แลของการสั้นสะเทือนที่มีต่อความเสีย**ด**ทานจลน์

เรืออากาศเอก ชลิต สินศุข

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญา วิศวกรรมศาสตร์มหาบัณฑิต บัณฑิตวิทยาลัย จุฬาลงกรณมหาวิทยาลัย พ.ศ.2512

000601

I15487192

THE EFFECT OF MECHANICAL VIBRATION ON KINEFIC FRICTION

Captain Chalit Sinsookh (RTAF)

A Thesis Submitted in Partial Fulfillment of the Requirements

for the Degree of Master of Engineering

Department of Mechanical Engineering

Graduate School

Chulalongkorn University

1969

Accepted by the Graduate School. Chulalongkorn University in partial fulfillment of the requirements for the Degree of Master of Engineering.

T. Nilanidhi

Dean of the Graduate School

Thesis Committee

P. Pattabongse Chairman U. Chalibban Willie

Thesis Supervisor. When. 15 # Mog. 1262.

Date.

ABSTRACT

This thesis presents the effect of mechanical vibration on kinetic friction between certain metals. Tests were carried out in which 3/4 in. diameter brass slider was rubbing on a 6 in. diameter steel ring. The brass slider was vibrated by a vibrator at a frequency range from 700 to 2500 c/s. The three different directions of vibration were as follows.

(1) The direction of vibration of the slider perpendicular to the sliding surface in a plane at right angles.

(2) The direction of vibration of the slider parallel to the sliding surface.

(3) The direction of vibration of the slider perpendicular to the direction of sliding in the same plane.

Considerable reductions of frictional force at low linear speeds in the order of 0 to 300 ft/min were observed.

ACKNOWLEDGMENTS

The author wishes to thank Dr. R.C. Skelton and Dr. D.J. Ewins for their advice, suggestions and many helpful discussions during the course of this experimental study, and also to Mr. B.W. Heath who has provided two strain amplifiers and a pen recorder for measuring and recording the output of the strain transducer. Thanks are also due to Mr. S.J. Branson for repairing and modifying the oscillator and power amplifier. I am also very grateful to Dr. Vaikun Chalitbhan for his valuable advice and comments on my writing. I wish to thank Mr. Suraprom Puangmali and Mr. Viroj Phanichkit for helping me with my English. Finally, thanks are also extended to Mr. Thongchai Singsangvong and the staff of the Colombo Plan Project for general assistance rendered with the work.

TABLE OF CONTENTS

HAPTER	TTTLE	PAGE
	Title Page	1
	Thesis Approval	
	Abstract	
	Acknowledgments	
	Table of Contents	
	List of Tables	
	List of Figures	
	List of Symbols and Abbreviations	X
1	INTRODUCTION	1
2	THEORY	
3	EXPERIMENTAL STUDY	3
	Object	
	Apparatus	
	Measuring Equipment	
	Experimental Procedure	
	Experimental Programme	29
Ļ.	RESULTS	34
5	DISCUSSION	55
6	CONCLUSIONS	57
7	SUGGESTIONS FOR THE MODIFICATION OF THE APPARATUS	59
8	SUGGESTIONS FOR FURTHER WORK	60
	APPENDIX	61
	REFERENCES	75
	17770 5	76

LIST OF TABLES

TABLE		PAGE
9-1.	COEFFICIENT OF FRICTION WITHOUT VIBRATION	35
9-2.	COEFFICIENT OF FRICTION WITH A CONSTANT FREQUENCY	
	OF VIBRATION	36
9-3.	COEFFICIENT OF FRICTION WITH VARYING FREQUENCIES	
	OF VIBRATION AT A CONSTANT SPEED	37
9-4.	COEFFICIENT OF FRICTION WITHOUT VIBRATION	41
9-5.	COEFFICIENT OF FRICTION WITH A CONSTANT FREQUENCY	
	OF VIBRATION	42
9-6.	COEFFICIENT OF FRICTION WITH VARYING FREQUENCIES	
	OF VIBRATION AT A CONSTANT SPEED	43
9-7.	COEFFICIENT OF FRICTION WITHOUT VIBRATION	47
9-8.	COEFFICIENT OF FRICTION WITH A CONSTANT FREQUENCY	
	OF VIBRATION	48
9-9.	COEFFICIENT OF FRICTION WITH VARVING FREQUENCIES	
	OF VIBRATION AT A CONSTANT SPEED	49

LIST OF FIGURES

FIGUR	E	PAGE
1-1.	TUBE - DRAWING	2
1-2.	WIRE - DRAWING	2
1-3.	SHAPING	2
1-4.	LATHE MACHINING	2
2-1.	LAWS OF FRICTION	9
2-2.	COEFFICIENT OF KINETIC FRICTION	9
2-3.	STICK - SLIP MOTION	9
2-4.	CONTACT OF FLAT METAL SURFACES	9
3-1.	GENERAL ARRANGEMENT OF THE APPARATUS	14
3-2.	DIRECTION OF VIBRATION PERPENDICULAR TO THE SLIDING	
	SURFACE IN A PLANE AT RIGHT ANGLES	15
3-3.	DIRECTION OF VIBRATION PARALLEL TO THE DIRECTION	
	OF SLIDING BUT IN THE SAME PLANE	16
3-4.	DIRECTION OF VIBRATION PERPENDICULAR AND PARALLEL	
	TO THE DIRECTION OF SLIDING	17
3-5.	DIRECTION OF VIBRATION PERPENDICULAR TO THE	
	DIRECTION OF SLIDING	17
3-6.	STRAIN GAUGE FORCE TRANSDUCER	18
3-7.	STRAIN GAUGE TORQUE ARM TRANSDUCER	18
3-8.	PHOTOGRAPH OF THE FRICTIONAL TESTING APPARATUS	19
3-9.	OSCILLATOR AND POWER AMPLIFIER	20

3-10.	ARRANGEMENT OF THE TESTING APPARATUS AND MEASURING		
	EQUIPMENT 21		
3-11.	BLOCK SCHEMATIC OF THE FRICTIONAL TESTING APPARATUS 22		
3-114.	MEASURING EQUIPMENT 25		
3-12.	DYNAMIC STRAIN METER 25		
3-13.	HIGH SPEED 2 PEN RECORDER AND SINGLE CHANNEL		
	AMPLIFIER		
3-14.	PORTABLE STRAIN GAUGE BRIDGE 26		
3-15.	VIBRATION METER 27		
3-16.	SWEEP - DELAY OSCILLOSCOPE AND UNIVERSAL CAMERA 27		
3-17.	PHOTOGRAPH SHOWS THE DIRECTION OF VIBRATION BEING		
	PERPENDICULAR TO THE SLIDING SURFACE IN A PLANE		
	AT RIGHT ANGLES		
3-18.	PHOTOGRAPH SHOWS THE DIRECTION OF VIBRATION BEING		
	PARALLEL TO THE DIRECTION OF SLIDING		
3-19.	PHOTOGRAPH SHOWS THE DIRECTION OF VIBRATION BEING		
	PERPENDICULAR TO THE DIRECTION OF SLIDING BUT IN		
	THE SAME PLANE		
4-1.	COEFFICIENT OF FRICTION AND SLIDING SPEED CURVES 38		
4-2.	COEFFICIENT OF FRICTION AND FREQUENCY CURVE 39		
4-3.	COEFFICIENT OF FRICTION AND SLIDING SPEED CURVES 44		
lt-lt.	COEFFICIENT OF FRICTION AND FREQUENCY CURVE 45		
4-5.	COEFFICIENT OF FRICTION AND SLIDING SPEED CURVES 50		
4-6.	COEFFICIENT OF FRICTION AND FREQUENCY CURVE 51		

viii

- 4-9. SHOWS THE INFLUENCE OF SURFACE ROUGHNESS ON THE TRANSDUCER WITHOUT VIBRATION. STEEL RING SPEED WAS
 - 100 FT/MIN 54
- 4-10. WAVE FORM OF THE TRANSDUCER WHEN A VIBRATION OF 100 C/S
 - WAS APPLIED. STEEL RING SPEED WAS 100 FT/MIN 54

- A3. PHOTOGRAPH OF THE ARRANGEMENT OF THE APPARATUS FINDING THE STIFFNESS OF THE STRAIN GAUGE FORCE TRANSDUCER 67 A4. CALIBRATION CURVE OF MOTOR TORQUE TRANSDUCER 69 A5. A6. CALIBRATION CURVE OF MOTOR TORQUE TRANSDUCER 70 CALIBRATION CURVE OF MOTOR TORQUE TRANSDUCER 71 A7. A8. A9. BRIDGE CIRCUIT OF THE TORQUE ARM TRANSDUCER 73 A10. STATIC - KINETIC FRICTION A11.

LIST OF SYMBOLS

Α,	5a	Area
e	*****	Base of natural logarithm
F		Force
k		Linear spring stiffness
m		Mass
P		Deformation
s		Shear force
t		Time
V		Voltage
v		Velocity
W		Angular frequency
W,	n ••••••••	Natural frequency
W		Load
X	,x,Y,y	Rectangular coordinate
ż	••••••	Rectilinear velocity
X		Rectilinear acceleration
Ju	•••••	Coefficient of friction
M	s * * * * * * * * * * * * * * * * * * *	Static coefficient of friction
M	k********	Kinetic coefficient of friction
s		Ohm
L		A constant

ABBREVIATIONS

CIII	Centimetre
c/s	Cycle per second
ft/min	Foot per minute
in	Inch
10	Pound
rev/min	Revolution per minute