CHAPTER 1II

FINITE ELEMENT FORMULATION

2.1 Constitutive Relation for An Elastic-Viscoplastic Material

In this study an elastic-viscoplastic model employed by Lukkuna-
prasit and Kelly (12) to describe the elastic-plastic behavior in
numerical computation was adopted.

For small uniaxial deformation the total strain rate, €, consists

$ s € . 5 b .
of an elastic part € and a viscoplastic part €%, i.e.,

e = e° +¢ 1)

The elastic deformation is given by Hooke's Law and the viscoplas-
tic strain rate is assumed to be an exponential function of the actual

stress g, i.e.
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where E is modulus of elasticity, T, n, and o, are material constants. g,

is usually taken as the static yield stress.

In view of Egqs. (2a), (2b) and (1) we obtain the following

constitutive model :
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The constitutive relation, Eq. (3),can be generalized to

multiaxial deformation (10) and take the general form :
(6} = [t} - (63 ® (4)

where {0} and {e} are the vectors of the stresses and strains, respectively,
. n .
[D] is a matrix of elasticity constants and {0}( ) represents the nonlinear

part due to viscoplastic flow.

A complete elastic-viscoplastic stress strain response can be
obtained from any prescribed strain rate history by integrating Eq. (3)
numerically, without the need ;o identify the state (elastic or elastic-
viscoplastic) of thé element nor to check the loading or unloading

process.

In a constant strain rate loading the stress approaches an
asymptotic value, 040 defined as the dynamic yield stress which is given

by
1

c=|ze|® . (5)
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Eq. (5) can be used to determine the material constants n and T from
dynamic load tests. As n tends to infinity, %4 approaches the static
yield stress, 0,. Thus the constitutive model (3) can be utilized to
approximate an elastic-perfectly plastic material by setting a large value -
for n and has been applied in several studies by Lukkunaprasit, et al.

(32, 13)



2.2 Incremental Equations of Motion of an Elastic-Viscoplastic System

The incremental method which is a convenient technique for solving
nonlinear problems is considered in this section. The constitutive
relation described in section 2.1 will be introduced into the incremental

equations of motion to obtain the equations for an elastic-viscoplastic

material.

The well known equations of motion for a finite element model,

when damping is neglected, is (20)
[M] {&} + {h} = iR} 2 (6)

where [M| is the mass matrix, fu} is the nodal displacement vector, {h}
is the nodal internal force vector and {R} is the external nodal force
vector. The mass matrix and the nodal internal force vector are given,

respectively, by

elements T
[M] = z S p[N]T[N] v (7
and
elements T
{nh} = 2 J'V[B] {c} av ' (8)

in which p is the mass density, [N] is the matrix of displacement shape -
functions, v is the volume of each element and [B] relates the internal

strain to the nodal displacements, i.e.

{e} = [B] {u} (9)



By writing the equations of motion of the structure in two
adjacent states "k" and "k+1" at times "t" and "t+At", respectively, and

substracting one arrives at the following incremental equations of motion:

[M] {aii} + {ah} = {AR} (10)

where A denotes the change between states "k" and "k+1". In view of Egs.

(8), (4) and (9), the:following expression for {Ah} can be derived (12):

fan) = [K]{au}l < {n}¢® | (11)
elements T
where  [K] = ¢ /s [8]°[p] [B] av (12)
elements -
and {Ah}(n) = 5 IV[B]T A{E_}(n) At dv (13)

Ll
Here {5}(n)is evaluated at some stress state within the time interval At.

Substituting Eq. (11) into Eq. (10) results in the incremental equations

of motion

[M] {26} + [K] {au} (AR} + {sn} ™
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I

IRy -] <63 - *n} + (an}® (14)

It should be observed that the differential operator appearing on
the left hand side of Eq. (14) is the same as in a linear system so that
the substructure technique and the modal coordinate transformation

technique can be applied effectively (13). The nonlinearity in material



}(n)

behavior is included in the term {Ah which is known as a pseudo —

force.

2.3 Incremental Equations of Motion For the Substructured System

In the previous section we described the incremental equations
of motion for an elastic-viscoplastic system. To obtain the solution of
these equations for a large structural system it would require a large
size computer, which may not be available. 1In this case we may consider
the structure as consisting of substructures each of which will be small

-enough to be handled by the available computer.

Because of the elastic stiffness matrix appearing in the incremental
equations of motion, Eq. (14), we may use the same transformation matrix
between the slave and master degrees—of-freedom (d.o.f.) in every iteration

step.

The principle of virtual work can now be used to obtain the

equations of motion for the reduced system.

Consider a deformable body in motion under a set of external nodal
forces. Suppose that the body is subjected to a kinematically compatible
virtual velocity field, {8u}. Then the total rate of internal virtual

work done, &U, is

. substructures .7 .7 T
sU = 3 [s, {6} {o} av + s {su}” p[N] [N]{d} av] (15)
S S

in which {8é} is the virtual strain rate vector and v is the volume of
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each substructure. The rate of virtual work done by the external loads,

GWE 5 18

substructures

G&E - 5 {sa} (R} (16)

According to the principle of virtual work, the rate of total
virtual work done is equal to zero. Hence, in view of expressions (15)
and (16) we have
substructures

L [, t62¥ o} av4 s toado (] T[] (i} av - (s0T(RI] = 0 A7)
S ' S

Consider now each term of Eq. (17) separately. By virtue of the
constitutive relation, Eq. (4) and the strain-displacement transformation

equation, Eq. (9),one can express the first term in Eq. (17) as follows :

substructures LT substructures .T T
z s l8e} {o} dv = Z s Lsu} [B] "([p] {e} - ft{&}(n)dt)dv
s
substructures . T T T, e (n)
= z s {sul ([8]"[p] [B] {u} - ft[B] {o}*/dt)dv
s

(18)

Within each substructure, the slave nodal displacemeits are assumed to be
related to the master nodal values as in the standard static condensa-
tion procedure, Thus, if the stiffness matrix of each substructures
is partitioned in accordance with the master and slave degrees-of-freedom

as follows :

K] = |- " —_



e

Then
)} = -[x "k o} (20)
s ss sm| m
Here the subscripts m and s are used to designate master and slave
coordinates, respectively.

In view of Eq. (20) the nodal displacements of the structure can

be expressed in the master displacements as

{u} = [A]{um} (21)
{u_}

where  {u} = 4 (22)
{us}

[a] = [1] (23)

LS (8

and [I]

Identity matrix

By virtue of Eq. (21) with the displacements replaced by the

velocities, one can rewrite Eq. (18) as

substructures substructures -
> s, 16t {olav = > t6i ¥T([K] "tu -1 ™) (24)
VS m m
in which [K’] = [a]T[x] [4]
-1 3
“ [anl ~ o] ][] 3
elements T
[x] = r /, [B]7[p] [B] av (26)
s
elements .
gnl i =z s, [ATBETE ™t av (27)

S
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The matrix [K] can be identified as the uncondensed stiffness
matrix of the substructure, while [K*] is the corresponding-reduced
stiffness matrix. In computation, [K*] is obtained by the Gauss Elimination
method instead of the direct matrix operation which involves inversion of
[KSS] .

The second term of Eq. (17) is related to the kinetic energy and
will be expressed in terms of the master coordinates by employing the
simplified mass condensation scheme introduced by Lukkunaprasit and Alam
(11). 1In this procedure the slave nodal velocities are assumed to be
interpol;ted from the master nodal velocities through some transforma-

tion matrix {nl}, i.e.,
{61 = [n]{d} (28)

If the transformation matrix [n] is taken the same as in the static
condensation process in Eq. (20), then we have the consistent transforma-
tion scheme. However a simple method will be employed in which an

approximation of {n} for each substructure is assumed. The form of this

transformation matrix for a planar frame is given in the next section.

In view of Eq. (28) the vector of all nodal velocities is given by

[z]| .
{a} = —[-]- {um} (29)
n

Introducing Eq. (29) into the second term of Eq. (17) yields
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substructures - T
5 s, 1Y o[N] " [N] {i} dv
s

substructures ' [I]

_ : ;. 188 }T[[I]Tg{n}T]p[N]T[N] 2 Li# 3 av
Vg ¥ ' iy ™

substructures T o

- x {ea_} [M] 15 ) (30)

*
in which [M ] is the reduced mass matrix of each substructure defined as

] - [[I]Tﬁ{n}T][M] -E]; » (31)

and [M] is the mass matrix of each substructure defined in Eq. (7)

The third term of Eq. (17) becomes, upon substitution of Eq. (29)V

substructures T substructures T T T ,
T {sa}" {RiR}c= z {84 } [[1] ‘{n} J{R}
substructures . T & 3
3 z {Gum} {R} (32)

*
where {R } is the reduced external force vector of each substructure given

by
R} = [[IJT i{n}T ]{R} (33)
Finally, introducing Eqs. (24), (30) and (32) into Eq. (17) yields
substructures

z toa )T [[K 0} - 0™+ 6wy - ®%] =0 3w
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Since {Gﬁm}T is any arbitrary virtual vector which is not a zero vector

then Eq. (34) holds if and only if

[M*] {ﬁm} T [K*] {um} - {h*} (n) -{R*} = 0 (35)

Eq. (35) is the system of equations of motion for the reduced system.

The incremental form of the equations of motion can be readily shown to

be
a6 3 + [K]tau } = & &% - 28" + a0y ® (36)
Now from Eq. (35), =Ry = [M*]{kﬁm} + [K*]{kum} - (&M (37)

The first term in Eq. (37) is the reduced internal inertia force vector

and the last two terms are the reduced internal resisting nodal forces.

Using the principle of virtual work we can derive another simple

form for the reduced internal resisting forces which ineludes both the
linear and ncnlinear parts. To do this we return once again to Eq. (17).
The first term is reconsidered while the ggcond and the third terms are

as before, By using the standard displacement transformation matrix in

Eg. (21), one can rewrite the first term of Eq. (17) as

substructures T substructures T
L s {88} {0} dv = z s {8a}[B] (o} av
s . Y
substructures

5 fvs{sﬁm}T [a] T[B] Tio} av



1>

substructures ! [B ]T
_ - r, 86 | (17 - [k ) (KDY =2 b b av
v m i ms ss T
s [BS]
substructures
s il T -1 T
= z fvS{cSum} ([Bm} - [Kms] [KSS] [BS] Y{o} dv
substructures T %
— pX {6a_} {h } (38)
m
where {h'} = )} - [k_J[K_]tm3 (39)

Substituting Egqs. (38), (30) and (32) into Eq. (17) leads to, by

virtue of the arbitrariness of {Gﬁm},

004081

M6} + Y =/ &Y} | (40)
m
In view of Eq. (40), the incremental equations (36) become
"] a1+ [K"] fau_3 = CE T 6 Jo 0 0 p{an ™) (41)

The vector {¥h*} in Eq. (40) can be identified as the reduced
internal resisting nodal force vector. A Programming technique for evalua-
ting this vector is given in the next section. The reduced matrices of
the whole system are obtained by assembling all individual reduced
substructure matrices using the standard assembling process in the finite

element method.

After each application of the iteration process, the unbalanced

nodal forces may still exist because of the material nonlinearity and
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approximations used in the numerical computation. Iteration is then

performed within the time step by applying the unbalanced force{k+16R*}
to the system. In other words we solve
*q . * 1 _*
"] {58 M [K*]{6u ) = Fr"™ <z (42)
m m [ &/
||
in which \“2
NG
{6u_} = & 20 (43)
m m m
4 * * *q i i %
and Ry = VRN st ah) L (4h)

In Eq. (42) the noglinear term has been neglected during the
iteration process. When convergence is reached so that {k+16R*} approaches
zero, then the external forces balance the internal resisting forces and
the inertia forces, which means that the equations of motion are

satisfied within some small tolerance.

2.4 gimplified Displacement Transformation Matrix for Mass Condensation

of-a Planar Frame

In the previous section we employed a simplified condensation
scheme to obtain a simplified mass matrix of each substructure by assuming
some approximate velocity transformation within the substructure.

Figure (1) shows a typical substructure "k" of a planar frame. The masses

are assumed to be concentrated at each nodal point of the frame.

Rotational masses are ignored. For a column line i-1 of the kth

{a_}
substructure (see Fig. (1)), the velocities of the slave nodes s 5
: {v_}|.
s 1i~1
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will be expressed in terms of the master coordinates

o i « 1 o 1 DI i
[{uml} {um } {vml} {vm }]” by a linear velocity interpolation, i.e.,

ta 3 {n} | {o}] [{d}
ke P Lkl Rt P e 3 (45)
v} {o} | {n}] |3}
S | m

where u and v denote the horizontal and vertical velocities, respectively,

and {n} is the assumed velocity transformatiou matrix given by

t t
1 I
(i) o
by By
t t
2 2
{n} = <(1- iL) EL> (46)
i i
1 1
I : P
t t
Be el g
T B By

in which £ is the number of slave coordinates in the columm line i-1,
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