We shall give some definitions and some theorems used in

this thesis.

Definition 1.1 A category'%?consists of a class of things called objects

and denoted by 0b (ﬁ?) and for each ordered pair of objects (X,Y) in Ob

(%?) a set is assigned called the set of morphisms and denoted by Mor

(X,Y) (Mor (X,Y) may be empty) and o a map,called composition and

denoted by o,from Mor (X,i) x Mor (Y,Z) + Mor (X,Z) such that

i) if f e Mor (X,Y),g € Por (Y,Z) and h € Mor (Z,W) then
ho(gof) = (hog) of,

ii) for each ¥ in 0Ot (&?} there exists a special morphism

Y
and if g € Mor (Y,X) then goid, = g. id, is called the identity on Y.

denoted by id, € Mor (Y,Y) such that if f e Mor (X,Y) then id of = f

Remarks: 1) If £ ¢ Mor (X,Y) we shell sometimes write this as f:X + Y

or X £ X

2) 1id, is the unique element of Mor(Y,Y) satisfying the

property ii)

Examples 1) The category /é of sets and set maps; let Oh (ﬁj] = the

class of all sets, if I, ¥ are sets then let Mor(%,Y) be the set of all




set maps f:X * Y., If f:X *Y and g:Y - Z then g o f is the composition

of set maps.

2) The ca.tegoryﬁ of groups and group-homomorphisms; let
Ob (ﬁﬁﬁ = the class of all groups, if G,,G, are groups then let Mor (Gle)
be the set of all group-homomorphisms f:Gl+ Gz. It f:G1 > G2 and g:G2 4-G3.

Then g o f is the composition of group homomorphisms.

3) The categoryéfi of rings and onto ring homomorphisms; let
Ob&ﬂ%} = the class of all rings, if R,,R, are rings then let Mor (RI’RQ)

Le the set of all onto ring homomorphisms f:R, + R,. Mor {Rl,Re) may

1
te empty., If f:Rl i R2 and g:R, - R3 then g o £ is the composition of

ring homomorphism.

Definition 1.2 Let X be a nonempty set and x € X. We say that (X,x) is

& pointed set. Let (¥,x) and (Y,y) be pointed sets. Then a pointed set

I

map from (X,x)to (Y,y) is a set map ¢:X + ¥ such that ¢(x) = y.

4) The category g?) of pointed sets and pointed set maps ; let
Gb(gﬁ) = the class of all pointed sets, if (X,x), (Y,y) are pointed sets
then let Mor(X,x), (Y,y)) be the set of all pointed set maps f:(X,x) > (Y,¥y).
If £f:(X,x) *> (Y,j) and g:(Y,y) > (Z,z) then g o f is the composition of

pointed set maps.

Definition 1.3 Let G bve a category, X,Y in Ob ﬁﬁ), f € Mor (X,Y) and

g € Mor (Y,X). Then g is called a left inverse of f if g o f = idX'

In this case, f is called a right inverse of g€. Also if fo g = idY

then g is called a two-sided inverse of f. If f has a two-sided inverse

then f is called an isomorphism.,



Remarks; 1) Let fe Mor (X,Y) have a left inverse g and a right inverse
h then g = h. So f has two-sided inverse.
2) If £€ Mor (X,Y) has a two-sided inverse then the two-sided

inverse is unique.

Definition 1.4 Let %? be a category and X,Yin(ﬁ:(zg). Then X is said

to be equivalent to Y iff there exists an isomorphism f ¢ Mor (X,Y) .

Definition 1.5 Let %? ,éz) be categories. A covariant functor F from

%to .@ is a correspondence that takes objects in g tec objects in
@a.nd morphisms f:X -+ Y in gto morphisms F(f£):F(X) = F(Y) in @

such that

i) F(id.i{) = idT(X) for all X inOb ((6),

ii) F(g o £f) = F(g) o F(f) whenever z o f is defined.

Definition 1.6 Let 8? ,éZj be categories. A contravariant functor F

from g to @ is a correspondence that takes objects in {g to objects
in c@ and morphismg f:X + ¥ in ? to morphisms F(f):F(Y) > F(X) in.@

such that
1) F(idy) = idyy)  for all Xinob (%),

ii) F(g o f) = F(f)oF(g) whenever g o f is defined.

Examples of covariant functors and contravariant functors are

given in Chapter II and Chapter III.

Definition 1.7 Let 8? ,sz be categories and Fl,F functors from
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g to o@ of the same variance, A natural transformation ¢ from F:L to F2

is a correspondence which assigns to each object X in (g a morphism
M
by € Mox:ij ((F{X), F,(X)) such that for each f ¢ m? (X,Y) one of the

following diagrams is commutative:

by *x
i) =it 17 F) (%) ————F,(X)
F, (£) R (1) F(2) F(¢)
¢
? Y
F,(¥) ! F (1) F, (¥ y P (Y)

In addition, if for each X in Cb (%) ¢}{ is an isomorphism then we

say that ¢ is a natural equivalence and Fl is naturally equivalent to F2'

Examples of natural equivalences are given in chapter II and

chapter III of this thesis.

Definition 1.8 Lete]fp, eéjz) be categories. Then 5/3 is said to be a

subcategory of eﬂv iff if X is-in Ob (%) then X is in Ob(cﬁ) and if
X,Y are in Ob(e%) then Mo::%(}{,‘f} ¢ Mor (X,Y) and if g ¢ I-xoz%(){,k'),

f € kor (Y,2) then fo g = fo_ g.

B/

Eicample Let Q?j be the category of groups and group-homomorphisms. Then

the following categories are subcategories ofﬁ:
i) the category of groups and onto group homomorphisms,

ii) the category of avelian groups and group homomorphisms.

We shall now define a quasi-ordered set as given in [l]



Definition 1.9 A quasi ordered set is a pair (Q,<) where Q is a set

and < is a binary relation on Q which satisfies for all X,¥,Z € Q@ the

following conditions:
1) For all x,x € x. (Reflexive)

2) Ifx<yandy € z then x € z . (Transitive)

Example Fix a vector space V of dimension > 1. Let @ = an(V). For

A,'EéﬁDCV) say that A < B . iff the linear sutspace of V generated by

ludl

A ¢ the lirear subspace of V generated Ly 5. Clearly (Q,<) is a quasi

ordered set.

Definition 1.10 A partially ordered set (poset) is a pair (P,g) where

P is a set and ¢ is a binary relation on P which satisfies for all

X,¥,2 € P the following conditions:

1) For all £ X. (Reflexive)
2) If x s yand ¥y € x then x = yu (antisymmetric)
3) If x<yandy< 2z then x & By (Transitive)

We shall now define an isotone map as given in [1]

Definition 1.11 An isotone map from a quasi-ordered set Ql to a

quasi-ordered set Q2 is a map qb:Q1 > Q2 such that x € y implies that

¢(x) < ¢(y) for all x,y e Q-

Remark Every poset is a quasi-ordered set so the above definition is

used for posets also.




Definition 1.12 An upper bound of a subset X of a poset (P,s) is an

element a in P such that x < a for all x in X. The least upper bound
of X is an upper bound a of X such that if b is an upper bound of X
then a € b, 1l.u.b.X denotes the least upper tound of X. The notions

of lower bound of X and greatest lower bound (g.l.b.X) of X are defined

dually.

Definition 1.13 A lattice is a poset any two of whose elements

have a g.1l.b. and a l,u.b.

Examples 1) Let g’(}() be the set of all subsets of a set X and € set
inclusion. Then clearly (eép(x),g ) is a poset. Let A,B egptz{} then
P

ANB=gl.b,{A,B} and AU B = 1l.u.b.{A,B} . Hence ¢/ (X) is a lattice.

2) Let 25((%) be the set of all subgroups of a group G and ¢
set inclusion. Then clearly @(G),Q) is a poset, Let };l,lies )ds(,G)

then H, n Hy, = g.1.b {El,lie} and the subgroup of G generated by LU i, .=
l.u.b. {Hl,'h,j}. Hence é(G) is a lattice.

3) Let QM(G) be the set of all normal subgroups of a group G
ard ¢ set inclusion. Then clearly (MG),G) is a poset. Let N ,N, e
MG) then Nlﬂ N, = g.l.b.{Hl,Ng} and N .N, = {nl.n2|nle Nosn, € N,}
= l.u.b.{N,,N,}. Henceofvo(c) is a lattice.

4) Let g(R) be the set of all ideals in a ring R and ¢ set
inclusion. Then clearly (3(?{),(; ) is a poset. Let Ll e 3’(11) then

{I,,I,}. Hence g(R) is a lattice.



Definition 1.14 Let ¢:X+Y be a set map. Then ¢ X ¢:X X X > ¥ X ¥

will denote the map given by (¢ x ¢)(x,y) = (¢(x),4(y)) for all x,y € X

Definition 1.15 An algebraic system is a n + 1 tuple (X,fl,...,fn)

where X is a nonempty set, n € fN and fi is a map from X X X to X for

all 1 {1,2;see50k.

Examples  Semigroups, groups, semirings, rings and skew fields

(division rings) are algebraic systems.

Definition 1,16 Let (X,fl,...,fn) and (Y,gl,...,gm) be algebraic

systems. Say that {X,fl,...,fn) and (Y,gl,...,gm) are of the same

type iff m = n.

Examples Two semigroups are of the same type, two groups are of the
Same type, semigroups and groups are of the same type, semirings and

rings are of the same type.

Definition 1,17 Let (K,fl,...,fn) and (Y,gl,...,gn) be algebraic systems

of the same type. An operation preserving map from (}I,fl,. .o ,fn) to

(Y,gl,...,gn) is a set map ¢:X + Y such that for each i € {1,2,...,n},

a,b € X ¢(fi(a,b)) = g;(¢(a),0(v)).

Examples Semigroup-homomorphisms, semiring homomorphisms are operation

preserving maps.

Definition 1.18 Letejtbe a category. Then (’jE is said to be a category of

algebraic systems iff




1) all the-objects ofef% are algebraic systems of the same

type and

2) every morphism in efb is an operation preserving map.

Remark: In this thesis we shall only study categories of algebraic

systems and the following categories:

i) the category‘éﬁ of lattices and isotone maps,

(1]

ii) the category of posets and isotone maps,

iii) the category C? of quasi-ordered sets and isotone maps.
Examples The following categories are categories of algebraic systems:
i) the category jﬁL of semigroups and semigroup homomorphisms,

ii) the categcry'gaj of rings witnh multiplicative identity 1

and 1-1 ring nomomorphisms,

iii) the category'gy- of skew fields and 1-1 ring homomorphisms.,

Definition 1.19 Let (X,fl,...,fn} be an algebraic system., An operation

preserving relation on (X,fl,...,fn) is an equivalence relation o on X

such that x p y implies that fi(a,x) o fi(a,y) and fi(x,a) P fi(y,a)

for all x,y,a € X, for all i ¢ {1,2,..., n}.

Let (X,fl,...,fn) be an algebraic system, p an operation preserving

relation on (X,fl...,fn) and X/p the set of equivalence classes of X. For
. . /
each i ¢ {1,2,...,n} define fi:A/p x X/p > X/p as follows: given w,3 € X/p

) ; ’ ’
choose a € @, b ¢ 8 and then let fi(a,s) = [f.(a,b)]. Clearly f. is well

1

- - - ’ ,
defined for all i. So we see that (X/O,fl,...,fn) is an algebraic system



of the some type as (X,fl,...,fn) such that the projection map m:X + X/p

is an operation preserving map.

Remarks: 1) For each ocoject (S,+) in Ob ( EL) let p be an operation

preserving relation on (S,.) then (S/p,.) as defined above is an object in

4.

g

2) Let p be an operation preserving relation on an object
(R,+,*) in Ob (SRE). If (0,1) € p then (0,x) € p for all x € R and
hence (x,y) € p for all x,y e R i.e., p =R x R, so we shall see that

R/p has only one element, ie. (R/p,+,*) is not an object in é?Ll'

Definition 1.20 Let Qﬁbbe a category of algebraic systems. A congruence p

on an object (X,fl,...,fn) in 0Ob &Jﬁ) is an operation preserving relation
. / I 7
on (K,fl,...,fn) such that the algebraic system {X/p,fq,...,fn) constructed
above is an object in 0b @jﬁ).
Examples 1) An operation preserving relation on an object (S,*) of Ob
(,ﬁ%} is a congruence on (S,-) .
2) p is an operation preserving relation on an object (R,+,*)

Oféﬁil sucn that (0,1) £ p iff p is a congruence on (R,+,-).

3) p is an operation preserving relation on an object (F,+,+)

of such that (0,1) € p iff p is a congruence on (F,+,+).

Remark: We have seen that in some categories an operation preserving relation

1s a congruence and in some categories an operation preserving relation is

not a congruence.
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Definition 1.21 Let eftbe a category of algebraic systems, Say that

@7% has the congruence functor iff

1) for each object (X,f‘l,...,fn} in Ob (ejdfo) the set

.. e i t- i
C(X,f‘l,...,fn) of all congruences on (X,fl, ,fn) is a lattice with

respect to set inclusion,
l’”"fr') > (Y,gl,...,gn) is a morphism in@ﬂi
then (¢ x ¢)_1(A) € C(

2) if é:(X,f

A " 5
and e C K’fl""zn) .

(Taiisensiit)
1) and 2) implies that there exists a contravariant functor C

fromcfhto éfo such that O takes (}C,fl,...,fn) to C( and

K,fl,...,fn)

morphism ¢:(X,fl,...,fn) > (Y,gl,...,gn) to the isotone map

(6 x 8)7%: ¢ /¢ _ _
T8y e, (K,f'j,...,f‘n) we shall call C the congruence

functor ofC‘?ﬁ' .

In Chapter II and Chapter III we skall see examples of categories
of algevraic systems naving the congruence functor. In this thesis we

are interested in categories of algebraic systems which have the congruence

functor and@ ,@ . &f .

Definition 1.22 Let Qﬂ; be a category of algebraic systems having the

congruence functor. Let C denote the congruence functor of@% . Say

that@% has a congruence set iff for each object (X,fl,...,fn) in a%

we can choose a set B(X £ £ ) of subsets of X such that
2 l""’ n

1) B(X . £) is a lattice with respect to set inclusion,
b ] 1’.0‘, n

- ¢:(J{,fl,...,fn) - (Y,gl,...,gn) is a morphism ineﬂ;
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- -1
and A € D( ) then ¢ “(A) € B(X’f]_""’fn)’

Y,gl,...,gu
3) the contravariant functor B frmmdj%'to éﬁ taking (X,fl,...,fn)

ni i "o s "o th
to B(X,fl,...,f ) and morphism ¢.(X,fl, ,fn) (Y,gl, ,gn) to the

isotone map ¢_l: is naturally equivalent

B(Y,gl,...,gn) . B(x,fl,...,__fn)

to C.

We shall call B a congruence set functor oféja. If A € B(X £ £ )
: oty Rt e

then we shall call A a congruence set in (K,fl,...,fn) with respect to the

congruence set functor b.

In Chapter II and Chapter IIT we shall see examples of categories of

algebraic systems having a congruence set functor and a congruence set.
We shall show that gﬁ hag at least two congruence set functors.

Proposition 1.23 If p is a congruence on an object (F,+,*) ill%?'thEﬂ

p = A,

Proof. Assume that p is a congruence on (F,+,*). Suppose that
p#4 so 3 (a,o) € p such that a# b. Then (a - b, 0) € p. Because
a-b#0, (1, 0) = ({a - h}"l.(a - b),(a - b)_l.O) € p which is a

contradiction, Hence p = A ,

/
We define contravariant functors C, B, B frmnf} to éﬁ as follows:

1) For each object (F,+,+) in %}', let C(F,+,*) = {a}

and for each morphism ¢:(F,+,*) > (F:;,:) let C(¢)(5) = A.
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2) For each object (F,+,*) in g‘ , let B(F,+,) = {{o}}

and for each morphism $:(F,+,+) - (F2+2'3 let B(¢)({d}) ={0} .

3) For each object (F,+,*) in 9‘, let BI(F,-I-,') = {18

’ ¥ F ’
and for eacn morphism ¢:(F,+,+)+ (F,+,+) let B(¢) ({1}) ={1} .

!
Hence C,3 and B are naturally equivalent contravariant functors.
. i
Then C is the congruence functor of gﬁ » 3 and B are congruence set
functors cﬁ‘g?} {0} 1is a congruence set with respect to 3, {1} is a
/ Gl

congruence set with respect to 8, iHence @ has at least two congruence

set functors.

OQur aim in this thesis is to study congruences and partial
congruences in the category of semigroups and semigroup nomomorphisms
and the category of semirings and semiring homomorphisms. We shall see
that certain special subcategories of these categories nave a congruence
set. DBesides the well-known congruence sets on the category of groups
and the category of rings already mentioned, we have discovered that the
category of P.R.D.'s and P.R.D homomorphisms and the category of
semifields and semifield homomorphisms both have a congruence set. We

shall apply the concepts of congruence sets to pProve new theorems

about algebraic systems.

In addition, we have found that a generalization of a ring,

called a skew ring, also has a congruence set,



"Our notation  used for sets of numbers are;

N

e e N =

c§3+

o

il

3 e e ST, Y

{0,1,2,c0050)3

the set of all integers;

the set of all rational numbers;
{ x e@Q| x>01};

{ xe@Q| x>0}

the set of all real numvers ;
{xeR| x>0

{xeR|l x>0}
Q" U {=};

R* =},
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