d o a d Vo a a
ailiisaiiesusamanuseudmnzdidnnseindvewinhelntgamgiige

U
]

~

NauHNIINGH
Q Lt

a d
HEPgwIa nFAnUaIau

IngndinusiiiudmidsvesmsansmunangasdSayanInsmmansumiadia
a aa  Jd a aa J
manslang  manWand
A d d a LY
ANEZINGIMANT QI TAININNWINNEY
El =S
insfnyn 2542
ISBN 974-333-903-5

a oA a‘ é a LY
aVFNBUBIYWIaINIUNKTIVIE A

TAA0AAR 9D



ELECTRONIC SPECIFIC HEAT DISCONTINUITY AT CRITICAL
TEMPERATURE OF HIGH-T, SUPERCONDUCTORS

Mr. Suchat Kaskamalas

A Thesis Submitted in Partial Fulfillment of the Requirements
for the Degree of Master of Science in Physics
Department of Physics
Faculty of Science
Chulalongkorn University
Academic Yeai' 1999
ISBN 974-333-903-5



Thesis Title Electronic Specific Heat Discontinuity at Critical
Temperature of High-T. Superconductors

By Mr. Suchat Kaskamalas

Thesis Advisor Professor Virulh Sa-yakanit

Thesis Co-Advisor  Professor Suthat Yoksan

Accepted by the Faculty of Science, Chulalongkorn University in Partial

Fulfillment of the Requirements for the Master’s Degree.

\\/%f(,’)wo’(\‘ M\ﬁ‘f

...................... /=7.....Dean of Faculty of Science
(Associate Professor Wanchai Phothiphichitr, Ph.D.)

THESIS COMMITEE

(Associate Professor Wichit Sritrakool, Ph.D.)



g8 indnuatad - AnulildefiasuesAiacnfousimnzBidnnsetindvassintingandegninnd
AaNgnIUNIANOR.  (ELECTRONIC  SPECIFIC HEAT  DISCONTINUITY AT  CRITICAL
TEMPERATURE OF HIGH-T, SUPERCONDUCTORS) . Mitlinun : @ m9. 3390 aemtin, a. 7

USnendau « ot e, giend andn, 70 W, ISBN 974-333-903-5.

qnafanunaraineinusiAeeAnan isetamesArannFaus g Ianas
e o ™ a Al . =l A e = aa %
Fnieanileg g figeifiagamnuniuanuraiua siauiunA Ly wu Taw 9natsi Tnanasld
noudsarheniens v gief uazeivivled (Bardeen, Cooper, and Schrieffer) IneiansnunanTm
N1sduge9Bifnn U ATLARNG (s-wave) UAATWTLRAYIY (d-wave) ANNNIUIANNIIUARIERS

! 1 ) ' [ dl’ 1 £ % ° AII aa, ar ' LY ]
mm:um\immmlumLu@wmmmmmaumL‘Wﬁtwqmu Nangm (AC(T,)) fuAIAINTauATNE Tl

b >

aa

anuzUnAngMniangs (Cy (T,)) ihuiaridunes avanveny gruuniangs uazndsnunesil 39

wAA I IR dausanatauansa llannan 1.43 AAwanlse BCS

&'\ﬁ%‘ O ey sl

medtn WAnd AelaTetdn " o el
. , N

grain WAng AtilaTaaNan 9T RALE N T~

Unisfinen 2542 mﬂﬁfa%mmﬁfﬁﬂmiqy/ﬁﬂ....?....-...‘;..»': .........



# # 4072424423 : MAJOR PHYSICS
KEY WORD: SPECIFIC HEAT JUMP / S-WAVE / D-WAVE / PAIRING STATES / VAN HOVE SINGULARITY

SUCHAT KASKAMALAS : ELECTRONIC SPECIFIC HEAT DISCONTINUITY AT CRITICAL
TEMPERATURE OF HIGH-T, SUPERCONDUCTORS. THESIS ADVISOR : PROF. VIRULH SA-
YAKANIT. F.D., THESIS COADVISOR : PROF. SUTHAT YOKSAN. Ph.D., 70 pp. ISBN 974-333-
903-5.

The purpose of this thesis is to investigate the specific heat jump at the critical temperature of
high-T, superconductor having the constant and the Van Hove Singularity density of states. By using
the theory of Bardeen, Cooper, and Schrieffer (BCS) and considering the pairing states to be isotropic
s-wave and anisotropic d-wave, we calculate the ratio between the jump in the specific heat and the
normal phase specific heat at the critical temperature as a function of the Debye frequency, the
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Chapter 1

Introduction

The 1986 discovery of a class of copper oxide alloys that are able to
conduct electricity with zero resistance at high temperatures began an exciting
race to find new superconductors (Bednorz and Miiller, 1986). The mercury-
based cuprates now exhibit superconducting transition temperatures T, that are
halfway to room temperature, a record that is five times higher than
previously believed limits (Schilling et al., 1993).

Bednorz and Miiller began their inventive quest by synthesizing oxides
that are usually considered closer to the realm of insulators rather than to the
conventional metal category. They found that La,.Ba,CuO4 is
superconducting up to 35 K for a rather limited range of compositions, for
which an anomalous metallic character of the electron motion is indicated by
the optical conductivity and various other transport properties at high
temperatures (Bednorz and Miiller, 1988).

Experimental evidences indicate that 1in high temperature
superconductors electrons (or holes) conduct current primarily along planes
determined by the copper-oxide atom layers in the cuprate structure, whereas

the larger spacing between layers creates a barrier to conduction perpendicular



to these planes. A mysterious damping of the charge carriers in these high-T;
cuprates distinguishes them from other anisotropic materials. The peculiar
linear frequency variation of the observed damping has led some to question
the existence of a Fermi surface in the cuprates, while others have proposed
that the source of the damping provides clues to the superconducting
mechanism in these strange alloys.

Chu’s group (Wu et. al., 1987) found that applied pressure elevates T,
in the La-based cuprate and thus reasoned that rare earth atoms with a smaller
ionic radius may exert a desired chemical pressure in the cuprate lattice. They
discovered the superconductor YBa,Cus;O; with a transition temperature near
90 K, which raised hoped for technological applications since these materials
could be cooled with liquid nitrogen refrigerants instead of the more costly
and cumbersome helium facilities that are used with standard superconducting
magnets.

Escalating optimism was encouraged by discoveries of T, = 125 K in
thallium-based cuprates (Hermann and Yakhmi, 1994) and the 130 K
(Schilling et al., 1993) in Hg-1223. Application of pressure (Chu et al., 1993)
to Hg-1223 pushed the current record (T=165K) halfway to room
temperature.

Since many high-T. oxide superconductors are found to contain a
number of layers of CuO,. In order to understand the origin of high critical

temperatures in these cuprates. Labbe and Bok (Labbe and Bok, 1987)



stressed the important role played by the CuO, planes by pointing out that the
CuO, planes are sometimes well separated, therefore the electronic properties
of these oxides are expected to show a two-dimensional behaviors rather than
a three-dimensional one. The electronic structure of a 2D-lattice on account of
its topological necessity reveals the occurrence of at least one Van Hove
Singularity in the form of a saddle point which, in turn, leads to a logarithmic
peak in the electronic density of states. Recent high-resolution angle-resolved
photoemission spectroscopy measurements on high-T, superconductors
(Dessau et al., 1993, Gofron et al., 1994, and Ma et al., 1995) have identified
the presence of saddle points in the band structure of these materials and these
saddle points are shown to correspond to logarithmic Van Hove Singularity
(VHS) in the density of states. The influences of VHS on several properties of
cuprate superconductors have been studied (Newns et al., 1992, 1994, and
Houssa et al., 1997).

Specific heat is an important property of a superconductor. 4It can
inform us about the nature of phase transition and the symmetry of the pairing
state (Gopal, 1996), (Junod, 1990). The jump in the specific heat, AC, at the
critical temperature provides a relative measure of the superconducting
fraction that undergoes the superconducting transition. In BCS theory the ratio

AC(T,)/C(T.), i1s a universal constant, 1.43, here C, is the normal state

specific heat. In many high temperature cuprate superconductors this ratio has

been found to be greater than the BCS value (Gopal, 1996), (Junod, 1990).



The explanation of this discrepancy has been attributed to the logarithmic
VHS 1n the normal state density of states with s-wave order parameter (Tsuei
et al., 1992, Gama Goicochea, 1994) and also with d-wave order parameter
(Dorbolo et al., 1996, Dorbolo, 1997). Sarkar and Das (Sarkar and Das, 1996)
studied the specific heat jump of s-wave cuprates and found that an extended
VHS can account for some of the experimental results reasonably well. In
their investigation of the specific heat jump, Newns et al. (Newns et al., 1995)
showed that the d-wave version of the Van Hove scenario at the BCS level of
approximation is viable. Recently Dagotto et al. (Dagotto et al., 1995)
proposed a theoretical model including both the VHS and antiferromagnetic
fluctuation effects. Their model explains many features of high-T, materials
and predicts a gap paraméter of dx?_-y? —wave type (Tsuei and Kirtley,
1997).

Within the BCS framework, the specific heat jump is usually calculated
from the temperature derivative of the square of the gap parameter and the
reduced gap ratio (R), by defining A%=—d[A(TYAO)/d(T/T.) and
B?=[A(0)/T,]*, here A(T) is the temperature-dependent energy gap function,

Tsuei et al. obtain A=1.74, B=1.76 (Tsuei et al., 1992), (Gama Goicochea,
1994), (Sarkar and Das, 1996). As is well known these quantities having such

values when the condition ©p/T, - 1s considered. In conventional

superconductors this restriction is valid because the cutoff energy o, 1s much
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greater than T,. With the discovery of high temperature oxides the Debye
cutoff o, is not that much greater thanT,, the dimensionless ratio o, /T, 1s

therefore finite. Hence new calculations of A and B are needed (Krunavakarn
et al., 1998), (Pakokthom et al., 1998).
It is therefore of great interest to obtain exact analytical expression for

AC(T,)/Cy (T.) without making any approximation concerning op/T,, to know
what the BCS Theory predicts for A,B and AC(T,)/Cy(T.) when wp/T,1s

beyond its restricted value. The purpose of this research is to investigate the
specific heat jump of isotropic s-wave and anisotropic d-wave
superconductors within the BCS framework for a constant density of states
and for a VHS density of states.

We review the BCS theory in Chapter 2, and some theories of high-T,
superconductors, especially the Van Hove superconductors, in Chapter 3. In
Chapter 4, we present our calculations for the specific heat jump

(AC(T,)/C(T.)) of isotropic s- wave and anisotropic d- wave superconductors.

Starting with the BCS gap equation, we derive a formal but completely
general formula for the temperature dependence of the order parameter and
the normalized specific heat jump. The effects of the constant and VHS
density of states on the specific heat difference are presented analytically and

graphically. Finally, discussions and conclusions are drawn in Chapter 5.



Chapter 2

The BCS Theory

2.1 Introduction

The theory of superconductivity developed by Bardeen, Cooper, and
Schrieffer (BCS) (Bardeen et al., 1957) was founded on a number of assumptions
concerning the causes of superconductivity which, on the basis of theory and
experiment, were generally agreed. Experimental evidence pointed to the fact that
in the transition of a metal to the superconductive state the lattice and its
properties were essentially unchanged, whereas some of the properties of the
conduction electrons were changed radically. In the first instance, at least, it was
reasonable to assume that transition was caused by a change in the state of the
electrons alone.

The way to understand the phenomenon of superconductivity is due to
Frohlich (Frohlich, 1953) who proposed the interaction which is now generally
believed to give rise to superconductivity in most, if not all, known
superconductors. This interaction between the electrons arises as a result of the

interaction of the electrons with the possible vibrations of the lattice (phonon). Its



significance in causing superconductivity is confirmed by the dependence of the
critical temperature of superconductors on the isotopic mass of the lattice, a
dependence which was established (Maxwell, 1950, Reynolds et al., 1950)
independently.

Phonons are collective excitations of the lattice. The vibrational state of the
lattice is characterized by the number of phonons in the individual oscillator states

defined by the wave vector q and the branch j of the dispersion spectrum o;(q) .

This interaction between the electrons which is mediated by the phonons

can be written as (Madelung, 1978)

‘2 1 1

Vig = B(k)-E(k+q)~fo, E(k)-E(k+q)+ho,

q _‘Mq

2.1

2|Mq‘2hwq
[E(k +q) - E®)J - (Ao, )

here, M, is the coupling strength of an electron-phonon interaction matrix
element, o, is the phonon frequency, and E(k) 1s the excitation energy.

The basic electron-phonon interaction process is the annihilation
(absorption) or creation (emission) of a phonon (q, j) with simultaneous change of
the electron state from |k,c) to |k+gq,0).

In the following sections we shall study the interaction more closely. It will

emerge that, with particular assumptions, an attractive effective interaction leads



to a correlation of the electrons, which results in a reduction in energy of the
ground state. The correlation takes place predominantly in pair between electrons
of opposite spin and opposite wave vector (Cooper pairs). In Section 2.2 we shall
look at individual Cooper pairs, and in Section 2.3 we shall present formulation of
the BCS theory. Finally in the Section 2.4 we shall find the thermodynamic
functions of the superconductive state.
2.2 Cooper Pairs

Cooper (Cooper, 1956) presented the basic idea that even a weak attraction
can bind pairs of electrons into a bound state. To grasp the significant aspects of
the new interaction, we consider an idealized case: a noninteracting electron gas
fills the Fermi sphere in k -space. All the states below Er are occupied, and all

above it empty. Into this system we introduce two electrons [k,, E(k,)] and [k,,

E(k,)]. We take the positive part of V,, in Eq.(2.1) as the interaction between

these two electrons. Interaction processes involving phonon exchange will

therefore only occur for [E(k +q) - E(k)| < 7o, .

We construct the wave function for the electron pair by the application of

two creation operators to the ground state |G) (filled Fermi sphere), summing over
all possible k, and k, (k; > k;)and over the electron spins

Vip = Zaclcn (k17k2)cilcl CKZGZ’G> (2.2)

klklcl Ca



where k,,c; are the wave vectors and the spins of the electron, respectively.

4,4, (K k,) denotes the probability amplitude in firding the particle at the wave

vectors k,and k, with .csl and o,, simultaneously and ¢, , represents the electron
creation operator. The sum over the wave vectors is subjected to the condition k
= k,+k, = constant. If we choose k= 0 the interaction energy of the electrons
pair will be largest. Thus in this case k,=-k, =k and we assume that both

electron spins are antiparallel i.e., 6,=-c,=c, then Eq.(2.2) becomes

\UIZ F= Za(k) C:,c Ctk,—c ‘G> . (23)

k
The next task is to calculate the energy of the electron pair by using the wave

function in Eq.(2.3). We take the interaction between electrons V,, to be constant

in the range of the attractive interaction and vanish elsewhere:

-V, E(k+q)-E(k)| <o
A= | ‘ | 1 (2.4)
0, otherwise.
The Hamiltonian will take the form
H= ) Ek)c{ —X - )’ 2.5
= Z (K)Cko Cro 2 ch+q,c Caq-o “-ly-o Cko (2.5)
ko kqo

For o,we choose a characteristic frequency of the phonon spectrum, e.g., the

Debye frequency o, as the maximum value of o, in the Debye approximation.
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We then find

E=(yHv)=2) E®ak) -V a (k+qalk). (2.6)
k kq

We determine the a(k)by varying E subject to the condition Z\a(k)]z =1
k

66* {E—KZ‘a(k”)z}:2E(k')a(k')—VZa(k’—q)—Ka(k’) =0 (2.7)
a. - =

or

[2E(K) - ]a(k) = VZa(k’). (2.8)

We satisfy the restriction on the interaction by taking VvV only nonzero for
energies in the range E; to E;p +ho,. The same is also true for the a(k), and the

sum in Eq.(2.8) runs over a finite number of k’. Calling this sum C we find

Ve - VC
a(k)————ZE(k)_x, za(k)'c”zzE(k)—x' (2.9)

k E(k)
The sum here runs over all states between E; and E; + o .

The final step is to return to Eq. (2.8). If we take the complex conjugate of

this equation, multiply by a(k), and sum over k, an equation follows which agrees

with Eq.(2.6) if one puts A = E. Thus we have determined the Lagrange parameter

and can write the second equation of (2.9) in the following form

EF+h(DD

-y Yy j NGodx. (2.10)
L4 2E(K) -E 2x-E

Ep
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In transforming the sum into an integration, the density of states N(E) has
been introduced. In view of the narrow range of integration, E; >> o, we put
N(E) ~ N(E;). The integral can be evaluated and one obtains

_ 2hop exp[-2/N(E;)V]

E=2E
F 1 —exp[-2/N(E;)V]

~2E; —2hop exp[-2/N(E)V].  (2.11)

This energy is correct when V is small (weak interaction, N(E;)V <<1). Eq.(2.11)
shows the presence of the bound state of the electron pair which is called the
Cooper pair. The context of the Cooper’s idea leads us to explain the ground state
of the superconducting electron gas.
2.3 Formulation of the BCS Theory

Bardeen, Cooper, and Schrieffer (BCS) (Bardeen et al., 1957) developed
further the Cooper’s idea, they suggested that superconductivity arises from the
presence of the Cooper pair mediated by the electron-phonon interaction. The
ground state of the superconducting state with no supercurrent at the absolﬁte Zero

of temperature may be written as

(Bcs>=H(uk +victret, )|o) (2.12)

In this state the electrons are created in (k T,-k J) pairs, all having the zero pair
momentum and also the zero total spin. The parameter u, and v, are real with the

normalization condition u} +vi =1. u} is the probability that the momentum pair
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state is empty while v} the probability that it is occupied. BCS started from the
wave function and found the coefficients u, and v, from the variational principle.

The model Hamiltonian proposed by BCS is given by

H= Ze(k)o,ﬁcckc + g\/kk,c&cfk¢c_k,¢ck,¢ (2.13)
ko

where e(k) is the energy of a conduction electron with respect to the chemical
potential, . The creation and destruction operators for electrons of wave vector k
and z component of spin ¢ (up or down) are denote by ¢, and ¢, , respectively.
The interaction matrix element V,,. represents the scattering of one pair of states
(k T,—k {) into another pair of states (k' T,~k’{). The solution of the Hamiltonian
cannot be obtained by perturbation theory since the quasi particle picture of the
normal state is insufficient to provide the superconducting phase. The important
feature of the quasi particle picture is that the interaction between the quasi
particles is neglected and absorbed into the effective mass of electrons.

Since the interaction term assumes that such electron pairs act as units, the
ground state will be some coherent superposition of many-body states in which
the states (k T,-k ) are occupied or unoccupied in pairs. This means that the

operator c_ ¢, is equal to the thermal average <c ¢, > and the fluctuation
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term, ¢ ¢, 4—<c_ ¢4 >, should be negligible. In general, the pair operators
¢_.1C.+ can be written in the form

Cd Gt =< €y Cpp > H(C_ G p = < C Ly Cpp >) (2.14)

The expectation value of this operator is now determined. A gap parameter is

defined by

Ay = _kak' <G > (2.15)
k

A, 1s a new quantity and may be thought of as being like as internal field, it
expresses the influence of the mixed occupation in all the other (k' T,-k’l) pairs
of the (k T,—k ) pair through the attractive matrix elements. Using Egs. (2.14) and

(2.15), the model Hamiltonian becomes

H = ZS(]{)CKGCI\.G +Z(Ak°ZTka¢ +ALC 10 — Ay <C_iCr ) (2.16)
k

ko
Since this Hamiltonian is now quadratic, it can be diagonalized by the canonical
transformation
Cip = Ugely + Vi,
oty =oWag Fugar; (2.17)
where the new operators a,, and a,, are Fermion annihilation operators. The
parameters u, and v, are chosen such that the coefficients of the mixed terms

such as ¢ cf, in the Hamiltonian vanish. This can be satisfied if
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2e(K)u, vy + ALvi —A*kuﬁ =0. (2.18)
From the canonical transformation, the important property 1s that the

anticommutation relations between the a’s being the same as those between the

¢’s, and the constraint is that
]’ +vi* =1. (2.19)
Since there is no external field associated with the system, the parameter u, and

v, are real and if we also introduce the quantity

Ey =&’ (k) +[A, ] (2.20)

We thus obtain the coefficients u, , v, from Egs. (2.18) and (2.19) as

uﬁ = 1+@ ;
2 E,

V2 :1(1—@} (2.21)

2 E,
The model Hamiltonian is now diagonalized, the result 1s

H= Zk:Ek (ag,8y +25,8y,) + ;(S(k) ~Ey +A% <¢_1C 1 >) (2.22)

this Hamiltonian contains the average of the operators c_ c, 4. The expectation

value of this operator is given by

Il

<€ Cpp > Trlexp(—BH)c_, . ¢,4 1/ Triexp(-BH)]
UkViTr[eXP(—BH)(_aﬁam +ay,ay,)]/ Trlexp(-BH)]  (2.23)

ugvi [1-2£(E,)]

I
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where Trrepresents the trace in the occupation number Hilbert space, B is the

inverse of temperature T and f(E)is the Fermi function,

1

Using Egs. (2.15), (2.21), and (2.23) the gap parameter 1s determined to be
kak tanh(E /2T). (2.25)

This equation is non-linear because E, depends on A, and it can be solved by the

numerically method or the approximation one. In order to determine the critical

temperature T,, we putE, =¢(k)in Eq. (2.25) and obtain

ZV

where the pair-excitation spectrum is taken at temperature T,. To solve Eq.(2.26)

tanh(s(k )/ 2T,) (2.26)

we assume a constant gap for js(k)l <wop,l.e. A, =A, we, furthermore, assume the

approximation for V. as

N <op
Ve = .
0, otherwise

(2.27)
This model is valid only for the weakly coupled superconductors (e.g. aluminium
and tin) for which N(0)V is very much less than unity, and not for strongly

coupled superconductors (e.g., lead and mercury). By virtue of this approximation,

the equation for T, is determined from the equation
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1
N(O)V

op
= J Etanh(e/ZTc) (2.28)
€
0

Introducing the dimensionless variable x =¢/2T,, with the integration by parts, we

have
op /2T,
N (1))\/ = ln(;]? )tanh(;){? )= J.dxlnx sech’x
( g (2.29)
2¢'0
=4 D
A o )

[

where the upper limit of the last integral is extended to infinity and it value is
equal to —In(4e” /), with the Euler constant, y =0.5772. Thus the equation for T,

is given by

T, =1.130p exp(— ). (2.30)

N(0)V
To find the solution for the gap parameter A, , we consider only the
interaction having the form of Eq. (2.27) and consequently the gap parameter

satisfies the equation

®p
1 —_—

de
T ! S tanh(E/2T) (2.31)

where

E=ve? +4A%. (2.32)

At the absolute zero of temperature Eq.(2.31) becomes
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1 _wD de
NO)V !‘m (2.33)

= sinh ! ((D—D
A(0)

In the weak coupling limit op >> A(0), we can approximate sinh~'x =In2x for

x >>11n Eq.(2.33). Hence, the solution for the gap parameter at the absolute zero

of temperature is

A(0) = 20 exp(— ). (2.34)

N(0)V
Combining Eqs. (2.30) and (2.34), the ratio of the gap parameter at the absolute
zero temperature to the critical temperature 1s
A(0)/T, =1.76, (2.35)

which is a universal constant independent of the particular material.
2.4  Thermodynamic Functions
2.4.1 Isotropic Superconductors

We proceed to evaluate the sum-over-states, or partition function Z, and
from that the other thermodynamic functions of the superconductive state. By
definition

Z =Trexp(-fH)
:HTY exp(-BEyax ay;) Trexp(—BEa ,ax,) (2.36)
k

xexp{-B(g(k) —E, +AL[1-2f(E )]/ 2E, )}

The traces are evaluated to yield
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Z =] |[1+exp(-BE,)] exp{-BZ(s(k)—Ek +Ai[1—2f(Ek)]/2Ek)} (2.37)
k k

From this one calculates the thermodynamic potential for the electrons,

Q. = 1InZ

s [

2.38
_ —égln[l + exp(<BE] +Zk: ()~ E, +AL[1- 26(E, )]/ 2E, | 239

This thermodynamic potential can be related to the critical magnetic field of
the superconductor. From general thermodynamic arguments, the critical magnetic
field at a certain temperature can be related to the difference in the Gibbs free
energy of the superconductor in the normal and superconductive states. Since this
free energy change comes from the electrons and since the changes in volume and
chemical potential of the electrons in the transition are negligible, the difference in
the Gibbs free energy is equal to the diffefence in the thermodynamic potentials of
the electrons. Hence we have

vH2/8n = Q -Q

n S

(2.39)
here v is the volume, Q, is given by Eq.(2.38), and Q_ is given by Eq.(2.38) with
A put equal to zero.

For a general temperature, Q. cannot be calculated analytically. It can,

however, be evaluated analytically for the absolute zero of temperature. For this

case
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h(x)D

Q, = 2N(o>_[da(e—E+A2/2E) (2.40)
0

S

and, in the limit of 7o, very much greater than A
Q, - —%N(O)Az. (2.41)
Hence the critical magnetic field at the absolute zero, H_(0), is given by

H2(0)/8n = %N(O)Az (2.42)

The three quantities H_(0), N(0), A(0)can all be measured, hence Eq. (2.42) can
be put to test. Near the absolute zero of temperature one can show that
H_ (T)/H,(0)~1-1.06(T/T,)? (2.43)

Near T, the thermodynamic potential can be evaluated (Miihlschlegel, 1959) to

give

3 1/2 T |
H, (T)/H, (0) = 6{7(;(3)} (1—T—J (2:44)

C

where y=0.5772, and ¢(x)is the Riemann zeta function. Hence

H, (T)/H, (0) ~ 1.74[1 —Tl} | (2.45)

Thus the slope of the critical field curve is finite at T,, as it should be according to

the thermodynamic relations.
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At intermediate values of T, the critical magnetic field is calculated
numerically. The result is so close to the empirical formula
H. (T)/H, (0)=1-(T/T.)? (2.46)
that it is usual to plot the deviation from this result,

:.Iic(ﬂ_[l_
H. (0)

c

D(T) (T/T,)?] (2.47)

This is shown in Fig.2.1, where D(T) is plotted vs. T/T,; it is another universal
function. These calculations confirm that as long as we can find a solution of the

integral equation with A not equal to zero, this solution provides a state with

lower free energy than the trivial solution.

0 ] 1 T 1

et

£-0.02|- -

(@]

o |
1 Ol ] 1

r 0.8
()

Figure 2.1: Critical magnetic field of a superconductor, illustrated by a plot of the
deviation D(T)=H,(T)/H_(0)-[1-(T/T,)*] from the old empirical rule versus
(T/T,)*. Note the scale. (Parks, 1969)
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The entropy of the electrons can be calculated from the formula

S, = —(mjw. (2.48)

E
Using the integral equation for A one finds

S, =- 21<BZ{[1 ~fE)]I[1-fE ] +fE)InfE)}. (2.49)
k

This is the entropy of a gas of independent fermions, a result which is hardly
surprising in view of the fact that the model Hamiltonian describes independent
fermions.

Since the gap parameter tends to zero as T tends to T,, the entropy is

continuous at the critical temperature. There is, therefore, no latent heat evolved at
the transition, and this result agrees with experiment. One can also see from Eq.
(2.49) that as the temperature approaches the absolute zero, the entropy becomes
exponentially small, being proportional to exp(-A/kT) .

The specific heat per unit volume of the electrons can be calculated from

the formula

O0S
C. =T — . 2.50
: [a,r} (2.50)

This is strictly the electronic specific heat at constant chemical potential, but

since, when the number of particles is held fixed, the change of chemical potential
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with temperature is negligible, we can ignore the difference between specific heats
at constant chemical potential and specific heats at constant number of particles.

This formula thus gives the measured electronic specific heat. Straightforward

differentiation of Eq. (2.49) gives

¢, =2YE, af<§k>
k

o
¢ , (2.51)
= —31\1(0)Id{E2 +E%]ﬁ
T|" a8 2 0B JOE

The curve of A® against temperature has a finite slope at the critical

temperature. Hence the specific heat is not continuous there, and one has

3 (91&2
2I ’
0B

T, 2T

=1.43 (2.52)

T=T,

At lower temperatures the specific heat decreases rapidly, and because of the gap
in the spectrum of excitation it becomes proportional to exp(-A(0)/kT) at
temperature below about T, /10. A plot of the specific heat i1s shown iﬁ Fig.2.2
Again, according to the theory, C./C, is a universal function of the reduced
temperature. In any comparison of theory with experiment it must be remembered
that it is the total specific heat which is usually measured, whereas, in this section,
it i1s the electronic specific heat which is calculated. The comparison can,
therefore, be made only if other contributions to the specific heat are first

subtracted from the experimental results.
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Figure 2.2: Plot of the ratio of the electronic specific heat to yT, vs. T/T,. (The

electronic specific heat in the normal state is yT,y is the Sommerfeld ’s constant.)

(Parks, 1969)

2.4.2 Anisotropic Superconductors

Some of the thermodynamic functions have been evaluated for anisotropic
superconductors for which the gap parameter depends on angle (Pokroxlzskii and
Ryvkin, 1962), (Geilikman and Kresin, 1963). Since such superconductors have to
be described by more parameters than the N(0)V of BCS, it is not possible to give
the results in such a concise.form. However, a number of inequalities have been

proved (Pokrovskii and Ryvkin, 1962) and we give these inequalities for the sake
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of a later comparison with experiment. From solutions of the integral equation

(2.26) one finds that

2A/KT, <3.53

C.-C. _1s43 (2.53)

n T,

and near the absolute zero of temperature
H_(T)/H,(0)=1-x(T/T,)? (2.54)

with x >1.06 . If the dynamic coupling between the electrons is taken into account,
the first of these inequalities, even in an isotropic superconductor, can be broken
(Wada, 1964), but the second still holds (Melik-Barkhudarov, 1965). If, however,
the superconductor possesses overlapping conduction bands, it appears that even

in an isotropic superconductor it is possible to break all three inequalities

(Geilikman and Kresin, 1966).



Chapter 3

High-Temperature Van Hove Superconductors

3.1 Introduction

The discovery of superconductivity at ~30 K in the La-Ba-Cu-O system
by Bednorz and Miiller (Bednorz and Miiller, 1986) ignited an explosion of
interest in high-temperature superconductivity. These initial developments
rapidly evolved into an intense worldwide research effort that still persists
after more than a decade, fueled by the fact that high-temperature
superconductivity constitutes an extremely important and challenging
intellectual problem, and has enormous potential for technological
applications. During the past decade of research on this subject, significant
progress has been made on both the fundamental science and technological
application fronts. For example, the symmetry of the superconducting order
parameter and the identity of the superconducting electron pairing mechanism
appear to be on the threshold of being established, and prototype
superconducting wires that have current-carrying capacities in high magnetic
fields that satisfy the requirements for applications are being developed.

Although the success of the discovery of the high-temperature cuprate

lies on the experimental side but the understanding of their mechanism is also
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unclear. Several theories have been proposed to describe the behavior of the

high-T, compounds. One- and three- band Hubbard models (Hubbard, 1963),

as well as the t-J model (Zhang and Rice, 1988) are believed to represent the
feature of the electronic behavior of the new materials. Unfortunately, most of
the experimental data are not accurate enough to confirm the theories. The
antiferromagnetic property of the normal state may be combined with the

pairing ideas to describe the high-T,superconductors. As in the spin bag

theories (Schrieffer, Wen, Zhang, 1989), (Kampf and Schrieffer, 1990) which
considers a hole moving in a background that has a spin density wave (SDW).
A local distortion of the SDW order would create a spin bag and these bags
attract to form Cooper pairs. In the antiferromagnetic Fermi-liquid theories
Millis et al. (Millis, Monien, and Pines 1990) performed a study of the NMR
spectra to extract a phenomenological model for the spin susceptibility. This
model invokes a strong enhancement of the spin susceptibility near a nesting
momentum at very low frequency. The interchange of magnons may produce
the attractive force needed for the charge carriers (Miyake, Schmitt-Rink, and
Varma, 1986). Among the Fermi-liquid-based theories one may include the
Van Hove singularity scenario (Markiewicz, 1991), (Newns, Pattnaik, and
Tsuei, 1991), and the nested Fermi liquid (Virosztek and Ruvalds, 1990).

In order to understand how the cuprate has the superconducting

properties, the simplest way is to apply the BCS theory to the lattice taking
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into account the properties of the crystal. Van Hove (Van Hove, 1953)
stressed the crucial role played by the lattice topology. In the band structure of
either electrons or phonons, Van Hove demonstrated that any non-analytic
behavior in the density of states is caused by a change in the band topology.
The singularity now known as Van Hove Singularities (VHS).

In superconducting materials, the role of a VHS is enhanced, because

the density of states N(E)can actually diverge at a VHS. In one-dimensional
materials, the divergence is power law, N(E)e<AE™? where AE=E~E,,5. In
two-dimensional materials, the density of states diverges logarithmically
N(E)e<In(B/AE), AE is the distance in energy from the VHS and B 1is the
bandwidth.

In this chapter, we review the structures of cuprate and the properties of

Van Hove superconductors.
3.2 The Discovery of High-T. Superconductors

The dramatic increases in T, that have been observed since 1986 are
illustrated in Fig 3.1 where the maximum value of T, is plotted versus date.

The first of a new family of superconductors, now usually known as the high-

T, or cuprate superconductors, was discovered by Bednorz and and Miiller

(Bednorz and Miiller, 1986). It was a calcium-doped lanthanum cuprate

perovskite. When optimally doped to give the highest T., it had the formula

La, gsCag ;5CuQy, with a T, of 30 K. This was already sufficiently high to
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suggest to the superconductivity community that it might be difficult to
explain using the usual form of the BCS theory, and a large number of related
discoveries followed quickly. In the following year Wu et al. (Wu et al., 1987)
found that the closely related material YBa,Cu;O;.5 now known as YBCO,
has a T, of about 93 K when &~0.10, weil above the boiling point of liquid
nitrogen (78 K). A few of the best known cuprate superconductors are listed
in Table 3.1 Many other closely related compounds with similar transition
temperatures are now known: the compound HgBa,Ca,Cu;0g,s, for instance,
has a T, as high as 150 K under pressure (Chu et al., 1993). There are also
superconducting metallic compounds of other types. For Instance,
BaBig,sPbg 7505 is a perovskite containing no copper, with a T, of 13 K. Some
oxides with spinel structures and some metal chalcogenides are also
superconducting. However, all known superconductors with T.>50 K are

perovskite cuprate superconductors.

Table 3.1: The best known cuprate superconductors, showing the stacking of
planes in the ¢ direction. (Waldram, 1996)

Laz_;Sr=CuQy4 YBazCu3O0¢4 2 BizSr2CaCuz0g4 2 TI;BazCazCuaOjp4z

La/Sr cuprate YBCO 123 Bi 2212 Tl 2223
Te =38 K T.=93 K T.=94 K Te =125 K
CU02
CuO, CuO3 Ca
CuOq Y Ca CuO,
CuO, CuO, Ca
CuOy
(La/Sr)O BaO SrO BaO
(La/Sr)O CuOg BiO)4z/2 TIO)z/2
BaO Biol+1/2 T101+2/2

SrO BaO
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Figure 3.1: Maximum superconducting critical temperature T, versus date.
(Maple, 1998)

Apart from their high T, values, the cuprate superconductors have a
number of features in common, which make them very unlike typical low T,
metal superconductors. First, they are layer compounds. They are typically
tetragonal, or orthorhombic and close to tetragonal, and contain Cu-O planes
with the formula CuO, lying normal to the ¢ direction. These planes contain

mobile charge carriers and are thought to be the seat of the superconductivity.
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The carriers are usually sharply localized in the planes, and this makes contact
between the planes relatively weak. For this reason the cuprates often have
extremely anisotropic properties, in both the normal and the superconducting
states, with poor conduction in the ¢ direction. Secondly, the carrier density is
relatively low comparable with what is found in semi-metals such as bismuth.
This means that the carriers are less heavily screened than they are in ordinary
metals and makes the Coulomb repulsion between them more important. It
also increases the penetration depth A, which is typically 0.2 um for current
flow within the a —b plane. Thirdly, they all have extremely short coherence
lengths &, typically 2 nm within the CuO, planes and as little as 0.3 nm in the
¢ direction. This has many important consequences. It makes thermal
fluctuations much larger. It also makes defects such as impurity
concentrations, grain boundaries and surface rearrangements much more
important. Finally, all cuprates are very sensitive to carrier doping, and are
only superconducting for a particular range of doping levels, which often
requires non-stoichiometric compositions, as we have seen. This is perhaps
the chief reason why they were not discovered earlier.

3.3  Structure of Cuprate Superconductors

The ideal perovskite structure ABX; is shown in Fig. 3.2(a). This structure is
cubic. The anion X (typically oxygen) and the cation A (typically Sr or Ba in
the case of cuprate superconductors) have relatively large ionic radii and are

in contact, they determine the size of the structure. The B cation (Cu for the
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cuprates) is smaller and occupies some of the interstices of the A—X network.
It is coordinated by six anions, forming an octahedron.

However, as we noted is Section 3.2, the cuprate superconductors are
complex tetragonal or almost tetragonal materials and do not have the simple
perovskite structure just described. (Indeed, a BaCuO; perovskite is not
possible although it would have had compatible ionic radii, it would not have
been electrically neutral for any normal valences of Cu.) However, several
important features of the ideal perovskite structure are present in the cuprates
(Table 3.1 and Fig. 3.2(b)). First, and most important, we have CuO, planes in
the a —b plane, with a simple square lattice whose cell side is about 0.38 nm.
This is a little less than would be allowed by consideration of ionic radii,
which is explained, as we shall see later, by the fact that the planes have a
partly covalent or metallic character. Secondly, the CuO, planes in the a —b
plane are often adjacent to purely ionic interleaving AX planes, so that the O
atoms of the interleaving plane coordinate the Cu atoms of the CuO, plane as
in the perovskite structure. Thirdly, the picture of a rectangular framework of
large anions and cations in contact, with smaller cations in the interstices,
Survives.

The situation is best understood by treating both the conducting CuO,
layers and the interleaved ionic BaO (or SrO) layers as capable of expansion
in the ¢ direction. In some cuprates the copper layers are isolated as in the

perovskites, but in others we may have two or three (or more) layers stacked
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directly above each other, with small cations in the interstices between them,
as shown in Table 3.1. The interleaved ionic layers, too, are often expanded.
In lanthanum cuprates, for instance, we have double interleaved layer (LaO)

(LaO): successive individual layers are of course offset in the x — y plane so

that the cations of one layer lie above the anions of the next. Following the
pattern apparent in the table, we are not surprised to find that the TI
compounds form a general series of compounds with the formulae [(CuO,)

Cajn 1 ][(T1IO) 4, (BaO),], in which T, rises with n. The Bi compounds form a

similar series in which T1O is replaced by BiO. Other compounds are formed
by appropriate substitution within this pattern, for instance, the compound

HgBa,Ca,Cu;04,5 with very high T, (referred to in Section 3.2) has the n =3,

m =1 structure [(CuO,);Ca,][Hg(Ba0),], with the Hg taking the place of a
T10 layer. The complexity does not end here. In some cuprates, such as the
bismuth compounds, the layer structure is very variable and may show
complex superstructure in the z direction.

The structures must of course be electrically neutral. The state of the
CuO, layers depends on how the compound is doped. For the moment we
consider the parent compound from which the superconducting compound
may be obtained by doping. In the parent compound we shall treat the CuO,
planes as being made up of Cu”*" and O” ions, so the planes have a negative

charge and the ionic interleaved planes a positive charge. For instance, in
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lanthanum cuprates we note that the double interleaved layer has a net charge
of +2 units per unit cell, which compensates for the negative charge on the
single copper layer.

When the systems are doped to make the CuO, layers superconducting,
the dopants are normally in the interleaved layers, and not in the CuO, layers
themselves. The dopants are either substitute cations with a different valency,
such as Sr** for La’>* or Bi’", or oxygen vacancies, or extra oxygen inserted
into vacant sites by a suitable heat treatment, or a mixture of these. In most
cases as we have noted the interleaved layers are ionic with no free carriers,
and the doping charge is therefore taken up as a change in the effective Cu
valency in the CuO, layers, with a corresponding change in the carrier density
available in those layers. An important exception to this picture arises in
YBCO and related compounds, where, confusingly, the expanded interleaved
layer also contains Cu, having the structure (BaO)(CuO,)(BaO), and the
doping is altered by changing the O concentration in the CuOy layer. In this
layer the structure stable at low temperatures and high oxygen contents has
CuO chains running in the b direction, with O vacancies on the chains (Fig.
3.1(b)). The CuO chains, like the CuO, planes, contain free carriers and
contribute to the normal conductivity; there is also some evidence that they

contribute to the supercurrent.
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T 1 BaO CuO, planes
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Figure 3.2: (a) The perovskite structure ABX3, showing the BX, planes which
correspond to the CuO, planes of the cuprate superconductors, and the AX
planes, which correspond to the SrO or BaO planes. (b) Stacking of planes in
YBCO: the planes are really stacked vertically, but have been displaced to

make their structure visible. Note the Cu-O chains in the interleaving plane.
(Waldram, 1996)
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Figure 3.3: (a) Orthorhombic-tetragonal transition in YBCO as a function of
oxygen concentration. (b) Simulation of the tweed pattern of microtwins
generated by the transition in YBCO at low temperatures. The shading
indicates the local cell distortion. (¢) Corresponding simulation of the stripe
pattern which appears on annealing. (Waldram, 1996)
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3.4 Tetragonal-Orthorhombic Transition and Twinning

The chains in the YBCO 123 structure make the lattice orthorhombic, with b
very slightly greater than a, but at high temperatures and low O concentration
the O positions in the planes containing the chains become randomized and
the system becomes tetragonal with a =5 (Fig. 3.3(a)). Large concentrations
of vacancies and antisite disorder in the doping layers are common in
cuprates, and other systems besides the 123 structure become slightly
orthorhombic at low temperatures.

Since the crystals are usually grown at high temperatures where the
structures are tetragonal, internal stresses make the orthorhombic material
microtwinned at low temperatures unless special precautions are taken, with
twin boundaries lying in the {110} directions and the a and b directions
exchanged in adjacent crystallites. When the twins are first formed in YBCO,
twin boundaries usually appear on both sets of {110} directions at a spacing
of about 10 nm, the two sets intersecting at right angles, producing a
characteristic tweed pattern of microcrystallites which form crossing
rectangles (Fig. 3.3(b)). The twin boundary intersections involve extra elastic
energy, and successive microcrystallites are slightly rotated in opposite
directions. On annealing, the system may develop a stripe pattern in which
one set of domain walls is suppressed and the microcrystallites form long

parallel stripes, the direction now alternating on a scale considerably longer
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than the stripe spacing (Fig. 3.3(c)). The tweed pattern may, however, be
stabilized in O-depleted or Co-doped samples.

It is possible but difficult to prepare twin-free crystals. Note that
microtwinning is almost invariably present in what may seem to be good
single crystals of YBCO and other 123 structures. Its effects on measured
physical properties have not, to date, been systematically investigated, may be
substantial and are not always properly appreciated.

3.5 The Van Hove Scenario

The idea of the Van Hove scenario (Tsuei et al., 1990, 1992), (Newns,
et al., 1992) in its essence is that many of the special properties of the cuprate
superconductors are attributable to the presence close to the Fermu level of
saddle points in the band-structure energy surface. These are found to have
strong implications in two-dimensional (2D) or nearly 2D electron systems
such as the cuprate materials are known to be. Associated with the saddle
points (SP’s), that are flat regions of the energy dispersion, is the logarithmic
(in two dimensions) singularity in the density of states (Tsuel et al., 1990,
1992), (Newns, et al., 1992), know as the Van Hove singularity (VHS).

Three basic effects (at least) of the SP’s on electronic properties have
been detailed. First, the superconducting transition temperature is enhanced by
having a DOS peak near the Fermi energy (Tsuei et al., 1990, 1992), (Newns,
et al., 1992), (Friedel, 1989), (Labbe” and Bok, 1987), (Markiewicz, 1990,

1992), so that as the Fermi energy (experimentally, this can be controlled by
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doping) is swept though the VHS, the transition temperature goes through a
maximum at the point where the VHS and the Fermi energy coincide.

Secondly, there is a qualitative enhancement in the scattering between
quasiparticles (Tsuei et al., 1990, 1992), (Newns, et al., 1992, 1994), (Pattnaik
et al., 1992). In a conventional metal, direct quasiparticle-quasiparticle
scattering is almost completely suppressed, because it is nearly impossible to
find significant phase space for a pair of quasiparticles to scatter into, given
the thinness of the shell of thermally excited quasiparticles around the Fermi
surface, relative to the Fermi energy E.. But analysis shows (Tsuei et al,,
1990, 1992), (Newns, et al., 1992, 1994), (Pattnaik et al., 1992) that when the
VHS and E; coincide, or the relative energy (Newns, et al., 1994), (Pattnaik
et al., 1992) of the VHS and E. are within temperature T, the phase space for
scattering is much less restricted, leading to the “marginal-Fermi-liquid”
(MFL) property (Tsuei et al., 1990, 1992), (Newns, et al., 1992, 1994),
(Pattnaik et al., 1992) that lifetime broadening for the quasiparticles is of the
order of their energy measured from E..

The third effect (Tsuei et al., 1990, 1992), (Newns, et al., 1992) of
having the VHS close to E; is that the realistic Fermi surface (see Fig. 3.4)
does not have a significant flat portion (note the area inside the surface differs
from that outside by doping). This absence of flat portions inhibits “nesting”

scattering which, in the metallic phase, enhances antiferromagnetic spin-
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density-wave (SDW) or charge-density-wave (CDW) instabilities. These are

the strongest competing instabilities for superconductivity.

Figure 3.4: Idealized Fermi surface in Van Hove scenario, showing saddle
points (dark circles) and lobes of dx? —y? order parameter. ( Newns, Tsuel,
and Pattnaik, 1995)

Experimentally, the saddle points near E; are indeed seen directly in
angle-resolved photoemission spectroscopy experiments (Abrikosov et al.,
1993), (Gofron et al., 1994), (Dessau et al., 1993), (King et al., 1993) on

maximal-T, materials. Analysis of the specific-heat-jump data (Tsuer et al.,

1990, 1992), (Newns, et al., 1992) supports the presence of the VHS in the
DOS. The MFL behavior seems to underlie transport anomalies such as the
linear resistivity (Tsuei et al., 1990, 1992), (Newns, et al., 1992, 1994),
(Pattnaik et al., 1992) and T -independent thermopower (Pattnaik et al., 1992),
(Newns, et al., 1994), which also are associated with the vicinity of maximal

T.. And the correlation length for the SDW 1nstability (expected to dominate
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CDW for repulsive interactions) is short, of order one lattice spacing, near
maximal T,. This experimental picture is entirely consistent with the Van
Hove scenario.
3.6  Van Hove Singularity in the Density of States

In the cuprate, it is well known that the CuO, plane contains three
orbitals, Cu dx? —y? and O(px,py) orbitals with a lope pointing towards to
the Cu. This is the standard three-band model. The nature of the band
structure of two-dimensional lattice is the energy surface has the singularity.
We will investigate how a saddle point can cause the divergence in the

electron density of states, we begin with the expression of the density of states

N(E) = 3.1)

On the other hand the density of states in the energy surface between E

and E +dE is

N(E)dE = J—Sk(k) (3.2)

where 8k(k) is the perpendicular distance between the energy surfaces S(E)
and S(E +dE) at the point k. To find an explicit expression for dk(k) we note
that, the k-gradient of E(k), VE(k), is a vector normal to that surface whose
magnitude is equal to the rate of change of E(k)in the normal direction; i.e.,
E+dE = E+|VE®K)3k(k), (3.3)

and hence
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dE
Sk(k) = . 3.4
IVE(K)| @4
Thus we obtain the electron density of states in an alternative form
dS 1
N(E) = —_— 3.5
®) j (2m)* |VE(k)| (3.5)

When VE(k) vanishes, the density of states diverges. This is known as Van
Hove Singularities.
Next, we consider an orthorhombic lattice as a simplified model of the

high-T, Cu-O oxide. Its band structure is assumed to be modeled by a tight-
binding band (Wang et al., 1987)
E(k)=-2tcosk, -2ty cosk, +4t, cosk, cosk, —2t"cosk, (3.6)

Here t,t,,and t" are the hopping integrals between nearest-neighbor Cu sites,
along the a, b, and ¢ axes, respectively and t, is the hopping matrix element
of next-nearest-neighbor ones in the same Cu-O planes. We introduce a set of
dimensionless variable: r;=t, /t, r,=2t,/t, and r'=t’/t. For the system under
consideration, the anisotropic parameter r’ is assumed to be much smaller
than unity (r"<<1), indicating that the interplanar hopping is very small
compare with the interplanar one. r; stands for the anisotropy within the Cu-O
planes. Its introduction stems from the fact that the high-T, superconducting

samples are often in the orthorhombic phase in which there is a slight

difference in length between the lattice parameters along the a and b axis. So
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we can assume that r, is very close to, but slightly smaller than, unity. Since
t, is always much smaller than t, it is reasonable to assume that r, < r,.
In this section we first neglect the interplanar hopping (letting t'=0)

and study the case of a 2D rectangular lattice. The corresponding electron

density of states is given by the expression

N(E):n—gj-dkxjdky6(E—2tW(kx,ky)), 3.7)
0 0

where Wk, ,k,)=—cosk, —r cosk, +r,cosk, cosk,. We make a change of
variables into v and w: v=cosk, and w=W(k,,k ). The & function can be

used to integrate over w, so the remaining integral over v 1s

dv

V2
1
N(E) =
2t 2 ‘J:\[[l-vz][(l—rzv)Z ~(8+rlv)2]

(3.8)

with € =E/(2t). Here the upper and lower integration limits of the integral are

v, =min[l,(1-&)/(r, +1,)]
(3.9)
v, =max[-1,—-(1+¢€)/(r; —1,)].

It then follows that there may be three kinds of integration limits in Eq.(3.8).
They are v, =-1, v, =(1-&)/(r; +1,) for 1+ +1, 2e21-1-1; v, =-1, v, =1
for  1-r-r,2e>-1+n-r,; and v, =1, v, =—(1+&)/(r, - 1,) for
~1+r1-1, 2e>~1-r +r1,, respectively. Making use of the integral formula

(3.147.5) of Gradshteyn and Ryzhik (Gradshteyn and Ryzhik, 1965), we

obtain for N(E) the analytical expressions
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2. \2
N(E)=__ | K[\/““‘) e rz)} (3.10)

2tn? 1, + 1,8 Va(r, +1,€)

fOl‘ 1+r1+r2 ZEZl—rl—rz or —1+r1—r2 28>'—1—‘rl+r2,and

N(E) = ! K{ VA ¥ 1e) ] (3.11)
a

trcz\/(1+rl)2—(8—r2)2 +1)? = (e-1,)°

for 1-r -1, 2e>-1+r,-r,, where K(x)=F(r/2,x) is the complete elliptic
integral of the first kind (Gradshteyn and Ryzhik, 1965). According to Egs.
(3.10) and (3.11), N(E) is shown as a function of ¢ in Fig. 3.4, in which the
N(E) exhibits two singular peaks at €, =1-r,-r, and e_=-1+r —r,. Taking

into account the asymptotic formula K(x)=In[4(1-x*)""?] with x=1,we

obtain for N(E), near the singularities €., the approximate expression

1 8/(1F r))(r, £15)
N(E) = 1 i 3.12
= 2t \J(AF 1)(r £ 1) I{ﬁe—ei)(l—rl)} (3-12)

It can be seen from Fig. 3.4 that the appearance of two singularities in N(E)
originated from the orthorhombicity of the structure (r; #1), the distance
between them being equal to e, —e_ =2(1-r). As the rectangular to square
lattice transition occurs (i.e., r; =1), double Van Hove singularities at ¢, and
e_ merge into a single one (Hirsch and Scalapino, 1986) at ¢, =¢_=-r,,
which is just the most used model (Wang et al., 1987), (Tsuei et al., 1990). So,

we can conclude that the orthorhombicity of the structure leads to two sharp
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peaks in N(E), but it does not change the logarithmic Van Hové singularity so
long as the interplanar hopping is weak enough to be negligible.

We consider a 2D square lattice of r, =1, for which there is only a Van
Hove singularity in N(E) at €, =-r,. According to Eq.(3.10) or Eq.(3.11), the

density of states near this singularity has the following form:

Eg

E +C} (3.13)

S

N(E) :No[ln -

with Nj' =2tn’y1-1}, C=Inl16ty1~r; /E; |, and E_ =-2tr,. These results are

derived by Xing, Liu, and Gong (Xing, Liu, and Gong, 1991).

0.6 =
F

|
|
1
1
0.4— 1 —]

|

W !

z i

Y {

o.2f { -
!
|
i
|
|
{
t l ]
-2 0 1 2
E/2t
Figure 3.5: Density of states, N(E), for r, =0.9 and r, =0.2. The singularities
occur for e, =1-r, -1, =-0.1 and ¢_=-1+r, -1, =-0.3. (Xing, Liu, and Gong,

1991)



Chapter 4

Specific Heat Jump at T, of High-T, Superconductors

4.1 Introduction
It is well known that the Van Hove scenario can explain many physical

properties of high-T, superconductor such as the high value of T,, anomalous

isotope effect, etc (Labbe’ and Bok, 1987). Labbe’ and Bok used a two-
dimensional band structure calculation for alkaline-earth-substituted La,CuQ,
in the tetragonal phase. Within the framework of the BCS phonon-mediated
pairing, Tsuei et al. (Tsuei et al., 1990) showed that a logarithmic (2D) Van
Hove Singularity (VHS) in the density of states can provide a basis for
understanding the anomalous isotope effects in the Y-Ba-Cu-O and the Bi-Sr-
Ca-Cu-O systems. In the experimental work of Wiihl et al. (Wiihl et al.,
1991) and D& umling (D& umling, 1991), they measured AC/T, for high-
quality oxygen-deficient YBa,CusO7.y polycrystalline samples (0 <y < 0.43).
The thermodynamic properties such as the specific-heat discontinuity at the

transition temperature (T,), AC/T,, and the zero-temperature critical field,
H,(0), of the oxygen-deficient YBa,CuO, were analyzed, by Tsuei et al.

(Tsuei et al., 1992), to show that the density of states at the Fermi level is
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peaked at y=0 and consistent with the Fermi level lying close to a two-
dimensional Van Hove Singularity.

However, while many aspects of the high-T, superconductors
(transition temperature (Labbe’ and Bok, 1987), (Friedel, 1989), (Tsuei et al.,
1990, 1992), (Markiewicz, 1990, 1992), (Newns et al., 1992) i1sotope shift
(Tsuei et al., 1990, 1992), specific-heat jump (Tsuei et al., 1990, 1992)) have
been worked out on the basis of s-wave pairing, experiments (Takigawa et al.,
1991), (Takigawa and Mitzi, 1994), (Sonier et al., 1993), (Tsuei et al., 1994),
(Wollman et al., 1994) seem to increasingly favor d-wave pairing, in the
particular dy?—y?, pairing. For example, measurements (Takigawa et al.,
1991), (Takigawa and Mitzi, 1994) of the NMR nuclear spin-lattice relaxation

rate 1/T, below T,, the low-temperature magnetic penetration depth (Sonier et

al., 1993), and measurements of the phase of the order parameter (Tsuei et al.,
1994), (Wollman et al., 1994) seem to pose insurmountable problems for an s-
wave interpretation. Recently Newns et al. (Newns et al., 1995) used the
assumption that the pairing is dx?-y> symmetry in an investigation of
transition temperature, gap, and specific-heat jump at the BCS level of
approximation. They found that the effect of the d-wave pairing and the Van
Hove Singularity on these properties is similar to, and at least as strong as, the
effect in s-wave. The d-wave version of the Van Hove scenario was therefore

found to be fully viable. Dorbolo et al. (Dorbolo et al., 1996) studied the
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influence of a logarithmic VHS on the electronic specific heat C, of a 2D
superconductor. The theoretical results were obtained for an isotropic s-wave
gap parameter and an anisotropic dx? — y>-wave gap parameter. They found
that the magnitude of the specific heat jump at T, observed in high-T,

superconductors can be reproduced by considering both gap parameter

symmetries. They also found that the very low temperature behavior of C, as

observed in a single crystal of YBa,Cu;O75 is only consistent only with a gap
parameter of the dx? — y2-wave type.

In this chapter, in order to understand the thermodynamic properties of
the high-temperature superconductivity within the framework of BCS theory,

we will study the specific heat jump at the transition temperature T,. We

consider the effects of the density of states (DOS) (both the constant DOS and
the VHS DOS) as well as the types of pairing (s and d) on the specific heat
jump.

The specific heat C of a material 1s defined as the change in internal

energy U brought about by a change in temperature

c:(d—Ujv. (4.1

dT

We will not make a distinction between the specific heat at constant volume
and the specific heat at constant pressure because for solids these two

properties are virtually indistinguishable. Ordinarily, the specific heat is
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measured by determining the heat input dQ needed to raise the temperature of
the material by an amount dT,
dQ = CdT (4.2)
The conduction electron contribution C, to the specific heat is given by
the derivative dE./dT when E. is the total electron energy.

4.2 Temperature Dependence of the Order Parameter and Specific Heat

Jump at T,

Within the BCS framework , the gap equation is given by the equation

iy
Vo A, tanh(—X
kk'=“k (2T)

i (4.3)

= 2F,.
here EZ = (e, —E;)* +AL , g, is the quasiparticle energy, E, is the Fermi
energy , A, is the order parameter , V. is the positive phonon mediated
interaction which is finite within the energy range of 7o, around E; and o,
is the Debye frequency. For the sake of simplicity we assume that
Vi = Vgdg),if Er-rop < g, <Ep +hop (4.4)

and g(¢) = 1 or cos2¢ depending on whether the superconductor is an s- or d-
wave one, here ¢ is the angle between the momentum k of the pair electrons
and the a-axis of a CuO, plane, ie. ¢=tan"'(k,/k,) and V represents the
constant electron-phonon interaction strength.

For the form of the scattering matrix element given by Eq.(4.4), the

solution of the gap equation has the structure
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A = AT)g(d) (4.5)
where A(T) is the temperature-dependent energy gap function. Upon
substituting Eqs.(4.4) and (4.5) in Eq.(4.3) , one obtains the equation

2n Dp
= T o T8 ne rannc B
= [2e'® |55 NE ) (4.6)

0 ~p

1
v

here N(e) is the electronic density of states per spin and E = \/ez + A (T)g*(9) .

By differentiating Eq.(4.6) with respect to T, the result is

- dd) ) de e
0 = _!'21 (¢)j LN {Etanh(E/ZT)} 4.7)

-op

We now consider the term

i[i tanh(E / ZT)J

JTLE

_ {_ Ltanh(lz /2T)+——sech*(E/ 2T)}8—E -] Lsec (E/2T) (4.8)
E2 2ET 277 |

= %{_ étanh(E/ZT) + ZElzT sech? (E/ZT)} (O}——— i (T) Tl—Zsech2 (E/ 2T)}

Substituting Eq.(4.8) in Eq.(4.7), and manipulating them we obtain the

temperature gradient of A*(T) as follows

2 le d¢> 2(¢)J N(e)sech? (E/2T)
a2 .4 -
. d 4 de sech’(E/2T) tanh(E/2T)
j 2y | En) BN bl
Z2TE B

-op
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Since E reduces to ¢ when T=T,, by letting the variable x =¢/2T, and using

In
the notation <g“ (¢)> = -[ ?g“ (9), Eq.(4.9) can be written as
T
0

op /2T,
2 8T.(27(®)) J' dx N(2T, x)sech? (x)
dA™(T) e = _ 0 . (4.10)
ar =~ s sech?(x)  tanh(x)
() J' de(ZTCX){ LN }

X X
0

The jump in the specific heat T, within the framework of the BCS

formalism is calculated from the usual expressions for specific heat of the

normal and superconducting phases given by

of
Cx =2 3a é(frk) 4.11)
o of (Ey)
Cs = 2 XR T (4.12)

Here the indices N and S denote the normal and superconducting states,

respectively. f(g, ) is the usual Fermi distribution function for electron with

the wave vector k. The factor 2 arises for the sum over spins of the Cooper
pair. The expression for the Fermi distribution function has the form

i
f(gl() ¥ e /T (413)

I+e
The temperature derivative of Eq.(4.13) is

% = 48;2 sech’ (g, /2T) (4.14)
0
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By inserting Eq.(4.14) in Eq.(4.11) and transform the sum to an integral form,

we get
C(Ty = ;?IdaN(a)azsechz(e/ZT) (4.15)

Similarly for the superconducting phase

1 5, dAY(D)
T2 ) AT

2n d(b (A7) r E2 ,
Co(T) = .O[E 'Ofdsl\(e) —F sech?(E/2T) (4.16)
At T=T, we let x=¢/2T, then Eqs.(4.15) and (4.16) become
& £ STCJ.de(ZTCx)xzsechz(x) (4.17)
0

and

A T) op /2T,
o )

Cs(T,) = —[ i g2(¢)> Ide(2TCx)sechZ(x)
0

_ (4.18)
op /2T,
18T, jdx N(2T, x)x %sech? (x)

0

Inserting Eq.(4.10) in Eq.(4.18), we get

o, /2T, 2
g kgz (¢)> J' dx N(2T,x)sech (x)}
0
Cs(T) = op /2T,

<g4(¢)> J. dx N(2Tcx){560h2(x) L tanh(x)} (4.19)

2 3
X X

0
(,‘JD/2TC

+8T, de N(27.x)x*sech?(x)
0
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We denote the difference of specific heat at a transition temperature between

the superconducting and normal phases by AC(T,), i.e.

AC(TC) = CS(TC)—CN(TC)' (420)

Substituting Eqs.(4.19) and (4.17) in Eq.(4.20), we find that

op /2T, ©

AC(T,) STC{ jdXN(ZTCX)X2seCh2(X)— de(ZTcx)xzsechz(x)
0 0

op /2T, 2

j dx N(zTcx)sech%x)} (4.21)

0

{<g2<¢>>

wp /2TC

() |

0

sech?(x)
2

X

X3

dx N(ZTCX){ ta“h(x)}

We finally obtain the ratio between the jump in the specific heat at a
transition from the normal to the superconducting states and the normal

specific heat as

op /2T,
.[de(ZTcx)xzseohz (x) -
0

1

{(gz@» |

wp /2Tc

0

2
dxN(2T,x)sech? (x)}

I dxN(2T,x)x *sech®(x)
0

4.3

wp /ZTC

(o) |

0

dXN(ZTCx){

sech? (x) _ tanh(x)

X

Effect of the Constant Density of States

) 3
X

|

r—1. (4.22)

We note that Eqs.(4.9) and (4.22) are exact analytical expressions for

the temperature gradient of A*(T) and the normalized specific heat jump



AC(T,)
C N (Tc )

independent of energy, i.e. N(g)=N(0). The Eq.(4.22) becomes

op /2T,
dx x %sech? (x)
AC(T) g L
Cn(To) r
J.dxxzsech2 (x)
0

op/2T, 2
{<g2 (¢>)> J.dx sech? (x)]

0

X2 X

e op /2T,
(2" @) j dx x 2sech® (x) j d{ sech” (x) tanh}(x)}
- 0

After some integration procedures, we get the formulas

2

jdx xzsechz(x) = n_’
’ 12

() /ZTC 2
J.dxxzsechz(x) = [ 2D | |14 tanh| 20 || 2Dy 2 cosh| 20
O 2T, ot )T o,

2
T e L WL
12

(L)D/2TC
J-dxsechz(x) — tanh(op /2T,),
[}

(DD/2TC
J‘ dx{sechz(x)_tanh(x)} _ tanh(op/2T,) 1

x2 x> C (0p/2T.)*  (0p/2T,)

0

16 oo /7T
Y 1 tan—l[ D T cj

n} = (2n+1)° 2n+1

52

. In the standard BCS treatment, N(g) i1s assumed to be constant,

(4.23)

(4.24)

(4.25)

(4.26)

(4.27)
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Xk

% is the dilogarithmic function (Abramowitz and Stegun,

here Li,(x)= y
k=1
1972) and substituting these integral formulas in Eq.(4.23), we finally obtain
the exact form of the ratio between the jump in the specific heat at a transition
from the normal to the superconducting states and the normal specific heat in

any pairing states, 1.e., s-wave or d-wave as

AC(T,)

CN(TC)

12 /[ op
? 2T,

2 2
1+ tanh 2n —@ln 2 cosh ®p +Li2(—e—°°D/TC)+n— -1
214 T, 2T, 12

(@) tanh? (0 /2T,)
an—l[ B

tanh(wp /2T;) 1 16 1
(0p/2T)*  (0p/2T,) 1w iZ@2n+1)°

Op /7T,
2n+1

<g“(¢)>{
(4.28)

In the case of s-wave pairing state, g(¢) =1, Eq.(4.28) reads

2 .
[COD J [1 + tanh((DD ﬂ —[(D—D] ln[Zcosh[mD H +Li2(—e—wD/T°)
27T 2T, s 2T,
AC(T,) _ 12
Cy(T) =2 |- tanh®(wp /2T, )
tanh(0, /2T,) 1 6 1 tan_l[oaD/nTc}
(@D/ZTC)2 (0p/2T,) T n=0(2r1+1)3 2n +1
(4.29)
In the limit o, /T, — w, Eq.(4.29) reduces to acy) _ 12 1.43 which 1s
Cn(To)  7C0)

identical to the standard classical BCS value shown in Fig. 4.1, here ¢(3) is

the Riemann zeta function and Cy(T,)

%RZN(O)TC .
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Our exact result shows that 20<) i material dependent and depends

N (Tc

o’nly on the ratio o, /T,. Our graphical computation of Eq.(4.29) shows that

the curve of

AC(T,)

N(c

versus op /T, increases monotonically as wop /T,

increases and reaches its constant value of 1.43 when o, /T, is greater than 7.

ég(Tb) 10|

Cx(Tc)

2.0

1.5 ¢

0.5 ¢t

0.0

............................

Figure 4.1: illustrates the jumps in specific heat, in units of the normal state
specific heat at the transition temperature, versus ratio oy /T, for the constant
density of states at the Fermi level. The solid and dashed curves show results
of calculations based upon s and d gaps, respectively.
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As a matter of interest we also compute the jump in the specific heat for

the d-wave superconductor. Taking g(¢)

cos2¢ for this case <g2(d>)>:1/2,

<g4(d>)> =3/8, we find that the normalized jump in Eq.(4.24) gives the result

1

[\

AC(T,)
C N (Tc )

I
A,

This equation gives

solution of AC(

o
2T,

D

C

2
J {1 + tanh[g—
2T

D

Y

Iic

Op

c

jln{Z cosh{
2T

%tanhz(a)D /2T,)

Op

<

H+Li2[— oo/ ]

tanh(op /2T,) 1

(ex?2T ) (wy [2T5)
¥ L 0.95
N c)

T,)

Cn(Te)

N

(0p /T,)
2n+Dr

(&

(4.30)

in the limit o, /T, - . Graphical

vs. op /T, are plotted also in Fig. 4.1. Again we can see

that the deviation of the ratio from the BCS result 1s significant for all o, /T,

values.

4.4

Effect of the Van Hove Singularity Density of States

However, if the density of states is energy-dependent such as in the

case of Van Hove singularity, by taking N(g) = N(0) In

(4.22), we get

Cy(T,) = 8TCN(O)de ln(
0

and

Eg
2T x

C

}xzsech2

(x)

Ep
€

in Eqs.(4.17) and

(4.31)
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op /2T,
dxln{ ]x sech?(x)
AC(T,)  _ 5 L
Cy(Te) K
" J.dxln{;ix}x sech?(x)

0

op /2T, 2

{g ®) j dxm[ o jsech (xﬂ

op /2T,

PRY E
(¢' @) ! s ln[ -

]Xzsechz(x) dxln[ Ep Msechz(x)_tanh(x)}
2T.x x 3

0 [+

(4.32)

By some procedures of integration, we obtain the formulas

CL)D/ZTC E
J.dxlnl £ jx2sech2(x) =
2T, x

k=1 © Zk)n n+l op ) 1
2 (n+1>'( j HTQJ n—H}

(4.33)

T B J.o2.. 12 " [ Eg
deln x“sech”(x) = —In|—-]-02902, (4.34)
) 2T, x 7

E E © . T
E_lsech’(x) = In|—F |tanh Op +—4—Z ! tan™ @p/7Te ,
2T x Op 2T, ) n=(2n+)) 2n+1

(4.35)

op /2T,
de ln[

0
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x? x°

oD e [EF J{sechZ(x)_tanh(x)} _
X

In Er tanh(coD/Zl;C)_ 1 _gz 1 3tan_1 op /T, In E; 1
©p /| (0p/2T;) (0p/2T,) | m° <= (2n+1) 2n+n ®p

16 e 1 (2k)! k—2met| o a1 Op/ T,
+}_ZZZ(2M1)3 22k(k!)2(2k+1)(2k—2m+1)tanh {Smh ((2n+1)nn

n=0 k=0 m=]

. L gioni| 20/ T
T (2n+1)° (2n+1)m

(4.36)

and substituting these integral formulas in Eq.(4.32).

In the s-wave case, g(¢)=1, the ratio between the specific heat jump and

the normal phase specific heat of an s-wave Van Hove superconductor as

éC(? A P(wD,ZTC,Ep)—Q(wD,TC,EF) o (4.37)
n(Te) 7t—1n( Ep J-o.2902
15 (2T
where
Plop,T,,E¢) =

2 2
In Er 9p 1+ tanh ®p | _| % In| 2 cosh ®p +n—+Li2[—e_mD/T°]
2T, ) |\ 2T, 2T, T, 2T, )| 12
2
e kop/Te| _ 3 il ¢ g s In Op _l ®p N D p N 3
o 4k%  4KT, | 2T, 2T, ) k\2T,) \2T.,| 4k®

. 5 C@ Cop T (ap) T
= k(n+1! 2T, 2T, ) n+1

(4.38)
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and

Q(®D7TC)EF) =

2
Ep S op /T,
(IH[CDD }tanh{ T } Zo (n+ }7_1 [(211 + DRB
E; ) tanh(op /2T,) 1 16 & op /T |, [Erl ;
1[ F]{ > - } —32(2n+1) (2r1+1)7c o
T on=0

((DD/2T) (wp /2T,)

—
(o))

R (2k)! p 2k-2m+1 'h_l[ O)D/ch
Zzz(znm 322 (kN2 2k +1)(2k - 2m+1) o - (2n+Dx

n=0 k=0 m

= op /T,
n Z:(; (2n+ 1) [(ZH + l)n]

\°° )

N

(4.39)

In the limit o /T, - « when E;/T,= 200 and 50, Eqs.(4.37)-(4.39) gives

ACL) _ 194 and 2.19, respectively (see Fig. 4.2).
CN (Tc )
0 ) . . AC(T,)
For the d-wave, g(¢)=cos2¢, the normalized specific heat jump NGRY (T°)
N\-=te¢
for a d-wave superconductor 1s calculated, and one obtains
2
ACT) _ 6im {P(%’TC’EF)_%Q(%,TC,EF)}_1 (4.40)

C (T
n(Te) 1{%}—1.0458

with P(o,,T,,E;) and Q(wp,T,,E;) as defined in Eqs.(4.38) and (4.39),

respectively. Results are presented in Fig. 4.2 for values of o /T, up to 25. In

the limit o, /T, > @ when E,/T,=200 and 50 Eq.(4.40) gives %: 129
N ¢

and 1.46, respectively. In general, we can see that the normalized specific heat



59

jump for a d-wave superconductor is predicted to be much smaller than the
BCS value of 1.43. However for an s-wave Van Hove superconductor the

jump 1s significantly higher.

2.5 —m———

2.0

AC(Te) | |

- = o W e e o
-— - e W e e m e e e e e e o

1.0 ¢

............
0.5 ................

CUD/TC

AC(T,)
CN(TC)
versus ratio o, /T, of a Van Hove superconductor. The solid and dashed

curves correspond to an s- and a d-wave gap symmetry, respectively. Curves 1
and 2 correspond to E;/T,= 50 and 200, respectively. Asymptotic values of

Figure 4.2: illustrates normalized electronic specific heat jump

——éc(gf)) for the s-wave in the limit o, /T, >« when E;/T.= 50 and 200 is
N\*e

2.19 and 1.94, respectively and the d-wave case is 1.46 and 1.29, respectively.



Chapter 5

Discussion and Conclusions

In this thesis, we have studied the specific heat jump at critical

temperature AC(T,), in the constant density of states and the Van Hove

singularity density of states based on the BCS framework. The effect of the
pairing states both the isotropic s- wave and the anisotropic d- wave which
have the influence on the symmetry of the energy gap is also investigated.

Our graphical solutions for the normalized specific heat jump help
clarify how the jump is affected by the electronic density of states at the Fermi

level, the symmetry of order parameters and material parameters. We can see

AC(T,)
Cy(T.)

that the deviations of the ratio from the canonical BCS value in high-

T, superconductors can be accounted for by considering either the symmetry
of the gap or the VHS or the values of the parameters such as o, T, and E;.

For the s-wave superconductors with the constant density of states, we
derive an expression for the ratio between the jump in the specific heat at a
transition from the normal to the superconducting states and the normal

specific heat which is expressed by



6l

2
Ob | 114 tanh| =2 | || D Jjn| 2cosh| 20 +Li, (-e™P ™)
2T, 2T, T, 2T,
AC(T,) _ 12
Cu(T) |- tanh’ (0, /2T,) :
tanh(o, /2T,) 1 leE 1 tan_l[a)D/nTc]
(0p/2T,)"  (05/2T,) = Z(@2n+1) 2n+1
(5.1)

Our formula recovers the usual BCS result (1.43) by taking the limit

AC(T,)

oy /T, > in Eq.(5.1). The fall of with decreasing oy /T, Is

N Tc
predicted when o, /T, is less than or 7 as shown in Fig.4.1.
Recently Bandyopadhyay et al. (Bandyopadhyay et al.; 1990) reported
the results of specific heat results of specific heat measurements carried out on
samples of Tl-based 2-2-2-3 compounds, their data for the average Debye

temperature for 2-2-2-3 is 480 K. The T, values of the 2-2-2-3 system are 107

and 125 K. They evaluated the BCS ratio (A:Cgfg for the system and found the
N\%¢c

ratios to be 1.45. This value 1s greater than our for the s-wave superconductor.

Hence the Tl-system is not a simple BCS superconductor.

AC(T,)

Cy (T, )

We have also studied

as a function of o, /T, for a d-wave

superconductor having the constant density of states at the Fermi level. AC(T,)

and C,(T,) are calculated using the exact expressions (4.21) and (4.11). The

analytic expression for



|

2
©p |14 tanhl 22 ||| 2D |jnl 2cosh| 20
2T, 2T, T, 2T

c
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ﬂ +Li2[— CR ]

AC(T)) _ 12 2 ,
Cy(T,) ) gtanh (0 /2T,)
tanh(w/2T,) 1 ii L @p/T)
(0p/2T,)°  (0p/2T,) = & % (2n+1)rn
(5.2)

It is found that the d-wave symmetry lowers AC(T,), hence the smaller

value of the ratio (( % this 1s probably due to the fact that there are a few

more non-superconducting particles when a d-wave gap parameter opens

AC(T,)
Cy(T.)

compared to an s-wave gap. The limiting values of 1s 1.29 which is

considerably lower than the BCS value of 1.43. The ratio of the specific heat

AC(T,)
Cy (L)

jump versus o, /T, for the d-wave gap parameter case is presented

also in Fig.4.1. Our formula also predicts that the jump at T, decreases when
op /T, < 6.

As for the VHS superconductdr, we find that the effect of VHS on the
electronic specific heat jump of an s-wave superconductor is to increase the
value of the jump at T, considerably over the BCS values according to Eq.
(4.37).

AC(T,) _ Ploy,T.,E¢)-Qlop,T,,Ep)

C (T 2
n(Te) ™l BE 02002
12 |27

C

1. (5.3)
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AC(T,)
Cy(T.)

agreement with Sarkar and Das who found the numerical value of the ratio at

with 0, /T, - is found to be 1.94 in fine

The limiting value of

T, to be 2.13 by using a more realistic density of states. Our result is also in
agreement with Dorbolo et al. (Dorbolo et al., 1996, 1997) who in their study
of the influence of a VHS on the ratio found the ratio at T, to be 2, when they
took A(0) to be 20 meV. We also found that the normalized ratio increases

rapidly as o, /T, increases from 1, reaches a maximum at o, /T,=7 and as
op /T, increases further, the normalized specific-heat jump remains

unchanged. In addition our calculations show unambiguously that when the

ratio E; /T, decreases, the jump ratio increases.

Finally the normalized specific heat difference for the d-wave VHS
case has been calculated as Eq.(4.40)

AC(T :
(T.) _ 6/m {P((DD,TC,EF)—i—Q(@DaTC’EF)}_ 1. (54)

Cy (T,
w(Te) ln[EJ—I.O%S

c

N

It 1s presented in Fig.4.2. The graph shows that the normalized jump at T, is

much lower than the BCS values and that the magnitude of the jump is almost

the same as that of the constant density of states case. Dorbolo et al. (Dorbolo

et al., 1996, 1997) found that the ratio Cs(T.)

in a zero magnetic field in a d-
CN (Tc

p —

wave superconductor with typical values of physical parameters in high-T,

superconductor 1s 1.4 which agrees well with our calculation here. We found
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AC(T,)
Cu(T

[

that as E./T, decrease, the ratio increase. But for experimental data

N’

AC(T,)

on YBa,CusO._, (Junod et al., 1988), (Philips et al., 1990) obtained N
N\+tc

4.8, our theory cannot explain the result, this may be due to the fact that the

high- T, superconductor is not quite two-dimensional.

In conclusion, we would like to stress here that our calculation is
strictly two-dimensional and our formula is valid when o, >T,. The case
op < T, is unphysical, our graphs therefore start from o, /T, >1. A test of the
quantitative finding presented in this paper with respect to parameter changes

can be made by varying the ratio o /T, and Ep/T,. Should the test fails, we

would need to conclude that the BCS theory that incorporates the VHS
density of states is inapplicable to the material and that a new or modified

density of states and theory are required.
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