix a group G,let C(G)

N(G) = the set of normal subgroups of G,

the get of equivalence classes

(@)

of guotient groups of G under =.

We define natural relations € on C(Gj and Q(") as C on C(8) and
Q(S) in Section 2.1 respectively. Then the proof that (C(G),C ) and
(Q(G),<S) are posets is similar to the proof that (C(S),C ) and (Q(S),C )
are posets, respectively. Let & on N(G) be set inclusion. Then clearly

(N(G),&) is a poset.

Theorem 2.3.7 For each group G, the posets C(G) and Q(G) are isomorphic.

Proof. It is similar to the proof of Theorem 2.1.5 and the

isomorphism has the same form as in Theorem 2.1.5.

Theorem 2.3.8 For each group G, the posets C(G) and N(G) are isomorphic.

Proof. Let G be a group. Define ¢:C(G) + N(G) by ¢(p) = [1]p

{g ¢ Glgp 1} \/p e C(G). Then ¢ is well-defined. First we shall show

that ¢ is 1-1. Let PysPy € C(C) be such that ¢(pl) = ¢(p2). Must show



L1

-1 < _
that P, = 0y, let (a,b) € p, sO (ab ~:1) & P, then ab ~ ¢(Dl) = ¢(92)
so (a.b"l,l) € P, therefore (a,b) ¢ p,+ Hence plg Pp+ Similarly we

Sop, =p Hence ¢ is 1-1. Next we shall show

b s
that ¢ is onto. Let N e N(G). Define p = {(a,b) € G x G[a_lb e N} .

can show that p2Q 0

Then p e C(G) and ¢(p) = {a e Glap 1} ={aec G| a e N} = N. Thus ¢

is onto. Next we shall show that ¢ is isotone. Let p c(G) ve

i i
such that P1€ P,. Must show that ¢(pl) C ¢(p2), let a € d:(pl) then

(a,1) € plg P, soac ¢(02}. Hence ¢(pl)g d>(02). Thus ¢ is isotone.

Lastly we shall show that ¢ © is isotone. Let N.,N, € N(G) be such that

1

. " £ S . -1 y
N, & N,. Must show that ¢ (N)E ¢ (N2), let (a,b) € ¢ (Nl)

{(x,y) € G x G’x-ly > Nl} then a b ¢ NJ_C_: N, so (a,b) € ¢'1(N2).
Hence ¢-1(N1) [ ¢*1(N2). Therefore ¢'“1 is isotone. Thus ¢ is an

isomorphism ie. C(G) is isomorphic to N(G). #

Corollary 2.3.9 For each group G, the posets N(G) and Q(G) are isomorphic.

Proposition 2.3.10 Let N I-I2 be normal subgroups of a group G. Then

l’

. = . 4 i 3 ted
N, .N, {nl n2|n1 £ Nl,n2 £ '\?2} is the normal subgroup of G genera =

by Nlu Ng‘

Proof. It is standard.

Propbsition 2.3.11 Let P19P5 be congruences on a group G. Then
Pp-Ppy = {(a.l.ae, bl'be)l(al’bl) € pl,(a.2,b2) € p,} is the congruence

on G generated by Py U Ppoe
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Proof, First we shall show that P1Po is a congruence on G.

Clearly P1+P, is reflexive and symmetric. Let (a,b),(b,c) € P1-P5

A

then a = ,b = Db b.b

Q

/
1Dy = 195> © = c;c, vhere (al,‘ol),(bl,cl) € pl,(az,be),
I A % 7
1’°1b11b1‘ . (blbllbl’clbllbl) © By BAd

71 ri s -1 AL
(be,b2b2 02)=(b2b21b2,b2b2 02) € p,. Since P, and o, are transitive,

! 1 _ -

(al’clbllbl) € p, and (a2,b2bg c2) € p,. Then (a,e) = (ala2,c1c2)
71 ) s

(ala2,clb§lblb2b2 02) € CRLPY Hence Py:P, is transitive. Let

. € " = =
(a,b) € py-P, and c € G. Then a 8,25, b = b,b, where (al,b

(a2=b2) E0,. So (ca,eb) = (cal,cbl)(ag,bg) €0

L B
(bé’ce) € 0, Then (b

|

1) € Py

1Py and (ac,be) =

(al’bl)(azc’bzc) € Py.P5. Hence p, .0, is a congruence on G. Clearly

C p..p

CP. L. 1 ini .
pl__ 1+P5 and pg_ Ol 92 Let p be a congruence on G containing p_u P

1R 2

Let (a,b) € P -P,. Then a = 8,85, b = b,b, where (al,bl) € P

' \
(a2’b2) € p,. So (al,bl),(ag,bz) € p. Then (alaQ’blaE)’(blaa’blbe’E P

Hence (a,b) = (31a2= blbg) €'p. Thus Dl.Dgé; P. Hence p..P, is the

congruence on G generated by ﬂlu 02. _ #

1')

We shall show that (C(G),C), (N(€),C) and (Q(G),S) are
lattices for all groups G. Let G be a group. Let N, LN, & N(G). Then
= e L . = « U - C
N, N T, = g.1.b {Wl,Ne} and N, .N, = l.u biNl.Nz} Hence (N(G),C )
is a lattice. Let PysP, € C(G). Then plfl Py = g.l.h{pl,QQ} and
Py-Py = l.u.bipl,pa}. Hence (C(G),S) is a lattice. Therefore (Q(G),< )

is a lattice also.

We define contravariant functors C,Q from.ﬁy to g& as the
contravariant functors C,Q from ,ng to 3; in Section 2.1 respectively.

Next we shall define a contravariant functor N from )ff to éﬁ . Let G,
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b:be in Ub.ﬂqj and ¢:G > G,a. group homomorphism. Then N(G),N(G!) are in Ob%
Define N(¢):N(G,) + N(G) by n(¢)(a) = ¢*1(A). Then N(4) is an isotone
map. Since N(idG) = idN(c_-) for all G in Obz_?fand N(¢on) = N(n)oN(4)

for all group homomorphisms 9$,n whenever ¢on is defined, N is a

contravariant functor from ﬁ? to % '

The proof that C is naturally equivalent to Q is similar to the
proof that C is naturally equivalent to Q in Section 2.1. Next we shall
show that N is naturally equivalent to C. For each G in Obﬁ, define
f'G:I'I(G) * C(G) be the map in Theorem 2.3.8. Then f, is an isomorphism.

We shall show that f is a natursl equivalence from N to C.Let G,Gf,be in Obﬁ

'
and $:G > G a group homomorphism. So we have f fo and the following

GS
diagram. f
G
G N(g) — c¢(a)
? |
I(9) c(¢)
o N(G) ey 2()

/7
We must show that c(¢)ofGr= fGoi‘I(¢). Let AeN(G). Then {c(¢)ofG)(A) =

-1 / A
(c(¢))(pp) = (¢ x ¢) cpA> where p = {(a,b) ¢ G xGla % 64} L and

(250M(6))(A) = £,067HA)) = p . = {(ad) e G x Gla~ b 4™ (A} .
¢ @)

Clearly (¢ x ¢)~1(DA) = Then (C(¢)ofo)(A) = (fGoN( $))(A).

¢ ~(a)
Hence C(¢)ofG" = f’GoN(¢}. Therefore f is a natural equivalence from N

to C. Thus there exist three naturally equivalent contravariant functors

C,N,Q from J{f to gg > .
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Remark As a result we see that C is the congruence functor of ,ﬁ ’
ﬁ has a congruence set and normal subgroups of a group are congruence

sets with respect to N,

Next we shall define three naturally equivalent covariant
g 1o {
functors from & = to . For each group G, 1let C(G) = c(a),

¥(6) = N(G) and q(G) = Q(c).

/ /

1) Let G,G be in CJ‘(:JF:«)f and ¢:G + G an onto group homomorphism. Then

/ Y] c(”e 7 ’ ;7 A

c(G),c(G) are in ob0b. Define C(9):C(G) + c(G) by c(d)(p) = (4 x $)(p)
Z / u

Vo e c(c). Then C(¢) is an isctone map. Since C(:Ld ) = id / o)V G in Dbx‘ff
/

and C(¢on) = C(¢)OC \'/onto group homomorphisms ¢,n  whenever

pon is defined, C is a covariant functor from,g:) to ég

/ /
2) Let G,G be in Ob)&!} and ¢:G > G an onto group homomorphism. Then
/ A . c% / / /4 /
N(G),N(G) are in Obode, Derine N(4):N(G) = N(G) by N(6)(N) = ¢(K)
/ / /
VH € N(G). Then N(¢) is an isotone map.  Since I'-I(id ) = idI,(G)
!

- __J'
V Gin Ob)’z‘{; and H(pon) = (¢)o'\| \\7 onte group homomorphisms ¢on

!
whenever ¢on 1is defined, N is a covariant furctor from ﬁo toé&.

3) Let G,G, be in O'DJ{Z) and ¢:G -+ Gfan onto group homomorphism. Then
Q’(G),Q’(G,) are in Obg. Define Qf(dﬂ):QfG) - Q(Gf) as follows: given

/ ¥ /
a € Q(G) choose (K,n) € o and then let (Q(¢))(a) = [(G/(q;xq;)(p}’ﬂ)]
where p = {(a,b) € G x G[n(a) = n(b)}. First we shall show that Q)
is well-defined. Le‘c(lt_l_,n2 (Kg,n
2531y 1= P, SO (¢ » ¢)(p£= (¢ x o) (pe) and hence (G/(¢X¢)(pl)’“l)=

Then by the proof of Theorem

'y
(G/{¢x¢) ,1'? ) Hence Q(¢) is well-defined. llext we shall show trat
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i /
Q(¢) is isotone. Let a,8 € Q(G) be such that o & B. Choose (Kl’nl) € .

(Kg:“g) € B. Then by the proof of Theorem 2.3.10, p, € p,. So
x g . ' ’ / /
(¢ ¢ )(pl) S (¢ ¢ )(92) and hence [(G/(¢x¢)(pl)’nl)] c [(G/(¢x¢)(pe)s"2j]

/ y
ie. Q(¢)(a) € (Q(¢)(B). Hence Q(¢) is isotone. Lastly we shall show

' £
that Q is a covariant functor from,‘@; to (% . Clearly Q(idG) = idQ?G)
. ﬂ / /Y ’ 3
V G in Obo. Let ¢:G > G.and ¢:G + G be onto group homomorphisms. Let
P

a € QJ(G) choose (K,n) € a, Then (Ql(cpson(MJ(‘a) = Qo) [(G’/(w)(p),{)] =

’

- ﬁ Y. \ .
LG{(Q;’“P) (¢xd)( ,*r] [" ¢o¢x¢fo¢}(p)sﬂ} = Q{¢0¢)(a) where

! / FAR
p = {(a,b) e G x G|n(a) =n(b)} . Therefore Q(qsf)oc;(fb) = Q(¢op). Hence

/
Q is a covariant functor from ﬁo tof% .

)
Next we shall show that Ii,C,Q are naturally equivalent.

/ /
1) For each G in Ob,gf; define fG:':I(G) + C(G) ve the map in

Theorem 2.3.8. Then f‘G is an isomorpkism. Ve shall show that I‘G is a
: / / / A
natural equivalence from N to C.lLet G,Gpe in Ob 5 and ¢:G -~ G be an cnto

group homomorphism so we have :E‘G,fG’ and the following diagram

e

/ '
G N(a) > C(G)

/
N(¢)

/ NE G’)

or
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/ * / /
We must show that C(f.b)ofG = fooH(qb). Let N ¢ N’(G). Then (C(dl)ofG)(N) =

CE#){(a,b) e G x G e en = (¢ x ¢){(a,b) e G x Gla_lb e N} =
{(¢(a).¢(b))|a"lb e N} and (fy oN’(fb))(N) = £f4(¢(0)) = {(x,y)eG;t;Ix'lym(N)}-

We want to show that {(¢(a),¢(b))|a"lb e N} = {(x,y) ¢ G x Gf |x"1y ed(N)1}.

‘Clearly {(¢(a),¢(b))|a—lb e N} € {(x,y) ¢ G x Glx-ly (1)} . So we must
show that {(x,y) € G x G|x 1y ¢ ¢(N)} & {(¢(a),0(b))|a e € N}. First we

shall show that cb-l(tf:(N)) is the subgroup of G generated by N and ker ¢.
Let a,b ¢ ¢‘1(¢(N)). Then $(a),(b) € ¢(N). So $(a~ 1) = ¢(a‘l).¢(‘o) =

-1

(6(2))"L(s(1)) = (8(n.))

-1
1 (¢(n2) = ¢(nl n

2) € $(N) where ¢(a) = ¢(ﬂl),

¢(v) = ¢(n2) and n,,n, € N, Hence A € ¢"1(¢(16)). Thus ¢"l(¢(ra}) &,

2

Clearly N C ¢"l (¢(W)) and ker ¢§¢-1(¢(N)). Let M be a subgroup of G
containing N and ker ¢. Must show that ¢ -(s (1)) CM, let ac ¢-1{¢(N))

so ¢(a) € ¢(N) then ¢(a) = ¢(n) for some n ¢ N, Then ¢(n“la) =1 =0
n"a e ker ¢ C M. Therefore a = n.n"—a ¢ M.  Hence q>~l(¢v(i'i)} C M. Thus
¢_l(¢(ﬂ) is the subgroup of G generated by il and ker ¢ . Because § € G

and ker ¢ ¢ G, N.ker ¢ = ¢-l(¢(H)). low we can show that

/ /(A = : / /
{(x,y) e 6 x G|x "y e ¢(N)} € {(¢(a),d(b))|a™" > e N}. Let (x,y) € GX G
be such that x—lye ¢ (). Since ¢ is onto,dc,d ¢ G such that x = ¢(c),

y = #d). Then ¢(c_ld) = x_l:,re ¢(N) so S (¢_1o¢)(I€). Therefore

dn e N, m ¢ ker ¢ such that A o ek c-l(dm_l) = o o= 0 e 8,

Since ¢(c) = x and ¢(am™) = $(a).¢(m ™) = ¢(d) = v, (x,y) =

(¢(C)s¢(ﬁm_l)) € {(¢(a),¢(b))[a'lb € N}. IHence {(x,y) ¢ G”>< Gf|x-ly eo(W)le

{(¢(a),¢(b)|a'lb € N}. Therefore (c’(q;)ofc)(m) = (fdfoqu;))(u). Thus
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it / /
C(¢)ofG= fG’ol(¢). Therefore ¥ is naturally equivalent to C.

/ /
2) For each G in Uhgz define hG:C(G) + Q(G) be the map in
Theorem 2.3.7. Then hG is an isomorphism. Ve shall show that h is
/ / / e
a natural equivalence from C to Q.let G,GbejILObéI and ¢:G + G be an

onto group homomorphism so we have h th and the following diagram

G!
h

! G 4

G ST uqle)
/

¢ c(4) d(s)
1. A th 5L !
el CIG)Y Sty NQ(G)

n

We must show that d(¢)th = hdo Cr(¢). Let p € Cf(G). Then Q?ct»)ohd(p)
A0 [6/os1] = [€/ 4 dayiayoT) = gt (s %8)(8)) = (aoC(s))(p). Hence

/ /
d(¢)th= hdbCT¢). Therefore h is a natural equivalence from C to Q.

'l 4 /
Thus C,N,Q are naturally equivalent.

How we shall define naturally equivalent covariant functors from
Kﬁ; to C? using equivalence classes of congruences, equivalence classes
of normal subgroups and equivalence classes of quotient groups which

are defined below.

Definition 2,3.12 Let Py and LN be congruences on a group G. Say that

P, is equivalent to Py (pl v 92) iff there exists an automorphism f:G + G

such that (f x f)(pl) =Py
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Remark; Vv is an equivalence relation on the set of congruences on a

group.

Definition 2,3.13 Let Nl and N2 be normal subgroups of a group G. Say

that N, is equivalent to N, (Nl " N2) iff there exists an automorphism
f:G > G such that f(I\Il) = N,.

Remark ; " is an equivalence relation on the set of normal subgroups

of a group.

Definition 2,3.14 Let (K,¢), (Ki&) ve quotient groups of G. Say that

A
(K,$) is weakly equivalent to (K,4) iff there exist isomorphisms f:G + G

/ /
and f:K + K such that the following diagram is commutative

f
G==rreaans=—+

/
/

FNIHUIINE

oy
Write this as (K,$) ~ (K,$)

Remarks: 1) ~ is an equivalence relation on the set of quotient groups
of a group.

2) (X,4) = (K’,:{) implies that (K,¢) n (K':.df).

*
Fix a group G let C (G) the set of equivalence classes of

congruences on G under n,

=
(]
L}

the set of equivalence classes of

normal subgroups of G under <,
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*
Q (G) = the set of equivalelce classes of

guotiert sroups of G under ™.

We define binary relations < on C*(G) and Q*(G) as <€ on C*(S)
and Q*(S) in Section 2.1 respectively. Then the proof that (c*(G),s)
and (Q*(G),s) are quasi-ordered sets is similar to the proof that
(C*(S);$) and (Q*(S),é) are quasi-ordered set respectively. Next we
shall define a binary relation < on H*(G) as follows: given a,8 € 3*(G)
say that a € B iff there exist ]le Oy ﬁge 3 such that ﬂl - HE.

*
Clearly < is well-defined and (N (G),g) is a quasi-ordered set.

# *
Theorem 2.3.15 For each group G the quasi-ordered sets C (G) and Q (G)

are isomorphiec.

Proof. It is similar to the proof of Theorem 2.1.8, and the

isomorphism has the same form as in Theorem 2.1.8.

. *
Theorem 2.3.16 For each group G the quasi-ordered sets C (G) and

*
§ (G) are iscmorphic,

# *
Proof. Let G be a group. Define ¢:C (G) * N (G) as follows:
*
given a € C (G) choose p € o and then let d(a) = [[ljp]. First we

shall show that ¢ is well-defined. Let PL VP Thenfa an automorphism

:6 > G such that (f x f)(p,;) = p, We must show that [1]p v il
- i 2

To do this we shall show that £([1] ) =[1] . Letxe [1]  so
Pa P2 P2
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(x,1) ¢ p, then (£(x), £(1) e (£ x f)(pl

) =p, so £(x) € [l]p .
Hence f([l]p = [1]p . Let ye [l]p so (y,1) € p, and
1 2 2

Jx € G such that £(x) = ¥, hence (f x £)(x,1) = (£(x),£(1))¢e o, =

(£ x f)(pl). Because f is a bijection, (x,1) € Py therefore x € [1]p
ik
soy = f(x) e f{[l]p ). Hence [1] ¢ f([l]p ). Therefore
1 p 1
&
£([1) )= [1] . Thus ¢ is is well-defined.
R .2 P

Next we shall show that ¢ is 1-~1. Let Py p,, be congruences

2
on G such that {l]p 2 [1]p .// 80, J an automorphism f:G + G such that
R 2

f([l]p l) = [1102. Must show that p.v p,,

that (f x £)(p.) =

to do this we shall show

Let (x,¥) 28 p s0x ye [11p therefore
1 1

[1]

i Poe

(f(x))-l(f(y)) = f(x—ly) e t([1] ) . Hence (f(x),f(y))e 0y s

= P2
So (f x £)(e;) € o,.[lLet {asb)e0, 56 o ¢ [1]02 = f([l}pl)
then £(d) = a~Tu for some g E[l]pl . Therefore (£ (a)) 1(s™(z)) =
rHa ) =ae [1]%.. Thus (£7(a),£71(b)) € o, s0 (a,B)e(r x £)(£7(a),
£71(6)) € (£ % £)(p)). Therefore (£ X £)(p)) = 0,0 Thus ¢ is 1-1.

Next we shall show that ¢ is onto. Let N g G. Define

Py = {(a,b) € G x G|a-lb e N} . Then gvis a congruence on G So

[pm] € C*(G) and ¢([ON]) = [{a € Glap1}] = [N] . Hence ¢ is onto.



21

*
Next we shall show that ¢ is isotone. Let «,8 € C (G) be such

that o < 8 Then o, € a, p, ¢ B such that p.C p,. So [1]pls [1]'32

ie. ¢(a) < ¢$(B). Hence ¢ is isotone

*
Lastly we shall show that ¢ L isotone. Let a,B € N (G) be

So Py C Py

such that a < 8. Choose i e a, W, B such that N C W
i 2 A 1 5

2.

ie. ¢~l(u) € ¢"1(8). Hence ) 9 Ssobeone. Therefore $ is an

isomorphism. #

*
Corollary 2.3.17 TFor each g&roups G the quasi-ordered sets U (G)

*
and Q (G) are isomorphiec.

* %
We define covariant functors'C ,Q from )gfi to @ as the

* #*
covariant functers C ,Q from 'dg : to @ in Section 2.1 respectively.
3

*
Next we shall define a covariant functor § from ﬁﬁai to@ . Let G,

i / * *, / %
G be in Obx@z and ¢:G *'G a group isomorphism. Then N (G),N (G) are in Qb @

# * %16y ; %
Define N (¢):N (G) + N (G) as follows: given a € N (G) choose I ¢ «

* *
and then let (N (¢))(a) = [¢(N)] . First we shall show that N (o) is

well-defined. Let I.‘l'\» Ii2 then 3 an automorphism n:G »+ G such that

n(Nl) = N,. We must show that np(nl) " ¢(N2). To do this, define

* /7 / * -l *
n:G+>Gbyn= ¢ono¢ . Then n is an automorphism such that

* *
n (¢(I~11}J= ¢(1'12). Hence ¢(Nl) "~ ¢(N2). Therefore N (¢) is well-defined

* *
Next we shall show that N (¢) is isotone. Let a,B8 ¢ N (G) be such that

@ ¢ 8. Then 3_515 %, Wye § such that N, € Nye So ¢(ny) € ¢(N,) and
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hence [¢(Nl)] < [¢(N2)] ie. (N (4))(a) < (N (4))(8). Therefore N*(¢)

*
is isotone. Lastly we shall show that N is a covariant functor from

* /
@; to @ . clesrly ¥°(1a)) = 1a » Y6 in Obﬁi. Let $:G > G,
N (G)

F L F * / % [/ *
$:G > G be group isomorphisms. We must show that I (¢0¢) = I (¢)ol (¢).

G

Let o € N (G) choose N € a then (N (§)o ($))(a) = (2" (6))[o ()] =
[¢‘b¢(H)] = (N*(tb:mfa))(a). Hence N*(qfoq;) = N*(:t;)oN*(da) Therefore 'l

is a covariant functor from qui to @ .

% #
The proof that C  is naturally equivalent to Q@ is similar to the
# *
proof that C is naturally equivalent to @ in Secticn 2.1. liext we shall
% *
show that ¥ is naturally equivalent to C . . For each G in0Ob ;ﬁi define

* *
£,:0 (G) » ¢ (G) ve the map in Theorem 2,3.16. Then £, is an isomorphism .

G

A - % *
We shall show that f is a natural equivalence from N to C . Let

/
G,G in Ob@l and ¢:G > G a group isomorphism. So we have f‘G, fo and the

following diagram.

* G *® -
N (G) ————— C.(G)
¢ N (6) l ()
7 fo
G N (Q) ——————p  C"(G)

» * *
We must show that C (¢)o f. = f{,;oN (¢). Let @ ¢ ¥ (G) choose I € a

G
Ten (C"(#)ofg)(@) = ¢ () [o,] = [(6 x #)(p,)] and (£/0K"(4))(a) =

fG’( [¢(H)]) = [QMN)] . Since ¢ is an isomorphism, ($ x di)PN = Py
Hence (C*(;b)ofG)(a} = (f‘GroH*(cp))(a). Thus f is a natural equivalence

* *
from N to C . Thus there exist three naturally equivalent covariant
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* % %
‘functors C ,N ,Q fromuiyi to @P .

Next, we shall considér some theorems which use normal subgroups

(ie. congruence sets).

Let G, ,G

1 be groups. Let G = G, x G, and define a binary

2 1 2
operation * on G by (xl,x2) '(yl,yzj = (xiyl, Xéy2) Then (G,*) is a

group. Let H = {(x,1)]x ¢ Gl} and  H, = {(1,y) |y ¢ G2} Then

i) H, and K, are normal subgroups of G,
ii) H.n Hy = A%
iii) hl and ne generate G.

Theorem 2.3.18 Let G be a group having two normal subgroups Hl,ﬂ2 such

that H N E, = {1} and H i generate G. Then G = K, x H,.

(]

Prcof, Claim that b}x £ Hl’ YAE H2 XY = Y.x . To prove
this, let x € H , ¥ & Hy then x.y.x-l efiy | and yx_ly-l e Hy (because
. -1, -1 -1 - .
H, €G, H, ¢ G) so (xyx )y ¢ H, and x(yx""y ) e H e,

xyx_ly_l e H, N H, = {1} so xy = yx.

Define ¢:H, X H, > G by ¢ (hl,hz) = h,.h, ‘U’ (hl,hz) € H X Hy.

Then ¢ is well-defined. We shall show that ¢ is 1-1. Let (hl,he),

7 / = W 4 o /_.l 3 b 1A
(n],hy) € H x.H, be such that b h?.h h. then bllhl = h e HNE, = {1}

R P s o S — B ik - 3 -
80 by = hl and h2 h2 ie, (nl,hz) = (hl’ha)' Hence ¢ is 1-1. TNext,
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we shall show that ¢ is onto. Because Hl‘s G, H2 9 G and Hl’HQ generate

G, G = H .H,. Let gc G then h) € Hy, hy € H, such that g = hyh,.

So (hl,he) € H, X H, and ¢ (hl,hz) =hh, = g Hence ¢ is onto. ILastly,

I f
we shall show that ¢ is a homomorphism. Let (hl,hg),(hl,he) € H * H,

£ st Y A
{ . == i = =
then ¢\h1,h2) ¢(h1,h2) (hlhg)(hlh2) hl(h?_hl)n2 1P,

’ R s
¢(hlhi’h2h2) = ¢[(h1,h2) . (hl’ha)] * Hence ¢ is a homomorphism.

i’

H X H #

Therefore G 1 1.

Remark: We see that normal subgroups (congruence sets) are the factors

in the direct product of groups.

Theorem 2.3.19 Let N be a normal subgroup of a group G. Then there

exists a bijection between the set of subgroups of G containing N and the
set of subgroups of G/H, and this bijection take maximsl subgroups to
maximal subgroups, normal subgroups to normal subgroups and meximal

normal subgroups to maximal normal subgroups.

Proof. Let eﬁ

7B

For each P e@% , let w(P) = {n(g}]g e P} where m:G > G/N is a natural

the set of subgroups of G containing W.

the set of subgroups of G/N.

homomorphism. Then m(P) g G/N. Define ¢:Ji +55 by #(P) = w(P) VP ecﬁ-

Clearly ¢ is well-defined. We shall show that ¢ is 1-1. Let P:I_,P2 € J%

be such that ¢(Pl) = ¢(P2). Let a € P, then m(a) € ¢(Pl) ¢(P2)

=
303 b e P2 such that m(a) = n(b) therefore ab e ker 7 = N C P2



b5
5 N -1 D =
50 a = (ab )b e P,. Hence P, ¢ P,. Similarly ng P,. So P,=P,.
Thus ¢ is 1-1. Next, we shall show that ¢ is onto. Let Q 535. Define
P={xce Gl[x] € Q) . Then P e(jiand $(P) = n(P) = Q. So ¢ is onto.

Therefore ¢ is a bijection.

i) Let P be a maximal subgroup of G containing N. We must show
that ¢(P) is a maximal subgroup of G/N. Let L be a subgroup of G/N such
that ¢(P)& L € G/N. Then P& ¢-1(L)C G. Because P is a maximal

*1{L) hence ¢(P) = L. Therefore ¢$(P) is a maximal

subgroup of G, P = ¢
subgroup of G/N. Similarly, if Q is a maximal subgroup of G/N then

$77(Q) is a maximal subgroup of G containing N.

ii) Let P be a normal subgroup of G containing N. We must show
that ¢(P) 9 G/N. Clearly $(P) ¢ G/N. Let o € G/N and 8 ¢ ¢(P). Then
JacG, beP such that a =[a] anda 8 = [b] so a lga = [a]_l[b][a]=
[a_lba] = 7(a”lba)" \Because P 9G and be P, a bae P so
a"lBa e 7(P) = ¢(P). Hence ¢(P) <« G/N. Let Q 9 G/N. We must show that

¢_1(QJ is a normal subgroup of G containing N. Clearly N € ¢_l(

Q) <€ G.
let g€ C and a € ¢-1(Q) then [a] £ Q and [g] € G/N. Because Q@ <€G/N,

[ eg] = [e] ™ [a]le] € @ so g™teg € 671(Q). Hence il R

iii) By i and ii, we have that P is a maximal normal subgroup of

G containing N iff ¢(P) is a maximal normal subgroup of G/N. #

Definition 2.3.20 Let G be a group. G is said to be simple iff G has.

no normal subgroups except {1} and G.



56

- Corollary 2.3.21 Let N be a maximal normal subgroup of a group

G. Then G/N is simple.

Corollary 2.3.22 If G is a simple group and X,y € G\M1}  then there

exist me[N,nl,...,nmaz and 8> ...,gms(} such that

y= 1 g"x g. .
1=1 i i

m ni

Proof. Assume G is a simple group and x,y € G\{1} . We have

finite_. n,
that { I g; x giigi e G, niEZ} is the normal subgroup of G
i

finite _ o,
generated by x. Because G is simple, G = { I g, X 8;18; € G,uiEZ i
) i :

Since y € G, Hn s[N > Dyseeesl EZ and 8psers8 € G such that

2.4 Group spaces,

In this section we shall work with left congruences on a group.
But everything that we prove for left congruences can be similarly

proved for right congruences also. As in Section 2.3, we shall consider

the categories /Q?f, ,go and /Q'fi.

First we shall define natural equivalent covariant functors from
/ﬁ, ;ffo to &:/ Uy using left congruences, subgroups and pointed

homogeneous left group-spaces which are defined Lelow.
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Definition 2.4.1 A left congruence on a group G is an equivalence

relation p on G such that x p y implies(a.x)p(a.y) for all x,y,a € G.

Remarks: 1) If p is a left congruence on a group G then
[l]p = {a e Glap 1} is a subgroup of G.
2) If S is a subgroup of a group G then {(a,b) e G x G[a"l.b e S}

is a left congruence on G,

Definition 2.4.2 Let G be a group and X bte a nomempty set. A left action

=

of Gon X is a map *:G X X=X such that 1,x = x for all x ¢ X and
(geh)ex = g.{h.x) for all gk =G, x ¢ X. Then (X,*) is said to be a left

G-space.

Definition 2.4.3 Let G be a group and (X,°) be a left G-space. * is said

to Le transitive iff for each x,y € X there exists an element g in G such

that y = g.x. In this case {(¥,+) is said to be a homogeneous left G-space.

Proposition 2.4.4 If p is a left congruence on a group G then the set
group

G/p of equivalence classes of G can be made into a homogeneous left

G-space.

-

Proof. Let p be a left congruence on a group G and G/p = the set
of equivalence classes of G. Define a map .:G x G/p =+ G/p as follows:
given g € G, @ € G/P choose a € & and let g.a = [g.a] . Clearly
Vo e6/p 1.0=0and Ve,n G, ace G/p (g).a = go(h.a) . Hence

(G/p,*) is a left G - space. Next, we shall show thet °* is transitive.
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-1
Let a,B € G/p, choose a € a, b ¢ B. Since a,u ¢ G, ab ¢ G and a= [a] *

=1 %
[(ah ).b] = (ab 1).8 . Hence (G/p,+) is a homogeneous left G-space.

Example Let E be a subgroup of a group G. Define p = {(a,b) ¢
G X G]a'lb € H}. As in the case when N is a normal subgroup of G, we
can show that p is a left congruence on G. So G/H & G/p. Then

(G/H,*) is a homogeneous left G-space.

Definition 2.4.5 Let G be & group, (X,x) a pointed set and - a left

action of G on X. Then (X,<,x) is said to be a pointed left G-space.

Remark: For each group G, each left G-space (X,+) and each x € X%,
denote {g € G|g.x = x} by G, « Then G, is a subgroup of G and is called

the isotropy subgroup corresponding to x. lience if (X,-,xo) is a pointed

left G-space then Gx is a subgroup of G.
o

Definition 2.4.6 TLet G be & group, {(X,+), (Y,*) left G-spaces and

$:X > Y a map. Then ¢ is said tc be G-equivariant iff ¢(g.u) = g * ¢(u)

for all g € G, u e X.

Remark: If ¢ is a bijective G-equivariant map then ¢_1 is also G-

equivariant. We call such a map a G-space isomorphism,

Definition 2.4.7 Let G be a group, (X,-,x) and (Y,*,y) pointed left

G-spaces. Say that (X,.,x) is equivalent to (Y,#,y) ((X,+,x)n(Y,%,y)) iff

there exists a G-space isomorphism ¢:(X,x) + (Y,y).
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Remark! <~ is an equivalence relation on the set of pointed left G-spaces.

Example Let (X,+,x) be a pointed homogeneous left G-space. Let u € X
then there exists a g € G such that u = g.x. So define ¢:X + G/Gx by
¢(u) = [g]. Then ¢ is well-defined isomorphism such that ¢(x) = [1]

Lence (X,.,x) v (G/G_,-,[1]).

1]

For each group G, let S(G) = the set of subgroups of G,

L (G)Y-="the set of left congruences on G,

P(G) = the set of equivalence classes of

pointed homogeneous left CG-spaces.

liow we shall define natural relations on these sets making them

into posets.
1.) Let C on S(G) be set inclusion. Then (S(G),S) is a poset.
2.) Let € on LD(G) te set inclusion. Then (LO{G);Q} is a poset.

3.} Let € on P(G) be defined as follow: given a,8 e P(G) choose
(X,+,x) ¢ a and (Y,*,7) € £ sar that « € B iff there exists an onto
G-equivariant map ¢:(X,x) + (Y,y). First, we shall show that C is well-
defined. Let (X,+,x) ~ (X:-ﬁxﬁ,(Y,*,y} " (Yt*ayﬁ and an onto
G-equivariant mep ¢:(X,x) + (Y,y). Ve must show that —an onto G-
equivariant map ¢t (ng) - (f,yﬁ. Because (X,.,x} " (Xif,xﬁ and

(T,%,5) v (Yy#hy), Jan isomorphism w:(x’,x'} + (X,x) and  dan
isomorphism ¢L(Y,y) > (Yiyﬁ. Define J:f-+ Y{by J = ﬁ6¢ow. Then ¢‘i3 an

onto G-equivariant map. ILience € is well-defined. Next we shall show that
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(P(G),C) is a poset. Clearly, C is reflexive. Let a < B and B € a.

Choose (X,*,x) € a,(Y,#,v) € 6. Then = an onto G-equivariant map

$:(X,x) > (¥,v) and = an onto G-equivariant mep J:(Y,y) + (X,x). We

want to show that ¢ is 1-1,it suffices to show that ¢cé = idy. Let

ue X then Jg e G such that u = g.x so doglu) = ¢ (g%¢(x)) = g.(gos(x))=
g.(¢ky)) = g.x = u hence ¢0¢ = idy ie. ¢ is 1-1. Therefore (X,e,x )Y, %y).
Thus a = B. Hence € is antisymmetric. Let & € B and B8 € y. Choose

(Xy°,x) € a, (Y,%,7) ¢ 8 and (2,A,2) € Y. Then 3 an onto G-equivariant

map ¢:(X,x) + (Y,r) and = an onto G-equivariant map ¢:(¥,y) > (Z,2).

- ' - - ‘ " u . - . T
Define ¢:X > Z by ¢ = %04 . 'Then ¢ is an onto G-equivariant map. Lence

a C y. Then & is transitive.  Therefore (P(G),L) is a poset.

Theorem 2.4.8 For each group G, the posets LO(G) and S(G) are isomorphic.

Proof. It is.similar to the proof of Theorem 2.3.8.

Theorem 2.4.9 For each group G, the posets P(G) and S(G) are isomorphic.

Proof. Let C be a group.Define ¢:P(G)> S(G) as follows:given aeP(G)
choose (X,+,x) € o and let ¢(a) = G_. First, we shall show that ¢ is
well-defined. Let (X,+,x) ~ (Y,%,y). So =3 an isomorphism f:(X,x) + (Y,y)
We must show that G, = Gy. Let g ¢ G, then g.x = x s0 gaf(x) = £(g.x)=Ff(x).

therefore g € G G_ so Gxg G . Let g ¢ Gy then gxf(x) so g.x =

£(x)” Yy v
i e
(£ of)(g.x) = ¢ lof(x) = x hence g ¢ Gx. Then G_= Gy. Thus ¢ is well-

defined

lext, we shall show that ¢ is 1-1. Let (X,+,x), (Y,%,v) be pointed

homogeneous left G-spaces such that Gx= G._. We must show that
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(Xy05x) v (Y,#%,y). Given u e X g ¢ G such that u = g.x therefore
g*y € Y. Define f£:(X,x) + (¥,y) by f£(u) = g*y. First, we shall show
that f is well-defined. Let g,g’e G be such that g.x = gﬁx SO X =

g_l.s.x = g_l.gix then g—l.gia G = Gy hence (g-l.g) # v =y therefore

gxy= g’* vy ie. f(g.x) f(gﬁx) hence f is well-defined. lext, we

shall show that f(g.u) = g

%

£{u) ‘U geEG ueX., Iletge G ueX

then Ja € G such that u = a.x so f(g.u) = £(g.a.x) = (gea) * y =

g* (a#*y)=g=x fla.x) = g % £(4). Next, we shall show that ¢ is 1-1.

/
Let u,u € X be such that £lu) = £(d) so Egg,g € G such that u =g.x,
/ / il N > -1 v
u=g.xand g#*y=g*y 50 (g g)# =y therefore g & EGy =G

e /!
hence (g lgjx = X S0 gx/= gx then u = U, Thus £ is 1-1. Lastly, we
shall show that f is onto. ILet v e Y then Tz € G such that v = g #* g
so g.x € X and f(g.x) = g # ¥y = v. lience £ is onto thus f is an

isomorphism. Therefore (X,+,x) ~ (Y,#,v) ie. ¢ is 1-1.

Next, we shall show that ¢ is Ont6. Let A < G. Define
p = {(a,b) € G x G|a-lb € A} then (G/A,-,[l]} is a pointed homogeneous

left G-space. 3So f([G/A,-,[l]]) 5 G[l] = A, Hence ¢ is onto,

Next, we shall show that ¢ is isotone. Let a,8 ¢ P(G) be such
that a ¢ B. Choose (X,*,x) € o and (Y,*,y) ¢ B then Jan onto G-
equivariant map f:(X,x) - (Y,y). We must show that ¢(a) C $(8) ie.
G, ¢C Gy. Let g € G, s0 g.x = x tﬂen g*y=gsx f(x) = flg.x) =

f(x) =y so ge Gy hence G*:Q Gy ie. ¢(a) € ¢(B). Thus ¢ is isotone.

Lastly, we shall show that ¢~ is isotone. Let A,B € 5(G) be

such that A € B, We must show that ¢_1(A)§§ ¢_1(B). Define
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f:(G/A,[l]A) * (G/B,[I]B) as follows: given & € G/A choose a € @ and
let £(a) = [a],. Because A < B, f is well defined. Clearly f is onto
and f ([1]A) = [1]3. Let g € G, & € G/A choose 2 € a then f(g.a) =
f([g.a]A) = [g.a.]B =g % [a.]B = g * f(a). Hence (G{A,-,[I]A) v
(G/B,*,[I]B) ie.$”(A) € ¢~1(B).Therefore ¢_:_L is isotone. Hence S(G)

is isomorphic to P(G). #

Corollary 2.4.10 For each group G, the posets LO(G) and P(G) are

isomorphic.

Remark: Fix a group G, S(G) is a lattice so LOLG) and P(G) are lattices

also.

Now we shall define covariant functors from.d?'to éﬁ .

’ !
1) Let G,G be in Ob ﬁff and ¢:G + G a group-homomorphism.
/ /
Then S(G), S(G) are in Ob . Detine s(¢):s(c) » s(G) vy s(p)(H) =
¢(H) for all H € S(G). The proof that S is covariant functor is

similar to the proof that i is a covariant functor in Section 2.3.

2) Let G,Gibe in Ob.d? and ¢:G > G;a group homomorphism. Then
P(G), P(G) are in Ob o . Define P($):P(G) » P(G) &s followsigiven a & P(G)
choose (X,",x) € a and let P(¢){(a) = [(G?¢(Gi),',[l])]. First, we shall
show that P(¢) is well-defined. Let (X,*,x) ~ (Y,#,y) then G = Gy
therefore ¢(Gx) = ¢(Gy). Then (G/(b(Gx),-,[l]) = (G/¢(G'}r),',[l] ). Hence
P(¢) is well-defined. Next, we shall show that P(¢) is isotone. Let
aysB € P(G) be such that a C 8. Choose (X,*,x) € @ and (Y,x,y) € B then

= an onto G-equivariant map y:(X,x) » (Y,y). Because y is G-equivariant
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and y = Y(x), G, S Gy' Hence P(¢)(a) € P(9)(B). Therefore P(¢) is
isotone. Next, we shall show that P is a covariant functor from ﬁffto

ég . Clearly P(idG) = idP(G) VG in 0b }g Let ¢:G » Gf and

¢":G’+ G‘ be group homomorphisms. Then ¢B¢:G > G, Letac P(G) choose
!
(X,*,x) € o then (P(§)oP(4))(a) = B(¢) [Cerete),-,[])] =
/

[(rstelyo-uliD] = [ ), 100 = (p(¥ot))a). Hemce

/
P($)oP(¢) = P(¢0d). Therefore P is a covariant functor from ﬂ to (%-

Now we shall show that P and S are naturally eguivalent. For
each G inOb &J , define fG:P{G) + 3(G) to be the map in Theorem 2.k4.9.
Then fG is an isomorphism. 'Claim that f is a natural equivalemce from

!
" P to S. To prove this, let G,Gf'be in 0b ,ﬁ and $:G > G be a group

homomorphism so we have f ' and the following diagram

G)
f‘G
G P(G) s(c)
P(¢) ‘ Jlls(cb)
G, P(Gr) =3 S(G’I)

We must show that S(¢) o fG = fo oP(¢). Let a € P(G) choose {X,*x)e a

then (fG:o P(¢))(a) = £ [(G’/ct(cx),',[l] )]= G'[1]= ¢(c,) = s(¢)(a ) =
(5(¢) o f‘G)(a). Hence S(¢) o L. £0 P(¢). Therefore f is a natural

equivalence from P to S.

Now we shall define covariant functors from }ﬁo too(lg .

1) Define 5,: Jgo—* éc by:8, = SI )B?J’o. Then S is a functor.
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2) Define P ,ﬂo -»c% by P = s]ﬁo. Then P_ is a functor.

/ /
3) Let G,G be in Ob ﬁﬁ; and ¢:G > G be an onto group homomorphism.

Then LO(G),LO(G') —— Define L_(¢):L _(G) ~+ LO(G') by L_(¢)(p) =

(6 x ¢)(p) for all p ¢ LO(G). Then the proof that L is a covariant
/
functor is similar to the proof that C is a covariant functor in

Section 2.3.

Now we shall show that SO,LO,Po are naturally equivalent. The
proof that So and Lo are naturally equivalent is similar to the proof
that N'and C are naturally equivalent in Section 2.3 The proof that P,
and So are naturally equivalent is similar to the proof that P and S are
naturally equivalent in this section. Hence So’Lo’ Po are naturally

equivalent.

Next we shall define naturally equivalent covariant functors

from,?.’j, ﬁboo togg .

Definition 2.4.11 Let G be a group and H,,H, subgroups of G. Say that

H, is strongly equivalent to H, (le H2) iff there exists a g € G such
that g lng =H2 v

Remark: = is an equivalence relation on the set of subgroups of G.

Definition 2.4.12 Let G be a group and p a left congruence on G. Then

for each a €G, let p.a = {(x.a,y.a)|x o y}.

Remark: p.a 1is a left congruence on G for all a € G where p is a

left congruence on G.
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Definition 2.4.13 Let G be a group and PP, be left congruences on G.

Say that p

is strongly equivalent to o, (p, = 02) iff there exists a

1 1

g € G such that P1-8 = Py

Remark: ~ is an equivalence relation on the set of left congruences

on G.

Definition 2.4.14k Let G be a group and (X,-), (Y,®) be homogeneous left

G-spaces. Say that (X,.) is equivalent to (Y,*) ((X,.) = (Y,*)) iff

there exists an isomorphism ¢:X » Y.

Remarks: 1) = is an equivalence relation on the set of homogeneous left
G-spaces.
2) TFor each homogeneous left G-space (X,:), (X,+) = (G/Gx,')

for all x e X.

rs
For each group G, let 5(G)

the set of equivalence

classes of subgroups of G under «,

c

——
(]
1]

the set of squivalerce

classes of left congruences on G under =x,

/
H(G) = the set of equivalence classes -

of homogeneous left G-spaces under =,

Now we shall define binary relations on these sets making them

into quasi~ordered sets.

’ /
1) Let s on S(G) be defined as follows: given a,B £ S(G) say that

a < B iff there exist H. ¢ a and H

1 € B such that HlC. H

Then clearly

2 o
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/
< is well-defined and (S(G),<) is a quasi-ordered set.

!
2) Let € on L(G) be defined as follows: given a,B € LO(G) say
o

that a € B iff there exist pl £ o and p2 € B such that plq; Ppe Then
L
clearly < is well-defined and (LO(G),<) is a quasi~ordered set.

/ y

3) Let < on H(G) be defined as follows: given a,8 e H(G) say
that & € B iff there exist (X,+) € &, (Y,*) € Band an onto G-
/

equivariant map ¢:X * Y. Clearly € is well-defined. Then (H(G),<) is

a quasi-ordered set.

: / /
Theorem 2.4.15 For each group G, the quasi-ordered sets S(G) and LO(G}

are isomorphic.

/ /
Proof, Let G be a group. Define f£:S(G) - LO(G) as follows: given
® € S(G) choose H € a and let f(a) = [p] where p = {(ab,) € G x G| a-lh €

H} . First, we shall show that f is well-defined. Let Hl £ G,32 € G be

such that H, = H, so g € G such that gthlg= H,. We want to show
that p,.g = p,. Let (a,b) € p, then WTBEME,  so {ag)-l(bg) =
1 1
g =1 GHL , . .
g (a lb)g €E g ng = HZ' Hence (ag,bg) € p2 ie. pl.gs= Ppe _Let
(a,b) € p, then alp e H, = g*lng so (agﬁl)-l (bg-l)= g(a-l‘b}g_1 e Hy
hence (ag *,bg Y) € 1 =(ag~t % <
ag ~,bg Py+ Because (a,b)=(ag “g,bg .g) € P .8, P& P, .2
Hence plg = 02. Thus pl = 92 so f is well-defined.

/
Next, we shall show that f is 1-1. Let a,B8 € S(G) be such that

f(a) = £(B). Choose H) e o,H, ¢ B then p, = p, ie. Jg € G such that

P1°8 = P,. We want to show g_lng =H Let a ¢ H, then (1,a) ¢ Py

5°

=1 -
so (gea.8) € p,.g = o5 then g "ag ¢ H,. Hence g lng CH,,Let b g H

1 2 2
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then (1,b) € Py = P g SO (g'l,bg-l} € p, and therefore gbg"l e H, .
! < -1
Since b = g (gbg g, b e g g. Henmce H, C g 18+ Therefore

Hy= g lﬂlg. Thus H, = H, fe. a =8 . Then £ is 1-1.

/
Next we shall show that f is onto. Let a eLO(GJ choose p £ o
then [1]p={a e Glap 1l ¢ G. So del]p]) = [{(asp)ecxglave

[l]p}] = [{(a,b) € G x Gla._]'b p 1}] = [p] = a. Hence f is onto.

Next we shall show that f is isotone. Let a,B £ S(G) be such
£ B. T i.. We 3 t
that o < B. Then—] Hl > a,H2 € B such that ng I-12 We want to show

e ™ (& { .
that plé Ppe Let (a,b) € Py then a lb € Hl" H2 so {a,b) € Py

Hence Dlg s ie. f(a) ¢ £(B) Therefore f is isotone.

Lastly we shall show that £ © is isotone. Let &, L_(G). be
such that & € B. Then 301 €4, P, & 5 such that plf_: P,. Then
clearly [l]p c [l]p . Hence f‘-l(pl} < f"l(pe}. Therefore £+ is

1 2
/ /
isotone. Hence S(C) is isomorphic to LO(G) . #

J /
Theorem 2.4.16 For each group G, the quasi-ordered sets S(G) and H(G)

are iscmorphic.

/ /
Proof. Let G be a group. Define f:H(G) » S(G) as follows: given
/
o € H(G) choose (X,*) € a and choose x € X then let f(a) = [Gx]‘ First
we shall show that f is well-defined. Let (X,:) = (Y,*) then 3 an

isomorphism ¢:X + Y. We want to show that Gx = G¢(x)' Let a ¢ Gx then

o,

a % ¢(x) = ¢(a.x) = ¢(x) soace Gcb(x) Hence Gx‘-_’-. G Let b ¢ G¢(x)

$(x)°

then b.x (¢_lo¢)(b.x) = ¢”1(¢(b.x))= ¢'l(b * ¢(x)) = ¢"l(¢(x)) =x so
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G = i -
b e Gx’ Hence G¢(x}“ Gx' Therefore Gx »(x) Because G¢(x) Gy

Vy €Y, Gx = Gy Vy € Y . Hence f is well-defined.

/

Next we shall show that f is 1-1. Let «,B8 € H(G) be such that
f(a) = £(B). Choose (X,:) € @, (Y,%) s Band x € X, y € Y then G = Gy
ie. Eag € G such that g_lcxg = Gy' Define ¢:X - Y as follows: given

ueX E]h € G such that u = h.x so let ¢(u) = (h.g) * y. We must

show that ¢ is an isomorphism. Let h,hfe G be such that h.x = h{x. then
W e G, S0 (th-l.(ﬁé) = g_lh’lﬁé £ Gy ie. (hg}-l(ﬁé) ¥y =y.

Hence (hg) # y = (hg) * v. Thus ¢ is well-defined.Let u,u'e X be such
that ¢(u) = ¢(d). Then A hsh € G such that u = h.x and W= B 80

(h%) # vy = (hg) ¥ y. Therefore {hg)-l(}fg) € GY S0 h‘lhfs Gx' Hence

hx = hx die. u = u. THerefore ¢ is 1-1. Let uc X, a ¢ G then J

-h € G such that u ='h.x so ¢(a.u) = (ah.x) = (a.hg) * y = a » ((hg) * y) =
a # ¢(h.x) = a # ¢(u). Hence ¢ is G-equivariant. Let v € Y then Jaca
such that v = a # y then ¢(ag_lx) ¥ (a.g_l.g) #y = a#y=v. Hence

$ is onto. Thus ¢ is an isomorphism ie. (X,:) = (Y,*). Then f is 1-1.

I
Next we shall show that f is onto. Let a € S(G) choose A € a
then (G/A,-) is a homogeneous left G-space. So f( [G/A,-]) =

[{a € ¢la.[1] = [a] }] = [A] . Hence f is onto.

/
Next we shall show that f is isotone. Let a,8 € H(G) be such

that a € 8. Then EB(x,-) € a, (Y,¢) ¢ 8 and an onto G-equivariant map

$:X > Y. Choose x € X. Because ¢ is G-equivariant, ch' G¢(x). Hence

f(a) € £(B) Thus f is isotone.



69

: = 7

Lastly we shall show that f 1is isotone. Let a,B € S(G) be

o< £ q < : i
such that B, Then E]Hl , By € 8 such that H € H,. Define
$:G/H, > G/H, as follows: given Y € G/H, choose a € v and let ¢(y) =
[aﬂe. Because Hlﬁé Hy, ¢ is well-defined. Clearly ¢ is onto, and
¢(g.y) = [g.a}z = g.[a]2 = g.¢(y) \fg € G,Y € GXHl. Hence ¢ is an
; 2 -1 -1 =1 .

onto G-equiveriant map. Therefore f (@) € £ (B). Thus f ~ is

/ /
isotone. Then H(G) is isomorphic to S(G) . #

/
Corollary 2.4.17 For each group G, the quasi-ordered sets LO(G) and

!
H(G) are isomorphic.

Now we shall define covariant functors from i?'tocz.

! !
1) Let G,G be in Obﬁand $:G > G be a group homomorphism.
/ A @ / /! /
Then S(G), S(G) are in 0b'¥ . Define S(¢):5(G) + S(G) as follows:
/ f
given @ € S(G) choose H € o and let (S(¢))(a) = [¢(H)]. First we
/

shall show that S(¢) is well-defined. Let Hl = H2 then Eig € G such

that g_lng = H,. Because ¢ is a homomorphism, (¢(g))_l.(¢{Hl))-
(¢(g)) = ¢(g—lﬁlg) = ¢(H2) hence ¢(Hl) = ¢(H2). Therefore S(¢) is

: /
well-defined. Then the proof that S is a covariant functor is similar

*
to the proof that N is a covariant functor in Section 2.3.

'
2) Let G,G be in Ob )ﬁ and ¢:G > G be a group-homomorphism.
/ | / / A
Then H(G), H(G) are in Ob @ . Define H(¢):H(G) » H(G) as follows:
/ /
given a € H(C) choose (X,*) € a and choose x € X then let (H(¢))(a) =

[(6/6(G ),)]. First we shall show that H(¢) is well-defined. Let
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(X,*) = (Y,*), Choose x € X,y € Y , Then g, = Gy s0 ¢(_Gx) = ¢(_Gy).
Hence (G/¢LGX),-) = (G/¢(Gy),u). Hence H1¢) is well-defined. Next we

/ /
shall show that H(¢) is isotone. Let a,B eH(G) be such that o < B
Then 3 (X,*) € @, (Y,%) € B and an onto G-equivariant map ¥:X * Y.

Choose x € X so V(x) € Y. Because y is G-equivariant, G S G‘P(x)' Then

o(c,) ¢ 9(Gy(y))e So [(G’/dﬁ(Gx),")] < [(G’f‘iﬂ(%(x?,*’)]. Hence (H(¢))(a) <
(H’(CP))(B). Thus H($) is isotone. Next we shall show that H is a

covariant functor from ﬁto @ w Clearly Hf(idG) = id}{(G) v G in Ob I{Qf

4 ‘! 7 4
Let ¢:G + G and ¢:G > G be group homomorphisms. Then :b,od::(} *> G. Let
/ £, & 7
a ¢ H(G), choose (X,*) ¢ o and x € X then (H(¢)cH(4))(a) =

H[(Erie), )] = Udhteny) ) = (@), ] = oo,

F P / /

/ £
Hence H(¢)oH(d) = H(¢odp). Therefore H is a covariant functor from 51:0@-

/ /
Now we shall show that H and 5 are naturally equivalent. TFor

£ /
each G ¢ ObQ'_q)o , define fG:H(G) + 5(G) to be the map in Theorem 2.4.16.
/
Then fG is an isomorphism. Claim that f is a natural equivalence from H
/ /
to 8% To prove this, let G,G € Ob,(qf and $:G > G be a group homomorphism.

So we have 7., f /and the following diagram

8> g
i fG ’
G #(G) > 5(G)
/ /
) H(¢) S(¢)
b fo f Py 4

V; / /
We must show that S(¢)ofG= i‘d'OH(@). Let o € H(G) choose (X,*) € a and
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x € X then (£goH($))(a) = £4{( c/p(c.)," 1]= [G’[i’]] = [ole))] =

Sf(¢)[(}x 1= (Sf(tﬁ)ofG)(a). Hence S"(<i5)ofG = fd'oHt¢). Therefore f is a

/ /
natural equivalence from H to S,

Now we shall define covariant functors from ﬁfo to @

1) Define S;: ’ﬂo > @ by S; SLHO. Then S; is a functor.

H]x%f

3) Let G G be in Ob,@’ and $:G > ¢ be an onto group-homomorphism.

2) Define HI :;{f +@ by H’

Then H is a functor.

/

! 7 F
Then LOKG), LO(C} are in 0b @ . Define Lo(é):Lo(G) -+ LO(G) as follows:
Fi
given o € LO(G), choose p € @ and let (L (6))( [{¢ x $)( p)] First,

/
we shall show that LO(¢) is well-defined. Let :31 = 02 then ag EG

such that 0,.g = © Because ¢ is a homomorphism, (¢ X ¢)(Dl)- (g) =

o
(3 x 8)(py) de. (9 % &}oy) = (o x ¢)(e)). Hence L;(¢) is well-defined.

Fi
The proof that L0 is a covariant functor from ﬁff to @is similar to the
o

2 - i)
proof that C is a covariant functor from . to .
i

Now we shall show that S;,L;,H; are naturally equivalent. The
proof that Sc; and Lo/ are naturally equivalent is similar to the proof
that N*and c*are naturally equivalent in Section 2.3. The proof that H;
and S; are naturally equivalent is similer to the proof that H and S are
naturally equivalent in this section. Hence S;,L;,H; are naturally

equivalent.

Next we shall define naturally equivalent covariant functors from

& Q.
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Definition 2.4.18 Let G be a group and H, ,H, subgroups of G. Say that

H1 is weakly equivalent to H2 (Hl " H2] iff there exists an automorphism
¢:G > G such that ¢(H1) = H,.
Remarks: 1) " is an eguivalence relation on the set of subgroups of G.

2) Hl = H, implies that Hy v H,.

Proof. 2) Let H, = H, then Jg € G such that g-lng =

Define ¢:G + G by ¢(a) = g’l.a.g. Then ¢ is an automorphism such that

¢(Hl) = H,. Hence Hy v H,. #

Definition 2.4.19 Let G a group and P15P5 left congruences on G. Say

that p, is weakly equivalent to pe(p1 v op.) iff +there exists an

3 2
automorphism ¢:G > G such that (¢ x ¢)(Dl) =

02'

Remarks: 1) < is an equivalence relation on the set of left congruences
on G.

2)

Dl = 02 1mplle5 that Ql’\J pe'

Proof. 2) Let Py =P,

5 then Eﬂg £ G such that plg =p

o
Define ¢:G + G bty ¢(a) = g_l.a.g. Then ¢ is an isomorphism. Let
(a,b) € p, then (¢ x $)(a,b) = (g-l.a.g,g*l.b.g). Since {g"l.a,g"l.b) %

iy 8 -
Pys (g ".a.g, & 1-b-g) €P-8=p, 8O (¢ x ¢)(pl) c Pye Let

= ¥
(x,y) € p, then (gx,gy) € p, so (gxg Leve™) ¢ pye So  (x,7)

(ete x 7l , ey g tg) = (¢ x 8)(exg™t,eye™) € (4 $)(ey) ,

hence 0, € (¢ x ¢)(Dl)- Thus (¢ x ¢)(pl) =p Therefore p, " Py« i

2.
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Definition 2.4.20 Let G be a group and (X,+),(Y,%) homogeneous left

G-spaces. Say that (X,.) is weakly equivalent to (Y,*) ((X,+) ~ (Y,*))

iff there exist an automorphism y:G + G and a 1-1 onto map ¢:X = Y such

that ¢(g.u) = Y(g) * ¢(u) for all g € G, u € X.

Remarks: 1) "~ is an equivalence relation on the set of homogeneous left

G-spaces.,

2) (X,+) = (Y,*) implies (X;°) ~ (Y,*) -

the set of equivalence classes

S
i

For each group G, let Si{G

of subgroups of G-under v,

Li(G) = the set of equivalence classes
of left congruences on G under v,
Hi(G) = the set of equivalence classes

of homogeneous left G - spaces under w.

tow we shall define lLinary relaticns cn these sets making them

into quasi-ordered sets.

1) Let € on Si(G) be defined as follows : given a,8 € Si(G)
say that o < B iff o H, € o, H, ¢ £ such that H, € H,. Clearly < is
well-defined. The proof that (Si(G),s) is a quasi-ordered set is

*
similar to the proof that (N (G),<) is a quasi-ordered set.

2) Let < on Li(G) be defined as follows: given a,8 ¢ Li(G)

say that a £ B iff 5301 €8, P e B such that pl'C Poe Clearly < is

well-defined. The proof that (Li(G),g) is a quasi-ordered set is similar
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*
to the proof that (C (G),€) is a quasi-ordered set.

3) Let € on Hi(G) be defined as follows: given o,B € hi(G)
say that a < 8 iff Ea(X,‘) € a, (Y,#) € B an onto map $:X * ¥ and an
automorphism Y:G *+ G such that ¢(g.x) = ylg) * ¢(x) for all g € G,
x € X. Clearly € is well - defined. Then (Ei(G),S) is a quasi-ordered

set.

Theorem 2.4.21 For each group G, the quasi-ordered sets Si(G) and Li(G)

are isomorphic.

Proof. It is similar to Theorem 2.3.16.

Theorem 2.4.22, TFor each group G, the quasi-ordered set Si(G) and

hi(G) are iscmorphic.

Proof. Let G be a group. Define f:ﬁi(G) > Si(G) as follows:given
a € Hi(G} choose (X,*) € @ and x € % and then let f(a) = [Gx]' First, we
shall show that f is well-defined. Let (X,*) ™~ (Y,x). Then an
automorrhism 9:G - G and 1-1 onto $:X = Y such that ¢(g.x) =
v(g) = ¢(x) V x € X g€ G. Let x €X. We shall show that G G¢(x). We

have that ¥ is an automorphism and we shall show (G ) = G « Let a €G
X $(x) X
so ¢(x) = ¢(a.x) = ¥(a) % ¢(x) so ¥(a) ¢ G¢(x). Therefore w(Gx) < G¢(x).

Let be G¢(x) so b x ¢(x) = ¢(x). Because Y is onto, aa e @ such that

b

]

P(a). Then ¢(x) = b*d(x) = Y(a) # ¢(x) = ¢(a.x). Since ¢ is 1-1,

X = a.,x ie. a ¢ Gx' So b = P(a) e w(Gx). Hence G

¢(x)C.»‘IJ(Gx). Therefore

C: = ‘. Tt 1 . k' i VRl &
¢(x) w(Gx} lnen Gx v G¢(X) Because G¢(x) " G’y VJ E G ’ Gx C}_ V

y e G. Hence f is well - defined.
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Next we shall show that f is 1-1. Let a,B € H, (G) be such that
£(a) = £(B). Choose (X,-) € a, (Y,#) € B, x e X and y ¢ Y. Then G " Gy.
So ean automorphism y:G + G such that tp(Gx) = Gy. For each u € X,
Jnec such that u = h.x so ¥(h) * y € Y. Define ¢:X >+ Y by ¢(u) =
¢(h) * y. Because w(cx) C Gy, ¢ is well-defined. Since Gy,é w(cx),
¢ is 1-1. Next we shall show that ¢ is onto. Let v € Y then 3 h" e G
such that v = h » y so Jdn ¢ ¢ such that 1{ = y(h) therefore h.x € X
and ¢(h.x) = w(h) *# y = h,* y = v. Hence ¢ is onto. Let ge G, ue X
then Jh € G such that u = h.x then ¢(g.u) = ¢(g.h.x) = ¥(gh) # y =
($(g).¥(n)) * y = p(g) x (¥(n) * y) = ¥(g) * ¢(h.x) = ¥(g) * ¢(u). Hence

(X,') v (Y’*)a Thus f is l-'l.

Next we shall show that £ is onto. It is similar to a part of

the proof of Theorem 2.4.16.

Next we shall show that f is isotcne. Let a,8 ¢ Hi(G) be such
that o ¢ B. then E(X,-) e a, (Y,s) € 8 an onto map ¢:X - ¥ and an
automorphism ¥:G + G such that $(g.u) =¢(g) * ¢(u) Vg € G, ueX
Similar to the above procf, #J(Gx) < Gcb{x)' Because l{:(Gx) a" Gx’ [Gx] <

[G¢(x)] ie. f£(®) s £(B). Hence f is isotone.

Lastly we shall show that f = is isotone. Let a,8 e 5,(G) be
such that & < B then HH__L e a, Hy € B such that ng_ H,. We want to
show that [(G/Hl,-)] < [(6/H,,#)]. Define ¢:G/H, » G/H, as follows:
given y € G/Hl choose a € y and then let ¢(y) = [5.12. Then ¢ is an
onto map such that 4(g.y) = idG(g) * ¢(y) Vg € G, Yy € G/Hl. Hence
f_l(a) < f“l{ﬁ). Thus f_:L is isotone. Therefore Hi(G) is isomorphic

to Si(G). #
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Corollary 2.L4.23 For each group G, the quasi-ordered sets Li(G) and

Hi(G) are isomorphic.

Now we shall define covariant functors from ﬂﬁ; to GD .

!
1) Let G,G be in Ob }ﬁg and ¢:G > G a group-isomorphism.
4 s
Then si(c), Si(G) are in Obéi?. Define si(¢):si(c) > si(e) as follows:
given o € Si(G) choose H £ a and let (Si(¢)Xa) = [¢(H)] . The proof

*
tha.tSi is a covariant functor is similar to the proof that N is a

covariant funector in Section 2.3.

y ,
[ . .
2) Let G,G be in Ob 1161 and ¢:G > G a group-iscmorphism.

! /
Then Li(G),Li(G) are in Ob(ED. Define Li(¢):Li(G) - Li(G) as follows:
given a € Li(G) choose p € & and let (Li(¢))(a) = [(¢ X $)(pl)]. The
proof that Li is a covariant functor is similar to the proof that C* is

a covariant functor in Section 2.3

e

7 /
3) Let G,G be in Ob ﬁfg and $¢:6 > G a group-isomorphism. Then
/ - /
Hi(G}, Hi(G) are in obGQ . Define Hi{¢):Hi(G) > Hi(G} as follows:

given a € Hi(G) choose (¥,+) € @ and x e X then let {Hi(¢))(a) =

/
[(G/@(Gx),-)]. First ve shall show that H,(¢) is well-defined. Let
(X,+) ~ (Y,#). Choose x € X, y € Y. Then G, v G, so ¢(G ) ~ ¢(Gy)-
’ !
Then (Gf¢(Gx),-) v (G/¢(GyL*). Hence Hi(¢) is well-defined. Next
we shall show that Hi(¢] is isotone. Let a,B ¢ Hi(G) be such that
a € B. Then J(X,-) € a, (Y,*) ¢ 8, an onto $,:X > Y and an

automorphism w2:G-+ G such that wl(g.u) = wz(g) # ¥.(u). Choose

i &
x € X 50 wl(x) € Y. Let y = wl(x). Then wz(Gx) C Gy. Let

/ -1 ’ " / /
wg = ¢o¢20¢ . So ¢2 is an automorphism. Define wl:G?¢(Gx) > G/¢(Gy)
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/
‘as follows: given y € G/¢(Gx) choose a € y and then let wl(y) =
/!
[wé(a)]y. First we shall show that y is well-defined. Let a,b € C
be such that a b ¢ ¢(Gx) then ¢‘1(a”1b) €6, so ¢2(¢'l(a”lb) >

wz(Gx) = Gy. Hence ﬁ;(a_lb) = (¢o¢2o¢_l)(a-lb) € ¢(Gy). Therefore

(w;(a))hl.¢;(b) € ¢(Gy). ie. ¥, is well-defined. Clearly ﬁl is onto

A

and ﬁ;(giy) = ¢£(§) % wi(y) k/? € G?¢(Gx), gf; G. Hence (Hi(¢))(ﬁ) <
(Hi(¢))(3). Therefore Hi(¢) is isotone. Next we shall show that H;

is a covariant functor from dTi to CD . Clearly Hi(ldG) = 1dHi(G)

&

s / i
kf GinOb ngi' Let ¢$:G > G and ¢:G > G be group-isomorphisms.

V'
Then $b¢:G + G. Let a € Hi(G)’ choose (X,*) € o« and choose x £ X

then (8, (§)om; (#)) () = (5, (#9) [(ee(c,),)] = [(a/olopyps)] =
[(G/6ob(c,),)] = (H,(§o))(a). Hence i, (¢)oH, (¢) = H, (408).

Therefore Hi is a covariant functor from ﬂﬁ; to 62 .

Now we shall show that Si’L Hi are naturally eguivalent.

i!

The proof that Si and Li are naturally equivalent is similar to the
* *

proof that N and C are naturally equivalent in Section 2.3. The

proof that Hi and Si are naturally equivalent is similar to the proof

that Ho and S0 are naturally equivalent in this section.

Remark : Definitions, theorems and our investigations in Section 2.2

are true for group-spaces.
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