## BORER MEASURES

In this chapter we study some properties of the semicontinuous functions and the representation of Radon measures in terms of Boreal measures. Later on some well-known integration theorems will also be discussed .

The materials of this chapter are drawn from references [2], $[3], 4],[6],[8]$ and $[9]$
5.1 Semicontinuoue Functions

Let $\Omega$ be an open subset of $\mathbb{R}^{n}$ and $f$ a mapping of $\Omega$ into the extended real line $\mathbb{R}$. For each $x: \Omega$ let $N(x)$ be the collection of neighborhoods of $x_{\text {. . If }} A \subset \Omega$ and $x_{0}$ is any point of $\bar{A}$, we define จูพาลงกรณ์มหาวิทยาลัย

$$
\left.\lim _{x \rightarrow x_{0}} \inf f(x)=\sup _{X \in \mathbb{N}} x_{x}\right)\left[\inf _{x \in U \cap A} f(x)\right]
$$

(5.1.a)

$$
\lim _{x \rightarrow x_{0}} \sup f(x)=\inf _{U \in \mathbb{N}} f\left(x_{0}\right)\left[\sup _{x \in U \cap A} f(x)\right] ;
$$

If $A=\Omega$ we simply write $\lim _{x \rightarrow x_{0}} \inf f(x)$ and $\lim _{x \rightarrow x_{0}}$ sup $f(x)$.
5.1.1 Definition The function $f$ is said to be lower semi-- continuous (l.s.c.) at a point $x_{0} \in \Omega$ if $f\left(x_{0}\right)=\lim _{x \rightarrow x_{0}} \inf f(x)$ and upper semicontinuous (u.s.c.) at a point $x_{0} \in \Omega$ if $f\left(x_{0}\right)=\lim _{x \rightarrow x_{0}} \sup f(x)$. The function $f$ is said to be l.s.c. on $\Omega$ (u.s.c. on $\Omega$ ) if l.s.c. at each point of $\Omega$ (u.s.c. at each point of $\Omega$ ).

Clearly, if $f$ is l.s.c. at $x$, then $-f$ is u.s.c. at this point. Hence we need consider only lower semicontinuous functions. 5.1.2 Theorem. A mapping $f: \Omega \rightarrow \overline{\mathbb{R}}$ is l.s.c. at $x_{0} \in \Omega$ if and only if, for each $\alpha \in \mathbb{R}$ such that $\alpha<f\left(x_{0}\right)$, there exists a neighborhood $U$ of $x_{0}$ such that, for all $x \in U$, we have $\alpha<f(x)$.

Proof : If the condition is satisfied, we have that $\alpha \leq \inf f(x)$, $x \in U$ so that $f\left(x_{0}\right) \leqslant \sup _{U} \inf _{x \in U} f(x)=\lim _{x \rightarrow x_{0}}$ inf $f(x)$. But in fact,
$\lim _{x \rightarrow x_{0}} \inf f(x) \leqslant f\left(x_{0}\right)$, so we get $f\left(x_{0}\right)=\lim _{x \rightarrow x_{0}}$ inf $f(x)$. Therefore $f$ is 1.s.c. at $x_{0}(5.1 .1)$. The converse is immediately true from (5.1.1) and (5.1.a).
5.1.3 Theorem. A mapping $f: \Omega \rightarrow \bar{R}$ is l.s.c. on $\Omega$ if and only if, for each $\alpha \in \overline{\mathbb{R}}$, the set $f^{-1}((\alpha,+\infty])$ of points $x$ at which $f(x)>\alpha$ is open in $\Omega$ (or, equivalently, if and only if, for each $\alpha \in \overline{\mathbb{R}}$, the set $f^{-1}([-\infty, \alpha])$ of points of $x$ at which $f(x) \leqslant \alpha$ is closed in $\Omega$ ).

Proof : (5.1.2) implies that, for each $\alpha \in \overline{\mathbb{R}}$, the set $f^{-1}((\alpha,+\infty])$ is a neighborhood of each of its points, so we get the result. The equivalent assertion follows by taking complements.
5.1.4 Theorem. Let $f, g$ be two mappings of $\Omega$ into $\overline{\mathbb{R}}$ each of which is l.s.c. at a point $x_{0} \in \Omega$. Then
(i) $f+g$ is I.s.c. at $x_{0}$ if $f(x)+g(x)$ is defined for all $x \in \Omega$, and
(ii) sup $(f, g)$ and inf $(f, g)$ are l.s.c. at $x_{0}$.

Proof : (i) The result is obvious if $f\left(x_{0}\right)$ or $g\left(x_{0}\right)$ is equal to $-\infty$. If not, then we have $f\left(x_{0}\right)+E\left(x_{0}\right)>-\infty$. Every number $\alpha \in \mathbb{R}$ such that $\alpha<f\left(x_{0}\right)+g\left(x_{0}\right)$ can be written in the form $\alpha=\beta+\gamma$, with $\beta<f\left(x_{0}\right)$ and $\gamma<g\left(x_{0}\right)$ (it is enough to choose $\gamma$ such that $\left.\alpha-f\left(x_{0}\right)<\gamma<g\left(x_{0}\right)\right)$. By the hypothesis, there exists a neighborhood $U$ of $x_{0}$ such that, for all $x \in U$, we have $\beta<f(x)$ and $\gamma<g(x)$ (5.1.2). It follows that $\alpha=\beta \beta+\gamma \leqslant f(x)+g(x)$ for ail $x \in U$. Hence the result (5.1.2).
(ii) For every number $\alpha \in \overline{\mathbb{R}}$ such that $\alpha<\sup \left(f\left(x_{0}\right), g\left(x_{0}\right)\right)$, we have $\alpha<f\left(x_{0}\right)$ or $\alpha<g\left(x_{0}\right)$. By the hypothesis, there exists a neighborhood $U$ of $x_{0}$ such that for all $x \in U$, we have $\alpha<f(x)$ or $\alpha<g(x)(5.1 .2)$. If follows that $\alpha<\sup (f(x), g(x))$ for all $x \in \mathbb{U}$. Hence the result (5.1.2). The other case is analogous.
5.1.5 Definition. Given a set $\Omega$ and any family $\left(f_{\lambda}\right)_{\lambda \in \Omega}$ of mappings of $A$ into $\overline{\mathbb{R}}$, the upper (resp. lower) envelope of the family is defined to be the mapping $x \rightarrow \sup _{\lambda \in \Lambda} f_{\lambda}(x)$ (respox $\inf _{\lambda \in \Lambda} f_{\lambda}(x)$ )
of $\Omega$ into $\overline{\mathbb{R}}$. It is denoted by $\sup _{\lambda \in \mathcal{A}} f_{\lambda}\left(\operatorname{resp}\right.$. inf $\left.f_{\lambda \in \Omega}\right)$. We have $\sup _{\lambda \in \Lambda}\left(-f_{\lambda}\right)=-\inf _{\lambda+\Lambda} f_{\lambda}$.
5.1.6 Theorem. Let $\Omega$ be an open subset of $\mathbb{R}^{n}$ and let $\left(f_{\lambda}\right)_{\lambda \in \Omega}$ be a family of mappings of $/\left\{2\right.$ into $\overline{\mathbb{R}}$. If each $f_{\lambda}$ is I.s.c. at a point $x_{0} t \Omega$, then the upper envelope $f=\sup _{\lambda \in \Lambda} f_{\lambda}$ is I.s.c. at $x_{0}$.

Proof : Given any $\alpha<f\left(x_{0}\right)=\sup _{\lambda \in \Lambda} f_{N}\left(x_{0}\right)$, there exists by the hypothesis a $\cdot \lambda_{0} t \Lambda$ such that $\alpha<f_{\lambda_{0}}\left(x_{0}\right)$. Since $f_{\lambda_{0}}$ is l.s.c. at the point $x_{0}$, there exists a neighborhood $U$ of $x_{0}$ such that $\alpha<f_{\lambda_{0}}(x)$ for all $x \in U(5.1 .2)$, and therefore $\alpha<f_{\lambda_{0}}(x) \leqslant f(x)$ for all $x \in U$. Hence the result (5.1.2).
5.1.7 Theorem. A mapping $f: \Omega \longrightarrow \overline{\mathbb{R}}$ is continuous on $\Omega$ if and only if it is both u.s.c. and l.s.c. on $\Omega$.

Proof : If $f$ is continuous on $\Omega$, then for any $x_{0} \in \Omega$,
$\lim _{x \rightarrow x_{0}} \inf f(x)=f\left(x_{0}\right)=\lim _{x \rightarrow x_{0}} \sup f(x)$. Hence, by (5.1.1), $f$ is both u.s.c. and l.s.c. on $\Omega$. The converse follows by reversing.
5.1.8 Theorem. The upper (resp. lower) envelope of a family of continuous mappings of $\Omega$ into $\overline{\mathbb{R}}$ is lower (resp. upper)
semicontinuous.

Proof : It follows immediately from (5.1.7) and (5.1.6).
5.1.9 Definition. If $A$ is any subset of a set $\Omega$, the characteristic function of $A$ (usually denoted boy,$A$ ) is the mapping of $\Omega$ into $\mathbb{R}$ such that $\chi_{A}(x)=1$ for all $x \in A$ and $\chi_{A}(x)=0$ for all $x \in \Omega A-A$. So we have $x_{\Omega}=1, x_{\varnothing}=0$, and $x_{\Omega-A}=1-x_{A}$.
5.1.10 Theorem. A subset $A$ of $\Omega$ is open (resp. closed) in $\Omega$ if and only if $X_{A}$ is I.s.c. (resp. u.s.c.) on $\Omega$.

Proof : This follows immediately from (5.1.3).
5.1.11 Theorem. If $f$ is l.s.c. on $A \subset \mathbb{R}^{n}$ and there is a real-valued continuous function $G$ on $\mathbb{R}^{n}$ such that $f \geqslant g$ on $A$, then there is an increasing sequence of continuous functions $\left(E_{m}\right)$ on $\mathbb{R}^{n}$ such that $\lim _{m \rightarrow+\infty} g_{m}=f$ on $A$.

Proof : Replacing $f$ if necessary by $f-g$ (which is everywhere defined), we may assume that $f \geqslant 0$ and somewhere finite (the case $f=+\infty$ is trivial). For each positive integer $m$ and each $x \in \mathbb{R}^{n}$ define

$$
E_{m}(x)=\inf \{f(y)+m|y-x|: y \in A\}
$$

This is finite for each $x$. Clearly $f(y)+m|y-x| \leqslant f(y)+(m+1)|y-x|$ for all $y$, so $g_{m}(x) \leqslant g_{m+1}(x)$ for all $x$. Also $g_{m}(x) \geqslant \inf f(A)$ $\geq g(x)$. Let $x_{1}$ and $x_{2}$ be any points of $\mathbb{R}^{n}$. For every $y$ in $A$ we have $f(y)+m\left|y-x_{1}\right| \leq f(y)+m\left\{\left|x_{1}-x_{2}\right|+\left|x_{2}-y\right|\right\}=\left(f(y)+m\left|x_{2}-y\right|\right)+m\left|x_{1}-x_{2}\right|$, So $g_{m}\left(x_{1}\right) \leq g_{m}\left(x_{2}\right)+m\left|x_{1}-x_{2}\right|$. Interchanging $x_{1}$ and $x_{2}$, we get $g_{m}\left(x_{2}\right) \leqslant g_{m}\left(x_{1}\right)+m\left|x_{1}-x_{2}\right|$. Therefore $\left|E_{m}\left(x_{1}\right)-g_{m}\left(x_{2}\right)\right| \leq m\left|x_{1}-x_{2}\right|$, which proves that $\mathcal{E}_{\mathrm{m}}$ is continuous on $\mathbb{R}^{n}$.

Finally, let $x_{0}$ be a point in $A$; we must show that $g_{m}\left(x_{0}\right) \rightarrow f\left(x_{0}\right)$ as $m \rightarrow+\infty$. Let $k$ be any number less than $f\left(x_{0}\right)$. By the l.s.c. of $f$, there is an $\&>0$ such that $f(x)>$ for all $x \in B\left(x_{0}, \varepsilon\right)$. Now choose a number $m$ large enough so that $g(x)+m_{0} \varepsilon>k$. If $m>m_{0}$, then in the expression $f(y)+m\left|x_{0}-y\right|$ either $\left|x_{0}-y\right| \geqslant \varepsilon$ or $y \in B\left(x_{0}, \varepsilon\right)$. In the first case, $f(y)+m\left|x_{0}-y\right| \geqslant g(x)+m a>$ $g(x)+m_{0} \&>k$. In the second case, $f(y)+m\left|x_{0}-y\right| \geqslant f(y)>k$ by the choice of $\varepsilon$. Then $k$ is a lower bound for $f(y)+m\left|x_{0}-y\right|$, and by definition $g_{m}\left(x_{0}\right) \geq k$. Since $m$ was any number greater than $m_{0}$, and $\lim _{m \rightarrow+\infty} g_{m}\left(x_{0}\right)$ exists, $\lim _{m \rightarrow+\infty} \mathbb{E}_{m}\left(x_{0}\right)=k$. But $k$ was any number $<f\left(x_{0}\right)$, so $\lim _{m \rightarrow+\infty} E_{m}\left(x_{0}\right) \neq f\left(x_{0}\right)$.

On the other hand, in the definition of $\mathcal{E}_{\mathrm{m}}\left(\mathrm{x}_{0}\right)$ we can take $y=x_{0}$. because $x_{0} \in A$, So one possible value of $f(y)+m\left|x_{0}-y\right|$ is $f\left(x_{0}\right)$, and $g_{m}\left(x_{0}\right) \leqslant f\left(x_{0}\right)$. Since this is true for all $m$, we have $\lim _{m \rightarrow+\infty} g_{m}\left(x_{0}\right) \leq f\left(x_{0}\right)$. Thus, with the preceding inequality, proves $E_{m}\left(x_{0}\right) \rightarrow f\left(x_{0}\right)$ as $m \rightarrow+\infty$.
5.1.13 Theorem. Let $f \geqslant 0$ be a l.s.c. function on an open set $\Omega \subset \mathbb{R}^{n}$. Then for all $x_{0} \in \Omega$,

$$
f\left(x_{0}\right)=\sup _{\psi \leq f,} \varphi\left(x_{0}\right)
$$

Proof : The inequality $f\left(x_{0}\right) \geqslant \sup \varphi\left(x_{0}\right)$ is clear. Let us. $\psi \leqslant f, \varphi \in \not \subset(\Omega)$
prove the reverse inequality. For any $x_{0} \in \Omega$ and any $k<f\left(x_{0}\right)$, by the I.s.c. of $f$, there exists a neighborhood $U$ of $x_{o}$ such that $k<f(x)$ for all $x \in U$. Let $B=B\left(x_{0}, \varepsilon\right)$ be a ball with the compact closure $\bar{B} \in \mathbb{U}$. Then, by (2.2.5), there exists a function $\psi \in D(\Omega)$ such that $\psi(x)=1$ for all $x \in \bar{B}$. Let $\varphi(x)=k \psi(x)$ for all $x \in \bar{B}$ and equal to zero otherwise. Then $\varphi \in \infty(0), \varphi \leq f$ and $p\left(x_{0}\right) \geqslant k$. Since $k$ is arbitrary, we conclude that

$$
\begin{aligned}
& \sup \varphi\left(x_{0}\right) \geq f\left(x_{0}\right) ., \\
& \varphi \leqslant f, \varphi \in \$(\Omega) \text { ทยาลัย }
\end{aligned}
$$

whence the result.
5.2 The Representation of a Radon Measure and Some Fundamental Results on Integration Theory

In this section we will show that there is a one to one correspondence between a positive Radon measure and a positive Bore measure. Finally we will state some well-known integration theorems without proof.

Some definitions and facts from measure theory are assumed, but we will recall some definitions and facts of Bore measure.
5.2.1 Definitions. Let $\Omega$ be an open subset of $\mathbb{R}^{n}$, and let $B$ be the f-algebra generated by the class of all open (or closed) subsets of $\Omega$. The elements of $B$ are called the Bore gets of $\Omega$.

A positive Bore measure on $\Omega$ is a positive real-valued function on 8 such that
(i) $\quad j(\not \subset)$
(ii) if $A_{1}, A_{2}, \cdots \notin B$ is a sequence of disjoint sets, then $2\left(\mathbb{U}_{j=1}^{\infty} A_{j}\right)=\sum_{j=1}^{\infty} 2\left(A_{j}\right)$, and
(iii) $\mathcal{V}(\mathrm{K})<\infty$ for every compact set $\mathrm{K} \subset \Omega$.

If $f$ is a mapping of $\Omega$ into $\mathbb{R}$, then $f$ is said to be Bored function provided that $f^{-1}(V)$ is a Bored set in $\Omega$ for. every open set $V_{U}$ in $\mathbb{R} \cdot G K O R N$ UNIVERSITY
5.2.2 Examples. (i) Every continuous function of $\Omega$ is Bore function.
(ii) Every semicontinuous function of $\Omega$ is

Bore function.
(iii) If $A$ is a Bored set in $\Omega$, then the characteristic function $X_{A}$ is a Bored function.
5.2.3 Remark. If $f$ and $g$ are Bore functions on $\Omega$, then so are $|f|, f+g, f \tilde{g}, \max (f, g)$ and $\min (f, g)$.

The following theorem will show the 1-1 corresponding between a positive Radon measure and a positive Bore measure.
5.2.4 Theorem. (The Riesz Representation Theorem) Let $\Omega$ be an open subset of $\mathbb{R}^{n}$, and let $\mu$ be a positive Radon measure on $K(\Omega)$. Then there exists a algebra 83 in $\Omega$ which contains all Bore sets in $\Omega$, and there exists a unique positive Bore measure on $\lambda$ with represents $\mu$ in the sense that

for every $f \in K(\Omega)$ and which has the following additional properties :
(i) $\nu(K)<+\infty$ for every compact set $K=\Omega$.
(ii) For every $E \in \gamma$

$$
\nu(E)=\inf \{\nu(V): E \subset V, V \text { open }\} .
$$

(iii) The relation

$$
\nu(E)=\sup \{J(K): K \subset E, K \text { compact }\}
$$

holds for every open set $\mathbb{E}$, and for every $E \in B$ with $J(E)<+\infty$.

$$
\text { (iv) If } \mathbb{E} \in B, A \subset \mathbb{E} \text {, and } \nu(E)=0 \text {, then } A \in X \text {. }
$$

The proof of the theorem will be omitted (for the completed proof see [9], p.40).

Convention : By the uniqueness of the positive Bore measure 2 in the theorem, we shall simply write $\int_{\Omega} f d \mu$ instead of $\int_{\Omega} f d \nu$.

Now we will state some integration theorems which will be used repeatedly in the next chapter. Since they are already well-known, we will state them without proof (for the completed proofs see e.E., [9]).
5.2.5 Definition. We define L(M) to be the collection of all Bored functions $f$ on for which


The numbers of $L(\mu)$ are called Lebesgue integrable functions (with respect to $\mu$ ).
5.2.6 Theorem. (Lebesgue's Monotone Convergence Theorem) Let ( $f_{\mathrm{m}}$ ) be a sequence of Bored functions on $T^{2}$, and suppose that
(i) $\quad 0 \leq f_{1}(x) \leq f_{2}(x) \leq \| \cap R+\infty$ for every $x \in<2$,
(ii) $f_{m}(x) \longrightarrow f(x)$ as $m \rightarrow+\infty$, for every $x \in \Omega$.

Then $f$ is a Borel function, and

$$
\lim _{m \rightarrow+\infty} \int_{\Omega} f_{m} d \mu=\int_{\Omega} f d \mu
$$

5.2.7 Theorem. (Lebesgue's Dominated Convergence Theorem). Suppose ( $f_{m}$ ) is a sequence of Bored functions on $\Omega$ such that

$$
f(x)=\lim _{m \rightarrow+\infty} f_{m}(x)
$$

exists for every $x \in \Omega$. If there is a Morel function $g \in I(\mu)$ such that

$$
\left|f_{m}(x)\right| \leqslant g(x)
$$

for all $m$ and for all $x \in \Omega$, then $f \in L(\mu)$, and

$$
\lim _{m \rightarrow+\infty} \int_{\Omega} f_{m} d \mu=\int_{\Omega} f d \mu
$$

5.2.8 Theorem. Let $n$ and $K$ be open and compact subsets of $\mathbb{R}^{n}$, respectively, let $\operatorname{supp}(\mu)=K$, and $\operatorname{let}(x, y) \mapsto f(x, y)$ be a real-valued function on $\Omega \times K$ with the property that for each $y \in K$, the function $x \mapsto f(x, y)$ is continuous on $\Omega$. Then the function $h$ given by


$$
(x \in \Omega)
$$

is continuous on ภ.งกรณ์มหาวิทยาลัย
If further for each $y \in K$ the function $x \mapsto \frac{\partial f}{\partial x}(x, y)$
is continuous on $\Omega$, then

$$
\frac{\partial h}{\partial x_{j}}(x)=\int_{K} \frac{\partial}{\partial x_{j}} f(x, y) d \mu(y)
$$

(" differentiation under the integral sign ").
5.2.9 Theorem. (Lebesgue-Fubini Theorem). Let X, Y be either open sets or spheres in $\mathbb{R}^{n}$, let $\lambda, \mu$ be positive Bore measures on $X$ and $Y$, respectively, and $\lambda \otimes \mu$ their product. If $f(x, y) \in L(\lambda \odot \mu)$, then
(i) $G(x)=\hat{y}_{X} f_{X}(x, y) d \mu(y) \quad(x \in X)$,
and

$$
H(y)=\int_{X} f_{y}(x, y) d \lambda(x) \quad(y \in Y)
$$

belongs to $L(\lambda)$ and $I(\mu)$, respectively, and

$$
\text { (ii) } \int_{X} G(x) d \lambda(x)=\int_{X \times Y} f(x, y) d(\lambda \otimes \mu)=\int_{Y} H(y) d \mu(y)
$$

which can also be written in the more usual form
(iii) $\int_{X} d \lambda(x) \int_{Y} f(x, y) d y(y)=\int_{X} d \mu(y) \int_{X} f(x, y) d \lambda(x)$.

These are the so-called "iterated integrals "of $f$. จหาลงกรณมมหาวิทยาลัย
The following is the useful consequence of the theorem : If $f$ is a Bored function on $X \times Y$, and if

$$
\int_{X} d \lambda(x) \int_{Y}|f(x, y)| d \mu(y)<+\infty
$$

then the two iterated integrals in (iii) are finite and equal.

In other words " The order of integration may be reversed " for a Morel function $f$ on $X \times Y$ whenever $f \geq 0$ and also whenever one of the iterated integrals of $|f|$ is finite.

