CHAPTER V

BOREL MEASURES

In this chapter we study some properties of the semicontinuous functions and the representation of Radon measures in terms of Borel measures. Later on some well-known integration theorems will also be discussed .

The materials of this chapter are drawn from references [2], [3], [4], [6], [8] and [9].

5.1 Semicontinuous Eunctions

Let Ω be an open subset of \mathbb{R}^n and f a mapping of Ω into the extended real line \mathbb{R} . For each $x \in \Omega$ let N(x) be the collection of neighborhoods of x. If $A \in \Omega$ and x_0 is any point of \overline{A} , we define

$$\lim_{x \to x_{o}} \inf f(x) = \sup_{U \in N(x_{o})} \inf_{x \in U \cap A} f(x)$$

$$x \in A$$

(5.1.a)

 $\lim_{x \to x_{O}} \sup f(x) = \inf_{U \in N(x_{O})} \left[\sup_{x \in U \cap A} f(x) \right];$ x \emptyset A

If $A = \Omega$ we simply write $\lim_{x \to x_0} \inf f(x)$ and $\lim_{x \to x_0} \sup f(x)$.

5.1.1 <u>Definition</u> The function f is said to be <u>lower semi</u>--<u>continuous</u> (l.s.c.) at a point $x \in \Omega$ if $f(x_0) = \lim_{X \to x_0} \inf_{X \to x_0} f(x)$ and <u>upper semicontinuous</u> (u.s.c.) at a point $x \in \Omega$ if $f(x_0) = \lim_{X \to x_0} \sup_{X \to x_0} f(x)$. The function f is said to be l.s.c. on Ω (u.s.c. on Ω) if l.s.c. at each point of Ω (u.s.c. at each point of Ω).

Clearly, if f is l.s.c. at x, then -f is u.s.c. at this point. Hence we need consider only lower semicontinuous functions.

5.1.2 <u>Theorem</u>. A mapping $f: \Omega \to \overline{\mathbb{R}}$ is l.s.c. at $x_0 \in \Omega$ if and only if, for each $\alpha \in \overline{\mathbb{R}}$ such that $\alpha < f(x_0)$, there exists a neighborhood U of x_0 such that, for all $x \in U$, we have $\alpha < f(x)$.

<u>Proof</u>: If the condition is satisfied, we have that $\ll \leq \inf_{x \in U} f(x)$, so that $f(x_0) \leq \sup_{x \in U} \inf_{x \in U} f(x) = \lim_{x \to x_0} \inf_{x \to x_0} f(x)$. But in fact,

lim inf $f(x) \neq f(x_0)$, so we get $f(x_0) = \lim_{x \to x_0} \inf f(x)$. Therefore $x \to x_0$ f is l.s.c. at $x_0(5.1.1)$. The converse is immediately true from (5.1.1) and (5.1.a).

5.1.3 <u>Theorem</u>. A mapping $f: \Omega \to \overline{\mathbb{R}}$ is l.s.c. on Ω if and only if, for each $\alpha \in \overline{\mathbb{R}}$, the set $f^{-1}((\alpha, + \alpha])$ of points x at which $f(x) > \alpha$ is open in Ω (or, equivalently, if and only if, for each $\alpha \in \overline{\mathbb{R}}$, the set $f^{-1}([-\alpha, \alpha])$ of points of x at which $f(x) \leq \alpha$ is closed in Ω). <u>Proof</u>: (5.1.2) implies that, for each $\measuredangle t \ \overline{R}$, the set $f^{-1}((\measuredangle, +\infty])$ is a neighborhood of each of its points, so we get the result. The equivalent assertion follows by taking complements.

5.1.4 <u>Theorem</u>. Let f, g be two mappings of Ω into \mathbb{R} each of which is l.s.c. at a point $x \in \Omega$. Then

(i) f+g is l.s.c. at x_0 if f(x)+g(x) is defined for all $x \in \Omega$, and

(ii) sup (f,g) and inf (f,g) are l.s.c. at x_0 .

<u>Proof</u>: (i) The result is obvious if $f(x_0)$ or $g(x_0)$ is equal to $-\alpha$. If not, then we have $f(x_0)+g(x_0) > -\alpha$. Every number $\alpha \in \mathbb{R}$ such that $\alpha < f(x_0)+g(x_0)$ can be written in the form $\alpha = \beta + \gamma$, with $\beta < f(x_0)$ and $\gamma < g(x_0)$ (it is enough to choose γ such that $\alpha - f(x_0) < \gamma < g(x_0)$). By the hypothesis, there exists a neighborhood U of x_0 such that, for all $x \in U$, we have $\beta < f(x)$ and $\gamma < g(x)$ (5.1.2). It follows that $\alpha = \beta + \gamma < f(x)+g(x)$ for all $x \in U$. Hence the result (5.1.2).

(ii) For every number $\measuredangle \in \mathbb{R}$ such that $\measuredangle < \sup(f(x_0), g(x_0))$, we have $\measuredangle < f(x_0)$ or $\measuredangle < g(x_0)$. By the hypothesis, there exists a neighborhood U of x_0 such that for all $x \in U$, we have $\measuredangle < f(x)$ or $\measuredangle < g(x)(5.1.2)$. If follows that $\measuredangle < \sup(f(x), g(x))$ for all $x \in U$. Hence the result (5.1.2). The other case is analogous. 5.1.5 <u>Definition</u>. Given a set Ω and any family $(f_{\lambda})_{\lambda \in \Lambda}$ of mappings of Ω into $\overline{\mathbb{R}}$, the <u>upper</u> (resp. lower) <u>envelope</u> of the family is defined to be the mapping $\mathbf{x} \mapsto \sup_{\lambda \in \Lambda} f_{\lambda}(\mathbf{x})$ (resp. $\mathbf{x} \mapsto \inf_{\lambda \in \Lambda} f_{\lambda}(\mathbf{x})$) of Ω into $\overline{\mathbb{R}}$. It is denoted by $\sup_{\lambda \in \Lambda} f_{\lambda}(\mathbf{x})$ inf f_{λ} . We have $\lambda \in \Lambda$ $\lambda \in \Lambda$ $\lambda \in \Lambda$

5.1.6 <u>Theorem</u>. Let Ω be an open subset of \mathbb{R}^n and let $(f_{\lambda})_{\lambda \in \Lambda}$ be a family of mappings of Ω into \mathbb{R} . If each f_{λ} is l.s.c. at a point $x_0 \in \Omega$, then the upper envelope $f = \sup_{\lambda \in \Lambda} f_{\lambda}$ is l.s.c. at x_0 .

<u>Proof</u>: Given any $\ll < f(x_0) = \sup_{\lambda \in \Lambda} f_{\lambda}(x_0)$, there exists by the hypothesis a $\lambda_0 \in \Lambda$ such that $\ll < f_{\lambda_0}(x_0)$. Since f_{λ_0} is l.s.c. at the point x_0 , there exists a neighborhood U of x_0 such that $\ll < f_{\lambda_0}(x)$ for all $x \in U$ (5.1.2), and therefore $\ll < f_{\lambda_0}(x) \leq f(x)$ for all $x \in U$. Hence the result (5.1.2).

5.1.7 <u>Theorem</u>. A mapping $f: \Omega \to \overline{\mathbb{R}}$ is continuous on Ω if and only if it is both u.s.c. and l.s.c. on Ω .

<u>Proof</u>: If f is continuous on \mathcal{A} , then for any $x_0 \in \mathcal{A}$, lim inf $f(x) = f(x_0) = \lim_{O} \sup f(x)$. Hence, by (5.1.1), f is $x \to x_0$ both u.s.c. and l.s.c. on \mathcal{A} . The converse follows by reversing. 5.1.8 <u>Theorem</u>. The upper (resp. lower) envelope of a family of continuous mappings of Λ into $\overline{\mathbb{R}}$ is lower (resp. upper) semicontinuous.

Proof : It follows immediately from (5.1.7) and (5.1.6).

5.1.9 <u>Definition</u>. If A is any subset of a set Ω , the <u>characteristic</u> <u>function</u> of A (usually denoted by χ_A) is the mapping of Ω into \mathbb{R} such that $\chi_A(\mathbf{x}) = 1$ for all $\mathbf{x} \in A$ and $\chi_A(\mathbf{x}) = 0$ for all $\mathbf{x} \in \Omega - A$. So we have $\mathcal{X}_{\Omega} = 1$, $\mathcal{X}_{\emptyset} = 0$, and $\mathcal{X}_{\Omega - A} = 1 - \mathcal{X}_{A}$.

5.1.10 <u>Theorem</u>. A subset A of \mathcal{A} is open (resp. closed) in \mathcal{A} if and only if \mathcal{X}_A is l.s.c. (resp. u.s.c.) on \mathcal{A} .

Proof : This follows immediately from (5.1.3).

-

5.1.11 <u>Theorem</u>. If f is l.s.c. on $A \subseteq \mathbb{R}^n$ and there is a real-valued continuous function g on \mathbb{R}^n such that $f \ge g$ on A, then there is an increasing sequence of continuous functions (g_m) on \mathbb{R}^n such that $\lim_{m \to +\infty} g_m = f$ on A.

<u>Proof</u>: Replacing f if necessary by f-g (which is everywhere defined), we may assume that $f \ge 0$ and somewhere finite (the case $f = +\infty$ is trivial). For each positive integer m and each $x \in \mathbb{R}^n$ define

 $g_{m}(x) = \inf \{ f(y) + m | y-x | : y \in A \}.$

This is finite for each x. Clearly $f(y)+m|y-x| \leq f(y)+(m+1)|y-x|$ for all y, so $g_m(x) \leq g_{m+1}(x)$ for all x. Also $g_m(x) \geq \inf f(A)$ $\geq g(x)$. Let x_1 and x_2 be any points of \mathbb{R}^n . For every y in A we have $f(y)+m|y-x_1| \leq f(y)+m\{|x_1-x_2|+|x_2-y|\} = (f(y)+m|x_2-y|)+m|x_1-x_2|$, So $g_m(x_1) \leq g_m(x_2)+m|x_1-x_2|$. Interchanging x_1 and x_2 , we get $g_m(x_2) \leq g_m(x_1)+m|x_1-x_2|$. Therefore $|g_m(x_1)-g_m(x_2)| \leq m|x_1-x_2|$, which proves that g_m is continuous on \mathbb{R}^n .

Finally, let \mathbf{x}_{o} be a point in A; we must show that $g_{m}(\mathbf{x}_{o}) \rightarrow f(\mathbf{x}_{o})$ as $m \rightarrow +\infty$. Let k be any number less than $f(\mathbf{x}_{o})$. By the l.s.c. of f, there is an $\varepsilon > 0$ such that $f(\mathbf{x}) > \mathbf{k}$ for all $\mathbf{x} \in B(\mathbf{x}_{o}, \varepsilon)$. Now choose a number \mathbf{m}_{o} large enough so that $g(\mathbf{x}) + \mathbf{m}_{o}\varepsilon > \mathbf{k}$. If $m > \mathbf{m}_{o}$, then in the expression $f(\mathbf{y}) + \mathbf{m} |\mathbf{x}_{o} - \mathbf{y}|$ either $|\mathbf{x}_{o} - \mathbf{y}| \ge \varepsilon$ or $\mathbf{y} \in B(\mathbf{x}_{o}, \varepsilon)$. In the first case, $f(\mathbf{y}) + \mathbf{m} |\mathbf{x}_{o} - \mathbf{y}| \ge g(\mathbf{x}) + \mathbf{m} \varepsilon >$ $g(\mathbf{x}) + \mathbf{m}_{o}\varepsilon > \mathbf{k}$. In the second case, $f(\mathbf{y}) + \mathbf{m} |\mathbf{x}_{o} - \mathbf{y}| \ge f(\mathbf{y}) > \mathbf{k}$ by the choice of ε . Then k is a lower bound for $f(\mathbf{y}) + \mathbf{m} |\mathbf{x}_{o} - \mathbf{y}|$, and by definition $g_{m}(\mathbf{x}_{o}) \ge \mathbf{k}$. Since m was any number greater than \mathbf{m}_{o} , and $\lim_{m \to +\infty} g_{m}(\mathbf{x}_{o})$ exists, $\lim_{m \to +\infty} g_{m}(\mathbf{x}_{o}) = \mathbf{k}$. But k was any number $\langle f(\mathbf{x}_{o})$, $g(\mathbf{x}) + \mathbf{m}_{o} = \mathbf{f}(\mathbf{x}_{o})$.

On the other hand, in the definition of $g_m(x_0)$ we can take $y = x_0$, because $x_0 \in A$, So one possible value of $f(y) + m |x_0 - y|$ is $f(x_0)$, and $g_m(x_0) \leq f(x_0)$. Since this is true for all m, we have $\lim_{m \to +\infty} g_m(x_0) \leq f(x_0)$. Thus, with the preceding inequality, proves $g_m(x_0) \to f(x_0)$ as $m \to +\infty$. 5.1.13 <u>Theorem</u>. Let $f \ge 0$ be a l.s.c. function on an open set $\Omega \subset \mathbb{R}^n$. Then for all $x_0 \in \Omega$,

$$f(x_{o}) = \sup_{\substack{\emptyset \leq f \\ \emptyset \in \mathcal{K}(\Omega)}} \psi(x_{o}).$$

<u>Proof</u>: The inequelity $f(x) \ge \sup_{\varphi \le f} \psi(x)$ is clear. Let us $\psi \le f, \psi \in \mathcal{R}(\Omega)$

prove the reverse inequality. For any $x_0 \in \Omega$ and any $k \leq f(x_0)$, by the l.s.c. of f, there exists a neighborhood U of x_0 such that $k \leq f(x)$ for all $x \in U$. Let $B = B(x_0, \xi)$ be a ball with the compact closure $\overline{B} \subset U$. Then, by (2.2.5), there exists a function $\psi \in \mathfrak{D}(\Omega)$ such that $\psi(x) = 1$ for all $x \in \overline{B}$. Let $\psi(x) = k \psi(x)$ for all $x \in \overline{B}$ and equal to zero otherwise. Then $\psi \in \mathfrak{D}(\Omega), \psi \in f$ and $\psi(x_0) \geq k$. Since k is arbitrary, we conclude that

$$\sup_{\varphi \in f, \varphi \in \mathcal{X}(\Omega)} \geq f(x_0),$$

whence the result.

5.2 The Representation of a Radon Measure and Some Fundamental Results on Integration Theory

In this section we will show that there is a one to one correspondence between a positive Radon measure and a positive Borel measure. Finally we will state some well-known integration theorems without proof. Some definitions and facts from measure theory are assumed, but we will recall some definitions and facts of Borel measure.

5.2.1 <u>Definitions</u>. Let \mathcal{A} be an open subset of \mathbb{R}^n , and let \mathcal{B} be the \mathcal{S} -algebra generated by the class of all open (or closed) subsets of \mathcal{A} . The elements of \mathcal{B} are called the Borel sets of \mathcal{A} .

A positive Borel measure \mathcal{Y} on \mathcal{A} is a positive real-valued function on \mathfrak{H} such that

(i) $\mathcal{J}(\phi) = 0$,

(ii) if $A_1, A_2, \dots \in \mathcal{B}$ is a sequence of disjoint sets, then $\mathcal{V}(\bigcup_{j=1}^{\infty} A_j) = \sum_{j=1}^{\infty} \mathcal{V}(A_j)$, and

(iii) $\mathcal{V}(K) < + \infty$ for every compact set $K \subset \Omega$.

If f is a mapping of Ω into \mathbb{R} , then f is said to be <u>Borel function</u> provided that $f^{-1}(\mathbb{V})$ is a Borel set in Ω for every open set V in \mathbb{R} .

5.2.2 Examples. (i) Every continuous function of Ω is Borel function.

(ii) Every semicontinuous function of Ω is Borel function.

(iii) If A is a Borel set in ${\cal A}$, then the characteristic function ${\cal K}_{\rm A}$ is a Borel function.

5.2.3 <u>Remark</u>. If f and g are Borel functions on Ω , then so are |f|, f+g, fg, max (f,g) and min (f,g).

The following theorem will show the 1-1 corresponding between a positive Radon measure and a positive Borel measure.

5.2.4 <u>Theorem</u>. (The Riesz Representation Theorem) Let Ω be an open subset of \mathbb{R}^n , and let μ be a positive Radon measure on $K(\Omega)$. Then there exists a δ' - algebra \mathcal{B} in Ω which contains all Borel sets in Ω , and there exists a unique positive Borel measure \mathcal{I} on \mathcal{B} with represents μ in the sense that

$$\mu(f) = \int f d d$$

for every $f \in K(\Omega)$ and which has the following additional properties :

(i) $\mathcal{V}(\mathrm{K})$ < + ∞ for every compact set $\mathrm{K} \subset \Omega$.

(ii) For every $E \in \mathcal{B}$, we have

 $\mathcal{V}(\mathbf{E}) = \inf \{ \mathcal{V}(\mathbf{V}) : \mathbf{E} \subset \mathbf{V}, \mathbf{V} \text{ open} \}.$

(iii) The relation

$$\mathcal{Y}(E) = \sup \{ \mathcal{Y}(K) : K \in E, K \text{ compact} \}$$

holds for every open set E , and for every E $\in \mathcal{B}$ with $\mathcal{J}(E) < +\infty$.

(iv) If $E \in \mathcal{B}$, $A \subset E$, and $\mathcal{D}(E) = 0$, then $A \in \mathcal{B}$.

The proof of the theorem will be omitted (for the completed proof see [9], p.40).

<u>Convention</u> : By the uniqueness of the positive Borel measure \mathcal{V} in the theorem, we shall simply write $\int f d\mu$ instead of $\int f d\nu$.

Now we will state some integration theorems which will be used repeatedly in the next chapter. Since they are already well-known, we will state them without proof (for the completed proofs see e.g., [9]).

5.2.5 <u>Definition</u>. We define $L(\mu)$ to be the collection of all Borel functions f on Λ for which

$$\int |f| d_{\mu} < + \infty.$$

The numbers of $L(\mu)$ are called <u>Lebesgue integrable functions</u> (with respect to μ).

5.2.6 <u>Theorem</u>. (Lebesgue's Monotone Convergence Theorem) Let (f_m) be a sequence of Borel functions on A, and suppose that

(i) $0 \leq f_1(x) \leq f_2(x) \leq \dots \leq +\infty$ for every $x \in \mathcal{A}$, (ii) $f_m(x) \rightarrow f(x)$ as $m \rightarrow +\infty$, for every $x \in \mathcal{A}$.

Then f is a Borel function, and

$$\lim_{m \to +\infty} \int_{\Omega} f_m d_{\mathcal{M}} = \int_{\Omega} f d_{\mathcal{M}},$$

5.2.7 <u>Theorem</u>. (Lebesgue's Dominated Convergence Theorem). Suppose (f_m) is a sequence of Borel functions on $-\Omega$ such that

$$f(x) = \lim_{m \to +\infty} f_m(x)$$

exists for every $x \in \Omega$. If there is a Borel function $g \in L(M)$ such that

 $f_{m}(x) \leq g(x)$

for all m and for all x to \mathfrak{g} , then f t $L(\mathfrak{g})$, and

$$\lim_{m \to +\infty} \int_{\Omega} f_m d \mu = \int_{\Omega} f d \mu .$$

5.2.8 <u>Theorem</u>. Let Ω and K be open and compact subsets of \mathbb{R}^n , respectively, let $\operatorname{Supp}(M) = K$, and let $(x,y) \mapsto f(x,y)$ be a real-valued function on $\Omega \times K$ with the property that for each $y \in K$, the function $x \mapsto f(x,y)$ is continuous on Ω . Then the function h given by

$$h(x) = \int_{K} f(x,y) d \bigwedge (y) \qquad (x \in \Omega)$$

is continuous on A.

If further for each y \in K the function $x \mapsto \frac{\partial f}{\partial x}(x,y)$ is continuous on Ω , then

$$\frac{\partial h(x)}{\partial x_j} = \int \frac{\partial}{\partial x_j} f(x,y) d \mu(y).$$

(" differentiation under the integral sign ").

5.2.9 <u>Theorem</u>. (Lebesgue-Fubini Theorem). Let X, Y be either open sets or spheres in \mathbb{R}^n , let λ , μ be positive Borel measures on X and Y, respectively, and $\lambda \otimes \mu$ their product. If $f(x,y) \in L(\lambda \otimes \mu)$, then

(i)
$$G(x) = \int_{\mathbf{Y}} f_{\mathbf{x}}(x,y) d \mu(y)$$
 (x $\in X$),

and $H(y) = \int_{X} f_{y}(x,y) d \lambda(x)$ (y $\in Y$)

belongs to $L(\lambda)$ and $L(\mu)$, respectively, and

(ii)
$$\int_{\mathcal{G}} G(\mathbf{x}) d \lambda(\mathbf{x}) = \int_{\mathbf{X} \times \mathbf{Y}} f(\mathbf{x}, \mathbf{y}) d(\lambda \otimes \mu) = \int_{\mathbf{Y}} H(\mathbf{y}) d\mu(\mathbf{y})$$

which can also be written in the more usual form

(iii)
$$\int_{X} d\lambda(x) \int_{Y} f(x,y) d\mu(y) = \int_{Y} d\mu(y) \int_{X} f(x,y) d\lambda(x).$$

These are the so-called " iterated integrals " of f.

The following is the useful consequence of the theorem : If f is a Borel function on $X \star Y$, and if

$$\int_{X} d\lambda(x) \int_{Y} |f(x,y)| d\mu(y) < + \infty,$$

then the two iterated integrals in (iii) are finite and equal.

In other words "The order of integration may be reversed " for a Borel function f on $X \times Y$ whenever $f \ge 0$ and also whenever one of the iterated integrals of |f| is finite.