CHAPTER III

DIGRAPHS DEFINED FROM ALGEBRAIC SYSTEMS

In this chapter we associate digraphs to algebraic systems in a certain ways, and try to characterize these digraphs.

3.1 Groupoids, Quasi-groups, Loops and Groups

By a groupoid we mean an ordered pair (G,o), where G is a nonempty set and o is a binary operation on G. If for each a, b of G, there exists unique elements x and y such that as = b and yoa = b. Then (G, \circ) is called a quasi - group. By a loop we mean a quasi - group (G, o) in which there exists an element 1 in G such that for each x in G, $1 \circ x = x \circ 1 = x$. Such an element 1 is unique and is called the identity of the loop. If a loop (G,o) is associative, i.e. for every x, y, z in G, $(x \circ y) \circ z = x \circ (y \circ z)$. Then we call (G, \circ) a group. A group(G, O) is a cyclic group iff there exists an element a in G such that every element of G is a power of a. We say that a is a generator of G. The number of element in a group(G, o), G, is called the order of G. For each a in G, the order of a is the least positive integer m such that $a^m = 1$, and denoted by a. It is well - known that if G = p, p a prime, then G is a cyclic group.

3.1.1 <u>Remark</u> Let (G, \circ) be a loop. Then for each a in G, there exists unique x in G such that $a \circ x = 1$ and there exists unique y in G such that $y \circ a = 1$. We shall call x the <u>right</u> <u>inverse of a</u> and y the <u>left inverse of a</u>. They will be denoted by a_r^{-1} and a_1^{-1} respectively. It can be shown that if (G, \circ) is a group then the right and left inverses of a are equal. It will be called the inverse of a and denoted by a_r^{-1} .

3.1.2 <u>Remark</u> Given any finite set V we can always define a binary operation \circ on V such that (V, \circ) forms a group. This can be done as follows.

Let (G, *) be any cyclic group of order |V|. Let f be a one - to - one mapping from V onto G. Define a binary operation \circ on V by the equation $x \circ y = f^{-1}(f(x) * f(y))$. Then (V, \circ)

forms a cyclic group of order V.

Since cyclic groups are loops, quasi - groups and groupoids. Hence on any finite set V we can define a binary operation \circ on V so that (V, \circ) forms a loop, or a quasi - group or a groupoid.

3.2 Isomorphisms, Automorphisms and Isomorphic Groupoids.

Let (G, \circ) and $(G^*, *)$ be groupoids. A mapping Θ from G into G^* is called a <u>homomorphism</u> from a groupoid (G, \circ) into a groupoid $(G^*, *)$ if for each x,y in G, $(x \circ y) \Theta = x \Theta * y \Theta$. If a homomorphism Θ is one - to - one and onto, then Θ is called an <u>isomorphism</u> from (G, \circ) onto $(G^*, *)$. If there is an isomorphism from (G, \circ) onto $(G^*, *)$, then we say that (G, \circ) is <u>isomorphic</u> to $(G^*, *)$ and write $G \cong G^*$. If Θ is an isomorphism from (G, \circ) onto itself, then Θ is called an automorphism of (G, \circ) .

3.2.1 <u>Remark</u> If Θ is an isomorphism from a groupoid (G, \bullet) onto groupoid (G^{*}, *). Then it is clear that $|G| = |G^*|$.

3.3 Digraph Induced by the Groupoid (G, o) and a Subset A .

Let (G, \circ) be a groupoid, and A a subset of G. Let

$$E_A = \{(x, x \circ a) \in G \times G \mid x \in G, a \in A\}$$
.

Then (G, E_A) is called the digraph induced by the groupoid(G, \circ) and a subset A.

For example, let (G, \circ) be a groupoid with the following multiplication table.

	1		1
0	a	b	c
a	a	a	c
b	a	c	b
с	b	c	a

Let
$$A = \{a, b\}$$
.
Then $E_A = \{(a,a), (b,a), (b,c), (c,b), (c, c)\}$.

Hence (G, EA) can be represented by the following diagram.

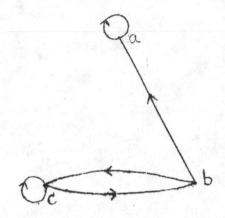


Fig. 3.3.1

3.3.1 <u>Remark</u> If (G, \circ) is a group, then E_A can be written in the following forms :

$$E_{A} = \left\{ (x, x \circ a) \in G \times G \mid x \in G, a \in A \right\}$$
$$= \left\{ (x, y) \in G \times G \mid x, y \in G, \exists a \in A \ni y = x \circ a \right\}$$
$$= \left\{ (x, y) \in G \times G \mid x, y \in G, x^{-1} \in A \right\}.$$

3.3.2 <u>Theorem</u> Let (G, o) be a quasi - group and A', A'' be subsets of G. If A = A' - A'', then $E_A = E_A' - E_A''$.

<u>Proof</u> Let (x, y) be any element of E_A . Therefore $y = x \circ a$ for some $a \in A$. Since A = A' - A'', therefore $a \in A'$ and $a \notin A''$. Since $a \in A'$, therefore $(x, y) \in E_{A'}$. If $(x, y) \in E_{A''}$ we would have $y = x \circ a''$ for some $a'' \in A''$, which shows that there exist distinct elements a, a" in G such that $x \circ a = y = x \circ a$ ". This is a contradiction. Thus $(x, y) \notin E_A$ ". Hence $(x, y) \in E_A$ " - E_A ". Therefore $E_A \subseteq E_A$ " - E_A ".

Conversely, let (x, y) be any element of $E_{A'} - E_{A''}$. Therefore $(x, y) \in E_{A'}$ and $(x, y) \notin E_{A''}$. Since $(x, y) \in E_{A'}$, hence $y = x \circ a$ for some $a \in A'$. Since $(x, y) \notin E_{A''}$, therefore $a \notin A''$. Hence $a \in A' - A'' = A$. Therefore $(x, y) \in E_A$. Thus $E_{A'} - E_{A''} \in E_A$ Hence $E_A = E_{A'} - E_{A''}$

Q.E.D.

3.3.3 <u>Theorem</u> Let Θ be an isomorphism from a groupoid (G, \circ) to a groupoid $(G^*, *)$. Let A, A^* be subsets of G, G^* respectively. If $A^* = A\Theta$, where $A\Theta = \{a\Theta \mid a \in A\}$, then $(G, E_A) \cong (G^*, E_A^*)$. <u>Proof</u> Let $\Theta : G \longrightarrow G^*$ be an isomorphism. That is Θ is one - to - one and onto and for each x, y in G, $(x \circ y) \Theta = x\Theta * y\Theta$. We shall show that Θ is also a digraph isomorphism from (G, E_A) onto (G^*, E_A^*) .

Since Θ is one - to - one and onto. Hence we have only to show that for each x, y in G

 $(x, y) \in E_A \iff (x \circ, y \circ) \in E_A^*$.

Let $(x, y) \in E_A$. Then there exists $a \in A$ such that $y = x \circ a$. So we have $yQ = (x \circ a) Q = xQ * aQ$. Since $a \in A$, then $aQ \in AQ = A^*$. Therefore there exists $aQ \in A^*$ such that yQ = xQ * aQ. Hence $(xQ, yQ) \in E_A^*$.

Conversely, let $(x \Theta, y \Theta) \in E_A^*$. Then there exists $a \notin A^*$ such that $y \Theta = x \Theta * a^*$. Since $a \notin A^* = A \Theta$, hence $a^* = a \Theta$ for some $a \in A$. So we have $y \Theta = x \Theta * a^* = x \Theta * a \Theta = (x \circ a) \Theta$. Since Θ is one - to - one, hence $y = x \circ a$ where $a \in A$. That is $(x, y) \in E_A$.

Hence Θ is a digraph isomorphism from (G, E_A) onto (G^{*}, E_A^*). Therefore (G, E_A) \cong (G^{*}, E_A^*)

Q.E.D.

3.4 Groupoid Digraphs, Quasi - group Digraphs, Loop Digraphs and Group Digraphs

Let (V, E) be a digraph. If there exists a groupoid (G, \circ) and a subset A of G such that $(V, E) \cong (G, E_A)$, then we say that (V, E) is a groupoid digraph. If the groupoid can be chosen to be a quasi - group, or a loop, or a group, or a cyclic group, the groupoid digraph will be called a <u>quasi - group digraph</u>, or <u>a loop digraph</u> or a group digraph or a cyclic group digraph respectively.

3.5 Characterization of a Groupoid Digraph

3.5.1 <u>Theorem</u> Let (V, E) be a digraph. Then (V, E) is a groupoid digraph if and only if $E = \phi$ or for each $v \in V$, there exists $u \in V$ such that $(v, u) \in E$.

<u>Proof</u>: Let (V, E) be a groupoid digraph. Then there exists a groupoid (G, \circ) and a subset A of G such that $(V, E) \cong (G, E_A)$. Let Ψ : $G \rightarrow V$ be a digraph isomorphism from (G, E_A) onto (V, E).

If $E_A = \phi$, it is clear that $E = \phi$.

If $E_A \neq \phi$, then there exist x, $y \in G$ such that $(x, y) \in E_A$. Therefore there exists $a \in A$ such that $y = x \bullet a$. Hence $A \neq \phi$. Let v be any element of V. Hence $v = x'\phi$ for some $x' \in G$. Let $a' \in A$. Put $y' = x' \circ a'$. Hence $(x', y') \in E_A$. Let $u \in V$ such that $u = y'\phi$. Therefore $(v, u) = (x'\phi, y'\phi) \in E$. Hence for each $v \in V$ there exists $u \in V$ such that $(v, u) \in E$. Conversely, let(V, E) be a digraph such that $E = \phi$ or for each $v \in V$, there exists $u \in V$ such that $(v, u) \in E$. Case 1 Suppose $E = \phi$. Let \circ be any groupoid operation of V. Let $A = \phi$. Then $E_A = \phi$, and the identity mapping on V is a digraph isomorphism from (V, E) onto (V, E_A) . Hence (V, E)

is a groupoid digraph.

Case 2 Suppose that for each $\mathbf{v} \in V$ there exists $u \in V$ such that $(\mathbf{v}, \mathbf{u}) \in E$. Hence for each $\mathbf{v} \in V$,

$$b(\mathbf{v}) = \left\{ \mathbf{w} \in \mathbf{V} \mid (\mathbf{v}, \mathbf{w}) \in \mathbf{E} \right\} \neq \mathbf{\phi}.$$

Hence d(v) = |b(v)| is a positive integer. Since $\{d(v') \mid v' \in V\}$ is finite. Hence it has a maximum value. Let $d = \max \{ d(v') \mid v' \in V \}$. Hence there exists $w \in V$ such that d(w) = d. Since d(v') > 0 for all $v' \in V$, hence d > 0. For each $v \in V$, let $u_1(v)$, $u_2(v)$, ..., $u_{d(v)}(v)$ be the distinct elements of b(v).

Put
$$A = b(w) = \left\{ u_1(w), u_2(w), \dots, u_d(w) \right\}$$

Define a binary operation \circ on V as follows : For each v, $u \in V$, we put

 $v \circ u = \begin{cases} u_{i}(v) & \text{if } u = u_{i}(w) \text{ and } 1 \leq i \leq d(v) \\ u_{d(v)}(v) & \text{for otherwise} \end{cases}$

Under this binary operation, (V, \circ) is a groupoid. We shall show that $E = E_A$. Let $(v,u) \in E$. Hence $u \in b(v)$. Then $u = u_i(v)$ for some $i, 1 \le i \le d(v)$. Since $v \circ u_i(w) = u_i(v)$, hence $v \circ u_i(w) = u$. Therefore $(v, u) \in E_A$. That is $E \subseteq E_A$. Conversely, let $(v, u) \in E_A$. Then there exists $u_j(w) \in A$ for some j, $1 \leq j \leq d$ such that $u = v \circ u_j(w)$. Since $v \circ u_j(w) = u_i(v)$ for some i, $1 \leq i \leq d(v)$, hence $u = u_i(v)$. Therefore $u \in b(v)$. That is $(v, u) \in E$. Hence $E_A \subseteq E$. Therefore $E = E_A$.

Hence (V, E) is a groupoid digraph.

Q.E.D.

3.6 Characterization of a Quasi - group Digraph.

Characterizations of quasi - group digraphs and loop digraphs were given by H.H. Teh [2]. To prove a theorem which characterizes a quasi - group digraph, we need the Hall's Representation Theorem [6] which states as follows.

3.6.1 <u>Hall's Representation Theorem</u> Let S_1, S_2, \dots, S_n be any finite system of subsets of a set $S(S_i$'s need not be distinct). We can choose $a_i \in S_i$, $i = 1, 2, \dots, n$ such that a_i 's are distinct if and only if every k set of the subsets S_i contain among them at least k distinct elements.

3.6.2 <u>Theorem</u> Let (V, E) be a digraph. Then (V,E) is a quasi - group digraph if and only if (V, E) is a regular digraph.

<u>Proof</u>: Let (V, E) be a quasi - group digraph. Hence there exists a quasi - group(G, \circ) and a subset A of G such that $(V, E) \cong (G, E_A)$. Let Ψ : $V \rightarrow G$ be a digraph isomorphism from (V, E) onto (G, E_A) . Since $(x, y) \in E_A$ if and only if $y = x \circ a$ for some $a \in A$. Hence for each $x \in G$, we have

$$b(\mathbf{x}) = \left\{ \mathbf{y} \in \mathbf{G} \middle/ (\mathbf{x}, \mathbf{y}) \in \mathbf{E}_{\mathbf{A}} \right\} = \left\{ \mathbf{x} \circ \mathbf{a} \middle/ \mathbf{a} \in \mathbf{A} \right\}.$$

Observe that Θ : $A \longrightarrow \mathcal{L}(\mathbf{x})$ defined by $a\Theta = \mathbf{x} \cdot \mathbf{a}$, for each $\mathbf{a} \in A$ is a one - to - one onto. Hence we have $|\mathcal{L}(\mathbf{x})| = |A|$. Similarly, for each x of G we have

$$\mathcal{P}(\mathbf{x}) = \left\{ \mathbf{y} \in \mathbf{G} \mid (\mathbf{y}, \mathbf{x}) \in \mathbf{E}_{\mathbf{A}} \right\} = \left\{ \mathbf{x} * \mathbf{a} \middle| \mathbf{a} \in \mathbf{A} \right\},\$$

where $\mathbf{x} * \mathbf{a}$ denotes the solution y of $\mathbf{y} \circ \mathbf{a} = \mathbf{x}$, and $\left| \mathbf{f}(\mathbf{x}) \right| = \left| \mathbf{A} \right|$.

For each $v \in V$ we have $v \varphi = x$ for some $x \in G$. It follows from the digraph isomorphism property of φ that the restriction $\Psi/b(v)$, where

$$b(\mathbf{v}) = \left\{ u \in \mathbf{V} \middle| (\mathbf{v}, u) \in \mathbf{E} \right\},$$

is a one - to - one correspondence from b(v) to b(x). Hence |b(v)| = |b(x)| = |A| for all $v \in V$. Similarly, we can show that |p(v)| = |p(x)| = |A| for all $v \in V$. Here p(v)is as usual, i.e. $p(v) = \{u \in V \mid (u, v) \in E\}$.

Hence (V, E) is regular of degree |A|.

Conversely, let(V, E) be a regular digraph of degree k say. <u>Case 1</u> : Suppose k = 0. Then E = ϕ . Let o be any quasi - group operation of V. Let A = ϕ . Then E_A = ϕ , and the identity mapping on V is a digraph isomorphism from (V, E_A) onto (V, E). Hence (V, E) is a quasi - group digraph.

Case 2 : Suppose k > 0 .

Let $V = \{v_1, v_2, \dots, v_n\}$ and let $A = \{v_1, v_2, \dots, v_k\}$. Our object is to show that there exists at least one quasi - group operation o of V such that $E = E_A$.

Consider the following subsets of V,

$$(3.6.1) \qquad b(v_1), b(v_2), \dots, b(v_n).$$

Since (V, E) is a regular digraph of degree k, we have

$$|b(v_1)| = |b(v_2)| = \cdots = |b(v_n)| = k > 0$$
.

We shall show that for any m sets $\mathcal{E}(\mathbf{v}_{i})$, $\mathcal{E}(\mathbf{v}_{i})$, ..., $\mathcal{E}(\mathbf{v}_{i})$ contain at least m elements.

Since for each $v \in V$, $| \mathbf{g}(v) | = k$, we see that v can belong to at most k members of $\{b(v_{\mathbf{i}_1}), b(v_{\mathbf{i}_2}), \dots, b(v_{\mathbf{i}_m})\}$. Suppose $b(v_{\mathbf{i}_1}) \cup b(v_{\mathbf{i}_2}) \cup \dots \cup b(v_{\mathbf{i}_m}) = \{u_1, u_2, \dots, u_p\}$ where u_1, u_2, \dots, u_p are distinct elements. Suppose u_j belongs to k_j members of $\{b(v_{\mathbf{i}_1}), b(v_{\mathbf{i}_2}), \dots, b(v_{\mathbf{i}_m})\}$ where $1 \leq j \leq p$. Hence $k_j \leq k$ for $1 \leq j \leq p$. Therefore $\sum_{j=1}^{p} k_j \leq pk$

Since $\sum_{j=1}^{p} k_j = mk$, Hence $mk \le pk$. Therefore $m \le p$. Hence $. | b(v_i) \cup b(v_i) \cup \dots \cup b(v_i) | \ge m$.

Hence by theorem 3.6.1, there exists a complete set of distinct representatives for the system (3.6.1) say

such that $S_{i1} \in \mathcal{E}(v_i)$ for $1 \leq i \leq n$, and $S_{p1} \neq S_{q1}$ when $p \neq q$. Let $E' = E - \{(v_1, S_{11}), (v_2, S_{21}), \dots, (v_n, S_{n1})\}$. Claim that (V, E') is a regular digraph of degree k - 1. Since $S_{i1} \in \mathcal{E}(v_i)$, hence $(v_i, S_{i1}) \in E$. Therefore $v_i \in \mathcal{P}(S_{i1})$. Hence we have $\{S_{i1}\} \leq \mathcal{L}(v_i)$ and $\{v_i\} \leq \mathcal{P}(S_{i1})$. Lot $\mathcal{L}(v_i) = \{u \in V \mid (v_i, u) \in E'\}$. For an arbitrary element $w \in V$, we have

$$\begin{array}{c} \in b'(v_{i}) & \longleftrightarrow (v_{i}, w) \in E' \\ & \longleftrightarrow (v_{i}, w) \in E \quad \text{and} \quad (v_{i}, w) \notin \left\{ (v_{1}, s_{11}), \dots, (v_{n}, s_{n1}) \right\} \\ & \longleftrightarrow w \in b(v_{i}) \quad \text{and} \quad w \notin \left\{ s_{i1} \right\} \\ & \longleftrightarrow w \in b(v_{i}) - \left\{ s_{i1} \right\} \end{array}$$

Hence $b'(v_i) = b(v_i) - \{s_{i1}\}$.

Similarly we can prove that

$$\begin{split} \beta'(S_{i1}) &= \left\{ u \in V \middle| (u, S_{i1}) \in E' \right\} = \beta(S_{i1}) - \left\{ v_i \right\}. \\ \text{Hence} \quad \left| b'(v_i) \right| = k - 1 \quad \text{and} \quad \left| \beta'(S_{i1}) \right| = k - 1. \\ \text{Since} \quad \left\{ S_{11}, S_{21}, \dots, S_{n1} \right\} = \left\{ v_1, v_2, \dots, v_n \right\}. \\ \text{Therefore, for each } v_i \in V, \end{split}$$

$$| b'(v_i) | = | p'(v_i) | = k - 1.$$

Hence (V, E') is a regular digraph of degree k - 1. Consider the following subsets of V,

(3.6.2)
$$b'(v_1), b'(v_2), \dots, b'(v_n).$$

If k - 1 > 0, then $b'(v_i) \neq \phi$. By similar argument, we see that there exists a complete set of distinct representatives for the system (3.6.2) say

$$(s_{12}, s_{22}, \dots, s_{n2})$$

such that $S_{i2} \in b'(v_i) \subseteq b(v_i)$ for $1 \leq i \leq n$ and $S_{p2} \neq S_{q2}$ when $p \neq q$.

As far as k - (j - 1) > 0 we may repeat and obtain for each j, $1 \le j \le k$ a permutation of V say

such that $S_{ij} \in \mathcal{O}(v_i)$ for $1 \leq i \leq n$, and $S_{pj} \neq S_{qj}$ when $p \neq q$.

Therefore, for each i, $1 \leq i \leq n$

1

$$\delta(\mathbf{v}_{i}) = \left\{ s_{i1}, s_{i2}, \dots, s_{ik} \right\}$$

such that $S_{il} \neq S_{im}$ when $l \neq m$.

Let $E^* = V \times V - E$.

By theorem 2.3.1, $(V, V \times V)$ is a regular digraph of degree n. Hence by theorem 2.3.2, (V, E^*) is a regular digraph of degree n - k.

If n - k > 0, then $k^*(v_i) \neq \phi$. By applying the forgoing argument to the regular digraph (V, E^*), we obtain for each j = k + 1, k + 2, ..., n a permutation of V say

$$(S_{1j}, S_{2j}, \dots, S_{nj})$$

such that $S_{ij} \in \mathcal{C}^{*}(v_{i})$, $1 \leq i \leq n$ and $S_{pj} \neq S_{qj}$ when $p \neq q$. Therefore for each i, $1 \leq i \leq n$

$$b^{*}(v_{i}) = \{s_{ik+1}, s_{ik+2}, ..., s_{in}\}$$

such that $S_{il} \neq S_{im}$ when $l \neq m$. Hence $\delta(v_i) \cup \delta(v_i) = \left\{ S_{i1}, S_{i2}, \dots, S_{in} \right\} = V$. Define the binary operation o on V as follows. For each v_i , $v_j \in V$, we put

1

v. v = S_{ij}.

For each $v_i, v_j \in V$, if there exists $v_r, v_t \in V$ such that $v_i \circ v_r = v_j = v_i \circ v_t$, then $S_{ir} = S_{it}$, which would imply that r = t. Hence there exists a unique $v_r \in V$ such that $v_i \circ v_r = v_j$. Similarly, for each $v_i, v_j \in V$, there exists a unique $v_c \in V$ such that $v_c \circ v_i = v_j$. Therefore (V, \circ) is a quasi - group.

Next we shall show that $E = E_{\Delta}$.

Let $(u, v) \in E$. Hence $v \notin b(u)$. Since $u \in V$, then $u = v_i$ for some i, $1 \le i \le n$. Therefore $v \notin b(v_i)$. Thus $v = S_{ij}$ for some j, $1 \le j \le k$. Hence $v = v_i \circ v_j$ where $1 \le j \le k$. Since $v_j \notin A$, hence $(v_i, v_i \circ v_j) \notin E_A$. Therefore $(u, v) = (v_i, v_i \circ v_j) \notin E_A$. Hence $E \le E_A$.

Conversely, let $(u, v) \in E_A$. Then $v = u \circ v_j$ for some $v_j \in A$, $1 \leq j \leq k$. Since $u \in V$, hence $u = v_i$ for some i, $1 \leq i \leq n$. Hence $v = v_i \circ v_j = S_{ij}$ where $1 \leq j \leq k$. Thus $v \in C(v_i)$. Therefore $(v_i, v) \in E$. Hence $(u, v) = (v_i, v) \in E$. Therefore $E_A \subseteq E$.

Hence $E_{\bullet} = E_{\bullet}$

Therefore (V, E) is a quasi - group digraph.

Q.E.D.

3.7 Characterization of a Loop Digraph

3.7.1 <u>Theorem</u> Let (V, E) be a digraph. Then (V, E) is a loop digraph if and only if (V, E) is a normal regular digraph. <u>Proof</u>. Let (V, E) be a loop digraph. Hence there exists a loop (G, \circ) and a subset A of G such that $(V, E) \cong (G, E_A)$. Let $\Psi : V \rightarrow G$ be a digraph isomorphism from (V, E) onto (G, E_A) . By the same argument as in the proof of theorem 3.6.2, we see that (V, E) is a regular digraph.

Let 1 denote the identity of G. Then either $1 \in A$ or $1 \notin A$. <u>Case 1</u> If $1 \in A$, then for each $x \in G$ we have $(x, x) = (x, x \circ 1) \in E_A$ Let v be any element of V. Hence $v \varphi = x_0$ for some $x_0 \in G$. Hence $(v \varphi, v \varphi) = (x_0, x_0) \in E_A$. Therefore $(v, v) \in E$. Hence (V, E) is a normal regular digraph.

<u>Case 2</u> If $1 \notin A$. Suppose that $(v_0, v_0) \in E$ for some $v_0 \in V$. Hence $(v_0 \varphi, v_0 \varphi) \in E_A$. Therefore $v_0 \varphi = v_0 \varphi \circ a$ for some $a \in A$. Since 1 is the unique element in G such that $v_0 \varphi = v_0 \varphi \circ 1$. Therefore a = 1. Hence $1 \in A$, which is a contradiction. Therefore there does not exist $v_0 \in V$ such that $(v_0, v_0) \in E$. Hence (V, E) is a normal regular digraph.

Conversely, let (V, E) be a normal regular digraph of degree k say. First, we shall assume that $(v, v) \in E$ for each $v \in V$.

<u>Case 1</u> Suppose k = 1. Hence $E = \{ (v, v) | v \in V \}$. Let o be any loop operation on V. Let $A = \{ 1 \}$, where 1 denotes the identity of (V, \bullet) . Then $E_A = \{ (v, v) | v \in V \}$, and the identity mapping on V is a digraph isomorphism from (V, E) onto (V, E_A) . Hence (V, E) is a loop digraph.

Case 2. Suppose k > 1 .

Let v_1 be any element of V.

Let $\mathbf{A} = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\}$ say. Let $\mathbf{B} = \mathbf{V} - \mathbf{A} = \{\mathbf{v}_{k+1}, \mathbf{v}_{k+2}, \dots, \mathbf{v}_n\}$ say. Then $\mathbf{V} = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k, \mathbf{v}_{k+1}, \dots, \mathbf{v}_n\} = \mathbf{A} \cup \mathbf{B}$. Consider the following system of subsets of V,

$$(3.7.1) \qquad b(v_1), b(v_2), \dots, b(v_n).$$

Since $(v_i, v_i) \in E$ for each i = 1, 2, ..., n, therefore $v_i \in \zeta(v_i)$. Hence $(v_1, v_2, ..., v_n)$ is a complete set of distinct representatives of the system (3.7.1). Let us rewrite

$$(v_1, v_2, \dots, v_n) = (S_{11}, S_{21}, \dots, S_{n1})$$

That is, $v_i = S_{i1}$ for each i = 1, 2, ..., n. By following the same argument used in the proof of theorem 3.6.2 we can construct another k - 1 permutations of V say

$$(s_{12}, s_{22}, \dots, s_{n2})$$

 $(s_{13}, s_{23}, \dots, s_{n3})$

 $(s_{1k}, s_{2k}, \dots, s_{nk})$

such that

$$b(v_1) = \{s_{11}, s_{12}, \dots, s_{1k}\}$$

$$b(v_2) = \{s_{21}, s_{22}, \dots, s_{2k}\}$$

 $\left\{ \begin{array}{l} (v_n) = \left\{ \begin{array}{l} s_{n1}, \ s_{n2}, \ \cdots, \ s_{nk} \right\} \end{array} \right\} . \\ \text{Since } \left\{ \begin{array}{l} s_{12}, \ s_{13}, \ \cdots, \ s_{1k} \end{array} \right\} = \left\{ \begin{array}{l} v_2, \ v_3, \ \cdots, \ v_k \end{array} \right\}, \text{ without} \\ \text{loss of generality we may presume that} \end{array} \right.$

 $s_{12} = v_2$, $s_{13} = v_3$, ..., $s_{1k} = v_k$.

Now let $E^* = V \times V - E$. By theorem 2.3.1 and theorem 2.3.2, (V, E^*) is a regular digraph of degree n - k. By the same argument used before we can construct n - k permutations of V say

$$(s_{1k+1}, s_{2k+1}, \dots, s_{nk+1})$$

 $(s_{1k+2}, s_{2k+2}, \dots, s_{nk+2})$
.
.
 $(s_{1n}, s_{2n}, \dots, s_{nn}),$

such that for each j = k + 1, k + 2, ..., n,

$$b'(v) = \{s_{jk+1}, s_{jk+2}, \dots, s_{jn}\} = v - b(v_j).$$

Since $\int_{0}^{*} (v_1) = V - G(v_1)$, then we have

$$\left\{s_{1k+1}, s_{1k+2}, \ldots, s_{1n}\right\} = \left\{v_{k+1}, v_{k+2}, \ldots, v_{n}\right\}.$$

Without loss of generality we may presume that

$$S_{1k+1} = v_{k+1}$$
, $S_{1k+2} = v_{k+2}$, ..., $S_{1n} = v_n$
Therefore, for each $j = 1, 2, ..., n$ we have $S_{1j} = v_j$.
Now define the binary operation • in V as follows •

For each $v_i, v_j \in V$ we put

By the same proof as in theorem 3.6.2, (V, \circ) is a quasi - group. Since $v_1 \circ v_j = S_{1j} = v_j$, and $v_i \circ v_1 = S_{i1} = v_i$. Hence v_1 is an identity of V. Therefore (V, \circ) is a loop with v_1 as its identity.

By the same proof as in theorem 3.6.2, we have $E = E_A$. Hence (V, E) is a loop digraph.

Now we shall assume that (V, E) is a normal regular digraph of degree k such that $(v, v) \notin E$ for every $v \in V$.

By hypothesis, $(v, v) \notin E$ for every $v \in V$. Hence $v \notin 6(v)$ and $v \notin f(v)$.

Let $E' = E \bigcup \{ (v, v) \mid v \in V \}$. Let $b'(v) = \{ u \in V \mid (v, u) \in E' \}$. For an arbitrary $w \in V$ we have $w \in b'(v) \iff (v, w) \in E'$

$$(v, w) \in E \text{ or } (v, w) \in \left\{ (v, v) \middle| v \in V \right\}$$
$$\iff w \in b(v) \text{ or } w = v$$
$$\iff w \in b(v) \cup \left\{ v \right\}.$$

Hence $b'(v) = b(v) \cup \{v\}$.

Similarly we can prove that

$$\begin{aligned} p'(v) &= \left\{ u \in V \mid (u, v) \in E' \right\} = p(v) \cup \left\{ v \right\}. \\ \text{Hence } \left| b'(v) \right| &= k+1 \quad \text{and } \left| p'(v) \right| &= k+1. \end{aligned}$$

Therefore (V, E') is a normal regular digraph of degree k + 1 such that for every $v \in V$, $(v, v) \in E'$.

By the same proof used above, we get a loop (V, \circ) with v_1 as its identity and have a subset A' of V such that $E' = E_{A'}$ where

$$E_{\mathbf{A}'} = \left\{ (\mathbf{v}, \mathbf{v} \circ \mathbf{v}') \quad \mathbf{V} \times \mathbf{V} \middle| \mathbf{v} \in \mathbf{V}, \mathbf{v}' \in \mathbf{A}' \right\}.$$

Let $\mathbf{A} = \mathbf{A}' - \left\{ \mathbf{v}_1 \right\}.$

Hence by theorem 3.3.2, we have

1

$$E_{\mathbf{A}} = E_{\mathbf{A}'} - E_{\{\mathbf{v}_1\}}$$

$$= E_{\mathbf{A}'} - \{(\mathbf{v}, \mathbf{v} \circ \mathbf{v}_1) / \mathbf{v} \in \mathbf{V}\}$$

$$= E_{\mathbf{A}'} - \{(\mathbf{v}, \mathbf{v}) / \mathbf{v} \in \mathbf{V}\}$$

$$= E' - \{(\mathbf{v}, \mathbf{v}) / \mathbf{v} \in \mathbf{V}\}.$$

Since $(v, v) \notin E$ for any $v \in V$ and $E' = E \cup \{(v, v) \mid v \in V\}$, hence $E' - \{(v, v) \mid v \in V\} = E$. Therefore $E_A = E$.

Hence (V, E) is a loop digraph.

Q.E.D.