CHAPTER I
EXACT RESULT IN ONE DIMENSION

1.1 Introduction

Many problems of theoretical physics have often had one =~
demensional analogs which have turned out to bé simpler than those in
three dimensions. The qQuantum theory of disordered structures are
representative of problems or models which have an exact solution in
one dimension, but are understood only approximaetely in three dimnnsions.l
One of the problehs which has been studied successfully in one dimension
is the calculation of the density of states for a white noise model. The
one - dimensional white noise model is a simple problem of diso;dered
systems, and has an exact form for the density of sta.tes.2 Furthermore,
an exact asymptotic form of the density of states can be conventionally

4 ,
set up for testing the validity of the general approximation schemes.

1.2 White Noise Model

The white noise model arises when we_consider a system as follows :
An electron moves in a high density of atoms. The atoms, all of one kind,
have randomly fixed positions, and the electron - atom potentials are
assumed to be we;k. Dirac delta functions. Moreover, the positions Af
the atoms are considered to be random variebles which obey Gaussian

statisticg.
\

1.3 One + Dimensional White Noise Model
‘ |

When the white noise model appears in one dimension, it is




usually called " the one - dimensional white noise model." In the
case of the one - dimensional system, the high density of the atoms
implies a one - dimensional array of the atoms on a line segmept.
Furthermore, Gaussian distribution formally requires that the line
must be very large. Since the potential of the atoms is weak, and
the atoms density is high, the fluctuation about the average potential
of the system, denoted by £ , tends to zero. This means that the

asymptotic form of the density of states can be studied by taking £ =+ 0.

1.4 Density of States

If we have a function N(E) which is the total density of states
at a given energy E of an electron ~ atoms system, then a function which

is called the density of states is defined by
o(E) & 4_ ®(E) 1.h.1
dE

or, equivalently,

o(E) = %— £ 8(E - ), 1.4.2

k=1

where Ek is the energy of the k th eigenstafte, Q is the volume of
the system. If the system is disordered, we must average (1.4.2) over

the statistical ensemble for the random positions.

1.5 Exact Asymptotic Result

The one - dimensional disordered systems was first studied by
Frisch and Lloyd3 using the method of‘phase process. Halperi\p,2 has

studied in detail the case of the one - dimensional white noise model



using the cne-electron Green's function method. He found the exact
form of the density of states, and established the exact asymptotic
form of the density of states, as £ + 0, in the form :

@ = b {Peg (M2,

pas

where m is an electron mass, h is Planck's constant divided by 2.
Furthermore, the exact asymptotic form (1.5.1) has been reproduced bty

ZittartgwnﬁdaLnngerhusing the method of functional integraticn.

1.6 Approximate Density of States

The methods we mentioned in the preceding section give us the
exact asymptotic form of the aensity of states. Howevér, it is not
useful for handling the disordered phenomena in three dimensions such
as o heavily doped semiconductor. For the three dimensional systems,
other approaches have been introduced. One should be to check the
validity of the new theories by comparing the new expressions against
the exact expreséion of the density of states for the one - dimensional
white noise model. A few of the new methods develcped for the three
dimensional systems are those of Halperin and Laxs, Edvardsé, Sa—yakanit7,
and Grosae. All of them obtain their results by different approaches,
and have all tested their theories with the exact expression (1.5.1).
However, for comparison, the two of which gave the good approximate

density of states for a dcreened Coulomb potential in three dimensions

will be discussed in terms of the one -~ dimensional white noise model.



Firstly we c¢onsider the Halperin and Lax theory in Chapter II.

The density of states ié given for their first order a.pproxima.tion5 by

o bl WS MY T
p,(E) ¥ e exp {- =3 i },
10601
and for their second order appoximationg by
oin) « LN WE LA LBYR
2 /5 F ¢ AR T
1.6.2

In Chapter III, Sa-yekanit's theory10 which is more practical

than Halperin and Lax's theory is discussed. Thc density of states for

the work of Sa-yakanit in the first cumulant approximation’ is given by

1/2 3/2
py(m) = CERGE TEigead . ME .3, BT,

1.6.3

Next we present our work in Chapter IV which is the extension of
the Sa-yakanit calculation in Chapter III. The calculation used the
complete first cumulant, and i1s then extended to include the second
cumulant. With the complete first cumulant, the density of states is

given by

~1/2 1/2 3/2
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1.6.4



Including the second cumulant correction, the density of states

becomes

-1/2 \ /o 3/2
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po(E) = e ¢ e 3072

1.6.5

%

Finally in Chapter V, we compare our results with the Halperin

and Lax results as well as with the exact result.
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