CHAPTER IV

A RECURSIVE CONSTRUCTION

4.1 Construction of Room Square of side $v_1(v_2-v_3)+v_3$ from a Room Square of side v_1 and a Room Square of side v_2 which contains a subsquare of side v_3 where $v_2-v_3\neq 2.6$.

Definition 4.1.1 Let R be a finite set. An array L based on a set R is said to be a <u>Latin Square</u> if every member of R appears precisely onecin each row and once in each column. The number of elements of P will be called the <u>order</u> of the Latin Square.

Suppose that $L = (1_{ij})$ and $M = (m_{ij})$ are two Latin Squares of same order. We write (L,M) to denote the array whose the (i,j) entry is $(1_{ij}, m_{ij})$. Two Latin Squares L, M are called <u>orthogonal</u> if all entries of (L, M) are distinct.

Theorem 4.1.2 Suppose there exists a Room Square \mathcal{R}_1 of side v_1 , a Room Square \mathcal{R}_2 of side v_2 with a subsquare \mathcal{R}_3 of side v_3 such that $n = v_2 - v_3 \neq 2$ or 6. Then there is a Room Square \mathcal{R} of side

$$v = v_1(v_2 - v_3) + v_3$$

with subsquare isomorphic to R_1, R_2 and R_3 .

Proof. Assume that R_1 is standardized based on $\{0, 1, 2, ..., v_1\}$.

Let R_2 be a standardized Room Square based on $\{0, 1, 2, ..., n, n+1, ..., v_2\}$.

We relabel the objects so that R_3 based on $\{0, n+1, n+2, ..., v_2\}$.

and then reorder rows and columns so that $\,\mathcal{R}_3\,$ occupied the last v_3 rows and columns of $\,\mathcal{R}_2\,$ as follows

$$\mathcal{R}_{2} = \begin{bmatrix} A^{(1)} & A^{(2)} \\ A^{(3)} & \mathcal{R}_{3} \end{bmatrix}$$

Figure 4.1

Since $n \neq 2,6$, by Theorems 13.2.2 and 13.4.1 of [1], a pair of orthogonal Latin Squares exist.

Let L and M be a pair of orthogonal Latin Squares of order n based on $\{1, 2, \ldots, n\}$. We arrange the first column of L and M to the form $(1, 2, \ldots, n)$. For each i, $j = 1, 2, \ldots, v_1$, where $i \neq j$, let L_i be the array obtained from L with each entry x replaced by x_i . Similarly, let M_j be the array obtained from M with each entry x replaced by x_j .

Let Z_{ij} be the array obtained from (L_i, M_j) by replacing each ordered pair (x_i, y_j) by the unordered pair $\{x_i, y_j\}$.

Now for each j = 1, 2, 3; $i = 1, 2, ..., v_1$, let $A_{(i)}^{(j)}$ be obtained from $A^{(j)}$ by replacing the pair $\{x, y\}$ in $A^{(j)}$ by $\{g_i(x), g_i(y)\}$; where

$$g_i(x) = \begin{cases} x_i & \text{if } 1 \leq x \leq n \\ x & \text{otherwise.} \end{cases}$$

We shall construct a Room Square $\mathcal R$ of side $\, { t v} \,$ based on the set

which consists of v + 1 symbols.

We first convert \mathbb{R}_1 into $nv_1 \times nv_4$ array \mathbb{R}_2 by replacing each of its cells by an $n \times n$ array. An empty cell is replaced by an empty $n \times n$ array, the entry $\{0,i\}$ is replaced by $\mathbb{A}_1^{(1)}$ and the entry $\{j,k\}$; $j \neq 0$; $k \neq 0$ is replaced by \mathbb{Z}_{jk} .

We now arrange arrays %, $A_i^{(2)}$, $A_i^{(3)}$ and \mathcal{R}_3 in a master array of side $(nv_1 + v_3) \times (nv_1 + v_3)$ as follows:-

Figure 4.2

We shall show that \Re is a Room Square of side $nv_1 + v_3$ based on S. It is clear from the construction of \Re that each cell of \Re may contain an unordered pair of distinct elements of S or may be empty.

Now we shall show that each row of \Re contains all elements of S precisely once.

First consider the last v_3 row of R . These v_3 rows comprise the following subarray of R

$$\begin{bmatrix} A_1^{(3)} & A_2^{(3)} & A_{V_1}^{(3)} & R_3 \end{bmatrix}$$

Observe that each row of $A_i^{(3)}$ contains elements of $\{1_i, 2_i, \dots, n_i\}$ precisely once and each row of \mathcal{R}_3 contains elements of $\{0, n+1, \dots, v_2\}$ precisely once . hence each row of these subarrays $A_1^{(3)}$ $A_2^{(3)}$. . . $A_{v_i}^{(3)}$ contains elements of S precisely once.

It remains to be verified that for each i=1,2...,nv, the $i^{\rm th}$ row of Roomtains all elements of S precisely once.

Let i be such that $1 \le i \le nv$. Let s be an arbitrary element of S. We shall show that s appears in row i of \Re .

Observe that we may write

i = (i'-1)n + i'' where $1 \le i'' \le n$ and $1 \le i' \le n$.

Then s appears exactly once in every row of $A_{\mathbf{i}}^{(1)}$ $A_{\mathbf{i}}^{(2)}$.

In particular, $s = x_{\mathbf{i}}$ appears in the i^{nth} row of $A_{\mathbf{i}}^{(1)}$ $A_{\mathbf{i}}^{(2)}$.

It can be seen from the construction of \mathcal{R} that the ith row of \mathcal{R} contains the ith row of $\begin{bmatrix} A_{i'}^{(1)} & A_{i'}^{(2)} \end{bmatrix}$. Hence $s = x_i$ appears

in the ith row of \Re . Note also that s appears exactly once in this row, since it appears exactly once in $A^{(1)}_{i'}$ $A^{(2)}_{i'}$ and does not appear in any of Ξ_{ik} .

case 2 $s = x_j$ where $j \neq i'$ and $j \in \{1,2,\ldots,v_j\}$. Since j appears in the i'^{th} row of \mathcal{R}_1 , hence there exists $k \neq j$ such that $\{j,k\}$ is an entry of the i'^{th} row of \mathcal{R}_1 . Since x appears in the i''^{th} row of both L and M, hence there exist y, z such the (x,y) and (z,x) appears in the i''^{th} row of (L,M). Hence $\{x_j,y_k\}$ and $\{z_j,x_k\}$ appears in the i''^{th} row of Z_{jk} . From the construction of \mathcal{R} , we see that the i'^{th} row of \mathcal{R} contains the i''^{th} row of Z_{jk} . Hence x_j appears in the i'^{th} row of \mathcal{R} . It may happen that (x,y) = (z,x)

or $(x, y) \neq (z, x)$. If (x, y) = (z, x), then (x, x) appears only once in (L, M). Since $j \neq k$, hence x_j appears exactly once in i row Z_{jk} .

If $(x, y) \neq (z, x)$, then the order pairs (x, y) and (z, x) give rise to the pairs $\{x_j, y_k\}$ and $\{z_j, x_k\}$ in the inth row of Z_{jk} . Since $j \neq k$, hence x_j appears only once in the inth row of Z_{jk} . From the construction of \mathbb{R} , x_j may not appears elsewhere in the ith row of \mathbb{R} . Hence $s = x_j$ appears precisely once in the ith row of \mathbb{R} .

case 3 $n+1 \le r \le v_2$ or r=0.

Observe that c=0, appears exactly once in the i^{n+1} row of $A^{\binom{1}{i}}$.

Therefore s=0 appears precisely once in the ith row of \mathbb{R} .

Let s=n+1, n+2, ..., v_2 . Observe that each row of $A^{(1)}$ $A^{(2)}$ contains all elements $\{0, 1, 2, \ldots, n, n+1, \ldots, v_2\}$ precisely once.

Hence each row of $A^{(1)}$ $A^{(2)}$ contains all elements of $\{0, 1, 2, \ldots, n_i, n+1, \ldots, v_2\}$ precisely once. Therefore s=1 appears exactly once in iⁿth row of $A^{(1)}$ $A^{(2)}$. Hence s=1 appears precisely once in the ith row of \mathbb{R} .

Therefore all elements $\varepsilon \in S$ appears precisely once in each row of \mathcal{R} .

A similar proof appied to column. Next, we shall show that every unordered pair of elements of S appears precisely once in $\mathcal R$.

Consider the whole of R. Since L, M are orthogonal Latin Square, hence every (x, y) appears in (L,M). Since R_1 is a Room Square, hence every $\{j, k\}$, $j \neq k$; $1 \leq j$, $k \leq v$, appears in R_1 . Hence for each $x, y = 1, 2, \ldots, n$ and distinct $j, k = 1, \ldots, v_1$, the pair $\{x_j, y_k\}$ appears in Z_{jk} , which is a subarray of R. Hence for each $x, y = 1, 2, \ldots$ n and all distinct $j, k = 1, 2, \ldots$, v_1 , the pair $\{x_j, y_k\}$ appears in R.

For distinct $x, y = 1, 2, ..., v_1$, we see that $\{x_i, y_i\}$ appears in $A_i^{(1)}$ or $A_i^{(2)}$ or $A_i^{(3)}$ which are subarray of $\mathcal R$.

Hence all pairs of distinct elements of the form $\{x_j, y_k\}$, x, y = 1, 2, ..., n, $j, k = 1, 2, ..., v_1$, appear in some cell of \mathbb{R}

Note that any pair of the form $\{z, t\}$ where $z \neq t$; $n + 1 \leq z$, $t \leq v_2$, appears in \mathcal{R} , which is a subarray of \mathcal{R} . Hence all such pairs appear in \mathcal{R} . It remains to be verify that all pairs of the form $\{x_i, z\}$ where $i = 1, 2, \ldots, v_1$; $x = 1, 2, \ldots, n$ and $z = n+1, \ldots, v_2$, 0, appear in \mathcal{R} .

Since \mathcal{R}_2 is a Room Square based on $\{$ 0, 1, 2, ..., n, n+1,... v_2 $\}$ hence each pair $\{x, z\}$ where $1 \le x \le n$; z = n+1, ..., v_2 , 0 appears in \mathcal{R}_2 .

By definition of $A^{(j)}$, we see that such pair appears in some $A^{(j)}$, Hence $\left\{x_i,z\right\}$ appears in $A^{(j)}_i$ where $A^{(j)}_i$ is a subarray of \mathcal{R} . Hence all unordered pairs of elements of S appears in \mathcal{R} .

By counting the number of pairs that appear in each row of $A_{i}^{(j)}$ and Z_{jk} we find that; each row of $A_{i}^{(1)}$ $A_{i}^{(2)}$ contains $\frac{1}{2}$ (v_{2} + 1) pairs, each row of Z_{jk} contains n pairs, each row of $A_{i}^{(3)}$ contains $\frac{1}{2}$ n pairs and R_{3} has $\frac{1}{2}(v_{3}+1)$ pairs per row.

So the number of pairs in R is

$$v_{1}^{n} \begin{bmatrix} \frac{1}{2} (v_{1} - 1)n + \frac{1}{2} (v_{2} + 1) \end{bmatrix} + v_{3} \begin{bmatrix} \frac{1}{2} v_{1}^{n} + \frac{1}{2} (v_{3} + 1) \end{bmatrix}$$

$$= \frac{1}{2} \begin{bmatrix} v_{1}^{n} (v_{1}^{n} - n + n + v_{3} + 1) + v_{3} (v_{1}^{n} + v_{3} + 1) \end{bmatrix}$$

$$= \frac{1}{2} \left[(v_1 n + v_3)(v_1 n + v_3 + 1) \right]$$
$$= \frac{1}{2} v (v + 1).$$

This is the number of unordered pairs which can be chosen from S, so each pair must appear precisely once in R. Therefore $\mathcal R$ is a Room Square based on S.

Note that

A(1)	A(2)
A(3)	R_3

Figure 4.3

is a subsquare of $\mathbb R$ which is isomorphic to $\mathbb R_2$. $\mathbb R_3$ is exhibited as a subsquare in the last v_3 rows and columns .

To show that \mathcal{R}_1 is a subsquare of \mathcal{R}_i take the intersection of rows 1, n+1, 2n+1, ..., $n(v_1-1)+1$ and corresponding columns. The array formed has entry $\left\{0,\,1_{\underline{i}}\right\}$ where \mathcal{R}_1 has $\left\{0,\,\underline{i}\right\}$ and entry $\left\{1_{\underline{j}},\,1_{\underline{k}}\right\}$ where \mathcal{R}_1 has $\left\{j,\,\underline{k}\right\}$, so it is isomorphic to \mathcal{R}_1

Therefore the theorem follows .

Q.E.D.

Theorem 4.1.3 If there are Room Squares of sides v_1 and v_2 , then there is a Room Square of side v_1 . v_2 with subsquares of sides v_1 and v_2 which are isomorphic to the original squares.

<u>Proof.</u> The construction $\mathcal S$ in the proof of theorem 4.1.2 is carried out with $n = v_2$ and with $\mathcal R_2$ replacing $A^{(1)}$. By method described in that proof, it may be seen that $\mathcal S$ is a Room Square with the required properties.

Q.E.D.

Theorem 4.1.4 If there exist Room Squares of sides v_1, v_2, \dots, v_k , then there is a Room Square of side $v = v_1, v_2, \dots, v_k$ with subsquares of sides v_1, v_2, \dots, v_k .

Proof. This theorem follows from theorem 4.1.3 by induction on k.

Q. E.D.