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CHAPTER 1

INTRODUCTION

1.1 Introduction

The standard model of particle physics, especially the electroweak sector,
pioneered by! Glashow, Weinberg, Salam, 't Hooft, and Veltman, is one of the
most successful theories ever proposed. Its predictive power has been confirmed
time after time by experiments. However, there is a part of the theory which
is still far from complete. The main engine of the electroweak sector relies
on the philosophy of spontaneous symmetry breaking which is explained by
the so-called Brout-Englert-Higgs mechanism (more commonly called just as
the Higgs mechanism). The BEH mechanism in the Glashow-Weinberg-Salam
(GWS) theory is operated by an elementary scalar particle called the Higgs. The
role of this Higgs is more or less indispensable as, roughly speaking, masses of
all other particles depend on it (e.g., the couplings are even proportional to the
Higgs’ mass). Besides, the good high-energy behaviours of the standard model
rely on the existence of the (fundamental) Higgs or any particle having similar
properties. This is where the problem shows up. Every particle predicted or
required by the GWS theory has been found except the Higgs. As a result,
its mass remains an unknown parameter, rendering the electroweak symmetry
breaking sector the poorly-understood part of the model.

At first sight, having one particle left undiscovered seems not to be a
problem as physicists have been facing with the problem of the missing pieces
for a long time (the neutrinos, the charm, and the top may be good examples).
However, the Higgs, being a fundamental scalar, is unlike others. While
physicists have come up with various reasons (e.g:, symmetries) for predicting
and explaining the “light” mass of gauge bosons and fermions, the standard
model itself cannot explain anything about the mass of the Higgs except that
it must be as large as the mass scale where the model is expected to work (the
cut-off) if loop corrections are taken in to account. So the next question is,
phenomenologically, how large should the cutoff be? How heavy should the
Higgs be?

1For citations on well-known articles of the standard model, we refer the readers to other
review articles or even textbooks (see the references).



There are several evidences making physicists never thought of the
standard model as the holy grail of particle physics. The clearest one is that it
does not explain anything about gravity except that the standard model works
as long as gravity is negligible. This implies the standard model must have a
dead end at the Planck scale (where gravity becomes important), no matter
what. In other words, it must be regarded as a low-energy effective theory
of some “more complete” theory. Then, it would have been a disaster if the
standard model is completely satisfactory in all other aspects as it would mean
that the Higgs is as heavy as the Planck scale (10'° GeV). This contradicts
our common sense as we know that all other members that were found up to
now never weight more than 200 GeVs. Fortunately the standard model is not
that complete. Interactions in the standard model is well-described by a product
gauge group SU(3)cotour X SU(2)weax X U(1)nypercharge Which is phenomenologically
useful but theoretically unsatisfactory. As can be expected by an optimist, an
analysis on how the coupling strength of each interaction changes with energy
revealed that all the three couplings come very close to each other at energies
around 10 — 10! GeV, showing the sign of “Grand Unification”. A prototype of
a grand unification theory was proposed during the 70’s by Georgi and Glashow
[8], which, again, is operated with the arguments of spontaneous symmetry
breaking relying on fundamental scalar particles. So it seems that now there
are two cut-off scale; one is at 10'° GeV where the standard model ceases to
work and the grand unification theory comes in, the other is at the Planck scale
10'° GeV. Then the properties of fundamental scalars tell us that the masses of
both “Higgses” should be equal to their corresponding scales. That is what a

theory can tell us and this is where experiments come in.

The discovery of the particles in the standard model, especially the
electroweak gauge bosons, as well as the advances in the precision electroweak
tests, tell us that the mass of the Higgs (of the standard model) should be only
a few hundreds GeV’s. Due to the fact that the quantum corrections to the
mass of the Higgs are quadratically sensitive to the cutoff, this means extreme
adjustments are required in order to make a collection of large numbers turns
out to be a small one. This is known as the fine-tuning or naturalness problem.
In other words, the Higgs is light without reasons (from the model). To make
the Higgs naturally light, there must be new physics somewhere below 1 —2 TeV
(i.e., small cut-off). However, the results from the precision electroweak tests
tell us that the new physics will not show up below 5 — 10 TeV (i.e., large cut-
off), which certainly not go along with the naturalness arguments. Altogether



the problem is usually referred to as the little hierarchy problem or the LEP?
paradoz [1]. An understanding of the electroweak symmetry breaking cannot
be regarded as complete without solving these problems.

Several attempts have been made to deal with the fine-tuning problem.
Some rely on the cancellation mechanism between the dangerous diagrams
from heavy (yet unobserved) particles and the standard model maintained by a
symmetry, such as supersymmetry. Some do not use an elementary scalar in
the model at all. Technicolour models (see Farhi and Susskind [9] or Kaul [10]
for reviews), based on a scaled-up quantum chromodynamics with symmetry
breaking mechanism analogous to the BCS theory in superconductivity, fall into
the latter category. In addition to these models, there were some attempts,
first pioneered by Georgi and Pais [11], to realise the Higgs as a pseudo
Goldstone boson, a Goldstone boson that becomes massive via explicit global
symmetry breaking interactions. More serious attempts along this line were
made by Georgi, Kaplan and others [12, 13, 14, 15, 16] during the mid 80’s.
Nevertheless, their models still suffered from the naturalness (and even the
little hierarchy) problem. As a consequence it looks as if supersymmetry
(including, supersymmetric grand unification and superstring theories) is the
most promising candidate. Still, it is not the only solution.

When particle accelerators have been constantly developed, the oppor-
tunities of direct, along with precise, studies on physics of the electroweak
symmetry breaking were broaden. Then there comes the Large Hadron Collider
at CERN, scheduled to begin its action in 2008 or so, where TeV physics will be
probed directly for the first time. Many models were proposed with the hope
that they can be somehow tested in the LHC.

In 2001, the Georgi’s models were resurrected with the inspirations from
the extra-dimension physics (deconstruction) by Arkani-Hamed et al. [17, 18, 19]
and Hill et al. [20] in a class of models called Little Higgs. The crucial ideas
of the Little Higgs include the one called collective symmetry breaking, which
plays the similar role as supersymmetry. The first realistic model designed
dedicatory for being the theory beyond the standard model was proposed
by Arkani-Hamed et al. in a minimal model called the Littlest Higgs [21],
which is based on a product gauge group. The mass productions of the Little
Higgs models began after that. The other type of the Little Higgs model

2 The LEP (Large Electron and Positron) collider is the particle collider, operated during
the 90’s, at CERN.



which is based on a simple group was later proposed by Schmaltz and (the
other) Kaplan in 2004 [22]. Since the Little Higgs models were constructed
from the framework of the non-linear sigma model, there are many rooms
available for modifications. Even though the littlest Higgs, which is the most
economical model, suffered from various phenomenological constraints, many
“modified” versions were proposed including the one so-called Little Higgs with
T-Parity, by Cheng and Low [23, 24], which succeeded in avoiding conflicts with
electroweak precision tests. A work in combination with supersymmetry is even
possible (see, for example, Csaki et al. [25] or Berezhiani et al. [26]). Most
importantly, like supersymmetry and some other models, the particle spectrum
of the Little Higgs models contain various particles within the reach of the LHC.
This means it is highly possible to perform even some direct search and see which
model suits best for being recognised as physics beyond the standard model.

1.2 About the Thesis

1.2.1 Objectives of the Thesis

We have seen the reason for studying the Little Higgs. Now let us move to the
reason for making this thesis. Rather than being a detail analysis of various
Little Higgs models, this thesis should be considered as a “prelude” to the Little
Higgs. This is because though there are some reviews of the models available,
most of the topics in Little Higgs physics are not readily accessible for readers
with just the basic knowledge on the rudiments of the standard model. In
many papers, some important detail of calculations in Little Higgs were left to
be desired. In addition, while there are very large numbers of nice reviews on
the foundation of the standard model, only some numbers of resources that are
designed to fill the gap (especially for the route to the Little Higgs) are available.
So we try to make the bridge that helps to provide smoother transitions from the
standard model to the some theories beyond it, not just the Little Higgs. This
thesis is focused on the non-supersymmetric path as there are various articles

on supersymmetry.

Still, it is not possible to cover all the important topics along the way to
the Little Higgs, or to develop the story from scratches in the precise manners.
Therefore, we will try to gather the models and tools that we already have on
hand and study some important aspects. Once we are familiar with those tools,
we can get into the Little Higgs arena with the strategy: we will “translate” what



we do not yet know into the form or the system that we know how to deal with.
We will focus on some detail of calculations when it is necessary. So this is a
downside of the work; namely, we will gather as many ideas as possible while
keeping some important insights, hence making some ideas not “probed” to their
deepest level. We will use heuristic arguments on the thoughts that are related
to the common ones and will go into some calculations for the topics presented

in few literature.

1.2.2 What the Thesis Does Not Offer

There are some important topics that should have been included but are rather
too “big” to fit into the thesis in a systematic manner. The left-out topics
include (with examples of nice articles in parentheses): effective field theory ([27,
28, 29]), generalisation of non-linear realisation of symmetry ([30, 31]), detail
calculations on loop corrections and beta functions®, and precision electroweak
measurements ([32]). The author tried to “dilute” some of the topics above
and injected them into some related topics from time to time. Nevertheless,
the interested readers are advised to consults the suggested articles and the

references therein.

On the Little Higgs model itself, there are many topics that are not
included in the thesis. For example, there is only one Little Higgs model, namely
the Littlest Higgs, being studied here for the reason that it is the most economical
model available. Though it will be shown later that while the model fails to
survive the constraints from precision electroweak measurements, it does not
mean that it is not useful anymore. Besides it is the model that have been
studied most, comparing to other variations of the Little Higgs. This is simply
due to the reason that the Littlest Higgs can be easily extended or tuned to
cope with specific problem, and that it shares many things in common with the
its modified version. For ‘a comparison between the two famous Little Higgs
models; namely the Littlest Higgs and the Laittle Higgs from a simple group,
we advise the reader to consult the review papers by Schmaltz and Perelstein
mentioned earlier, as well as the comparison on the phenomenological point of
view made by Han et al. [33].

3See standard textbooks that provide the background field method for calculations of the
beta functions.



1.2.3 Other Review Articles

As of mid 2007 there are few review articles providing various aspects of the
Little Higgs models. Those that were aware of by the author will be listed
below. Many of these reviews may provide some deeper insights of the Little
models than those presented this thesis. So they are highly recommended to
readers who are interested in as most of them are available on the arXiv. The
author would also like to apologise to authors of articles that were not recognised
below.

The first short, but illustrative, article providing an introduction to the
model was given by Schmaltz in 2003 [34]. There he presented the Simplest
Little Higgs which is pioneered by himself and Kaplan [35], [22]. Later, Schmaltz
also provided two review articles (more detail); one in [36] with Tucker-Smith,
and the other as a lecture note in the TASI 2004* [37]. For the Littlest Higgs,
there is a nice review just published by Perelstein in 2007 in [38]. He emphasised
on the Littlest Higgs model (which is our main topic of the thesis) and some
on the theory space model (“Moose” type) as well as the Simplest Little Higgs,
together with their phenomenology. There is also a very nice paper on the
phenomenology of the Littlest Higgs model by Han et al. [3] which we use as
one of the main articles.

There are also few master’s theses related to Little Higgs models. Two
are from the theory group at NIKHEF including, “The Hierarchy Problem in
the Standard Model and Little Higgs Theories” by Maarten Brak (University of
Utrecht) in 2004, and “Extensions of the Standard Model and their influence on
single-top” by Erik Lascaris (University of Twente) in 2006. The Little Higgs
model mentioned by these two theses is the Littlest Higgs model. The other
master’s thesis is “Little Higgs Models: Effective Gauge Theories Stabilizing the
Electro-Weak Scale Employing Collective Symmetry Breaking” by Jos Postma
(University of Groningen) in late 2006, which focuses on the the Simplest Little
Higgs.

1.3 Organisation of the Thesis

The structure of the thesis is organised as follows. In chapter II, we will recall
some fundamental concepts of the standard model. We focus on the idea of

“The lecture is provided in the school proceeding and is available online at
particle.physics.ucdavis.edu/workshops/TASIO4/.



spontaneous symmetry breaking and will study its application in the Glashow-
Weinberg-Salam model. Though we will try to use the bottom-up strategy as
much as possible, the treatments in this chapter is rather standard. Therefore,
a casual reader may want to skip with some quick glances into the section 2.2
which we study the linear sigma model, the main tool for studying spontaneous

symmetry breaking in this thesis.

Then in chapter III we will study how the loop corrections (quantum
effects) affect the status of the standard model. To some detail, we learn how
to deal with the loop corrections using a technique provided by Coleman and
Weinberg which will be used to explain how electroweak symmetry breaks in
Little Higgs models. There we will also point out various limitations on the mass
of the Higgs, from both theoretical and experimental points of view, including
the precision electroweak tests, which convince us that the Higgs should be
light. At the end of the chapter, we summarise some of the shortcomings of the
standard model, especially the little hierarchy problem, which will tell us the

basic requirements of physics beyond the standard model.

In chapter IV, we gather various techniques that are used in many theories
beyond the standard model. The main objective of the chapter is to provide the
building blocks not only of the Little Higgs, but also of some aspects of the
physics beyond the standard model in non-supersymmetric direction. It is best
to have a quick glance at the appendix B where we present a short discussion on
the minimal version of the grand unification theory, the SU(5). This example
should provide simple, but complex enough, situations that let us learn how
to deal with particles appearing in various representations of the theory. We
begin the chapter by bringing up another way to implement the BEH (Higgs)
mechanism, but without requiring the existence of any fundamental scalars;
i.e., dynamical symmetry breaking. This is the rudiments of a class of theories
called technicolour. The same section will provide important viewpoints on the
alignment of vacuum, explicit symmetry breaking, and the pseudo Goldstone
bosons. After that, we study the formulation of the non-linear realisations of a
symmetry which serve as a crucial tool for dealing with low-energy degrees of
freedom of a theory. One of the resulting models called a non-linear sigma model
will be used extensively in the chapter of Little Higgs. Later in that chapter, we
present the simplest version of the Georgi-Kaplan model, which utilises what we
have studied in the chapter and serves as a prototype of the Little Higgs.

In chapter V, we will introduce the Little Higgs models, which bring up



the way out of the problem mentioned in chapter III by utilising what we have
developed in IV. We will focus on the Littlest Higgs model. There we present
detail calculations on most of its topics, leaving some lengthly calculations as
outlines. After discussing the model building part, we will very briefly discuss

some of the important findings from the phenomenological side of the model.
The conclusions of the thesis are given in chapter VI.

In the appendices, we provides several useful and interesting materials.
Some rudiments on group theories can be found in appendix A. In the same
appendix we also present an alternative way to evaluate the effective potential.
A review of some aspects of the SU(5) grand unification theory, which contains
useful ideas of representations of a group and the hierarchy problem, is provided
in the appendix B. Finally in the appendix C we list important mathematical

formulae.

1.4 Conventions and Notations

These are essential notations that will be used throughout this thesis. Still, not
all of the notations are standard and might be changed slightly from section to

section depending on the contexts.

e The expression A~ B=C means A~ B and B=C.
e We use ~ for an approximation and ~ for a very rough approximation.
e Electric charge of a particle is given by Qe where e is positive.

e The index 7 on quarks and leptons fields or doublets (L%, Q%, ek, u%,

etc...) denote famailies.

e Q) (sometimes appears with subscripts or superscripts) usually means an
electric charge while @ means the left-handed quark doublet.

e The superscript c denotes charge conjugation unless in some special cases
it means the charm gquark (i.e., the charm doublet Q%).

e A scalar field (both real and complex) is denoted as ¢. A scalar multiplet
will be denoted as ®, & or &, depending on the context.

e The physical Higgs particle is denoted as A while the complex fields living

in a doublet or so will be denoted with superscripts as h°, A", b, etc.



CHAPTER 11
ASPECTS OF ELECTROWEAK PHYSICS

This chapter will give a brief review of the electroweak sector of the standard
model. The presentations will be deliberately “non-rigorous” as we will try to
build up various ideas as naturally as possible (some hand-waving arguments
appear from time to time due to lack of spaces). The development of the models
without gauge symmetries will be outlined in section 2.1. Implications from
that section will underline the importance of a gauge theory. So mathematical
aspects of spontaneous symmetry breaking, which are crucial for many gauge
theories, will be discussed in section 2.2 and the results will be used frequently
in this thesis. Many of the outcomes from the first two sections will be gathered
up in the section 2.3 where we present the Glashow-Weinberg-Salam model for
the electroweak interaction. Though we try to introduce the topics in natural
ways, the contents are rather standard. So a casual reader may want to skip this
chapter with a glance at the sections on the linear sigma model in 2.2.2 and the
custodial symmetry SU(2) in section 2.3.5.

2.1 Weak Interaction Before Gauge Theories: In

Plain English

In this section we give an overview of some aspects of the developments of the
standard model. Since this kind of information are widely available, we will not
go into detail (especially, the mathematical ones). Please have a look at other
review literature; for example, by Quigg [39], Aitchison and Hey [40], and Morii
et al. [41], and the references therein for further information.

The first model capable of describing weak interactions (the beta decay)
is based on an analogy from electromagnetism, resulting in a current-current
interaction (Fermi’s model) where the currents involved are of “charge-changing”
type. The advantage of the model is that it allows some crucial phenomenological
features; namely, the maximal parity violation (i.e., weak interaction treats
left- and right-handed particles differently), and universality of couplings (all
fundamental fermions participate in weak interaction with equal coupling
strengths). It was found that hadrons experience weak interaction in a slightly
different manner from leptons. This is not surprising as now we know that they
are considered as composite particles. At the “fundamental” level, the model
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show similar family structures of leptons and quarks, which will be another
crucial foundation of the standard model.

The locality of the interaction in Fermi’s model brings up the problem of
unitarity and renormalisability. Problems come from the fact that the coupling
constant in the model is dimensional, which leads to the fact that a cross section
of a particular process grows too rapidly with energy, rendering the theory
useless in the sense of a perturbation theory at some energy scales. In the
case that we want to deal with physics at these “deadly” energy scales (which
are reachable by current experiments), we can no longer ignore the problem by
consider the Fermi’s model as an effective low-energy theory. It is also clear that
dimensionality of the couplings ruins the renormalisation programme of weak

interaction.

The problems mentioned above can be solved by further following an
analogy from electromagnetism. Still, the picture of a gauge theory is not
readily available for the weak interaction as the gauge fields cannot be introduced
in a naive way. This is because the range of weak interaction is very limited
(massless gauge fields are not applicable) and there were only charged-changing
currents in the model (group theoretically incomplete since there are only two
force mediators in an “SU(2)-like” theory). Still, the intermediate vector boson
picture, being its “higher” energy limit, is helpful and consistent with the Fermi’s
theory. The “matching” between the two models allows a prediction of the mass
of the vector bosons in terms of the Fermi coupling constant (naive dimensional
analysis works as well). The mass of the gauge boson then acts as the energy
scale of the theory. Its huge mass of O(100GeV) explains why Fermi’s model
works well - the “working arena” of Fermi’s model lies at energies far below the
mass of the vector boson, rendering the picture of contact interactions viable.
Nevertheless, without a gauge theory as the main engine, the theory still suffers
the problem of renormalisability and unitarity, only slightly less severe. The
source of the problems lies in the longitudinal components of the vector boson
and the trick for removing that component is applicable only to gauge theories.

An important step towards the standard model has been made when
the existence of the neutral (i.e., charge-conserving) weak current and its
corresponding (intermediate) vector boson were aware of, or at least anticipated.
The need for the neutral vector boson can be explained from the theory side as it
helps “soften” several processes involving the charged-currents. In addition, the
neutral current gives us a clue that renormalisability might be possible. However,
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a particular adjustment by hand (for example, to adjust the couplings between
the charged and neutral vector bosons and fermions so that severely diverging
diagrams vanish) is needed and is guaranteed to work only at the energy scale
where the adjustment was made. If just kicking the neutral vector boson into
the game is not convincing enough, a simple analysis on the operator having
the form of a conserved charge in a gauge theory also shows us that neutral
weak boson must exist in order to close (i.e., complete) the group theoretical
structure.

Weak interaction on the hadronic sector is more complicated. Neutron,
protons, and other hadronic states enter weak interactions with coupling
constants, especially the axial-vector part, that seem to be different from that of
leptons. This problem, as mention a few paragraphs ago, subdued with the
introduction of quarks as an internal structure. During the time when the
family structure of the leptons were not very convincing and only 3 quarks
seemed to be required, the asymmetry between leptons (strange quark did
not have its partner) left strangeness-changing charged-current processes poorly
explained. It was Cabibbo who suggested a hypothesis that quarks entering
weak interactions are not the quarks in their mass eigenstates. The picture
allowed a pair up between the s and u, allowing the s to live (in a small “room”

in the u — d family, merging with the d as the Cabibbo’s down quark.

Solving one problem of the process involving charged current brings
up another problem when the neutral current is taken into account; namely,
the process dealing with strangeness-changing neutral current is not heavily
suppressed in the way people in the labs have seen. The problem of “non-
diagonal” interaction of the neutral current is solved in an easy-to-expect,
yet elegant, manner by making an analogy, under weak interaction processes,
between quarks and leptons. The missing piece (the charm quark) was proposed
as a partner of the quark orthogonal to the Cabibbo’s down; completing the
family structure, solving the above mentioned problem. The idea of families we
have on hand can be easily (and successfully) extended when one member of the

family was found.

We cannot leave this section without emphasising that to keep ourselves
in the main courses that will eventually lead to the Little Higgs model, we
have solely outlined very small fractions of what are important and interesting
landmarks in the art and science of theoretical and experimental particle physics
during the “pre-electroweak” era. It is by no means expected that this short
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outline alone will convince the readers to believe in what were written above
and those who are interested are strongly encouraged to go spend some times

with various review articles available out there.

2.2 Hidden Symmetries

Now as we are convinced that electromagnetic and weak interactions can be
unified by the use of a gauge theory, we face an immediate difficulty right away:
while we know that the gauge fields mediating weak interaction are massive,
an explicit breaking of gauge symmetry by introducing mass terms for the
gauge fields is not preferable. The gauge fields must be massless or else the
corresponding gauge symmetry is violated. However, it is essential to underline
that the reason that the mass terms are not introduced by hand is not because
they spoil the beauty of gauge symmetry, but because they make the theory
non-renormalisable (and hence loses its predictive power). Still, this is fine if
we restrict ourselves to low energy phenomena. However, in order to keep up
with the current accelerators and to construct a gauge theory that describes a
unification between electromagnetic and weak interactions and so on, we must
find a way to let the gauge fields be massive without spoiling gauge symmetries.

When it is possible, a renormalisable theory is much more preferable.

The way that seems to work so far is commonly known as the BEH
or the Higgs mechanism (or the Brout-Englert-Guralnik-Hagen-Kibble-Higgs-
Anderson mechanism; see [42], [43], [44, 45]. [46]). It is the interplay between
the spontaneously breaking of global symmetry and the gauge symmetry of
electroweak interaction. In short, the BEH mechanism tells us how the gauge
fields become massive by interacting with the Goldstone bosons!.

In general, the mechanism requires that the Lagrangian under consid-
eration contains-a sector preserving a gauge symmetry and the other sector

generating spontaneous breaking of a global symmetry
L = Lgange + LsB - (2.1)

The existence of the Lagrangian that describes global continuous symmetry
G broken spontaneously to its subgroup (say H) is required so as to break
the gauge symmetry of the Ly,u4.. In other words, we can say that the BEH

!Despite its name, the Higgs particle is another story from the BEH (Higgs) mechanism. As
we shall see, the BEH mechanism operates with or without the Higgs particle.
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mechanism always occur when a gauged continuous symmetry is spontaneously
broken. Notice that, it is not necessary that the global symmetry G be the
same group as the gauge group (which is the SU(2) x U(1) electroweak in most
of our considerations). However, for phenomenological purpose on electroweak
symmetry breaking, G must be big enough to contain the electroweak gauge
group and H must be at least as big as the electromagnetic gauge group (which
is the exact, unbroken, one).

The general idea of spontaneous breaking of a global symmetry will
be explored in the next section, followed by its application in a model called
the sigma model. The second part, which is the main ingredient of the BEH
mechanism, that is played by the gauge sector will be discussed after that.
Related discussions in the following sections can be found in Chanowitz [47],
Pokorski [48|, Georgi [49], and Cheng and Li [50].

2.2.1 Formalism

Here we will discuss about spontaneous symmetry breaking (SSB) in quite a
general way. Let us begin with the fact that in some systems, the symmetry
that is used to describe physical laws is not realised in its original form. In those
system it is usually found that invariance of the ground state is not necessary the
same as the invariance of the Hamiltonian (or the Lagrangian). Now suppose
that we have a degenerate set of ground states®, say |0), which will lead to
different physical states in the context of quantum field theory (think of a system
of ferromagnets below the Curie temperature). In addition, let us say that the
Hamiltonian is constructed from an object called ¢. Then we see that it is
possible to find a symmetry transformation {U(g)|lg € G: ¢ — ¢'} that leaves

the Hamiltonian (or the Lagrangian) invariant
UH Ut = Hy (2.2)
but acts on a ground state in a non-trivial way

Ulo) = |0') # |0). (2.3)

2In this section, the Hamiltonian formalism will be used.
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This implies that U does not connect states (which is constructed out of the
ground state by the fields ¢,) that form an irreducible representation of G:

Ul1) # |2) (2.4)

which means (1|Hy|1) # (2|Ho|2). In other words, the degeneracies of the
energy eigenstates (spectrum), which are supposed to show up according to
the symmetry of Hy, disappear. This also means that there exists a particular
field ¢; whose vacuum expectation value transforms (non-trivially) under the
operation Gj i.e.,

(0|UTp:U0) # (0]4:[0) (2.5)

which suggests that
(0|¢;|0) = v; #0 — SSB. (2.6)

Which element of the ¢ will be given non-zero vacuum expectation value
is a question that has to be handled with care. Suppose we have associated the
correspondence between physical particles and the fields in the Hamiltonian, as
well as fixed the interpretation of the symmetry generators right from the start.
Though each of the ground state in the space of the degenerate vacua results in
equal vacuum energy, phenomenological observations will restrict only a specific
set of the field ¢; to have non-zero vacuum expectation value. Otherwise we
get a “wrong” ground state with the same mathematical relations between the

generators but different meanings.

The other way we can go is that we start with a specific pattern of
symmetry breaking. This completely defines a complete set of degenerate ground
states, which we demand to be equivalent if they result in the same pattern of
symmetry breaking. The choice of a ground state then becomes purely a matter
of convention. After picking one up, we have to find its matching set of broken
and unbroken generators. Then we have to re-associate the field in question
with their new (and correct) physical interpretations. The resulting Lagrangian
or Hamiltonian may be in an unfamiliar form which, however, can be recovered
into the usual form by performing a G transformation on the fields. One of the

clear example is the linear sigma model that we shall soon meet in section 2.2.2.

To sum up, SSB occurs when the global symmetry (corresponding to the
subgroup H of G) of the ground state is not the same as the global symmetry (G)
of the interaction of the Lagrangian or the Hamiltonian of the system. We may

also view this result as follows. For a spontaneously broken symmetry system
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consisting of particles corresponding to the ¢, the interactions between these
particles are arranged such that it is preferable to fill the vacuum with them
instead of leaving it empty. The vacuum expectation value plays the role of the
order parameter which signals whether to break or not to break the symmetry.
It should be emphasised that the order parameter is not necessary a fundamental
scalar. A composite object like a fermion condensate ¢ ~ ¥ is allowed as well.
The latter case will be examined in more detail in section 4.1.

For the case of continuous symmetries, we express the group elements in

terms of the symmetry generators (or charge) Q,; i.e., U = e"?". Then we have
ana _ bbb 12 Q2.
by — € Q pie ® Q _ it Q”¢j (2.7)

where Qf; is the matrix representation of the group, obeying the same algebra as
those of @*’s. So we say that when the charge does not annihilate the vacuum

Qa[0) # 0, (2.8)

(or Q,uv; # 0) then SSB occurs and this particular Q, is called a broken
generator. Supposing that a ground state occurs when the fields takes a value
that is denoted collectively by ¢q; In other words, when there exists a subgroup
H C G having elements h € H that leave the ground state invariant h¢y = ¢o,
we say that G is spontaneously broken to H. In this case, the number of broken
generators are dim(G) — dim(H). Notice that the elements corresponding to the
broken generators do not form a group (clearly, they do not have an identity).
However, they do form a coset G/H, which is basically a set whose elements
themselves are sets of the G group elements®. It is an equivalence class defined
to contain all of the elements; of G related by a multiplication by an element in
H.

In principle, we do-not know which direction (choice) of the subgroup
H will be when spontaneous symmetry occurs. ‘Suppose we have ¢ € G/H, by

construction this z will not leave the ground state invariant:

z|0) # [0) . (2.9)

3The left coset (of g) is a set defined by gH = {gh|h € H} in one element of G/H.
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However, the pattern of symmetry breaking and the structure of the group have

not changed under this action. This means that we can define a vacuum
|2) = z|0) (2.10)

which in turns defines another subgroup H' of G. The point is that, without
other interactions; it is obvious that the new subgroup H' is equivalent to the
old one, the H. Interesting situations will show up when we turn on other
interactions which has a preference in a specific orientation of the subgroup H
and the energy of the vacuum will depend on its orientation. We will come back
to this case in section 4.1.2.

Now we will jump directly to the Goldstone theorem, which can be found
in many literature nowadays. It says that each broken generator of a continuous
symmetry G leads to a spectrum of Lgp corresponding to a massless (its energy
vanishes in the limit of zero momentum) spin-zero particle, whose state denoted*
by |7), that can connect to the vacuum by the field operator ¢ or the current
Jo; i.e.,

(r|p(0)[0) # 0, ~ ({0]Jo(0)[m) # 0. (2.11)

This massless particle is called a Goldstone boson. In general, a Goldstone
boson can be created or destroyed by a symmetry current associated with the
broken generator ¢),. This also implies that the number of the Goldstone bosons
equals the dimension of G/H and does not depends on what representations the
fields belong to. The Lorentz invariance tells us the matrix element between the

Goldstone boson and the vacuum state can be parametrised as
(0|J#(z)|mi(p)) = —ip*Fee P (2.12)

where F'9, is a constant matrix. In many cases, when the currents are the ones
that correspond to an irreducible representation of the broken generators, the
matrix F¢ can always be diagonalised; i.e., F'§ = Fd,;. Upon taking pu =
0 in (2.12) and the assumption (2.11) which says that the conserved charge
corresponding to the broken generator does not annihilate the vacuum, we find
that F' is non-zero. Then the conservation of the current J#* implies

(018, J#*(z)|mi(p)) = m7Fse ¥ =0 (2.13)

“We usually use the 7 for the reason that pion is the usual suspect for being a Goldstone
boson. See later sections.
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which reproduces the Goldstone theorem; i.e., m2 = 0.

Now we will turn to the case where the SSB is generated by elementary
scalars. Let us consider a set of real scalar fields with the corresponding potential
that is invariant under a particular global symmetry group G (which maybe
O(N), SU(N), etc.). This means

(T°¢) 0 (2.14)
where T is a generator (not necessarily corresponding to an irreducible
representation) of G and (T°¢); = T ¢;. Spontaneous global symmetry breaking
from G to its subgroup H occurs when the structure of the potential of ¢; leads

to the non-zero vacuum expectation value

(01¢:0) = s, (2.15)
with
="' 5. =1\
(T0); . WhkS (2.16)
#0 fora=nyg+1,..,n¢

Note that it is not necessary to restrict the vacuum to a particular m* direction
like (0|¢;|0) = v; = d;mv (though this is mostly the case when we deal with
SSB). Using (2.14), the vacuum configuration (2.15) implies
0%V
0¢.0¢y

that the (T%¢); for ng + 1,...,ng are the Goldstone bosons with the relations

(T°¢)i =0, (2.17)

(0] J¥2(z)I¢w () = —ip* (Tu)ne 2 (2.18)

Let us call the T for a = ny + 1,...,ng a broken generator T with indices
renamed so that e = 1,...;(ng — ng). Then the ¢; can be parametrised such

that the Goldstone bosons lie along the direction of the broken generators,
¢ = €O (v, 4 py(2)), (2.19)

which means they are obtained from a ground state by a symmetry trans-
formation with spacetime-dependent parameter. Here x;(z) and p;(z) are
orthogonal. When the vacuum is aligned along the m®* direction we get
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¢ = eT5x*@)/%s. (v; + p;(z)) which can be arranged so that

0 X1
¢ = T x @)/ 0 1= y + higher orders. (2.20)
ng—1
v+ p v+ p

For the special case where the potential has the well-known“Mexican hat” form,
we see that x is a Goldstone field in the valley direction and p is a massive field in
the radial direction. Observe that the symmetry G can be “realised” in terms of
the transformation of the fields p — p while the x? transforms in a complicated
way. To linear order, we have x¢ — x® + constant, which clearly protects the
x's from being massive. The transformation of the Goldstone bosons does not
concern us at the moment since they will eventually be traded with the massive
gauge bosons (see section 2.2.3). We will come back to this story in the section
4.2

Before we move on, it is very important to stress that spontaneous
symmetry breaking is a solely theoretical concepts and the mechanism itself
has nothing to do with experiments. The quantity directly related to SSB such
as the vacuum expectation value of a scalar field can only be “touched” indirectly
only within a particular theoretical scheme; i.e., it has no direct connection with

experiments.

2.2.2 The Linear Sigma Model

We will illustrate the idea of spontaneous symmetry breaking (SSB) by an
example of the linear sigma model. A popular example of the model is the A¢*
theory with the mass term u2¢?. However, in this section we will used another
realisation of the scalar field which can be served as a simple prescription for
dealing with pions. Though the model was originally made for describing chiral
symmetry breaking in the strong interaction regime, the idea will be useful when
we consider other symmetry breaking phenomena including the Little Higgs.

Pions are like no other hadrons. We know that hadrons consist of 2 or 3
quarks, 2 for the case of pions. So it is tempting to guess that the mass of a pion
should be somewhere around 2 x 1GeV/3 ~ 700 MeV where the 1GeV is the
mass of a proton. However, it turns out that the mass of a pion is approximately
135 — 140 MeV while other hadrons, like the p, are heavier than ~ 800 MeV.
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Consequently, we do not have much choice but to construct an almost massless
particle out of the massive ones by regarding the pions as (probably composite)
Goldstone bosons. This is why we need to use spontaneous symmetry breaking.
This is where the sigma model comes in.

Now let us turn to the linear sigma model. Consider a system consisting

p
n
field ¥ consisting of a pion triplet 7w and its company, a scalar meson ¢. Since the

of massless (zero bare mass) nucleon doublet N = ( ) and a massless spin-0

nucleon fields are massless, the theory does not possess only the SU(2) isospin
symmetry but also a larger symmetry group which is the SU(2); x SU(2)x chiral
symmetry defined by

5NL - iE%TaNL, 5NR = i&'%TaNR. (221)
Both can be grouped together in the more useful form
0N =i(e® — vseg)T* N, (2.22)

where ¢* = (¢}, +€%)/2 and € = (¢} —€%)/2. As usual, we can reverse the logic

and say that this chiral symmetry “protects” the nucleon from being massive.

What is often referred to as the sigma model is actually the scalar
(¥) part that contains the potential of ¥ which is arranged so as to generate
spontaneous symmetry breaking. It is a renormalisable field theory®. This &
system interacts with fermions via Yukawa interaction. The Lagrangian of the
whole system L is therefore

L = iNAN — gNEN + L(Z)

which is invariant under the SU(2), x SU(2)g symmetry if the 3 transforms in
as follows:
¥ — LZR! (2.24)

for N, — LNy and Ng — RNg. In other words, X transforms as the (2,2)
representation of the SU(2) x SU(2). There are many forms possible for the &
and we will use more than one of them in this thesis. The symmetry that is

5This linear sigma model stands on its own as a theory for describing spontaneous breaking
of a chiral symmetry. Unlike the non-linear version, it is not to be considered as a low-energy
effective theory of QCD or so.
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manifested depends on the form of the field 3. Here we pick out one that allows
us to conveniently work with isospin symmetry. The ¥ can be decomposed into

the triplet 7 and the singlet o
Y=o+ir -« (2.25)

where its elements transform under the SU(2) isospin transformation N —
ei€~’7’/2 N as

T—THEXT, o—0 (2.26)

. 4 . 5
and under the axial transformation N — e€4 77 /2N as

T —e F €0, O— 0 —€4-T, (2.27)

or in short (notice the different meanings between & and £°)
o — og+eym® (2.28)
7° 5 it et — %o . (2.29)

Then it is found that the conserved vector and axial vector currents are

— T
J = Ny, o N+ m % 9, (2.30)

BE= J\_f'yM'yS%N — (78,0 — 08, ™) (2.31)

respectively. After this it is easy to evaluate the conserved charges (from the
u = 0 component). With these conserved currents on hand, we can reverse the
argument below (2.22); i.e., the non-conservation of the currents can be used as

a measure of the nucleon masses®.

Next we will construct the potential for the ¥. The invariant object is
constructed from the field ¥ via Tr2fS. By nature of spontaneous symmetry
breaking, we expect that there is a particular energy scale such that the SU(2) x
SU(2) symmetry manifests at high energy but is hidden at energy below this
particular energy scale. The Lagrangian for ¥ that leads to SSB is given by

L(D) = ;Tr(a“Z}TB#E) - ;\ (Tretey - F2)°
_ 1 1 AT 2 2 212 .
= ,0400,0 — 0w Qum — (*+7%) - F2]";  (2.32)

6Tt is better to use this statement when we refer to quark masses since we can talk about
their bare masses in a more proper way.
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i.e., the form of the potential leads to a minimum at
o? 4+ n? = F?, (2.33)

rather than at 0. Later we shall see that F; is the amplitude for a chiral current
to create a Goldstone boson out of the vacuum, hence its name the pion decay
constant. All “directions” of the ground state, determined by which fields (7, or
o) are given non-zero vacuum expectation values, are equivalent as they satisfy
(2.33), and are connectable via SU(2);, x SU(2)g transformations on ¥. Once
a specific vacuum is “chosen”, the symmetry is spontaneously broken down to
SU(2). But which SU(2)? Fortunately, the Lagrangian (2.32) tells us that all of
the available vacua have the same energy and we are at liberty to pick out the
desired, phenomenologically correct, one. Recall that axial symmetry implies the
existence of a particle with mass similar to that of a neutron, but with opposite
parity. Such the particle has never been found. So it is expected that the axial
symmetry is broken, not the isospin (recall, m, ~ mgy). In other words, chiral
symmetry SU(2), x SU(2)g should break down to SU(2)..g. Consequently,
the vacuum must be an isospin singlet but transforms (being non singlet) under

a chiral transformation; i.e.,

Qvio)=0,  Q3[0) #0, (2.34)

where Qy and Qg are constructed from (2.30) and (2.31). In other words, only
the isospin “charge” disappears into the vacuum. So the vacuum is said to be

“filled” with the isoscalar meson o alone; i.e.,

Oxjo)y=0,  (0lojo) = F, . (2.35)

Now let us consider the state built from the vacuum by defining the
shifted (physical) field
o'=0—F, (2.36)

which has zero vacuum expectation value (VEV). This leads to
.= I 1.
L = IN$N+§8 0'6#0'—56 77'8#77
_ 1
—gF.NN — 5(2>\F,3)a’2

—go'NN +igNw-1y°N —

> >

(012 +7r2)2 A (0" +o'm?),
(2.37)
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where it is clear that the trace of the SU(2) x SU(2) symmetry is hidden from the
particle spectrum. The SU(2) x SU(2) symmetric term (o2 + 72) now describes
interactions between the o and the 7. In the Lagrangian (2.37) we see a nucleon
with mass my = g¢F, interacting with a massive scalar field o having mass
me = v/2MF, and a triplet of massless fields . Here the fields 7 (the pions)
are the Goldstone bosons corresponding to the broken generators QQs. Now the
axial vector current (2.31) becomes

Jo = ]\_/"y#’ysgN — 0,0 +0'0,7 + Fr0,m. (2.38)

Notice that the term linear in the Goldstone boson fields (7) leads to the
transition between the Goldstones and the vacuum via the axial current:

(0| J2 (z)|my(p)) = —ip” Frbape P2, (2.39)

where a corresponds to the broken generators. For further references, we note
that

(0147, (2) Iy, (0)|0) o &
(0175, (2)J5,(0)[0) o 6%
(011 () J5,(0)]0) = oO. (2.40)

What we have also learnt here is that since the nucleon is massless in
the absence of (chiral) symmetry breaking, its mass should also lie within the
order of the symmetry breaking scale. In this sense we regard the A ~ m,
as the mass scale of the theory where “new physics” shows up. Later we shall
see that this new physics may be weakly interacting theory with spontaneous
symmetry breaking (like what we are currently doing) or strongly interacting
one’. Since the scale F, is completely arbitrary, it can be set to the value that
we find appropriate. At first sight it seems that if we assume that F, (and hence
the m;,) be very high, co for example, we can describe the low energy physics
involving only the Goldstone boson fields by decoupling the ¢ and the nucleons
N’s from the Lagrangian (2.37). This also means setting the quartic coupling
A to infinity. The problem is that this idea does not work. While the removal
of the field N is perfectly allowable, the naive removal of the o destroys the

"This case happens when we set A very large and hence the Landau pole stays close to the
mass scale m,. So we have to introduce some cut-off before the theory we have on hand becomes
unreliable. See section 3.2.1.
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SU(2) x SU(2) symmetry altogether. Even worse, if we try to keep working
while pretending not to worry too much about the symmetry, the effect of the
o is still there in the omm and the mmmm couplings. This means a process like
mw — 7w still has an infinite contribution from the coupling, and hence cannot
be neglected. A nice way to deal with the low energy physics in terms of the
Goldstone boson fields while still being SU(2) x SU(2) invariant will be discussed
in section 4.2.

2.2.2.1 Remark 1: Another Representation

Let go back to the vacuum condition (2.33). It also reminds us the similarity
between the structure of SU(2) x SU(2) and SO(4). In the real representation,
isospin generators become, for example,

i & ) e B To— ... (2.41)

Other generators are displayed in appendix C.3.0.3. The generators for the axial

transformation must involve a change made to the o; i.e., the 4 component,
Ti= fffffffffffffff l=... (2.42)
Then the SU(2) x SU(2) quadruplet can be written as

$ =

,n.l

2
e
3 (2.43)
g

Note that this quadruplet (of real fields) still transform as a (2,2) under the
chiral group. For the case that the symmetry is broken to SU(2)y, this field can
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be parametrised as (see (2.20)),

X1
i i 0
®—expl | Xz . (2.44)
F ixs 0
—ix1 —ixz | —ixs Vm? + o2

Observe that this “¢transfers” the degrees of freedom of the Goldstone bosons to
the parameters of the SO(4) rotation.

2.2.2.2 Remark 2: Different Choices of the Vacuum

Another thing to remark is what we have mentioned in the section 2.2.1 (page
13). It can be shown that a different choice of vacuum; say, (7') = (72) = (g) = 0
and (m3) = F # 0 also leads to the same physical content where the 7*, 72, o
are the Goldstone bosons. The mass terms for the nucleon will look like

igF, Ny’ T°N (2.45)

which can be reverted to the usual mass term Nj Ny + NN, by a rotation on

N;, by —it® while leaving Ny not transformed.
2.2.2.3 Remark 3: The Background Field Point of View

In this remark, we review a realisation of the symmetry breaking that makes the
claim “vacuum filled with a scalar field” more transparent. Let us say that the
minimum of the potential in (2.32) occurs at® o = 0. = F,. This means after the
symmetry is broken, the state of a particle is described by an excitation of the
field o near the classical field o.. This excitation can be described by changing
the variable

o—a+ag. (2.46)

Just notice that o, is considered as a constant background field (no kinetic

term) and is not necessarily the same as o.. Then quadratic-field part of (2.32)

8For simplicity, we will deliberately be less rigorous and focus on the field o alone with the
assumption that the reader will remember that we always have the 7 in the system.
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becomes

A 3
L(o+0y)s D +§02F7f — 5)\0302

A
= —5(303 — F)o?. (2.47)

In addition, we also have various interaction terms between o, 7 and the
background oy. In general when o9 # 0 we see a o field propagating with
effective mass

m2 = \(303 — F2), (2.48)

Xy

assuming that 308 > F2. Only when oy = 0. = F, will the effective mass m,

become
m2 = 2\F2 > 0. (2.49)

Clearly, this field description allows us to view the current situation as follow.
There is a particle (field quanta) corresponding to the field o with m2 = 2\F?2

propagating in the vacuum filled with the constant background field oy.

2.2.3 Gauge Theory with SSB: Conventional Aspects

In this section we consider the important part of the BEH mechanism: when
the (spontaneously) broken generator of Lsg “coincides” with the generator of
the Lgouge- In other words, it is the case when the Goldstone bosons (from
spontaneous breaking of a global symmetry) are coupled with the gauge fields
of Lgauge- Universally of the coupling strength tells us that the gauge bosons
couple with universal strength to all quanta carrying the charge of the gauge
group. Then it is almost transparent that in the minimal model with one vacuum
expectation value, the masses of the gauge bosons are determined by the gauge

coupling constant.

Let the scalar fields ¢, (corresponding to the global symmetry G) couple
with the gauge fields of a (local) gauge group Ggauge: When Ggauge = G, We
say that the global symmetry of the system is promoted into the local (gauge
invariant) one. The coupling between these fields and the gauge fields W is
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displayed in the kinetic term

2

= (@) gV [0,0:(T°9)]

+;g2wgwb#(Ta¢)i(Tb¢)i | (2.50)

1 M a a
3 ‘ap(bi — igW(T*®):

which clearly reflects the universally property. Recall that in the ¢ sector, we
have
¢ = "XV (v, + p,(2)), (2.51)

where the x’s were used to parametrise the Goldstone boson for the global
symmetry case. Gauge symmetry claims that not all of the particle represented
by the fields displayed above (the gauge fields W and the ¢) are physical and a
gauge transformation W, — W, removes all the x dependence (i.e., by setting
the gauge transformation parameter 6(z) = —T°x‘(z)/v). Actually nothing
is missing because the gauge fields, which is equal in number to the missing
Goldstone bosons, in the system are massive with their masses described by

2
g crprie
M2 = 5(v*u)T WET* W' (2.52)

In other words, the Goldstone bosons become the longitudinal degrees of freedom
of the gauge fields. For this reason these x are called the “would-be” Goldstone
bosons. Literature may prefer to say that the Goldstone boson was “eaten”
and become the longitudinal polarisation of the gauge field. Remember that
mass terms for charged and neutral particles are different in most standard

conventions.

To illustrate how this works, let us consider the Abelian U(1) case,

1

2\ 2
L=18,¢—ieA,d]> — X <¢*¢ + ;\) g Fu P (2.53)
where the global symmetry is spontaneously broken when m? < 0. The vacuum

expectation value (for ¢) v = (0|¢|0) = (—u?/A)/? and the parametrisation

#(c) = pla)e X" (f) (2.54)
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0 i
where T' = ( i ;) bring us the field
—i

¢'(z) = ¢(z) — (0¢l0) = (p(z) — )™/ (S) ) (2.55)

that has zero vacuum expectation value. The Goldstone boson () degree of
freedom can be removed by choosing an appropriate U(1) gauge choice called
the unitary gauge, say 6(z) = —x(z), where only physical particles show up in
the Lagrangian. Gauge symmetry is said to be broken spontaneously (or hidden)
and we get

By(z) = ¢5(z) ~ (0¢)0) = (p() =)™/ <0> (2.56)

1

A7) = A”—e—lz;a“x(:v) (2.57)

which leads to the Lagrangian
L = lF Frv }6 ool ¥ 2AA 1)\ 4
—_49;1.1/9 +2#p p+2e'v #_4p
1
+e’vp' AFA, + Eezp’zA“Ap — M?p? — \vp?, (2.58)

where the gauge field becomes massive with mass determined by the couplings,
ms = ev, as expected. Nevertheless, gauge invariance is not spoiled but is
hidden; i.e., (2.58) is still gauge invariant. The price we have to pay is the
existence of the uninvited guest, the massive scalar field (the p’ here). When the
BEH mechanism is implemented in the standard model, the missing particle is
commonly known as the Higgs.

However, since the massive gauge field is generally not friendly with
renormalisation, we must find another gauge where renormalisability is manifest.
Remember that the theory was renormalisable, at least, before the symmetry
had been hidden. Here, let us parametrise ¢ = (¢ + ix)/v/2. Denoting the



28

physical fields as ¢’ = ¢; — v and X’ = x, the Lagrangian then becomes

1 1 1 1
L = —ZF¥F, — —(8,A*)* + Z(8,9') + =(8,X')?
4 b 20,(“ )+2( #‘P)+2( LX)
1
+§e2v2A“A# — evA*d,x

A
=707+ X°) = x(¢” + X7 — At Ay

1 1
—562A”Aﬂ(p2 - EeZA“Aux2 +eA,x0"p —eA,pdhx,  (2.59)

where the second term is the gauge fixing term. Let us further work this out in
more detail. When first line of (2.59) is taken as a free Lagrangian, we easily

read off the free propagators in the Landau gauge (a — 0)

i o
A L plet = p'p”/p*) = —iDy (2.60)
i
i
X - 7 (2.62)

Next recall that since the scalar field carries the quantum number of the
symmetry current, the Goldstone boson (the x) can couple, via the gradient
coupling, with the gauge boson according to the term —evA“d,¢, with the
coupling constant ev. The mass term can also be viewed as a vertex. Both are
displayed in fig.2.1. We can also arrive at the similar pictures using the fact

_lefup/" ie2,U2
ANNANANANANAS- —— — P — — — AN NN NN NN

Figure 2.1: Contributions from the scalar field

that the Goldstone bosons have non-vanishing couplings to the electromagnetic
current which couples to the gauge field A*:

(0[J#(0)|m(p)) = ip* Fi. (2.63)

This also yields the same coupling iF,p* where we can identify F, = v.
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To calculate the propagator for A* we first evaluate I1(p?) defined from

the vacuum polarisation tensor
i (p?) = & [ dhoe™ (0T J4(2)J* (0)[0) = i(g"P® — P )I(p")  (2.64)

which, to the lowest order, we find

ie*v’q,,  —i(pp”/p?)ev?

'\I\.@W = " AN - - e

\ 1
=) 162’1129“1/ y vzp,upveQ,U2
p

oV
= iev? <g’“’ - Z%) (2.65)
p

which means II(p?) = e’v?/p?. Notice that this vacuum polarisation tensor is

transverse; namely,
22 =0, (2.66)

Moreover, since the I1(p?) is singular when p — 0, it cancels exactly the massless
pole p> = 0 of the gauge boson propagator given in (2.60). This can be seen by
recalling that the A propagator, constructed from a geometric series, is given by

D* = (Dg+4 DoIlDg+ ... )"

i L nV 62'02
_ _%(gw_w_) [1+2+...]

p? p? D
gH — prpY [p?

= -i o (2.67)
——

- i =0 2.68
) (2.68)

Put differently, the A acquires mass through its pole (of its propagator) at
m, = ev. It is important to emphasise that the Goldstone boson does not
appear as an external particle (because it is not the physical one). So it maybe
useful to find the other gauge that removes the coupling evA,0x, which is
found to be accomplished by the gauge fixing

1
- 5(6#14“ — tevy)?,. (2.69)
This gauge, which was shown by 't Hooft to preserve renormalisability [51], is
known as the R, gauge (“R” stands for renormalisable). With this gauge fixing,
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the first two lines of (2.59) becomes

1 1 1
L —~FMF,, — —(0,A%)" + ~(8ux')?
D 4 J 25( )° + ( u‘p) + 2( LX)
1
+§m?4A“A# — Efmixg , (2.70)

leading, when being regarded as a free Lagrangian, to the propagator for the

gauge boson

i (1— §)p'p”
A, s P
H“ p2 a 62,U2 g é‘e ’U2
p— _ig,UvV a2 p#pu/mi = ipﬂpy/mi (2 71)
p* —mj p* —€mj

which can be easily seen to reduce to the unitary gauge (massive gauge field) in
the ¢ — oo limit. The unphysical pole in the propagator of A, can be shown
to cancel exactly with the other from the propagator for x’. The Landau gauge
and the ’t Hooft-Feynman gauge are recovered in the £ = 0 and ¢ = 1 limits

respectively.

The result in this discussion can be easily extended to the non-Abelian
case. The expression for the mass of the gauge boson (2.52) can be rewritten

(with some obvious generalisations) in this way

2

%(TCUT)i(T‘iv)inW'd” (2.72)
which gives us the mass matriz
May= g°(T*v):(T"v); (2.73)

Moreover, the interaction between the gauge fields W and the Goldstone bosons
is then generalised to
n igW:G“gbi(T“'u)i (274)

which leads to the transition amplitude

1
U A~ ———-- = gp'u(Ta’U),i (275)

L 0V
'\zx@w = imib <g'uu—p p > . (2.76)
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When there are more than one coupling in the theory there will be more
amplitudes of the form like (2.75) corresponding to different couplings between
different kinds of the Goldstone bosons and the gauge fields.

2.3 Gauge Theory for Electroweak Interaction

From now on we will work with the assumption in mind that interactions are
explained by local symmetries. When gravity is excluded, the “local symmetries”
then reduces to “gauge symmetries” and we are will be ready to proceed with
the tools on hand. We begin in 2.3.1, where we will argue heuristically to
find the suitable gauge group. Then we associate particles their electroweak
quantum numbers, grouping them into doublet-singlet structure. The physical
current like the electromagnetic current will be constructed and expressed in
terms of currents corresponding to the electroweak gauge group. These currents
will interact with the gauge fields. The detail of the latter will be shown in
section 2.3.2. All those sections alone will be, to some degrees, useless because
the concepts of electric charge and so on will not make any sense unless the
symmetry breaking occurs. So in section 2.3.3 we present the usual strategy
of the spontaneous symmetry breaking; namely the BEH (Higgs) mechanism
triggered by a fundamental scalar. After that we will show, in section 2.3.4,
how fermions, whose masses protected by chiral symmetry, receive masses by
interacting with the Higgs particle. Finally the idea of custodial symmetry
SU(2) will be introduced in 2.3.5.

2.3.1 The Gauge Group for Electroweak Interaction

In this section we will start with a “given” structure of the fermions and their
interactions with the bosons that are known so far according to experimental
observations of weak and electromagnetic processes. We shall seek for the
appropriate gauge group in order to realise the theory as a gauge theory. Then
we can study some properties of the corresponding gauge fields and imagine how
they should look like after spontaneous symmetry occurs, pretending that we
do not care (for the moment) that they are massless.

Weak interaction can be explained by the prescription of interactions that
is rather similar to the electromagnetic one; namely by introducing 3 (spin-1)
bosons and let them couple with fermions. Since two of the bosons are charged,
the interaction between these bosons and a photon is inevitable. Therefore,
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it is very tantalising to look for a theory that “unifies” electromagnetic and
weak interactions into the electroweak one. The main task is simply to look
for a suitable gauge group. By “suitable” we mean that the group must not
only be large enough to contain at least 4 gauge bosons and allow us to fit
all known fermions into some of its representation, but the group should also
require minimal introduction of new particles. The SU(2) seems to be a good
candidate but is, however, not good enough (see next paragraph). Therefore,
we will look for an extension of this group.

We will list the fields that the sought-for theory is supposed to handle.

The three lepton families are

() , () , () S (2.77)
e u 7R
L L L

and are now regarded as doublets and singlets (not just a collection of fields).
The right-handed electron, muon, and tau are also needed since they participate
in electromagnetic interaction. They are expected to appear as (electroweak)
singlets because charged-changing current weak interaction does not “touch”
right-handed particles or left-handed anti-particles. The right-handed neutrino
fields are not needed because they do not participate in weak interaction. The
left-handed doublet L; and right-handed singlet [z are given explicitly by

1—9° [y 1495
T— T— ! 2.78
and similarly
_ . . 1+,),5 _ _ 1_,),5
29\ | (350 (2.79)

Quarks appear in quite a similar structure except that all of them have right-

handed partners

U c t
(d/> ) <8I> ) (b,> ) Ur, d{R ) Cr, S{R ) tR ) be . (280)
L L L

Notice that the arrangement of fermions in doublets and singlets in this way
automatically leads to parity violation in weak interactions. However, it is
important to remember that this does not explain “why” parity is violated. It
just describes “how”. Also remember that members of the multiplet are ezactly
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the same before electroweak symmetry is broken. In addition, their masses are
protected by chiral symmetry. Only after the spontaneous symmetry breaking
occurs will the definitions of masses and charges be technically reasonable.

A unification with electromagnetism means that we must incorporate the
electric charge @ into the group as a symmetry generator. Mathematically, this
immediately rules out the SU(2) group because the generator of SU(2) must be
traceless (75 is not qualified for being electric charge: neutrinos are neutral while
electrons have charge —1). Phenomenologically, the group SU(2) is also rejected
as we have seen that there s a neutral gauge boson for weak interaction. In
other words, SU(2) can provide only 3 gauge bosons while 4 are required. Then
the next candidate that is just big enough to allow the room for 4 gauge bosons,
which is the one that nature seems to chose, is the group SU(2) x U(1).

The U(1) in SU(2) x U(1) does not correspond directly to pure electro-
magnetism (i.e., its charge cannot be the electromagnetic one) and there is no
physical reason for it to be so. Actually the U(1) charge cannot be Q since Q
has a preferred direction in the weak isospin space as it distinguishes e from v,
and so on. In other words, @ is not a “constant of motion”. What we need is a
new quantum number corresponding to an operator which commutes with the
SU(2) generators T,. Let us call it the weak hypercharge Y. The connection
between the U(1) (hypercharge) or its gauge boson, which we will call B¥, and
electromagnetism or A* (photon) can be identified only with the use of further
physical arguments. So it is common to denote the gauge group for electroweak
interaction as SU(2), x U(1)y.

The form of Y can be found by observing that for each lepton or quark
family, the electric charge @ can be decomposed into two parts. The first is the
right-handed part called @gignt Which obviously commutes with T,. The second
is the left-handed part® Ques that can be further broken down into

1
Que = Ts - [ EaLlL, (2.81)
for the lepton family, and
1
Qua = Ts + ¢ [ d*2QlQ, - (2.82)

for the quark family. Here the indices [ and g stand for lepton or quark families

9Tt should be clear from the context that these do not mean the left- or right-handed quark
doublets.
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(not summed here). Since the second part of Qres commutes with T,, we then
see that Y oc @Q — T5. So we set a convention

Y =2(Q-T). (2.83)

Let us denote the SU(2). coupling as g and the U(1)y coupling as g'. Before
proceeding further, let us notice that though we can start with g’ = g, there is no
symmetry that relates these two couplings (e.g., we cannot write Y in terms of
a commutator of the SU(2) generators). This also means they are renormalised
differently and tend to differ from one another as we watch them “run”. Once we
have the definition (2.83) and the fermions structures (2.77) and (2.80), we can

assign the hypercharge to all fermions as shown in Table 2.1. The assignment

Table 2.1: Hypercharge assignments for fermions.

fermions T T; Q Y

Ve, VoV ((1/2 /2 0 -1
€er, U, TrL, 1/2 -1/2 -1 -1
er, 4r,TR | O 0 ! -2

upycr,tn | 1/20 1/2  2/3 | 1/3
dy, s, b1 1/2 <1/2 -1/3| 1/3
’U,R,CR,tR 0 0 2/3 4/3
dy, s b= | 0 0. -1/3|-2/3

of hypercharges leads to, for example, the electron’s electromagnetic current
JEH = —eyte = —& e — Ervier
= 00
= =Lyt LS — éryte
LY (0 1) L~ ErRY"€Rr
Te 1 e =
= —Liy* (2 - T3> LS — egpy‘er, (2.84)
and the charge changing current
(e)u S M 5 Te 00 e Te —Te
J5 = ey*(1—v°)e = 2Ly Lo L =2L5y*T L} (2.85)

DAY LV a3 (2.86)



35

where TF = T +iT?. So it is now clear how these currents are related to the
SU(2) and U(1) structures. In addition, notice that (2.83) allows us to “define”

1
Jom = I8 + 5% (2.87)
where
J¢ = LEyrTeLt . (2.88)

The definition of the hypercharge also implies that the gauge interaction
term contains
a a 1
gTW; + Eg’YBM =g(T'W, + T*°W.) + T*(gW. — ¢'B,) +¢'QB,, (2.89)
where the factor 1/2 is a convention (recall that 7% = 7%/2). By inspecting at
one of the neutral (charge-preserving) part, we see that the term (¢gW?* — ¢'B)
must corresponds to the Z due to its coupling with T3. Moreover, since A is

orthogonal and linearly independent of Z we then have the relations

Zy = \/gzl+g/2’ (QW[? ~9'Bu) = —Byusinfw + Ws cos fw (2:90)
A# - \/921—&-9/2 (gB/»L 5 g/Wl:j) 57 B'“ §Os GW T Wi sin OW ' (2-91)

where the 6y, from
o S (292)

is defined as the weak mizing angle or the Weinberg angle. After using (2.90)
for Z and inverting the expression (2.90) and (2.91) for B and W3, we put them
into (2.89) and obtain

ayrra L 9 iyt et g 3 L2
gT W#+§g/YB# = E(T WN +T W“ )+m(2T —2Q Sin GW)Z#—{—eQA#,
(2.93)
where W} = (W} +iW?2)/+/2, and
e = gsin @y = g' cos Oy (2.94)

which is defined by inspecting the coupling between A* and Q. Notice that the
factor 2 in the Z* term in (2.93) is a convention - to make it parallel with (2.87).

Observe that Z has non-zero coupling with neutrinos as expected.
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2.3.2 Interactions Between the SU(2) x U(1) Gauge Fields and

Fermions

Now we (should) have convinced ourselves how the gauge SU(2)., x Uy(1)
group has something to do with the physical fields (W*, Z, A) for the (low-
energy) effective weak interaction and the electromagnetic one. The next task
is then to work out explicitly their interactions with matter fields. This can
be accomplished in the familiar way; i.e., by introducing the gauge-current
coupling. Here we will concentrate on the leptonic part of the theory. The
hadronic (quark) part will look somewhat similar. By inspecting (2.89) we find
that it is reasonable to write the neutral current'® as

Jhd =20 - 2sin® Gy J (2.95)
so that
gl
Lo = gI%Wi+ T JiB,
2f(J+uw+ JHW, )+ éﬁwJﬁczujLeJe"mAu. (2.96)

Observe that the neutral current for electron (family) can be written out

explicitly as

e £ : . 1
IG¥ = 2LDey"T°LE — 2sin’ 6y [L;ry# (5 = T3> L — ER,yyeR]

I 1 0
= szy“ Lz + 2 sin? Owerv er
0 —cos26w
B . eyH in? 1L L
=577 (1 =7°)v+ex” || 2sin” Oy 5T 37| e
LB V'Y'u(CV A,y )I/ + é/‘yl" (CV CA’Y ) (297)
where
v 1 v 1 e 1 1 e 1
Cy=5. GCi=g5 Cy=—j+2siby, Ci=-—5. (299

The universality and the fermion family replication tell us that the superscripts
on each lepton family are actually overkill; i.e., all neutrinos have C, = Cy = %
and all e, u, and 7 share the same Cy’s and Cy’s. The total contribution from

10Tn some literatures, the “neutral current” include the electromagnetic current which is also
a charge-preserving (neutral) type.
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1

a number of left-handed lepton doublets L} = (?) is then
L

1 _
Tve =52 vr*(1 - V)i + > Ly*(Cv — Can®)l; (2.99)
Vi I

together with
Cy =T®% —2Qsin’ 6y, Ca=T2, (2.100)

In some cases, it is useful to introduce the “chiral coupling”

Cp = Cy+Ca=2(T°— Qsin®6y) (2.101)
Cr = Cy—C,=—2Qsin’8y . (2.102)

Then the leptonic neutral current part of Lagrangian can be written as

Y

- 2cosew¥{yﬂ (1= 7% + L [Coy*(1 = 9°) + Crv* (1 +7°)| i} .
(2.103)
This means the neutral current of the SU(2) x U(1) theory can be expressed in

terms of the variables that are frequently considered as

v 1 (M3,Gpv/2
L — _ L™ A e v
NC ; el; Yy Ay + < A

2
L1 M2,Gp\/2
2\ cos20y

1/2
) YUyt (1 — Y)Wz,
1/2 1
) > [(2 sin’ @y — 1)7*(1 — 7°)
+2sin? Gy (1 + 75)] L.Z,. (2.104)

Similar terms, with slight modifications of the chiral couplings, are applicable
when quarks are brought in.

It is important to emphasise that what we have done so far is mostly
to convince ourselves that the SU(2); x U(1)y gauge fields are related to the
physical fields!!. In other words, we have used a bottom-up approach. We still
have not used one of the essential features of gauge theory, namely the coupling
between the gauge fields and the particle fields via the gauge covariant derivative.
This is considered as a top-down approach where what we have found so far can

1Though these fields must be massless at this stage, we know that this can be resolved by
the BEH (Higgs) mechanism.



38

be summarised in the Lagrangian

L = > iV y*D, ¥+ > iVpy D, Vg,
1 a ma piuvama 1 uv
_E'I‘r{FWT Frere ) — BB (2.105)
= Y iLiy*D,Li + Y ily* Dol
l l
+2_1Q17" DuQy + ity Dyt + 3 idpy* Dydy

1 1
~ FaFre ~ 2B, BY, (2.106)

where ¥ stands for all fermions and the D, is the covariant derivative

!
D, =8, —igT*W? — i%YB#, (2.107)
or, using (2.96),

g Y

o . r Za . 3 .9 .
D,=8,— i (T*W; +T°W; ) e ot (2T — 2sin HWQ) Z, —ieQA,
(2.108)
and
Fg, = 8,W2 — 8,W3 + geanc W Wy, B,, =08,B,—-98,B,. (2.109)

The Lagrangian (2.106) contains all the fields corresponding to all of the
elementary particles except the gluons of the strong interaction. The particle
content of the standard model (including quarks and gluons) can also be summed
up according to the way they transforms under the SU(3)¢ x SU(2), x U(1)y:

(3,2,1/3),(3,1,4/3)r,(3,1,-2/3)r,(1,2,-1)1,(1,1,-2)g,
(8,1,0),(1,3,0),(1,1,0) (2.110)

Though these structures may not look very satisfactory at first, they tell us that
all the particles cannot have bare masses. We say that SU(3)c x SU(2)L xU(1)y
gauge symmetry protects the bosons from being massive and the chiral symmetry
does the same job with the fermions. This is not very satisfactory since nature
has no massless particles but photon and the gluons. Many ways of generating
masses are proposed and one of them is the BEH mechanism.
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2.3.3 Electroweak Symmetry Breaking

It is widely believed that the mechanism is the promising one, maybe due to
its simplicity, its analogy with superconductivity, or its minimal requirements
of new particles (just one). In this section we will consider the BEH mechanism
in the “minimal” sense; i.e., only one Higgs doublet will be needed. Before we
start, let us notice the important fact: when particles get their mass via the
BEH mechanism, their mass must be proportional to the vacuum expectation
value of a scalar field. This means that their mass must not be too different from
each other and must lie somewhere below the energy scale of the theory (the
vacuum expectation value). However, we shall see in 3.4.2.2 that this argument
is true except for the Higgs itself (or any fundamental scalar particle).

The ingredient for the BEH mechanism to be discussed in the conven-
tional standard model is a scalar field with non-zero vacuum expectation value.
As we have said earlier, the reason why it exists is rather ad hoc. In other words,
the fundamental scalar field must exist, “otherwise the symmetry will not break”.
For the pattern of symmetry breaking, the simplest choice is to argue that the
global symmetry is exactly the same as the gauge symmetry in question. Since
the upper bound of the photon mass is very low, it is then assumed that the

U(1l)em symmetry is exact is the symmetry of the vacuum and hence
SU(2) xU(1) — U(1), (2.111)

which will be eventually identified with the SU(2); x U(1)y — U(1)em. One of
the Lagrangians that can do the job is

L(D) = 5,8 0® = 23— A(S' D)2, (2.112)

with u? < 0. The pattern (2.111) requires thatall the generatorsof the SU(2)y, x

U(1)y are “broken”; i.e.,

T*(®)o £0, and  Y(®)o#0 (2.113)
while v
Q(®) = <T3 + 2) (@) =0. (2.114)

Observe that we can write the T3-Y combination of the broken generator as

T3 — % which will later be associated with the Z. So the simplest form of the
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® that can interact with the SU(2) gauge fields is then a doublet'?, often called

the Higgs doublet H,
B+
H= o (2.115)

with Y = 4+1. To ensure that the vacuum does not carry electric charges, the
vacuum can be aligned'® such that

(H)o = ( S ) , (2.116)

V2

with v> = —u?/X. How about the triplet? In case we want to include the

“Higgs” triplet, there are more freedom on assigning the charges of the fields.

For example, we can have a triplet consisting of @1, ®", %, or &, 3% &, etc.
In the first case we have
H++
d=| ot (2.117)
q,O
together with the associated isospin
1
THD) =B (2.118)
—1

This triplet will have the hypercharge assignment ¥ = 2 (from Q = T2 + Y/2).

The isospin generators T for the triplet version are given in the appendix C.3.

Following the section 2.2.3, we parametrise the Higgs doublet as

.Taxa 0
H = exp {1 ” }(th) , (2.119)

V2

where x*’s and h now have zero vacuum expectation values. The field h
corresponds to the so-called Higgs particle. After that we couple the system
defined by the Lagrangian (2.112) with the electroweak gauge fields. In this
state we may say that the SU(2) x U(1) is promoted to a local symmetry. Then
the gauge fixing 6* = x°/v clearly removes the unphysical degrees of freedom,

12Notice that we have introduce the specific symbol H for the Higgs doublet, rather than the
®. The symbol ® will be used for other purposes in later chapters.
13For more detail on vacuum alignment, see section 4.1.
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H= ”:/L; (S) . (2.120)

Therefore, the Gauge invariant Lagrangian reduces to a simple (but less elegant)

leaving

form
Y \ (v+h) (0\]
Lo v+
L = (6#—1gT Wy—lg'2B> 7 <1>
_# 2 WA 1
5 (v+ h) 4(v+h)
. g Y
- <8#—1ﬁ(T+W:+T w,)
2
.9 3 N : (v+h) (0O
_12COS0W (2T — 25sin QWQ) Z, —1eQAu> 7z \1
u 5 A 4
or
1 g°v? A% 1 "YU 1
L = =-0,hd*h — WW k42— 7.7 — —(—2u2)h?
2Ok g Tk 5 4cos20,, 5 (=21)
2 2 2
gv _ g-v 7
AW IW Tt ———Z, 7" + —h®
+ 2 K +4cos29W ey v
g9’ 2 g’ 2 w 4
= i e e e - e el 7 A 2.122
+4h W#W +8C0829Wh # +4v2h ( )

By observing the quadratic terms listed above, we see that the SU(2) gauge
boson are massive and identify

Miy =5, (2.123)
as well as ) 12 N A
2 g-v w 9g°+9° o
= 2 = ! 2.124
27 4cos?By  cos? Oy 4 v ( )

Notice that the mass terms are defined a bit differently; i.e., M&VWJ W~* and
TMZZ*Z,. We see that the quadratic term A*A, is absent and the photon is
massless. However, the price we have to pay in a gauge theory with SSB is the
introduction of the Higgs particle. Its mass is given by

M7? = —2u% = 220°. (2.125)
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Without quantum effects (see the section 3.1.5), this value can be anything in
principle, including a value very close to zero. It cannot be predicted within
the framework of the standard model so that it (M) has to be taken from
experiments. Unfortunately, no one has ever seen the Higgs so far and we only
know that v? ~ (246 GeV)?. Nevertheless, we can still learn something about
the mass of the Higgs. Recall that what we have done so far relies on the validity
of perturbation technique. So it is required that A < 1 which means

M7 < (350GeV)? (2.126)

or else perturbation theory will break down.

Still, the masses of the W’s and Z can be evaluated from the low energy
phenomenology. Using the “matching” relation between the electroweak coupling

and the Fermi constant 5
g Gr

8MG V3
(2.123) and the value of the Fermi constant obtained from experiment, we find

(2.127)

the vacuum expectation value parameter
—1/2
v={(V2Gs) = 2 246GeV (2.128)

or the vacuum expectation value of the scalar field (H), ~ 175GeV. Then this
leads to the tree-level predictions

My, ~ 78 GeV , and Mz ~ 89 GeV, (2.129)

where the latter one (that predicts the mass of the Z) is one of the prominent
features of the model.

2.3.4 Fermion Masses

In this section we will have a quick glance on how quarks become massive within
the conventional BEH mechanism. The results of the previous section allow
us to safely say that masses of the gauge fields in the spontaneously broken
gauge theory are the consequences of the interactions between the corresponding
particles and the Higgs doublet. So it is expected that fermions (leptons and
quarks, to be specific) can be “dragged” in a more or less similar way. The
problem is that the couplings between scalars and fermions do not originate from

the gauge interactions, so we do not really know what “forms” of interactions to
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put in. The gauge symmetry of the Lagrangian only tells us what cannot be put
in but does not tell us what what to look for. Thus, the usual strategy applies:
start with the simplest one that is renormalisable, then leave the remaining works
to experimentalists. In other words, the mass of the fermions must be thought
of as free parameters in the context of the standard model and only experiments
will tell what their values are. Since there are many kinds of fermions in the
theory, their coupling strengths may differ by many orders of magnitude - from
~ 1079 for an electron to ~ 1 for a top quark. Again, the standard model do

not have explanations for this.

The simplest gauge invariant form of scalar-fermion interaction is the
“hy1y” Yukawa interaction

Lr > —yp{Fal'Fo) + (FH)fi] = = [Fufi+ fufl
— _M ry 3 i ﬂ £l el
= BRI, (2.130)
where
i (f> (2.131)
),

This readily tells us that the mass of the T; = % member of the SU(2) fermion

doublet is
Yyv

ok

This also says that the coupling between the Higgs and the fermions is

my = (2.132)

proportional to the fermion’s mass. For example, we have

2m,
ye S ‘[vm ~2 %X 1078, (2.133)

Observe that while this kind of mass term is fine for the leptons as the neutrinos
are automatically massless, it is not sufficient to provide any of the T3 = —%
quarks. Thus we have to “flip” the Higgs doublet in a specific way; i.e., we

introduce the conjugate of H:
. hO*
H=imH* = | (2.134)

which is also an SU(2) doublet, with ¥ = —1. It is clear that this will lead
to the masses of the up-type quarks when the scalar field receives the vacuum

expectation value. So the general Yukawa interaction between the scalar and
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fermions in the SU(2) x U(1) theory is supposed to be of the form
Ly = —y(Ly H)lg — yo(QL H)dy — ¥ (Qr H)ug + hec.. (2-135)

However, this is not entirely correct. There is no a prior: reason why quarks
must pair up within their own family member, which is defined by weak
interaction, and interact with the Higgs. So the following couplings are also
possible

(QtH)ur, (QiH)dr, (QiH)sr, (QiH)br
(QsH)dr, (Q5H)cr, (QuH)sr, (Q5H)br
(QLH)dr, (QLH)sr, (QyH)br, (Q4LH)tr
+h.c. (2.136)

Each of them requires its own coupling constant (not all independent) which
must be chosen so as to give the correct quark masses; i.e., the quark fields
u,d,c, s,t, and b are the mass eigenstates not the electroweak (gauge) eigenstates.

2.3.5 Custodial Symmetry SU(2)

What we have done so far was to assume the existence of the complex scalar
doublet to break the global (and hence the gauge) symmetry SU(2) x U(1) —
U(1). In this section we shall see that this SU(2) x U(1) is not the largest
symmetry the Higgs system can have and study the consequences.

Let us start with the Higgs system alone, neglecting all the gauge
symmetries. This system is described by the Lagrangian (2.112), rewritten here,

L(H)=08,H6*H — y?H' H— \(H' H)?. (2.137)

Also recall that we have the conjugate given by (2.134)
. hO*
H=ir*H* = : (2.138)

The point is that we can treat both H and H on equal footing by introducing a

matrix

S=v2(H,H) =2 (_h; Z:) (2.139)
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which satisfies
2'S = 2H HI = 2l det & (2.140)

and is pseudo-real (see the appendix A.2) via

T

Y =75, (2.141)

Then the Lagrangian (2.137) becomes

L(T) = iTr(B"ZTBME) + ’fTr(ETZ) - 36 Tr(2's)]

. (2.142)

Clearly the Lagrangian has an SU(2) x SU(2)r global symmetry which will be
spontaneously broken to the SU(2) when

(0[2]0) = v1. (2.143)

Neither the left- or the right-handed transformations leaves the vacuum expec-
tation value invariant

L(0|=|0) #{0|=[0),  R(0[x[0) # (0[=[0) (2.144)
but their combinations R' = L does; i.e.,
L{0|X|0) # <O|Z}|O>LT = L(0]%]|0) # (0|X|0) . (2.145)

Consequently the Lagrangian (2.142) is equivalent to the linear sigma model
Lagrangian introduced in (2.32), except for some irrelevant differences in the
definitions of the couplings. Observe that now we have a set of degenerate vacua
parametrised by an SU(2) transformation. So we arrive at an interesting result:
when all the electroweak interactions are switched off, the Higgs Lagrangian
alone has a global symmetry that is larger than that is required by the
electroweak symmetry of the standard model. This extra symmetry on the
(pure) Higgs sector is known'* as a custodial symmetry SU(2) for a reason

that we shall see in this section and in the section 4.1.1.

If we follow the usual strategy of the sigma model and gauge all the global
SU(2)r, x SU(2)r we would have seen that out of the 6 gauge bosons (one triplet
for the SU(2), and the other for the SU(2)g), only 3 would have become massive

14Some literature refer to the global SU(2)g as the custodial symmetry, while some prefer to
mention the whole SU(2)L x SU(2)xg.
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while others remain massless. However, we know that nature did not chose this
path and only the SU(2), and U(1) C SU(2)r are gauged. Here, 4 gauge bosons
are massless. To see things more clearly, observe that a local SU(2)r x U(1)y
transformation on H(z)

H . gi90%(@)T® g—ig'a(2)Y g (2.146)
is transferred to the (z) field as
Ny e i08%(@)T% agig'a(e)Y T (2.147)

where T* = 7°/2. In addition, notice that the 7 is attached at the U(1) part due
to the different hypercharges of the two Higgs doublets. Then the introduction
of electroweak symmetry ezplicitly breaks the global SU(2), x SU(2)g. The
dangerous part comes from the hypercharge coupling as the U(1)y is planted in
the SU(2)x part, as a subgroup, of the transformation (2.147). This equation
tells us that to gauge the sigma model (2.142), we introduce the SU(2), x U(1)y
covariant derivative on the X(z)

D,% = 8,5+ igWT*s —ig'Y B, T°. (2.148)
Consequently, the gauge invariant Lagrangian is

‘; Tr(SHT) — f\é [Tr(ste))

1
£(T) = Z Tx(DE'D,T) + : (2.149)

In this way we can reconstruct the standard model using the ¥ field instead
of the Higgs doublet and follow the usual strategies. Observe that the Yukawa
couplings which are allowed by the electroweak gauge symmetry explicitly break
the global SU(2); x SU(2)g as well.

As we have said earlier, not all the electroweak interaction breaks the
custodial symmetry, only the U(1)y does. When the ¢’ is turned off, we have
cos @y = 1, and the covariant derivative reduces to

D,T = 9,8 +igWeT s (2.150)

This adds the global SU(2)r
5 — SR (2.151)

back to the Lagrangian, recovering the SU(2)r x SU(2)g global symmetry. Since
Wy is an SU(2)g singlet, it is also a SU(2).,r triplet. Then the action of
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covariant derivative on the vacuum is

wE Wl —iw?
D, 5 = igWeTos, = iL> z w W (2.152)
. . 2 \wi+iw2  -w?

leading to the mass term

2,2

1 geve
Z'I‘r(D“ZJ{,D#ZO) == W (2.153)
with Mw+ = My, as expected. In this aspect, we can view the equality between

the masses of the charged and neutral bosons

~ (2.154)

as a result of the global symmetry SU(2);, x SU(2)g. Note that when the
electromagnetic interaction is absent, the weak isospin is strictly valid and the
Z mass would be the same as the ¥/ mass.

We can go further by bringing back the hypercharge which results in

W:-2B, W!-iWw?
DYoo = igW,T*%, — ig'%0B,YT® = 7Y < KoogTH K I )

2 \Wi+iw? —(W2-<2B,)
LW — W2
_ i%( sonbi7 ZZB L “>. (2.155)
W#+1W# _cosew

In other words, the ‘hypercharge” interactions corresponding to the neutral and
electromagnetic ones introduce the difference between the mass of the charged
bosons and the neutral boson Z*

2
]T[V%K = cos® Oy - (2.156)
This brings us to an important quantity - the rho parameter

M2
p= W =1, (2.157)

cos? @y M2

which is respected at tree-level while the value obtained in the lab deviates
very slightly. Hence, it can be said that the global SU(2); x SU(2)g symmetry

protects the relation (2.157) between the masses of the electroweak gauge bosons;
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and hence its name the custodial symmetry?!®

The other benefit the custodial symmetry provides comes from, again,
the very tenuous (but calculable) deviation from the tree-level prediction p &
0.99 + 0.01. The other essential feature of the p-parameter is that it is sensitive
to the additional Higgs fields. To see this, let us consider a system consisting of
the Higgs fields (scalar) h,, in various representations R, of SU(2), each comes
with a T? eigenvalue T, (T, + 1). By restricting ourselves to neutral vacuum

expectation values, we can write
g .~
Dyvn = 2 \TW, + T-W, +gT*W? - ¢'T°B,| v, (2.158)

which we can easily evaluate Zn(D#vn)TD”vn. Then the mass of the gauge fields
are written in terms of the eigenvalues of these T and T2 of T°

MSV = %gz Z [Tn(Tn + 1) N (Tg)z] Ur27.
£l sy sy (2159

where v,, is the vacuum expectation value of the neutral scalar field in the nt®
representation. Notice that these formulae make sense only when all the Higgs
are properly aligned (see section 4.1.2) so that the SU(2) part of the electroweak
symmetry is broken (not the U(1)). Then the p-parameter becomes

_ 2Tnl(Tn 1) — ()] v

2 5(T2)0? (2.160)

This relation put a strong constraint on the form of the Higgs; in other words,

only the Higgs doublets are welcome. For future references we write

79+ g7 > T2

MZ 92 Z[Tn(Tn + 1) - (TS)Z]’U?I/Z Mg (2.161)

The moral of the story is that, as we shall see in section 4.1.1, there are
many ways to incorporate the custodial symmetry to the theory, either with
or without the fundamental scalar. What is important is the breaking global
symmetry which also implies the Goldstone bosons which will eventually be the

15The name custodial symmetry is fairly generic and may apply to other symmetries that
protect some particles from getting large mass. Hence, in general, we may refer the custodial
symmetry to a symmetry protecting the small value of a parameter from receiving large radiative
corrections (the vanishing of the parameter leads to a symmetry forbidding radiative corrections
from inducing non zero value of that parameter). An example of this aspect of the custodial
symmetry is the chiral symmetry protecting the fermion mass presented in section 3.4.2.2.
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longitudinal component of the gauge bosons. In other words, these Goldstone
bosons were “seen”, though indirectly, in the labs. The excellent agreement of the
predicted p parameter and those measured in experiments convinces us that at
least the philosophy of spontaneous symmetry breaking should have something
to do with nature, one way or another.



CHAPTER III

QUANTUM EFFECTS IN THE STANDARD
MODEL

In this chapter we will study techniques for dealing with the quantum
effects in the standard model. Once we are accustomed with the idea we can
further analyse the problem they bring in. In the section 3.1, we will start
by studying how the radiative corrections (from particles running in loops) have
influences on the potential of the system which can eventually result in symmetry
breaking. Then in section 3.2, we will analyse some of the bounds on the mass of
the Higgs from the theory side. A brief review on the experimental constraints
will be presented in the section 3.3. After gathering things up, we will study
some shortcomings of the standard model that are relevant to the Little Higgs
in 3.4.

3.1 Coleman-Weinberg Mechanism

The goal of this section is to discuss how to find the true vacuum of the system
when spontaneous symmetry breaking occurs with quantum effects taken into
account. Basically, we will study a quantum field in the presence of a classical
external source (not necessary scalars) where the object that plays an important
role is the effective action and the effective potential. We shall eventually see
that spontaneous symmetry breaking can occur, due to radiative corrections,
even when we do not start with the “Mexican hat-like” potential.

A number of nice articles on the Coleman-Weinberg mechanism are
availables and will be our main references. They include, the original paper by
Coleman and (Erick) Weinberg themselves [52] (summarised in Pokorski [48],
Huang [53], and Cheng and Li [50]), papers by Sher [54] and Brandenberger
[55], as well as books by Rivers [56], Srednicki [57] and (Steven) Weinberg [58].

3.1.1 The Effective Action

Consider a Lagrangian describing an interaction between a scalar field ¢ with an
external source J. Recall that the generating functional Z[J] for the full Green’s

function constructed from a vacuum-to-vacuum transition amplitude, is related
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to the connected one, the W[J], by

27 = (o) = [ D¢exp{is[¢] +if d4:rJ(x)¢(:z:)}
= Y W)Y = e, (1)
5 N!
where S[¢] = [d*zL(¢) and N is the number of connected components. Here

the W[J] is expressed in terms of the connected Green’s functions (sum of all
connected diagrams with n external fields):

1 n
W= / &2y . A4 2a G (24y ey 20) T (21) - . I (20). (3.2)
Then the classical field ¢.(z) is defined as a vacuum expectation value of ¢(z)

in the presence of the source

g0y, w1
%) =00), 6@

(3.3)

where the second equality tells us that it can be written in terms of the connected
diagrams. Then let us define the (quantum) effective action, which is a functional
of the expectation value of the field in the presence of the source, as a Legendre
transformation (“dual”) of W{J]

T[p.] = W[J] - / dizJ(z)¢.(z), (3.4)

where J(z) here is the current obtained, in terms of ¢.(z), from (3.3). This
description easily leads to the “dual equation of motion” of (3.3)

6T [¢]
09(z)

= —J(z), (3.5)

$e

where quantum effects (loop corrections) are already included. The formula
helps us find the (external) field ¢(z) in the absence of the source as it is the
one that makes I' extremum. This explains why I is called the effective “action”.
Observe, that if we assume that the vacuum expectation value of the field ¢(z)
is zero when the external field is turned off; i.e.,

oT'[¢]
5¢($) J=0

—0, (3.6)
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then the extremum condition is stated as

OT' (@]
0pc(z)

=0. (3.7)
¢c.=0
Also notice that, by construction, W[J]| is also a Legendre transformation of
I'[¢], namely

WiJ] =Tl - [ dzg.(a)I(a),. (3.8)

To illustrate the role of the I' as the effective action and make things a bit
less abstract let us see what we will get if we use it instead of the usual action
S|[¢]; i.e., consider

exp (W [J, 1} = [ Dy exp {;_L {rm +/ d4xJ(x)¢(m)]} (3.9)

where the dimensionless parameter called A is introduced. Next recall that for
every (connected) diagram, the number of unfixed internal momenta is equal
to the number of loops and that the overall factor of # is equal to 2X~!. This
means the L-loop term in Wp[J, h] carries a factor AL t. Thus, Wr[J, h] can be

expressed as a power series of A as
Wrld, il = S hE W) (3.10)
L=0

which is dominated by tree-level (L = 0) diagrams in the 7 — 0 limit. To isolate
the tree-level contributions in (3.10) we use the method of stationary phase
(also known as the steepest descent, or saddle-point approximation) to evaluate
the integral (3.9). Observe that the classical field, by definition, extremises the

Fompnaton r[g] + / dizJ(z)(z) (3.11)
and hence leads to
exp (el ) xexp {18+ [os@@)] ), (312
giving, to order A1,
WO =Tlgd + [ d*zI(2)pe(z) = W(J]. (3.13)

In other words, the tree-level diagrams generated by the effective action I'[¢)]

gives the complete connected diagrams and hence a complete description for
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scattering amplitude in the original theory that is described by the action S[¢].

Now, let us leave the formalism for a moment and see how the effective
action is evaluated. First we try to work out the W{[J] in the path integral
Z[J] = e"lV/" by using the saddle-point approximation where the saddle “point”

¢s is obtained from
6 [f d*y(£ + J(y)¢(y))]

6¢(x) "
In the simple example where £ = 28#¢3,¢ + V(¢) we find

—=0. (3.14)

D2¢s + VI(¢$) — J((E) . (3.15)

Note that the ¢, depends on the structure of the potential and hence need not
be unique. Next, we write ¢ = ¢, + +/iip, expand the exponential of Z[J] about
the saddle point, and then, to the lowest order in A, we obtain

2[J) o e8] 181 [ Dy exp {i / d4a:% i v"(¢s)q‘>2]} . (3.16)

As the second integral is now in the Gaussian form, we use the formula

/ D¢exp{—; / d4:z:¢(x)K¢(:c)} — (det K)™V2 = (exp{Trln K})""> (3.17)

and arrive at

ZJ] = ezp {; [sw +/ J¢>S] = %Trln[lilz 1 V"(¢s)]} , (3.18)
which means, to order O(h),
wWiJ| = % {S[(bs] + / J¢s} + %Trln[D2 + V()] - (3.19)

By observing that ¢. = dW|[J]/6J = ¢s + O(h) allows us to replace ¢s by ¢.
within errors of @(h*). Then we finally arrive at the Legendre transformation
(the effective action)

T[p.] = S[o] + i;Trln[Dz + V"(¢.)] + O(R?). (3.20)

The techniques used here can be easily generalised to the case when fermions

and gauge fields are taken into account.
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Now let us see what we can do after we have the effective action on hand.

The effective action can be expanded in the following ways: in powers of ¢.
1 n
F[¢c] = ;n'/dflxl d4$n]-—1( )(xl,...,xn)¢c($1)-- -¢c($n) ) (321)

or in position space, with the local term defined as the effective potential Veg(¢.),

Tl = [ ' [<Vie(@) + 5 2(8)(00° + .| (3.22)
where Z(¢.) is the wave function renormalisation, or in powers of momentum
4 1 T(n) n
(4] = /d 23— {F™0,. ., 0)ge(a)" + ...} . (3.23)
Note that T™)(zy,...,z,) is the proper vertex function (or one-particle irre-

ducible, 1PI, Green’s function) and I'(®) is its momentum space representation.
These set of expansions tell us that V.s is effective in the sense that its n'®
derivative is the sum of all one-particle irreducible diagram for the original
field with n vanishing external momenta; that is to say,

Via(de) = i SO0, . 0)g(@)" (3.24)

Observe that the summation starts from n = 2 since the tadpole diagrams can
be safely neglected! because it is momentum dependent and can be subtracted

by a particular renormalisation for the mass counterterm anyway.

Using the effective action from (3.20) with the assumption that ¢. is a

constant when the source is turned off, and using

In[~&* +V"(¢.)], (3.25)

Tr In[02 4+ V7(4.)] = / déz / (;1:;4

we find that

V() = V(6e) — @ dk lnl—k2+V"(¢C)

(27m)* k2

where we have shifted the potential by a constant o — [ d*k In k2.

] + O(h?), (3.26)

It is important to note that the reason that we use loop expansion is

because we want to deal with the expansion in terms of a parameter that

!Tadpoles do not disappear automatically since there is no symmetry argument that forbids
the existence of the tadpole here (unlike in QED).
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multiplies the Lagrangian so that the results are not affected by the shifts of
fields, e.g., when symmetry is broken, or by the different way of partitioning the
Lagrangian into free and interaction parts. Moreover, this expansion parameter
can even be set to 1 without ruining the convergence of the result since we can
always rescale the fields in the Lagrangian to absorb the change. This is unlike
the situations in the usual perturbation theories where we expand the object of
interests in terms of the parameter (e.g, the coupling constant) that multiplies

a particular part of the Lagrangian.

3.1.2 Spontaneous Symmetry Breaking and Effective Poten-
tial

Radiative corrections are usually thought of as being small; i.e., we treat them
as perturbations. The point is that: despite of their size, if they induce terms
related to spontaneous symmetry breaking the effect will be enormous in the
sense that we may come up with a totally different theory. So now we will
discuss how the effective action method works in the case when symmetry breaks
spontaneously; that is, when the vacuum expectation value of the external field

does not vanish and has a constant value v. Instead of (3.6), we now set

oTigll

56(z) 2 S | (3.27)
so that 544

- =0. (3.28)

Then it is found that the effective action generates the 1PI vertex function for
the shifted field ¢ = ¢~ v.

The case we will take as an example is a self-interacting, A¢*, massless

scalar field theory where the un-renormalised Lagrangian is
_ 1 2 A 4
L=5(6u9) (3:29)

which clearly shows no signs? of spontaneous symmetry breaking at tree level.

The generalisation to ¢™ case is possible but not necessary since a theory having

2As we shall see in section 3.4.2.2, the choice of vanishing mass parameter for the scalar
field, though leading to interesting phenomena, is just as unnatural as others because there is
no symmetry protecting the mass of the scalar.
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@™ for n > 4 is not renormalisable. The (normalised Lagrangian) is then

1

1 A 1 1
L=2(8u9) — 79" + 52(8u9)* — 5 B¢ — ;C9" (3.30)

where the terms with coefficients A, B, and C are counterterms introduced so
as to absorb the cut-off dependence. Observe that since we did not assume the
reflection symmetry ¢ — —¢. Mass renormalisation counterterm must also be
introduced as we did not explicitly impose any reason to prevent it. Since the
structure of ¢* does not allow any diagram with odd number of external lines,
we only have to consider the diagrams shown in (3.1) which gives a contribution

GRS

Figure 3.1: Loop diagrams for a ¢* theory.

fmmwwmﬂﬁg ézde)wiJ, (3.31)

where the factor preceding the integral is a symmetry factor which is introduced
to avoid over-counting contributions from diagrams having the same structure.
Notice that 1/2" factor is due to Bose-Einstein statistics of the field. To one
loop, this results in the effective potential

A 1 dk 21"
V;ff((pc) — E¢§+§B¢E+ C¢ +1 / 27!'42 [kZ_:i]

AL = 6 . d*k A’
At CBg Y f/ In(14 2%
adet ¢ﬁw!%+2(myn T

2 2k?2
A 1, 1 ., AN, A Ag? 1
= = -B —C S {ln==<— = )(3.32
m@+2¢ﬁ4!@+mﬂ¢+%w2nm22( )

where we have performed a Wick rotation to the momentum Euclidean space,
integrated using a large momentum cut-off k2 = A2, and discarded terms that go
to zero in the large A limit. The equation (3.32) also shows that the corrections
to ¢? and ¢* terms are quadratically, and logarithmically divergent respectively.
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Next, we will try to absorb the cut-off parameter by imposing some
renormalisation conditions that fix the values of the counterterms. As usual,
the renormalised mass squared of the field is defined as the value of the inverse
propagator at zero momentum,; i.e., I'*(0) = u?. Hence we have the condition

dzv;ff 2
——E =2, (3.33)
d¢? |,_,

which can be used to determine the counterterm B. However, if we move on

to the renormalisation condition for the coupling constant using the four point

function
') =2; (3.34)
ie.,
d*Vig
al )\ SN (3.35)
et |,

we will face the problem of the infrared singularity from the logarithm right
away. However, this singularity is just an artifact resulted from a particular
renormalisation choice, namely the fact that the usual subtraction is performed
at finite value of momenta characterised by a mass scale. So we introduce the
alternative condition at an arbitrary mass scale M:

d*V.g

o = A(M), (3.36)

$=M

and set the wave function renormalisation counterterm Z(M) = 1 instead of the
usual one (Z(0) = 1). The condition (3.36) yields C = — 2 (ln AME &) and

T 3272 202 6

hence leading to the effective potential

M) | 2200) <1n 92 25)

V;ff(¢c) = ¢ + e 6

4! "¢ 25672 (3.37)

which seems to shift the minimum away from the origin to the location satisfying

(¢ 32 ,
However, since the term on the left hand side of (3.38) is large and negative for
small ¢, the quantum correction will be larger than the tree level part. The two
terns in (3.38) are of order A and A? respectively and hence are not comparable in
the sense of perturbation theory. Though the approximation is not very reliable,

we see that the quantum correction must have something to do with spontaneous



58

symmetry breaking.

3.1.3 Massless Scalar Electrodynamics

In the previous chapter, we have seen that the one-loop approximation lead
to the effective potential with corrections lying outside the territory of validity
of perturbation theory. The problem is actually not from the formalism itself,
but from the fact that there is only one coupling in the theory which is clearly
not enough when we want to consider an interplay between the classical term,
O()), and the one-loop term, O(A?). Thus we guess that the effective potential
technique may be able to give a “perturbatively correct” result if we introduce
another independent coupling (hence another interaction) to the theory so as to
“fix” the loop-correction and also prevent it from getting too large.

In this section we consider the Lagrangian

1 5 A
L = _ZFWFW + |3“¢ & 16A#¢|2 % g(
1 1

1
= _ZF#VF/JV 5 (Bupr — eAutho)” + 5 (802 + eAugr)’

)
4l

¢*¢)? + counter terms

1 + @5)°+ counter terms .
2 L 2)? ter t 3.39

which describes a system of complex scalar field coupled with photon. It is clear
that the theory has a U(1) gauge symmetry and hence the photon is exactly
massless (at tree level). Notice that we have decomposed the complex scalar
field into two real fields ¢ = (@1 + io)/+/2. Let us see what diagrams will
contribute. First notice that the gauge coupling introduces the trilinear coupling
¢ A*0¢ which generates the diagrams like that is shown in Fig.3.2. However, the

Figure 3.2: A loop generated from a trilinear coupling in (3.39). The dashes
refer to other parts in the diagram.

vanishing of external momenta tells us that the momentum for the scalar is
the same as that of the gauge boson. When we choose to work in the Landau
gauge, the contributions from this kind of diagrams vanishe due to the vanishing
contraction between the momentum of the scalar field and the gauge boson
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propagator. Consequently, we are left with diagrams having the same structure
as those considered in the previous section which are shown in Fig.3.3.

¢11¢2 ¢1;¢2
A+ AH

Figure 3.3: Loop diagrams that contribute to V.g(¢.) in scalar electrodynam-
ics

Loop calculations can be simplified by noticing that variable entering the
effective potential is only the combination (¢? + ¢3) which, therefore, allowing
us to switch off the external field ¢, and consider only the ¢;. It is then clear
that the contributions from the these loop diagrams have the same structure as
the scalar loop that we dealt with earlier. The symmetry factors (the number
preceding the integral in (3.31) are different for each kind of loop, however. For

example, a loop having ¢, running inside is associated with the factor —% 202.
The result is found to be (See Coleman and Weinberg [52])
A(M) ., L [523(M) gl 2 25
Ver (@) = 3 In—% ——|, 3.40
ff(¢ ) 4! ¢c -+ 64:7!'2 [ 18 + 3e ¢c n M2 6 ( )

where the factor 3 comes from the trace of the gauge propagator (the g** —
k*k¥/k* part). Even though X\ and e* emerge from different order of loop
calculations (zero-loop for A and one-loop for e*), they are independent which
means they are comparable. Thus, there is nothing preventing us from assuming
that A < e? < 1 such that ) is of order e*. If this is the case®, then the term

3In fact, Coleman and Weinberg had shown in [52] that if this is not the case, we can always
make it such by changing the renormalisation scale. In other words, SSB occurs for any arbitrary
small parameters A and e.
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containing A? can be neglected and (3.40) becomes

A(M)  3e*(M) »2 25
— ln =& — — 41
.V(-éff(¢6) ¢c [ 4' + 6471'2 n M2 6 ) (3 )
which yields
A(M)  3e*(M) p? 11
I 43 c -
Vi = ¢° l e (s g | (3.42)
So the effective potential is minimum for non-zero (0|¢|0) when
11 4m2A\(M)
0|¢|0) = M o - | 3.43
(l9j0) = exp | 5 =S50 (3.43)

When the renormalisation scale M is adjusted so that (0|¢|0) = M we arrive at

the result
SEAW

A 87r2€ '

which is interesting if we remember that we started with independent couplings A

A (3.44)

and e. Though these parameters are related in (3.44), the number of independent
parameters is not reduced to 1. This is because the dimensionless parameter A
has been transmuted into the dimensional one (the (0|¢|0)). Nevertheless, the
A can still be taken as the free parameter of the theory. It is then clear that the
U(1) symmetry is spontaneously broken if the effective potential is written in
this form

3¢t @1
Voa(d.) = 64:2 " <1n e 2) , (3.45)

where (¢) = (0|¢|0) . So there exists a (would-be) Goldstone boson correspond-
ing to the direction of the broken generator. Then this Goldstone will be eaten
by the (photon or photon-like) gauge field via the gauge interaction (like the
usual BEH mechanism). The gauge field then becomes massive with

mi = e*(p)?. (3.46)

In addition, the resulting effective potential (3.45) tells us right away that the
scalar particle develops mass from quantum effects which is proportional to the
strength of the coupling between itself and the gauge field, namely

d2 Véﬁ‘ . 364
2 Q2
dg¢? @) 8T

(8)*. (3.47)

2 _
mq —

It is also pointed out in Coleman and Weinberg’s paper [52] that the high-order

corrections are small enough so that they will not turn the origin of the potential
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back into the absolute minimum.

In addition we note that the relation

4
m
e = TX (3.48)
can be generalised to the case where there are many gauge bosons as
4
et Ly 2™V (3.49)

s

where now the m$, is fourth power of the gauge boson mass matriz in the

background &. (recall that in the zero loop M2, ~ ¢g?v>T°T?).

g,ab

As a final note there is another method where we can evaluate the
contribution from the tadpole alone (with some modifications). The method
is interesting and can be used to provide a quick check as well. It is presented
in the appendix A.4.

3.1.4 Extension to Non-Abelian Cases

Now we want to determine the contributions to the effective potential when there
are (non-Abelian) gauge bosons and fermions in the system. Since scalar fields
come in a multiplet (let us call it ®.), we will assume for simplicity that only one
scalar field gets a vacuum expectation value (i.e., we will assume &, ~ ReH? = h
when we deal with the standard model). Also notice that, because the internal
lines in the loop carry indices, we have to consider the transition between indices

which is archived by introducing the matrix element

AL
= boudinl,

2 oi(2)) (3.50)
This is a generalisation to the mass matrix which contributes to each vertex.
This will reduce to the Goldstone boson mass matrix when the . takes the
classical vacuum expectation value (see the relevant formula for the Higgs mass
in (2.48)). So they generate diagrams that can be thought of as generalisations
of those shown in Fig.3.1. We have to take every possible arrangement of the
vertices and internal lines into account. This results in

>om?, aml, . omi, = Trm?i" (3.51)

s,a1az''Ys,aza3 s,anai
alla;
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for each diagram with a fized number of external lines, say n. Calculations are

very similar to those in (3.32) and the resulting one-loop effective potential is*

1 m2(®.)
1 _ 2 2 s c
V@) = gt {mi@)r i ™R (352)
at a particular renormalisation scale M. Then it is clear that in a basis which
make m? diagonal, the one-loop contribution becomes

1 m? . (®e
V(@) = iy Yimi (@) TetP,

= i (3.53)

where m? , are the eigenvalues of the mass matrix.

Next, consider the contributions from non-Abelian gauge fields. Again,
the form of the effective potential will depend on the gauge choice while the
resulting physical quantities evaluated from it will not. Thus we will (again)
work in the Landau gauge. Similar to the previous case of scalar fields, we

define the “mass matrix”
Maas(Be) = 9°9"Tr {2.T°T°%.} (3.54)

(no summation), which contributes to every vertex. At tree-level, we recover
Mz, ~ g*v?/4, for example. The rest of the calculations require nothing new
and the one-loop effective potential from the non-Abelian gauge loop, in gauge
eigenstates (diagonal m,), is

3

V(&) =
7 (%) 64m?

Tr {[m§(<1>c)]2 In miE;fC) } , (3.55)

where the factor 3, again, comes from the gauge boson propagator.

Now let us turn to the fermion loop. The part of the Lagrangian that

contributes to vertices in loop diagrams is

— U, {A(®.) +1715B(®)},, ¥s = —Vamsap Vs, (3.56)

where myq, = {A(P.) +iv5B(®.)},, is the fermion mass matrix (it reduces
to the fermion mass after the scalars received a vacuum expectation value,

according to the first non-vanishing order). For n internal massless fermion

“The subscript “eff” is omitted when its meaning is clear from the context.
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lines, we find that the loop contributes

1 1 1 1
--mf%mf%---mf%mf%--- — trace term, (3.57)

where all indices are suppressed. As a trace of odd number of the gamma
matrices vanish, only loops with even number of internal fermions survive. Thus
the neighbouring fermion propagators can be grouped in a pair m?2 F k2 ; 1.e., m pairs
of this term for n even external lines. Also notice that, a fermion loop puts up
a factor —1 (Fermi-Dirac statistics from reordering the fields in the loop). Now

we can proceed with the calculations analogous to the previous cases and obtain

t
(1)t " + 2 mfmf(<I>C)

where the trace also runs over the Dirac indices®. In the simplest case where
there is only one Yukawa coupling v = v/2m /v, the fermion contributes®
N &2

$*In (3.59)

(1) 4z4
V
~ a2 M2

The factor N equals 4 for Dirac fermions (from a trace of the Dirac matrix), and

2 for Weyl or Majorana fermions.

Consequently, the one-loop contribution to the effective potential is

Vi) = g { @ e

64m? : M?
t
1 i 2 mymy(P.)
_647r2Tr{[mfmf(<1>c)] lnT

5 437r2 Tr {[m§(<1>c)]2 In mj\fffc) } , (3.60)

which can be reduced to a more compact version”

2

®?
v = 642{)\2+3291 N yt} & TR (3.61)

®The arrows of fermion lines forbid reflection symmetry (i.e., the loops is oriented) but the
trace on the Dirac indices kills the odd terms so we have to sum over only the even terms.

®Notice that we are working with a colourless fermion. The right-hand side of (3.59) will be
multiplied by N, for a theory with N, colours.

"This simplified form has to be used with care as we did not take the factors like colours into
account.
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Observe that in a theory with more than one couplings, it is possible that one-
loop diagrams dominate the tree-level diagrams without requiring large values

of coupling constants (and hence does not sacrifice perturbation theory).

Before we leave this section, let us note that by recalling (3.26), the
general formula for the logarithmically and quadratically divergent parts of the

one-loop correction to the effective potential can be written as

1
View = 3 / d4kSTrln(k? +m3(3.))
_ 1 2 2 2 A2 2
= oSk [m?(2.)) In(m?(2.))] + 542 STem?(2c) + ..(3.62)

where the supertrace is defined with STr = Tr(—1)F where F = 1 for a loop

containing fermions and zero otherwise.

3.1.5 Coleman-Weinberg Potential for the Electroweak The-
ory

In this section we will study the application of the Coleman-Weinberg technique
in the standard electroweak theory. Let us recall that the interactions that
contribute to the (one-loop) effective potential are

2
1 N g’ 1
~MH H)? + <27’ Wit3 u) HH
—yj (L% H)ly — y5(QLH)dy — v (QL H)uy + hec.. (3.63)

The earlier sections tell us that the contributions from scalar, gauge, and fermion
loops are proportional to-A?, g%, and y* respectively. Now we have 2 charged W
bosons and 1 neutral Z. For the quarks, we can neglect all but the top, which
is the heaviest quark. The mass matrix in this (broken) basis W, Z is already
diagonal where

My, = g*v*/4
M; = (9> +g%)v?/4 (3.64)
which means we will get an extra factor ;¢ in the effective potential (from (m2)?).

There will be an additional factor 3 for the top quark (comparing to the previous
section) since we have to include all the three colours. The effective potential
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(to 1-loop) in the general form is then

2

1 4 2 2\ 2 4| ~a,. P2
{16{29 +(g +9 )}—4yt}¢>clnM2

2
Be o Ay
Vg = — &1+ "9
# g Fe T 3% T gan

1 2 2, M(2.) 3 2 2. MZg(®)
o (MA@ = o= o [MEa(20)] I =R
(3.65)
where
MZ(®.) = (p®+3)23%) (3.66)
Mgg(®:) = (K2 + 227 (3.67)

are the masses of the Higgs and the 3 Goldstone bosons in the background &,
(again, see the relevant formula for the Higgs mass in (2.48)). These Goldstone

bosons will not show up in the unitary gauge. To get the more familiar form, we

take 2 = v = —p?/). In that case, we usually write the one-loop contributions
as
AL R {320y, + MZ| + M} - 12m} ] &% i (3.68)
eff,g—f = garo, w z h My f el :

where Mz, Mz, M), and m; are now the masses of the physical fields. Observe
that fermion makes a large negative contribution (at large ®.).

Let us consider the case when the mass of the Higgs (and hence the )
is assumed to be small. This will eventually help us identify the lower bound
of the Higgs mass itself. In this case the A\* term in (3.61) can be neglected and
the major fermion contributions come from the top quark. The bound on the
mass of the Higgs is then based on the condition that the electroweak symmetry
breaking vacuum is absolutely stable against radiative corrections; i.e.,

Ver((H)) < V(0) (3.69)

where V(0) = 0. (Steven) Weinberg [59] and Linde [60] were the first two to
pioneer the work in this scheme. The bound on the Higgs corresponding to the
gauge bosons loop corrections was found to be

3a2(2 + sect ew)
M2 > .
167

16\/§GF Sil’l4 ew .

(2My, + M3) = (3.70)
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At that time (1976), the top quark had not yet been found and hence some
major contributions were missing. The relation above yields

M, > O(10GeV) (3.71)

which is already in the range probed by experiments nowadays. This kind of
lower bound is superseded by the vacuum stability bound evaluated from the
framework of the running of the Higgs quartic coupling which we will consider
in section 3.2.2. Even more, this bound is also superseded by the the direct
search at LEP ([61]) suggesting that M = 114 GeV (95% C.L.).

3.2 Bounds on the Mass of the Higgs

There are many ways to understand the bound of the Higgs within the framework
of the standard model; i.e., as a limit of its “correctness”. We will consider only
the theoretical ones. This section should somehow convince the reader that the
Higgs should be light.

3.2.1 Landau Pole and Triviality Bound

Now we will use simple arguments to claim that the Higgs cannot be arbitrarily
heavy. Let us go back to the scalar theory with

o 1 A
L==(0,h)* — =MZh* — = h*. 3.72
(@uh) — SMERE 2 (3.72)
It is quite legitimate to use this simplified version and compare it with the
interaction term in the Higgs potential (2.122). This agrees with the large-\
approximation in the renormalisation group equation in (3.86). The quartic

coupling scales with energy as®

AMMp)
A(My)1n 2=

ANQ) = A F (3.73)

T o2

The coupling increases with energy (Q) and will eventually hit a pole, blowing
up at a particular energy scale regardless of how small the A(M}) is. The pole

is known as the Landau pole;

Qoo - ALandau - Mhezrz/?’)\(Mh) . (374)

8The variable Q means any energy scale in general, while A usually indicates the cut-off of
the theory.
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Apandan decreases as we increase My and eventually they will meet at some point.
(2.125) tells us that for a fixed Apangan We can obtain the upper bound on the
Mh; i.e.,

4 2,,2
M2 =2M? < (3.75)
3111 L]aur_ldau
h
Still, we will further assume, hand-wavingly, the hierarchy
Mh ] ALandau/2 (376)

since we do not expect to do anything with energy close to Apangau anyway.
Thus,
M} < (1070 GeV)?. (3.77)

Observe that the choice (3.76) puts the limit of the A too far (A < 6). This
is fine if we do not care whether the perturbative approach works or not - just
think of the TeV limit as the ultimate one. To get a reasonable constraint on
the quartic coupling, let us use M < Apandan/100 (which gives A < 1). This one
yields M), < 415 GeV.

The consideration above is a crude one as it relies heavily on the choice
(3.76) and the arbitrariness of the Higgs mass itself. Who knows whether the
Higgs mass scale be much lighter than the Landau pole scale Apangaw Or just
about the same. Moreover, it is not expected that the standard model is valid
at arbitrarily high energy scale. So we will, as usual, regard the standard model
as a low-energy effective theory and introduce the A as the point where the
simple model stops to be valid and new physics enters. First, we observe that
we can input the known parameters at electroweak scale (My/) into (3.74)

4m? sin® Gy M2,
3a M?

M2
ALandau v MW €xXp { } ~ MW exXp {(370)1\;5} (378)
h

where we have used a(My ) & ﬁ Suppose we expect that the Landau pole lies

beyond the grand unification scale (see B.4) 10'°GeV we find
My < 3My < 240GeV, (3.79)

which is a very rough approximation. However, if the new physics is expected
to enter so soon; like A = 10% GeV, the Landau pole will be lowered and the
upper bound on M, is relaxed to

M;, < 600GeV . (3.80)
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Given a value of My, the upper limit A of the theory (the cut-off) can be

evaluated as well. Observe that (3.73) can be written as

3 Q
In 2 3.81
tor (3.81)

11
MM) — MQ)

which implies that
1 S 3 A

— > —In— 3.82
)\(Mh) — 272 th ( )
In other words, this forces an upper bound of the A; i.e.,
M) < =2 (3.83)
T '
h

The equation is exactly the same as (3.75). However, here we see that the quartic
coupling is sensitive to the limit which we “claim” that the theory is valid. If
we set A — 00, the coupling decreases to zero and this scalar sector will become
a free theory; which is said to be ¢rivial. The bound of the A depends on the
Higgs mass as

A < Myet™ v’ 3ME (3.84)

For the Higgs mass in the range 120 GeV to 200 GeV, the A ranges from 107 GeV
down to 108 GeV, which is very broad. This is why it is said that the Higgs mass
and the “cut-off” scale are very sensitive to each other.

Notice that what we have done so far was based on the assumption that
the fermions and the gauge bosons are negligible up to the scale A. Moreover,
we also assumed that higher orders terms in A in the renormalisation group
equation are negligible. Still, their effects are not so negligible. To see this, first
observe that the factor ﬁ on the right-hand side of (3.81) is the coefficient of

the beta function, satisfying

OA@Q) 03 52
gmg | 22 () (389

A generalisation to the standard model case is obtained by the renormalisation
group equation for the quartic coupling

o)) 1
= 2402 + 12 (y? — (9¢° + 3g™

—6y; + §(294 +(¢° + 9’2)2)1 , (3.86)

8
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together with similar couplings for the other couplings. The first thing we see is
that the running of the coupling is slowed down by the interaction of the scalar
field with the quarks and the gauge bosons. If the effects from self-interactions
of the quarks and the gauge fields are negligible, (3.86) reduces to

8x 12X
8lnQ  (4m)?

24\
(4m)?

where A, = 2(99°+3g"?) — 2y7. Thus, if we insist on working with a perturbative
method, we have to impose the minimum requirement that the quartic coupling

not explode at a particular scale, which requires that

AMQ) < A(Q), (3.88)

leading to the upper bound of the mass of the Higgs. Unfortunately, the
evaluation of the bound requires the knowledge of the running of the Yukawa
and the gauge couplings as well. Then the mass of the Higgs can be plotted as a
function of the mass of the top quark. The analysis by Beg et al. [62] suggests
that for M; ~ 170GeV the Higgs is bounded to m, ~ 175GeV .

3.2.2 Vacuum Stability, A Lower Bound

In the case when the Higgs is light, (3.86) becomes

O 1 3
— — 6yt + =(24* 2 1 0')?)]. 3.89

When the energy scale under consideration is low enough that the strong

interaction becomes very strong, (3.89) is further trimmed down to

o)) 1
== 6y; (3.90)
olnQ (47)2
which simply results in
3Y: (@), @
AQ) = Av) — 5752 ) In—". (3.91)

Clearly, top quarks can drive the quartic coupling down to negative values,
preventing the breaking of symmetry which is the main ingredient of the

standard model. Therefore, we must impose the constraint

AQ) >0 (3.92)
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to avoid that. In this case, the running of the top’s Yukawa coupling is, to
the lowest order, not affected by other couplings. So its renormalisation group
equation is in a simple form and the numerical results can be obtained easily.

The Yukawa coupling “runs” as

0 Yt 1 9

p— —_ 3 ..
OlnQ  (4m)? ¥ T (3.98)

which leads to )
vi(v)

p)
¥ (Q) = , (3.94)
4 s (Tf’rvyf(v) ln%
and C— Q
ez¥i(v)In
NQ)=A(v) — 22 — (3.95)
NG (479,.)2 yt2(’v) 111 %
The condition (3.92) then translates into
3v2, 4 Q 3 41, Q
=Ly (v)In = m;1ln =
~ Wyt (U) n v ~ 8vin2? m; i v

This means at the scale @ = A, there must be new physics showing up or the
vacuum stability is destroyed. In this way, we see that the lower bound of the
mass of the Higgs can be written as a function of the cut-off and the mass of the
top quark. At present, this bound is also superseded by the direct search of the
Higgs at LEP (see section 3.3).

3.2.3 Tree Level Unitarity

For the case of the Fermi’s current-current, the intermediate vector boson
theories, or theories based on the perturbation technique, unitarity bound plays
a very important role. In general, the scattering cross section may depend on
some parameter related with the C.M. energy which can be expanded in terms
of partial waves. The unitary bound is then basically a requirement that the
contributions from the tree level to the first partial wave expansion (s-waves)
of scattering amplitudes not exceed the unitary bound (think of an expansion
with coefficients greater than 1; i.e., a scattering with probability greater than
unity). In this section, we will briefly outline about the effects of the tree-level
unitary condition to the bound on the Higgs mass and the scale of new physics.
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For example, recall that in Fermi’s theory we have o ~ GrEZ ,,, where

0 g MP
dQ  64n2s2

(3.97)

Then the expansion of the scattering amplitude in terms of the partial waves

amplitudes
M(6) = B> (2] + 1)P;(s,0)a;(s) (3.98)

(B is a numerical value of order O(1), and s = EZ,,) tells us that

ﬂ/
sk == 3.99
- (399)
otherwise partial-wave unitarity is not respected by tree diagrams. In other
words, new physics (theory) must shows up at a scale

IBI
Ap < ’/G_p (3.100)

in order to modify Fermi’s theory. It was found (see, for example, Chanowitz
[47])that Ap ~ 1TeV. Still, this does note necessary means that we must wait
till we reach the Ar to see new physics and the new physics actually surfaces at
O(100 GeV) ~ My; i.e., at the electroweak scale.

Similar situations happen in electroweak theory where the process under
consideration is W + W~ — Z + Z and

S

1 3.101
16mv? < ( )
or, in terms of the cut-off,

Asg < V16mv? &2 TeV (3.102)
By observing the previous case where My, ~ %, we can make an analogy by

introducing a mass scale of the “usual suspect" that may break the electroweak
symmetry; i.e., the Higgs,

_ AsB

M, ~ . 3.103
T ( )

This may be a very rough guess of the mass of the Higgs. Still, the unitarity

bound can provide something more useful. Using (minimal) the standard model
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the contribution to the amplitude of W+ + W~ — Z + Z from the gauge sector
can be written as (taking the p-parameter to be 1)

9’ s

and the Higgs exchange (s-chanel) adds

S S

A - 3.105
Ma v2s — M} ( )

(see Kolda and Murayama [5]). That is,
MEM, ~ o = 22 (3.106)

v2 v2s— ME

Now we can compare between the cases of having and not having the Higgs (to
be more precise, the latter should be M7 >> s). With the Higgs around, the
amplitude at s >> M} becomes

2

g
M= Qe m? (3.107)

which, at least, does not grow with s = E%, and hence guarantees the good
behaviour at high energy. It was found that the unitarity bound gives ([5])

M, < 780 GeV. (3.108)

Notice that this is bound on unitarity, not the strict bound on the mass of the
Higgs; i.e., the Higgs can be heavier than the value specified in (3.108) and the
perturbation theory is not valid.

On the other hand, in the absence of the Higgs (or very heavy Higgs),
the amplitude grows in a way similar to the Fermi’s case and is bound with the
“new physics” scale at ~ 2TeV (recall (3.102)), which, is no longer reliable due
to large higher order corrections around that scale (unitarity is violated). This
is why it is usually expected that there will be new physics at Ay < 2TeV.

The moral of the story is that though unitarity bound does not act
directly on the mass of the Higgs, it strongly suggests that either the Higgs
or a Higgs-like particle exists or there is new physics at a TeV scale.
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3.3 Some Experimental Related Bounds

In this section we will briefly review two important clues from experiments (both
direct and indirect search of the Higgs). One can be related to the bounds on the
mass of the Higgs and the other can guide us where the scale of the new physics
is. Since the topic of electroweak precision test is a very big and sophisticated
one, to keep us within the scope of the thesis, the content of this section will be
far from self-contained and logically consistent. What we are trying to do is to
outline a few of the crucial findings and to point out where to look for further

information.

3.3.1 Bounds on the Higgs From Precision Electroweak Tests

The (minimal) standard model is considered to be one of the most successfully
tested so far. Many parameters can be measured with extremely high degrees of
accuracy. So there are many ways to get the bounds of the mass of the missing
Higgs with clues from experiments. Here we will mention some of them.

First there is the Higgs direct production where we expect the Higgs to
reveal itself in the final state of the collision events. This may be the best way
to identify the particle if we can find one. However, the problem is that if we
still do not have large enough energy to produce one, we cannot conclude that
it does not exists. We can only mention about the ezcluded region. One of
the processes that looks promising is the Higgsstrahlung initiated from colliding
leptons, mainly electrons and positrons, as shown in Fig. 3.4 Unfortunately,

et

Figure 3.4: Higgsstrahlung et +e~ — Z + h.

despite its name, the Higgs has not been found yet. Still, this kind of experiments
gives a lower-bound of the mass of the Higgs. It was found at LEP (CERN) that
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([63])

M, > 114.4GeV, (3.109)

at 95% C.L..

Apart from the direct searches, precision measurements can serve as
another crucial tools, thanks to the success of the standard model itself. The
strategy is simple, we focus on parameters that can be measured to some “fine”
detail (say, better than one percent). Take them as fix inputs and put them
into relevant results from loop corrections. This will provide “best fit” values for
other parameters. These resulting best fit parameters can then be compared
with not only the parameters observed directly, but also with those predicted
from theory. On the one hand, the deviation (if any) of the latter will suggest the
need of the new physics. On the other hand, the excellent agreements (usually
valid up to a specific energy scale) will tell us that new physics is not welcome.

The tricks mentioned above will not apply directly in the case of the mass
of the Higgs as the resulting best fit parameter (since it has not been found and
its mass is not predictable within the framework of the standard model), but we
can use it for some other purposes (see later in this section).

Now one can study how the results from a model deviate from these
electroweak precision parameters. After takening some uncertainties from both
theory (e.e., the need of higher-loop calculations) and experiments (including
some input parameters like the mass of the top quark) into account, the global
fits (to all electroweak data) of these data can be studied. Most of the cases,

the fundamental parameters

9,'9", Ny 1y v (3.110)

(where Ay and p? are given by (2.125)) are traded by a combination of
parameters that are directly (or easily) accessible by experiments and are
denoted collectively as {IP}:

2
{P} = {a: Z’r:GF;MZ;Mh,mi} (3.111)

where the m;’s are fermion masses. For example,

2\/§7ra

—. 3.112
Gr M} (3.112)

S:.lll2 20W =
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Usually, o, Gr, and fermion masses m; (except the top) are taken as input
parameters.

The case we are interested in is the mass of the Higgs. The best fits result
is (Langacker [64])

My, = 8673 GeV (3.113)

which lies mostly inside the excluded region by LEP as shown above. Still,
naively, we see that this shows some room within the region 114 GeV — 140 GeV .
Usually the best fits for the Higgs is shown in the Ax? vs M, plot where Ax? =
X% — X2, in the Fig. 3.5. In the figure theoretical prediction with uncertainties
(usually due to loop corrections that are related with top quarks) is plotted as

a blue-band. The solid line represents the global fits.

m,. . =144 GeV

6 Y B g le_lfl
Sk — 0.02758+0.00035 7
----0.02749+0.00012 i
4 -« jncl. fow Q2 data .
N>< |
I 387 |
5 N
1+ ; B
0 | Excluded \% Preliminary
T T T T LI | !
30 100 300

m, [GeV]

Figure 3.5: A sample Ax? vs. My plot (from LEP EWWG 07 [4]).

In addition, the success of the standard model can be represented by
the plot of the “pulls” which are defined by the differences (of the observables)
between the values predicted by theory and the measured ones, divided by the
error from the theory side. The plot is shown in the Fig. 3.6. It does not only
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show that the standard model fits very well with the results (from experiments)
but also that the results do not favour any additional particles of new physics®,
at least, within ~ 5 TeV.

Measurement Fit |O™2-Q"|/gmeas
o 1 2 3
m, [GeV] 91.1875+ 0.0021  91.1875
r,[GeV]  2.4952+0.0023" 2.4957
Op.q [Nb] 41,540 +0.037  41.477
R, 20.767 + 0.025 — 20.744
AY 0.01714 + 0.00095 0.01645
AP, 0.1465+ 00032  0.1431" =
R, 0.21629 + 0.00066 0.21586
R, 0.1721£0.0030  0.1722
AP 0.0992 £0.0016  0.1038
AZC 0.0707 + 0.0035  0.0742
A, 0.923  0.020 0.935
A, 0.670 £ 0.027 0.668
A(SLD) 0.1513+0.0021 . 0.1481
sin’67(Qy) 0/2824 £.0.0012° 4J0.2314
m,, [GeV]  80.398%0.025 = .80.374
rwlGev] 2:140'+ 0,060 2.091
m, [GeV] 170.9+1.8 171.3

Figure 3.6: The list of “pulls” of various electroweak parameters (from LEP
EWWG 07 [4]).

Finally, we can also summarise theoretical (triviality and vacuum sta-
bility) and experimental (precision electroweak) bounds in the figure 3.7 taken
from the paper by Kolda and Murayama [5]. There the shaded block region
(on the left hand side) labelled “Standard Model” which is bounded from below
by direct search (see above) and the precision electroweak “best fits” from the
standard model.

9See the next section.
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Figure 3.7: Bounds of the Higgs mass, including triviality, vacuum stability,
and precision electroweak tests [5]. The region above the dash
lines is disfavoured by naturalness arguments (see section 3.4.2).

3.3.2 Implications on New Physics

In this section we will roughly consider the influences from electroweak precision
tests on theories that are considered “beyond the standard model”. Now we will
regard the standard model as a low-energy effective theory of some higher-energy,
more complete theory. Effective field theory is another big subject in physics
that requires much more careful treatments than what we are doing in this
section. The reader is encouraged to consult the following literatures by Georgi
[27] and those by his students: Kaplan [28] and Manohar [29].

What we are considering is more or less analogous to what physicists have
done half a century ago where the Ferm: current-current model

E =P -1 (3.114)
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can be thought of as a low-energy description of the Intermediate Vector Boson
theory described by
1 v 14
Lw = —; (0. W) — 8,W}) (8*W* — 8" W*) + M, WiW*
+g(JHW L+ W) (3.115)
having the vector boson’s propagator

gt e Mg
k2= M7,

(3.116)

With this propagator, the passage to low-energy limit (E << My,) is transpar-
ent, and Gy ~ 2’ We trade the non-local interactions of the high-energy theory

My,
(i.e., the intermediate vector boson theory or the standard model) with the local
interactions of the low-energy theory (Fermi’s). To see this, just consider the
expansion

2 2

9 2 1 , k
= = g — 4+ ... . 3.117
P v v M Ve i (3.117)
The Fermi’s Lagrangian (3.114) is constructed solely from the ingredients
available at low energy while the effects of the heavy vector bosons are encoded
in the “coefficient” Gr. The value of Gz can be obtained from the low-energy

side only via experiments.

Now we will proceed in the step fairly similar to what we did above.
To consider the standard model as a low-energy effective theory, we have to
include the effects of all possible dimensional operators into the low-energy
effective Lagrangian. They will be denoted-as O(**P): where (4 + p) > b5 is
their dimensions. Lower dimensional operators can be “absorbed” into operators
of the standard model (in Lg3r). Each operator is constructed solely from the
building blocks of the standard model where the effects of the heavy particles
beyond the standard model are encoded in its coefficient. Experiments is the
only way to determine the values of these coefficients if we do not yet know
exactly what the high-energy theory is!®. The effect of these operators on the
predictions by the standard model will be suppressed by the mass scale (A)

preceding them. We write the low-energy effective Lagrangian as (see Barbieri

10See the section B on the SU(5) Grand Unification in the next chapter. There we can
“calculate” the value of the Weinberg angle from the higher-energy theory.



79
and Strumia [2], and Han and Skiba [65])

Lr(E<A)=Lsy+ 3 %OE‘*“’) (3.118)
4,p

where A is the scale where the new physics is expected to show up. Then the
strategy is we throw in all possible forms of operators that are relevant to a
specific problem (here we need operators that are stringently constrained by
electroweak precision tests, otherwise we cannot evaluate the bound A) and do
not violate some particular symmetry (Lorentz symmetry, for example). The

dimension five operators include the cross-family interaction of the leptons
X (L H' ) (DAH) + b
I( 1 H )(LLH )+ h.c. (3.119)

where 7,7 are family indices, which violate lepton numbers, generate masses
of neutrinos when the Higgs receives a vacuum expectation value. Due to the
smallness, of neutrino masses, this operator is not a good candidate for the

problem we have on hand.

It turns out that operators that are useful for the electroweak precision

tests are of dimension 6 which include various forms of four-fermion interactions
Ora ~ (Lyy*L)(dy,d), (3.120)
Higgs-gauge intersections
Ows ~ (H' 0*H)W?2,B* (3.121)
(W#¥, B*¥ are the field strengths), or the higher order Higgs interaction
On ~ (H'D,H)?. (3.122)

Some of the “induced” operators will violate different kinds of symmetries; for
example, baryon number, lepton number, or the custodial symmetry. For the
operators that break the essential symmetries of the standard model, such
as the CP, the corresponding lower-bound of the new physics must be very
high, say ~ 100TeV. These operators will not be taken into account in this
context of the precision tests. We will focus on operators that respect some
symmetries of the standard model which we can watch the effects of them in the
experiments. Suppose we consider a particular operator that generates flavour
changing neutral current (which is well-maintained by the standard model) that
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are not observed in the laboratory. We can then evaluate the lower energy
bound A of that operator so that the new physics correspond to it is pushed up
to higher energy, making the effects from this particular operator “automatically”
unobservable at low energies.

We can go on with other operators in a similar manners. In general
one usually assume ¢; ~ O(1) (while they can be either positive or negative).
Once we choose the appropriate operators, the rich indirect experiment results
(precision tests) will do the rest of the job, translating the information into
the lower bound of the new physics corresponding to each operator. The more
agreements between the standard model and experiments, the higher the energy
of the new physics. Nevertheless, this is not the whole story. The Higgs mass
is still an unknown of the standard model. So the evaluations of the lower
bounds must include variation of the mass of the Higgs. Some of the examples
of the operators are taken from the papers by Babieri and Strumia [1, 2] and are
shown the table 3.1. What we can conclude is that new physics is not welcome
by precision electroweak test, at least below 5 — 7 TeV. In one shot, the table
3.1 also tells us that if the Higgs exists, it should be light (actually, if it does not
exist, the considerations we have done in this section will cease to make sense).
The lower-bound obtained in this way put a very stringent constraint on every
kinds of physics beyond the standard model. It is the requirement that every
theory proposed must find its way to avoid spoiling the bound.

Dimensions six operators | M, = 115GeV | M;, = 300GeV
OWB = (HTTGH)W;VB#V 9.7 7.5
Oy = |H'D,H|? 4.6 —
OLL = %(I_/’)’#TGL)Q 7.9 —
Oy = i(HID,1°H)(Ly,mL) 84 7.5
Og °= i(H! Dy H)(@7,7°Q) 6.6 -
Ouq = i(H! D.H)(Q7,Q) 5.8 -
Oge = i1(H'D,H)(éy,e) 8.2 ~
Opuw = (H'D,H)(tUy,u) 2.4 —
Owqs = i(H'D,H)(dv,d) 2.1 —

Table 3.1: The lower-bound of energy scale of new physics (in the unit of TeV)
evaluated from various dimension six operators, related to the mass
of the Higgs. This table shows the 99% C.L. bounds where the
blanks mean no fits are possible. The table is from [1, 2].
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3.4 Shortcomings of the Standard Model

Though the standard model is considered as one of the most successful theory
of particle physics, its success is not unlimited. There are still problems or
frustrations that the model leaves to us. In this section we will consider some
of those problems; both from the general structure of the model itself and from

the its fundamental scalar (Higgs) sector.

3.4.1 The General Problem with the Model Itself

3.4.1.1 The Standard Model is Only Partially Unified

It is often said that the Glashow-Weinberg-Salam theory is a unification theory
of weak and electromagnetic interactions. However, it is still quite frustrating to
think of any theory governed by a product group as a unified one, especially due
to the fact that the coupling constants in the SU(2), x U(1)y theory are related
only through experiments. Therefore, the quest of a more “unified” theory is not
out of questions at all. A quick review of the SU(5) grand unification theory,

which solve this “problem”, is presented in the appendix B.
3.4.1.2 The Family Problem

It is important to note that the way we put the quarks in a particular family
(e.g., the up and down quarks) is not completely unique. This is because u
is actually related, by the SU(2), to the d, s, and b instead of just with the
d. Similar arguments apply to the c and ¢ families as well. Moreover, the way
quarks and leptons are put in to a family is also not natural. The reason we
pair the e, 4, and 7~ lepton families with the u, ¢, and ¢t quarks family
respectively is partly due to their masses (which also affects the order they were
discovered - light particles were discovered first, of course). However, there is
nothing to guarantee that this must be so because in the standard model, there

is no mechanism describing the transition between quarks and leptons.

The problem described above is fairy related to the problem of number
of families in the standard model. Though the way particles are grouped into
a family is not unique, these particles nicely organised themselves into three
familes. Despite of phenomenological considerations, the standard model does

not have any explanation for this.
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3.4.2 Problems from The Higgs Sector

3.4.2.1 Electroweak Symmetry is Broken “Because it has to”

Spontaneous symmetry breaking is a very important feature of the standard
model. Actually the theory dealing with electroweak symmetry should find
its way to incorporate the BEH (Higgs) mechanism, otherwise the gauge bosons
will be massless. However, the Glashow-Weinberg-Salam model utilises the BEH
mechanism with the help of a fundamental scalar (the Higgs). As the title said,
the scalar sector of the standard model does not provide any explanation why the
electroweak symmetry is broken. We have to assume the “hyper-Mexican hat”
potential as the starting point or else the symmetry will not be broken. Clearly
this picture lacks any dynamical process that might occurs around the symmetry
breaking scale. Of course, this problem alone will not doom the whole theory.
However, a better mechanism with dynamical explanations for incorporating the
BEH mechanism, like the BCS theory in superconductor, would be nicer.

3.4.2.2 Quadratic Divergences: Part 1. Hierarchy Problem

There are many experimental evidences, or theoretical constraints, telling us that
the Higgs should be light. We have seen some of the latter kind of arguments
in section 3.2. However, it turns out that theories we have on hand tend to
introduce infinities into this parameter in various ways via “quantum effects”,
i.e., loop corrections. Renormalisation programmes tell us that these can be
somehow controlled by adjusting free parameters in the theory. So now we will
consider the question whether these adjustments are natural and see whether
the Higgs is “happy” to be kept light when quantum effects are included. The
example we used in this section is actually a toy model. Still, the idea is readily
applicable to the standard model.

First we will start with the particle that are said to be “naturally light”.
They are the gauge fields and the fermions. We will work out the fermion self-
energy and see why they are said to be so. To simplify the calculations and keep
focusing on the physics, we will use the Lagrangian for a fermion interacting
with a massive scalar field:

L =Py — 8,0°0"¢ — m>¢*¢ — A\(¢"0)° — yspud + hc..  (3.123)

Notice that the “h.c.” actually contains only the Yukawa coupling term. In
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fact, this simplification is somewhat legitimate because the top quark is the
heaviest fundamental particle we that have found. The field ¢ is parametrised by
¢ = (h+v)/+/2 and the fermion gets its mass from the tree level: m; = y;v/+/2.
The scalar field contributes to the fermion self-energy via the diagram shown in
fig. 3.8. We find the self-energy

?
_>_J.,__>\\—>_
(Z ¥ Y

Figure 3.8: Fermion self-energy diagram contributed from a scalar field.

g 2 .. B .

, —iys d*k iTe(k + my) i
_i%(p) = <~> / . (3.124)

’ V2 (2m)% k2 = m7] [(k —p)* —m]
Recalling that the renormalised mass is defined as m? = my + dmy, we find
2
.Yy /1 / 4, m¢(1+ z)

oms = Bs(p =my) 3274 Jg dads " (k2 —m3z2 — m2(1 — z))? (3-125)

where we have used the Feynman parameter for parametrising the integral (see
the appendix C.2). The calculation is straightforward. The term that remains
there when the cut-off becomes large is

3y2mf A?
dme, = ——2 T [ 2. 3.126
s, 6arz <m§ (3.126)

This is not beyond our expectation since we know that the chiral symmetry
protecting the mass of the fermion is broken when the fermion interacts with
the scalar field; i.e., when Yukawa coupling (the mass term) of the fermion
is introduced. The chiral symmetry is'restored when this parameter vanishes.
This means that the correction term dm; should be proportional to the term
that breaks the symmetry - which is the m;. Consequently, a fermion is said to
have multiplicative renormalisations which means it is natural to be light. In
other words, the chiral symmetry U(1); x U(1)g plays the role of the custodial
symmetry protecting the fermion’s mass.
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Now let us turn to the self-energy of the scalar field which, in this

simplified theory, only comes from the interaction with fermion. We write
(mE)? =m? + om?. (3.127)

The corresponding diagram shown in fig. 3.9 results in

Figure 3.9: Scalar self-energy diagram contributed from a fermion.

im0 = () <—1yf>2 d%k BT {(k+mp)((k—p) + my)} (3.128)
> V2 (2m)*  [k* = m3]((k — p)* — m] '
Then we find that the mass of the scalar field (or the Higgs) diverges:
5m§,f = Es(p2 - m?)
2 2
Yy fids 2 2 A
1 1 2
—|—§(4mfc —mf){l-l—/o dz In (1 - Z§$(1_$)>}
40 (i) ] (3.129)
A2 J . .
Situations are different this time. Considering the quadratic divergent piece
vs
2 2
5m5’f = _Q , (3130)

we see that is no symmetry recovered when the (bare) mass of the scalar reduces
to zero due to the fact that the correction is not proportional to m,. The
“physical” mass of the scalar becomes

2
B2 ~ —ﬂAz, when m, =0, (3.131)

m
(m 812

which also illustrates that it is not protected by any symmetry. The scalar
(Higgs) seems to prefer to be as heavy as the largest mass scale of the theory
(the cut-off). The severity of the problem then depends on the value of the
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mP that experimental results expect it to be, and also on the limit A that the
theory is expected to be valid. We have seen in the section 3.2 that the mass of
the Higgs should not be too heavy (comparing with electroweak gauge bosons).
Thus, taking m® = 100GeV, the rough approximation of the Higgs mass, and
A = 10*°GeV, the Planck scale, we see that the correction dm? is huge and has
to be balanced by m? with amazing precision. To see this, let us write (3.131)
in terms of dimensionless parameters:
2 y]%

MNAVISL A
e U (3.132)

i

where p% = (mf)?/A?. Using the values of m, and A given above, together with

ys ~ 1, we find

g L ANEI0E)
7/ BTN

In other words, the tree level parameter u? must be adjusted to the 3274 — 34tk

(3.133)

decimal places. If such the adjustment is not satisfied the mass will come out
to be of order A = 10°GeV again. Even if it is so, higher order corrections are
very likely to violate it and hence infinite re-adjustments are required. So we say
that the Higgs mass is quadratically unstable against the quantum corrections.
Too many “coincidences” are required to make it light. This is the fine-tuning

problem.

In the appendix B, we show that the situation does not gets much better
if we take the standard model as an effective theory of some unified theory at
a particular energy scale, say 10*® GeV. We show that there will be at least two
fundamental scalars to do the job of breaking the symmetry spontaneously. That
means we should expect two fundamental scalars with masses of order 10'® GeV
and 10'° GeV which are the cut-off of the standard model and the unified theory.
However, we know that one of the scalar, says the Higgs of the standard model,
should. be aslight as 102 GeV. Then there must be some unnatural separation
between the two mass scales and some extreme fine-tunings must be done to get

things right.

The lack of naturalness and the requirement of fine-tuning is commonly
referred to as the Hierarchy problem. In some literatures, it is also known as
the “b1g” or the “full” hierarchy problem when the effective theory is expected
to valid to the grand unification or the Planck scales. One of the reasons that
this kind of problem is not currently considered as the defect of the theory is
because the extreme sensitiveness of the mass of the Higgs to the cut-off did not
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manifest itself in the region that is already “probed” (indirectly) by experiments.
This is clear by setting A = 1 TeV in (3.132). However, the need for fine-tuning
reappears as soon as we extent the cut-off to 10TeV (recall the electroweak
precision tests and see below) whose verification is within the reach of the LHC.

By the way, it is important to emphasise that the hierarchy problem is
not the problem of mathematical inconsistencies of the model but is more or less

a kind of phenomenological frustrations.
3.4.2.3 Quadratic Divergences: Part 2. Implications on New Physics

The Higgs of the standard model has three different kinds of couplings. We
just have discussed the most severe quadratic divergent contribution due to
top quarks. Now we will include the loop corrections to the scalar (the Higgs)
from gauge bosons and the Higgs itself and perform some rough calculations.
By rough we mean we focus on only the contributions to quadratic divergent
diagrams. Then we can regard the “loop-particles” as massless since we will focus

on high energy limits of the theory.

Let us begin with electroweak gauge fields (2 charged W’s and 1 neutral
Z) with the diagram providing major contribution shown in fig. 3.10. For

simplicity, we will assume that My, ~ M.
W, Z

Figure 3.10: Higgs self-energy diagram contributed from gauge bosons.

For each gauge field, the contribution is (Landau gauge)

4 k?

(2m)4 (2m)% k2

_ 2472
= adh (3.134)

d*k . 9% —i(gu — k*k” /K?) 1 d*k 1
uv HV - = 3 2/
/ (ig*”) 2 (3)9
3

Observe the factor 3 from the trace of the propagator of the gauge boson (see
also (3.40). Altogether, the three electroweak gauge bosons add to the mass of
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the Higgs

oM, = 6;2_(;2_/\2. (3.135)

Out of all the loop contributions from quarks, that from the top quark

is the largest. As we might mentioned from time to time, this is not surprising

due to its large Yukawa coupling with the Higgs (or its large mass). We have

already evaluated the contribution from fermion field to a scalar in the previous

section (see (3.129). For the case at hand, we just need the factor 3 for quarks
have three colours. Thus

3
oMy, = —@yfA2 : (3.136)

Finally we have the quartic coupling of Higgs as shown in the fig.3.11.

Figure 3.11: Higgs self-energy from its quartic coupling.

In this case we have

iAo d%k i 4

OM? i 03 ~ol o=
1 4 (2m)* k2| B4m?

AAZ. (3.137)

where 4 is a symmetry factor.

We now collect the corrections to the Higgs mass together and write
(Mi)? = Moy + 0Mp , + 6 My + 6 ME,
2

6472
2
M2+ (997 + 42 — 2892) (3.138)
h(tree) 9 Yt 160 :

tree

= Ml%(tree) + (992 +4X — 24yt2>

which is just a more complex version of (3.131). Thus, the analysis is very
similar. Since there are no relations between the Higgs couplings, natural
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cancellations are hopeless. As in the previous case, the Higgs mass is obtained
naturally only when the cut-off is at ~ 1TeV which is the approximate limit
of current accelerators, while fine-tuning is still required if we raise the cut-off
to ~ 10TeV of next generation accelerators. When A ~ 10TeV we get the

approximation

9 9 M2
SM? = ——g?A°~ —"WA2% 0 (800GeV)? 3.139
hog 6ar2d 160 v° (800GeV) (3.139)

4 1 M2

M2, = AN ~ = R A2 O (450 GeV)? 3.140
hoh 6472 160 v2 (450 GeV) (3.140)

3 3 m?
M?, = —— 92N>~ ——E7\2  _(2TeV)? 3.141

where we have used M; ~ 200 GeV. The illustration of the situation can be plot
in a chart shown in figure 3.12presented by Schmaltz [34].

tree loops
L]l =
2
Mh 5 Z
(200 GeV)
top| gauge Higgs

Figure 3.12: An illustration of how bad the situation of the naturalness of the
standard model is, when A ~ 10 GeV.

In the previous section, we have argued that there must be new physics
somewhere within this scale.” Now, we can turn the argument around and see
at what scales will we find new physics if we require only a few amount of fine-
tuning. In other words, we will start by arguing that the loop correction should
not be much larger than the tree-level. Then the degree of naturalness (of the
mass of the Higgs) is evaluated by considering (see Casas et al. [66, 67] for a

more complete analysis)

0 (M)
M

F= ‘ (3.142)

The mass of the Higgs would be most natural if we require 7 << 1. However,
this would imply A < 1TeV which has already been ruled out by precision
electroweak measurements. So, let us say we want to fine-tune no more than 1
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part in 10 (i.e., less than 10%), which means

< 10. 3.143
i (3143)

~Y

‘5(1\/-’5)

The (3.143) then tells us that Agy < 2 —3TeV (due to the large top quark loop
contribution) if we let the mass of the Higgs varies between 115 — 200 GeV.

Remember that we have hierarchy of particles: gauge bosons, quarks,
and the Higgs. Each has liberty to live on its own. This means, providing a
particular acceptable amount of fine-tuning, each kind of particle can “request”
new physics at different energy scale, depending on how severe it contributes to
the quadratic divergent loop correction to the mass of the Higgs. As we have
seen, as the top quark contributes most, it requires (see, for example Schmaltz

[36])
Apop 5.2 TeV (3.144)

to keep the fine-tuning better than 10%. For the gauge bosons and the Higgs
we have

Agasge < BTeV (3.145)
Asiges S 10TeV. (3.146)

With the limit of the current accelerators around 1 TeV, it is still fine that we did
not see any signal of new physics. When we say new physics we mean that there
must be some other heavy particles (so that have not been seen already) that
produce diagrams to cancel the dangerous diagrams from the standard model
particles.

There are at least two ways to resolve the naturalness problem. One
is to remove the problem right from the start; iie:., remove the Higgs or any
fundamental scalar. The idea is every scalar (the Goldstone boson; for example)
in the theory is regarded as a composite particle. In fact, this is not a new idea.
It was used (and proved “correct”) in the physics of superconductor through
the BCS theory. The breaking of symmetry is dynamical and is managed by
composite scalar fermion condensates. Theories developed with this scheme in
mind are categorised in the class of technicolour. We shall investigate some
important features of dynamaical symmetry breaking and technicolour in the
section 4.1.
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The other way out of the problem is using symmetry, as we may have
already mentioned from time to time. Symmetry can organise cancellations
between dangerous quadratically divergent loop diagrams. Supersymmetry and
Little Higgs fall into the examples of this kind. Actually, we may have seen
similar cancellations when we introduce the SU(2) electroweak gauge symmetry
to ensure the cancellations between dangerous diagrams from W and Z. In
supersymmetry, the cancellations occur between loops from particle having
opposite spin statistics (particles and superparticles) related via supersymmetry.
In Little Higgs, as we shall soon see, there is a global symmetry playing the role of

supersymmetry, to manage cancellations between particles of the same statistics.

Up to now we have been assuming that we do not believe in a perfect
coincidence so that there should be very few percents fine-tunings, and that there
must be new particles showing up at around 2 TeV to cancel the unpleasant part.
Unfortunately, life is not that easy. The effects of the new particles cannot be
turned on and off as we wishes. They will leave some footprints within the
precision electroweak measurements or processes taken place at energy scale not
far below the cut-off A. Even though we can enforce the perfect cancellations
between the quadratically divergent diagrams by introducing some symmetries,
there will always be the logarithmic divergent diagrams left behind. That also

put some constraint on the cut-off as well.

Still, this is not the whole story we can learn from the naturalness (fine-
tuning) arguments. A careful reader might have noticed that the mazimum
limit of the standard model with better than 10% fine-tuning (say 2 — 3 TeV)
lies way below the minimum energy scale where new physics will appear (around
5—7TeV) according to precision electroweak tests. If we take the precision tests
as our first priority and set Ai,, we will eventually end up at arond 2 — 3% fine-
tuning. which is hardly acceptable. In addition, even if the fine-tuning fails very
slightly!! and the Higgs turns out to be just “a bit” heavier, the other bound
from the precision tests saying that the Higgs should be ~ 100 — 200 GeV is not
satisfied. This problem is known as the little hierarchy problem or the LEP
paradoz. Unless we take the “desperate” solution; i.e., ignore the fine-tuning
and accept the world as is, we have to be careful when introduce new physics.
So the new physics predicts results which are deviated only slightly from those
predicted by the standard model (which agrees well with precision electroweak
tests).

1 This is not likely to occur though. If the fine-tuning mechanism fails, for any reason, the
mass of the Higgs will be driven to the cut-off scale.



CHAPTER IV

PRELUDE TO THE LITTLE HIGGS

The purpose of this chapter is to provide not only the basic ingredients required
to understand the Little Higgs, but also many crucial ideas and thoughts that
should be useful for studying physics beyond the standard model in many
directions. In section 4.1, we consider another approach to the spontaneous
symmetry breaking which does not require the fundamental scalar. It serves
us as another way to implement the BEH mechanism, as well as gives us some
insights on the problem of vacuum alignment. As a by-product, it provides a nice
way to avoid the naturalness problem and provides the basis of understanding
the high-energy limit of the Little Higgs (the UV completion). We will show
some simple (but complex enough to be illustrative) model to point out how the
structure of the vacuum affects the pattern of gauge symmetry breaking. After
that we present methods to deal with low-energy effective theory in terms of the
non-linear sigma model in section 4.2. Finally, in section 4.3, we put the last
three main ideas together in a model that is considered as a prototype of the
Little Higgs.

4.1 Dynamical Symmetry Breaking

In this section we will investigate a gauge theory with spontaneous symmetry
breaking from different point of view than what we have done in previous
chapters. Let us recall that what is important in the spontaneous breaking
of a global symmetry is the symmetry group G and H of the system (and the
representations used), not the existence of an elementary scalar. Spontaneous
symmetry breaking without an elementary scalar, usually dubbed dynamsical
symmetry breaking, is our main topic ‘here. In the first section (4.1.1) we will
see what happens to the electroweak sector if the Higgs does not exist. A more
general treatment will be found in section 4.1.2, where we include the discussions
of vacuum alignments. Formalisms of a situation where the global symmetry is
broken by weak interaction are discussed in section 4.1.2.1, together with their
applications in section 4.1.3.
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4.1.1 A Simple Case

Consider a system of massless quarks ur, ug and dr, dgr living in a flavour
doublet and a colour triplet. Now let us say there is no fundamental scalars
included in this system. In this way, when the electroweak gauge couplings g
and g’ are turned off we see that in addition to the gauge symmetry Gsirong Of
the strong interaction, the theory will have a chiral symmetry G = SU(2) x
SU(2)g, one acting on the doublet (ug,dr) while the other acting on (ur,dr).
This global chiral symmetry is sometimes dubbed “accidental symmetry” of the
electroweak Lagrangian for the reason that should be obvious. We shall see
that due to the nature strong interaction (colour), naturalness, hierarchy, and
triviality problems are solved (or prevented) in one shot.

Next, suppose that the system is arranged in a way that the quark-
antiquark condensate is easy to produce (i.e., the gg is the lowest energy state)
and tend to stay with each other with strong interaction as a “glue”. For a space
filled with infinite amount of these pairs to act as a vacuum, each pair must
have zero momentum and zero angular momentum. This immediately tells us
that helicity cannot be zero for each pair. In other words, chiral symmetry is
not respected by the vacuum. The chiral symmetry SU(2). x SU(2)g will break
down spontaneously to SU(2).r vector isospin subgroup. The breaking is said
to be triggered by a “composite” scalar consisting of a quark bilinear having

non-zero vacuum expectation value
<’l_1,L’U,R> = <d_LdR> ;é 0, (41)

which clearly provides links between right-handed quarks with the left-handed

antiquarks. The configuration of the condensate maybe written as follows:

(trug) (urdr) .(1 0
<<&LUR> <JLdR>> o (As) (0 1)’ (4.2)

where the A, sp is the energy scale where the breaking is expected to occur. For
strong interaction described by QCD, this scale lies around 1GeV and should
not be confused with the confinement scale Aqcp which is somewhere around
1GeV as well. Also note the pion decay constant F, ~ 100 MeV.

Before we move on, let us note the crucial fact that when electroweak

interactions are turned off, strong interaction alone does not distinguish between
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up and down quarks. This means a configuration

<'I_I,L'U,R> <'I_I,LdR> 3 01
<<gLuR> ((zLdR)a(AXsB) (1 0), (4.9)

is equally probable and is reachable by a unitary transformation. However, as
we shall see later, this is not a preferred configuration when we turn electroweak
interaction on.

Now, recall that regardless whether there is a fundamental scalar in the
system or not, we always have the Goldstone theorem on hand when a global
symmetry is spontaneously broken. In this case, we have 3 Goldstone bosons
(the pions) corresponding to the broken axial currents (see the section 2.2.2).
Even in a case without a fundamental scalar like this one we are considering,
we should not write L5 = 0 though the interactions between the Goldstone
bosons and other particles many not manifest themselves in the Lagrangian.
Consequently, in the sense of the L35 given by (2.1), we find that we should
write

Locp < Lsg, (4.4)

where the role of the fundamental scalar was replaced by the fermion condensate.
Being the Goldstone bosons, we see that masses of these pions are protected to
all order. Their derivative interactions are characterised by a scale F, which
is typically of ©O(100MeV). Other states are at Aysg >> F,. Empirically,
Aysg ~ O(1GeV).

Notice that by saying that a pion is a “composite” particle, we mean at
energies higher than A, g5 the particle has quark-antiquark substructure, bound
by strong interaction. However, at energies far-below A, sp it looks point-like;
i.e., like other elementary particles. Then we can use the effective Lagrangian

to explain its behaviour (see later sections).

Now we will proceed to the second stage: ‘when the electroweak in-
teraction is switched on and coupled with our system, and is treated as a
perturbation. The latter means the weak couplings are weak at the energy
scale where the strong interaction (the binding force) becomes strong®. Strictly

speaking, turning on a gauge interaction means we introduce a weakly interacting

'In principle, the “electroweak interaction” here cannot be the same as the one we are familiar
with. The gauge fields in this case are very light. As we shall see this symmetry breaking
mechanism based on Fp ~ O(100MeV) will result in the electroweak like interaction with
My, Mz ~ O(100MeV) not O(100GeV).
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gauge group Gy C G such that? when G is spontaneously broken to H, Gy is
also broken to its subgroup, say Hy, controlled by the intersection between
Gw and H. In the case we are dealing with, it is clear that the global
chiral symmetry group must be broken ezplicitly to a subgroup preserving
the electroweak interaction. This case is interesting because the currents in
electroweak interactions are handed ones. So they can “communicate” with the
condensate the presence of symmetry breaking. Then the resulting interaction
will give mass to the gauge bosons. The following considerations will be rather

similar with those in the section 2.2.3. So let us just fill what are missing.
The parts of the Lagrangian containing SU(2) x U(1) currents that are
capable of producing the pions are written explicitly as

b

e 1-~°%\ 7° - 1+9%\ 78
gWav" < ) A 9'B.yy” () DR

2 2
= gJ*W? 4 ¢'J§B, (4.5)

These currents produce the pions according to

(0| /42ee(0)|m°(p)) = ip* Frd®®, (4.6)

However, in this case there are two gauge fields coupled with the neutral pion

with the couplings given in fig.4.1. Up to this point, we can proceed in the same

ingp“ iglF'/rp#
ANNANANANANS ——— P — — — ANNNNANNS — — — P — — —

we 0 B, 0

Figure 4.1: Gauge bosons and pions couplings

way as what we did in the section 2.2.3. The diagrams in Fig.4.1 contribute to

the II(p?) in the vacuum polarisation tensor as follows:

2F2 I2F2 IFZ
wa(p2) = g 27r ) HBB(p2) —= g 271' ) HWB(p2) oy ggTﬂ' . (47)
p p p
The last term is coming from
AN — - = (igp“F,r)i(—ig’p“Fw) . (4.8)

w B* p?

%It is not necessary that Gy and Hy be the SU(2)y x U(l)y and U(1)em, respectively.
However, these are usually the cases.
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In this way, the mass terms for the gauge fields can be read off easily. They can

be organised into a mass matrix

(4.9)
9° g9

ggl gl2

with rows and columns labelled by the states W, W2, W7, B,,. The 2 x 2 matrix
in the lower-right corner, corresponding to the Wj and B,, can be diagonalised

into
F? (92 = 0> (4.10)
0 0
with the eigenstates being the linear combinations (2.90) and (2.91)
Z, = W(QWS —9'B,) = —Bysinfy + W} cosfy (4.11)
A, =—=—(9B,+gW32) = B,cosOy + W;sinfy . (4.12)

The eigenvalues of the diagonalised mass matrix are therefore

My, =¢°F2 Mz =(*+9°)F;, M;=0, (4.13)
which implies
My
—p=1. 4.14
M2 cos 02, & (4.14)

What is interesting is that for any strongly interacting gauge theory with a chiral
symmetry breaking from G O SU(2), x U(1)y to H D U(1)em, in such a way
that SU(2), < U(1)y¢ H, will always break the electroweak interaction down to
electromagnetism. Phenomenological constraints further requires that H must
also contain an SU(2) group to ensure that the relation (4.14) is satisfied at tree
levels. We say that the SU(2) protects such a relation and hence its is the SU(2)

custodial symmetry (see section 2.3.5).

Though the relation (4.14) as well as the global symmetry that protects
it is the same as those found in the section 2.3.5, we tried not to claim right from
the beginning that they are the same. This is because we do not really know
what is the mechanism behind the electroweak symmetry breaking. Nor do we
know if the (standard model) Higgs doublet exists. But, as we have seen, various
theoretical arguments and their results together with some verifications from the
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laboratories convinced us that the electroweak symmetry must be broken. So
there must be three would-be Goldstone bosons produced and later eaten by the
W and Z gauge fields. This assures, as we have mentioned from time to time,
that the Higgs doublet is not necessary and the important part is the symmetry
breaking pattern. The constraint (4.14) tells us that the custodial symmetry is
more or less vital for any model of electroweak symmetry breaking we use. Once
the custodial symmetry is there, it protects the p from receiving large radiative
corrections.

The results we have here show some nice features of the dynamical
symmetry breaking model in the sense that the inputs (parameters) of the
theory are minimal and the outputs are quite a lot. We started with massless
fermions forming condensates which broke the chiral isospin symmetry down to
the vector isospin symmetry. Then it was this strong interaction that broke the
SU(2) x U(1) down to U(1).,, and gave masses to the gauge bosons. Still, the
numerical results are not satisfactory; for example, taking F, ~ 100MeV, we
find that the mass of the gauge bosons

My, ~ 30 MeV. (4.15)

are about 2500 times lower than the experimental values. This particular
problem was a motivation for the introduction of a stronger colour-like inter-
action called technicolour or hypercolour. Besides, observe that this simple
mechanism cannot give mass to fermions. Yukawa interaction is not an option
since the theory does not have fundamental scalar. This problem can be solved
in a modified theory generically called the extended technicolour. We will not
pursue that topic here. Still it-is worth emphasising that despite all the good
features and all the defects that the families of technicolour theories may have,
these kinds of theories do not have the Higgs (nor the Higgs doublet). A particle
having quantum numbers similar tothe Higgs may exist but-merely not qualifies,
phenomenologically, for being so. At least it does not have the Higgs feature such
as its couplings with other particles are proportional to their masses. Actually,
this is fairly obvious because it is “by construction”. We tried to avoid it right

from the beginning and it did not come back to us.

To sum up, we have tried to see what happens if the Higgs does
not exist. We saw that electroweak symmetry still breaks down to that for
electromagnetism and the weak gauge bosons are massive, though they are even

lighter than the pions, due to their interactions with the condensate.
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4.1.2 Explicit Symmetry Breaking and Vacuum Alignment

In a system where spontaneous symmetry breaking occurs, we have seen that in
many cases there exist infinite possibilities of equivalent ground states (vacua).
The previous section provided one of the examples. An illustrative example
maybe the breaking of the global symmetry SO(3)/SO(2) of a ferromagnetic
system. Though we know that the symmetry is broken down to SO(2), we
cannot tell which SO(2) subgroup is left unbroken. An SO(3) transformation
will rotate a particular vacuum to others which results in the new unbroken
subgroup (which are equivalent). Nevertheless, things change when we apply
an external “disturbance” (in this case it is the external magnetic field) to the
system which breaks the SO(3) symmetry ezplicitly. In other words, the explicit
perturbation may transform as a 3-vector in SO(3) and will force a specific
SO(2) rotation that leaves it intact. Therefore, the SO(3) symmetry is not exact
even before the spontaneous symmetry breaking occurs. So, this specific SO(2)
(second) vacuum may not be the same as the choice picked up by the spontaneous
breaking mechanism. The interesting point is that instead of having the O(1)
as a survival exact symmetry that satisfies both the two vacuum alignments,
the system has the SO(2) as an exact symmetry. This means that the vacuum
of the spontaneous symmetry breaking tends to “align” itself with the explicit
symmetry breaking interaction. Some of the aspects of the vacuum alignment
will be reviewed in this section.

In this section, we will deal with explicit symmetry breaking in general
sense. Then we focus on the explicit breaking caused by gauge interactions.
Finally we will briefly review some of the examples of the vacuum alignment

problems.

First let us recall the invariant condition (2.14) for a potential V; leading

to spontaneously broken symmetry

oV
O

Suppose we introduce a small explicit symmetry breaking perturbation V;(¢)

(T*¢); = 0. (4.16)

so that the new potential becomes V' = V; + V1, we will find that the vacuum

changes to ¢ = ¢o + ¢; for a small ¢;. This new vacuum satisfies

ov(¢)
005 s—gor:

=0 (4.17)
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and is no longer degenerate. Expanding this equation, the stationary condition
becomes

8*Vo(¢)
b0 8¢]8¢’L

Vo(9)
0

5. 1 Vi)

8°Vi(4)
do 0¢; i

T
. o000, %Y

¢o

(4.18)

After a multiplication with T%@or = (T*¢y); and the application of a slightly-
modified version of (2.17), we find, to the first order

oVi(¢)
efos

(7o) =0. (4.19)

o

As we have seen in the section A.4 on the effective potential, the above equation
technically tells us that the Goldstone bosons have no tadpoles (to first order
in V;). This equation also tells us that it is the symmetry breaking terms in
the Hamiltonian that control the alignment of the true vacuum. Hence this

condition is known as the vacuum alignment condition.

Group theoretical techniques allow us to find a condition to identify
whether the vacuum under consideration is the “true” one; i.e., whether it

has minimum energy. Consider a spontaneous breaking of global symmetry

group from G, with T°(a = 1,...,ng) as generators, down to H, with Y*
(1 = 1,...,ng) as generators. The broken generators are denoted by X?*
(z=1,...,ng — ng). So the set of degenerate vacua is described by

12(8)) = %7 |0). (4.20)

If G is an exact symmetry (but hidden), then the orientation of the H in G is
arbitrary. Now suppose we introduce an explicit breaking part, which introduces
a second vacuum alignment, into the system. By treating the small symmetry
breaking term in the Hamiltonian #H' as a perturbation, we find that the vacua

are no longer degenerate and are shifted by
AE(©) = (QIH'|Q) = (0le ®" X H'e®"*"|0). (4.21)

In general, we do not know which vacuum aligns with H’. Look at the vacua
defined by (4.21). One of them, say the |0), should correspond to the true
vacuum such that the AE(©) be extremal; i.e.,

0
0©*

AE(®)|__ =i(0[[X*,H(0)]|0) = 0. (4.22)

©=0
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Furthermore, the contribution from #’ must lead to an upward curvature of the

effective potential:

32

6050 LE©)|,_, = —(0I1X7, [X, H (0)]0) > 0. (4.23)

These two conditions are also known as the Dashen’s conditions. The latter
condition tells us that the Goldstone boson will acquire a mass matrix
2 82

=C

ml, = Cgooses AB(O)|,_ = ~CLOlIX*, (X", H(O)]]l0) 20,  (4.24)

where C' is a constant that can be calculated using a technique, that requires
some knowledge on strong interaction, like the current algebra method (see
Dashen [68] or the review paper by Pagels [69] and the references therein) where
it was found that C = ﬁlg The Goldstone bosons that become massive, due
toapprozimate symmetry (spontaneously broken from G to H but explicitly
broken by H'), are referred to as pseudo Goldstome bosons (sometimes called

pGB, pNGB, or just “pseudos”).

Instead of looking for a vacuum |0) that corresponds to minimal energy
by the method prescribed above, there is another way to view the situation on
hand. Let us say that we are given a fixed vacuum |0). Then the problem is
to find a “G-rotated” perturbation #/(©) = U(©)H'(0)U'(©) such that the H-
invariant vacuum has minimal energy. The conditions that H'(©) must satisfy
are then (4.22), and (4.23). In practice, it may turn out that the masses of the
Goldstone bosons given by (4.24) are, or has a potential to be, negative. This
signifies that we had picked up either the wrong vacuum, or the wrong H'(©),
or we have to find some conditions (on several parameters) that the particular
vacuum we have chosen is the true one. A'G transformation on the perturbation

can also brings us, indirectly, the “preferred” vacuum.
4.1.2.1 Global Symmetry Explicitly Broken by Electroweak Interaction

Now, recall that gauge interactions can also ezxplicitly break the global symmetry
even though the global symmetry is a result of another gauge symmetry. As
an example, consider a system of massless colourless technifermions which
behave likes u and d quarks®. Chiral symmetry then breaks dynamically due to
technicolour interaction. The reason technifermions are chosen instead of the

3Sometimes we will refer to the technifermions just as fermions when it is clear from the
context.
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quarks is because we can assume that the influences of the weak interaction
on the dynamics of the strong interaction acting on colourless technifermions
are moderately suppressed so that the pattern of symmetry breaking of the
global (chiral) flavour symmetry is not altered. This is because the technicolour
interactions are assumed to have energy scale much greater than the usual colour
ones. We will refer to the technifermions as U, D, C, etc.... Global symmetry
is explicitly broken by the Yukawa interaction as well if the theory admits the

existence of fundamental scalars.

The gauge fields are introduced by gauging a subgroup of G, called G ;
i.e., promoting the Gy to a local one. Though we are interested in cases where
SU(2) xU(1) C Gw, many other possibilities are available. As indicated before,
it is not necessary that G be the same as the global group G. So there may be
an intersection between H and Gy,. The so called the alignment of H relative
to Gy, is not fixed but is determined dynamically such that the energy of the
specific vacuum is minimised. Another way of mentioning the vacuum alignment
problem is that “what subgroup Hyy, of Gy is left unbroken by strong dynamics?”

Particles in the spectrum are classified as follows. The gauge fields
corresponding to the overlapped section (of Gy and H) will be massless because
there are no Goldstone bosons to feed to them. Moreover, the Goldstone bosons
corresponding to the intersection between the broken generators and the gauge
generators will be exactly massless and will eventually get eaten by interacting

with the corresponding gauge fields.

Still, some of the massless Goldstone bosons will make it to the physical
spectrum while being massless if they are protected by another (non-gauged)
subgroup of G having all of its generators commute with Gy,. So, by
construction, this subgroup cannot be defined beforehand and may share its
generators with those corresponding to the unbroken symmetry. Electroweak
interaction can be responsible for generating such the group because it introduces
the doublet-singlet structure to the group which may or may not result in
the additional group depending on whether it treats each family differently.
The largest possible (maximal) subgroup of this kind will be referred to as S.
Consequently, the appearance of (weak) gauge interactions ezplicitly break G
to Gy x S. Finally, there remain the Goldstone bosons whose masses are not
protected by either Gy, or S. These Goldstones will interact with the gauge

field and become massive. They are the pseudo-Goldstone bosons.

Now we will let some of the G generators coupled with the gauge fields
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belonging to the group Gy, of weak interactions. In this section, it is helpful
to use different indices for G-currents and Gy -currents. The latter will be
accompanied by first few Greek indices o, 3, .... With the use of the suitable
representation, the gauge couplings can be recasted into the form

L= g"A%Jo, (4.25)

Though the Gy,-currents do not “know” anything about the global symmetry
and its breaking, Gy must be a subgroup of G. Hence, the Gy-current must be

a linear combination of some of the G-currents
4" T =g (4.26)

corresponding to the mixing between the unbroken and broken G generators Y*'s
and X*’s respectively. The g*¢ is provided to manipulate the linear combinations
of the couplings. Expressing things in terms of the G-currents will bring in
some convenience since, as we shall see, we have to consider a G-transformation
of an H' constructed from the Gy -currents J*. Notice that, under a global

G-transformation J* transforms as an adjoint representation R(©) of G
gU' JHU = 3" g°°U' JoU = > g**R*(©)JC. (4.27)

In addition, we can decompose the generators of Gy into the unbroken and the
broken GG-generators, denoted collectively by,

A — AY + AX y (428)

which, obviously, depends on aparticular choice of vacuum. This also means J;
can be projected into the subspace determined by the Y*and X? such that the
resulting J corresponding to the unbroken and broken subgroups do not mix:

a Jo o f Q o T (o4 ac ac c
9*Jsn = g*U JLU| +¢°U JSU| =" g*R*(8)J;

v + ;gchRac(@)Jﬁ

= U +Uex (4.29)

X

Observe that this way of projecting into Y* and X? clearly depends on the
relative orientation of H and Gy. We also define the UJ;j”s in such a way that
they include the gauge couplings corresponding to the 2 parts of the current

given in (4.29). For convenience, A’s are then defined so that they contain the
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g’s. These projections are useful because we know how the G generators act on

a vacuum.

Now we will arrange perturbations H’' due to weak gauge fields in more,
group theoretically, useful forms so we can get better versions of the Dashen’s
conditions. The exchanges of the gauge fields contribute, to leading order in g,

HO) =3 Do¢ [ daDti,@T {557 0) (4:30)
where Dg‘;ﬁ(x) is the free gauge boson propagator
Db, (@)= 1(0|T A%(2)A5(0)(0) = §°° Dy, . (4.31)
This leads to the energy shift of a vacuum state |$2)
AB(©) = 45 Y (07" [ dieD (@)QIT I (=) 2 0)1) (4.32)

In general, the shifted energy depends on the alignment of the vacuum. Picking
a specific vacuum |0) we find that the vacuum |Q2) is related to others by an
element in G by Q) = U(g)|0). So,

(9°(QUT I3 (2)I2(0)i) = (9°)°(0|TU I3 (2)UU' I3 (0)U]0)
YL U ra U ra
= (0|T"JZ(z)"J>(0)|0) . (4.33)
Only H-invariant quantities can contribute to the expression in (4.33) because

the vacuum is invariant under transformations belonging to the subgroup H. To

see what we have on hand, recall the assumption

(0|TJ) (=) I (0)[0) =0 (4.34)
or
TEX?Y" =0 (4.35)
which brings us to
Tr (Y'Y, X7]) = Tr ([Y*, Y7]X?) = if " Tr (Y*X*) =0 (4.36)

and hence [Y,X]| ~ X. Then, the further assumption that the symmetry
breaking respects parity in the sense that PY*P~! = +Y* and PX?P~! = —X?,
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reduces the general relation
(XY, X7| = ifv* V" +ifv"v X¥ (4.37)
down to
(XY, X*] =ifv*'Y*, (4.38)

which completely specifies the symmetric space (G/H). Then it can be shown
that (see Peskin [70]) the product of two unbroken currents are proportional to

only one invariant, the §%,

(O[T T.(2)J2(0)|0) =67 (0|T'T; (z)J} (0)|0)
= Tr{Y'Y7 | (0|TJ} (z)J} (0)[0) (4.39)

Here, JY denotes any single generator corresponding to Y* and we do not sum

over them. Similarly,
T z - T vz X X
OITJ;(2)J7(0)[0) = Tr{X*X*} (0T J; (z)J7 (0)|0), (4.40)

and
(0|7 I} (2)J7(0)[0) =0 (4.41)

allows us to write

(0|77 (z)J3(0)10) = (O|T T5¥ (2) T (0){0) + (0T J5* (z)VJ;* (0)[0)
= Tr{(U'AU)y (U AU)y | (O|T T (z)J} (0)[0)
+Tr {(U'AU)x (U A*U)x } (0T TX (2) T (0)|0)
= Te{(U'AU)y [U'A°U|} (0T JY ()]} (0)|0)
+Tr {(U' A°U)x [U AU} (OIT T (2) T (0)[0)
= Tr{|[U'AU| [U'A2U]} (0|7 TY ()7 (0)[0)
HTe{(U A0 x (U A x |
(0T {1 (z) T} (0) — I} (2) 7 (0) } |0},
(4.42)

where (U'A°U)y is a linear combination of the G-generators corresponding to
the current UJ;‘Y. Clearly we cannot naively “undock” the U from an expression

such as

Tr {(U'A°U)x(U'A°U)x } = Tr {"ASVAS } # Tr{A%A%} (4.43)
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where UA$ = (U'AU)x, because the mixing is implicitly described by (4.30).
The example of the above mixing and the dependence on the vacuum alignment
will be given below. Later, we will see the use of expressing the Gy -currents in
terms of the unbroken and broken G-currents in the form displayed in the last
line of (4.42).

It may be illustrative to see things in more details: for the case SU(N) x
SU(N) — SU(N) the G-currents are

Ja - \I, Ta‘lf Pl \i, a (1 - 75)

B = VT = Uy Tt Y (4.44)
= = 1 5

J;i# — \I’R'YMTG\I’R — \I”)’#Ta(_;ry)\lf, (4_45)

which can be arranged into vector and axial currents in the usual way:
Jo = ¥, TV, J5, = ¥y, Ty Y. (4.46)
Then the Gy currents and their transformations are
g°Jg, = Up7,0°059; - Uyy,L g% LY,
9°Jg, = Ur7.9°05%g — UgY,R g°03RYp (4.47)

where 67 5 are generators for the Gy (which are actually a linear combination of
the T*’s), and the Uy, and Uy are the SU(N) matrices. In (4.33) we then expect
the following terms, due to J* = J7 + Jg,

0|%72U7%0) o« Tr(L'62LL'6L) + Tr(R'62RR'6%R
w “v L L R R
+Tr (L'93 LR'03R)
= Tr(66%) + Tr (6365) + Tr (03UnO3Uy)  (4.48)

where Uy = LRis an SU (V) matrix, which clearly exhibits dependence on the
orientation. In terms of the generators these currents, the projections are given
by

AS = g“ZYiTr{Y"ea} (4.49)

Ay = ¢°> X*Tr{X?6°}. (4.50)
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So the Gy current can be decomposed to

9%J; = 9°0y,0%0 = Uy, AT + Ty, AGT
= ¢*¥y, Y VT {Y'6*} ¥ + g°Fy, > X Tr{X*6°} ¥. (451)

Now let us come back to (4.42), where we have factored out the term
Tr {U' AUU' AU} (0| TJY () JY (0)[0) (4.52)

which does not depend on the alignment © of the vacuum. The generators of
G as “seen” by the vacuum is the same no matter which direction it points to.
Consequently, the energy shift of |2) in (4.30) is

AE(©) = B+ % > T VA% A%}
/ d*z D8 (z)(0[T { JX () JY (0) — JX (z)J¥(0)} |0). (4.53)

The unbroken generators of Gy raise the value of AE while the broken
generators try to lower it. It can be argued that the integral is positive (see
Preskill [71], or Peskin [70]). This is quite natural since the lightest particle
created by the broken current Jf should be heavier than the lightest particle
(massive due to explicit symmetry breaking) created by the unbroken one, the
J}f. The examples are the axial and the vector mesons, respectively. Therefore,
to find the preferred vacuum orientation, we have to find the configuration which
minimises

S Tr {PA% A%} (4.54)

which is the projections of the generators (corresponding to the currents) on the
subspace of possible equivalent representations of Y* or X?. We may say that
the vacuum prefers the direction that results in-the minimal number of broken
generators of Gy in the projection. To see the meanings of what we have on
hand, recall that the interaction between the Goldstone bosons and the gauge
fields is given by

(0]72(0)[7*(p)) = ipud** Fr . (4.55)
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Observe that the arguments preceding the equations (4.39) and (4.40) leads, in
the low energy limit, to

O[T 2 () JE(~p)0) =~ z<0|Jﬁ|7rZ(p)>;2<wz(—p)|J5|o>
= 3 [ip, Fr6*] piQ |—ip, Fr6”?]

= 52 11”;1”" F2Tr {A® X"} Tr { AP X"}

2
2

PuPy
p2

iR {ASAY (4.56)

On other vacua |2), we find

g . Dub
(QITTZ (p)T0(—p)|2) ~ i ;;2

FTe{UA$UA% ), (4.57)
which allows us to read off the mass term for the (weak) gauge fields

M2y = F2Tr (YA UAS | o< g°gP F2Tr { X°XP} (4.58)
which can be compared with the results found in section 4.1.1. This means

AEB(©) oc > MZg=TrM>. (4.59)
af

The interpretation agrees with that below (4.54); namely, the Gy and H prefer
to line up in such a way, determined by the fermion condensate alignment, that
the masses of the Gy, gauge fields be minimal. Hence electroweak symmetry
is broken as little as possible. In other words, as a crucial result, the largest
possible subgroup Gy (i.e., largest overlap between Gy, and H) will survive.

At this stage, we can-convert (4.57) into a more useful form. Using the
vacua defined by (4.20), the Dashen’s condition(4.22) becomes

0= 5o ST {WAVRY],L = ST A3

= 21y Tr{X?[A§,A%]} (4.60)

where the orthogonality Tr{XY} = 0 and [X, X] = iY were used in the last
step. This tells us that the vacuum is stationary when Tr {X*[A$, A%]} = 0 for

all gauge generators A*. The result is useful since it is entirely group theoretic;
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i.e, we do not have to mess with complicated strong dynamics. Next, consider

& .
soeg0- o T{(WATUNRL |,

= =2 (Te{[X", [X7, AR A%} + Tr {([X7, A*])x ([X7, A%])x})
= =2 (Tr{[X", [X*, AX] A%} + Tr{[X°, AT][X", AT]})

=230 (T (A5, [A3, X7 X7} — Tr{[A%, [A%, X°TI X7)) (461

Then the Goldstone mass matrix from the second Dashen’s condition (4.24)

becomes

= DTG, A5, X7 X7} = Tx {[A%, [A%, X7 X))

/ d*zD5 (2) (0T { JX (2) 1Y (0) = JX (z)JX (0)} [0)  (4.62)

which can be written in a less precise form as a combination of the masses due

to the broken and unbroken gauge generators
Myep X My, — My, - (4.63)

Observe that the latter tends to destabilise the vacuum. This mass term will

control the resulting subgroup of the gauge group.

4.1.3 Examples of a Symmetry Broken Explicitly by Weak
Gauge Interactions

In this section we will study the-applications of (4.62) to the symmetry breaking*
SU(2N) x SU(2N) — SU(2N). We consider the case where the electromagnetic
or weak gauge groups are included in the SU(2N) x SU(2N) of G.

Consider a system of 2N left-handed and 2N right-handed massless
fermions transforming under the (same) complex representation of a strong
interaction gauge group. The system will have a global flavour symmetry namely
SU(2N)r x SU(2N)g. Then the condensate

(0|7, 9x/0) = A%6Y (4.64)

“The number N may be regarded as the number of the left-handed doublets when weak
interaction is taken into account.
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with 7,7 being flavour indices and® A o« F,, breaks the chiral group down to
SU(2)1+r (see section 4.1.1). At this stage, we have equivalent sets of vacua that
are related by a SU(2N)y, x SU(2N)x (unitary) transformation L{(¢:¢%)R' =
69 A3LR" where LR' is a unitary unimodular matrix which can be parametrised

by the pion fields (the Goldstones) 7%(z); i.e., exp {%?TG}

4.1.3.1 Masses of the Pions Due To Quark Masses and Electromagnetism

Now let us take the strong interaction to be the usual colour interaction for a
moment and regard the U, D as the usual quarks u, d. Let the condensate that

breaks the chiral symmetry and keeps vector isospin be
<’IT(,L’LLR> - = <’ITLL’U,R> # Om (465)

We will consider the coupling of the Goldstone bosons produced above with
the electromagnetic field. The T° generator of the global symmetry (isospin) is
coupled with the electromagnetic field via @ = T° + Y/2 which has a preference
in the 73 direction, and therefore explicitly breaks the chiral symmetry. In the
simplest case where N = 1 we know that these Goldstones are the pions. The

perturbation from electromagnetic interaction is
1 v
#,(0) = —5¢? / d*z DE (2)T {J,(z)J,(0)} (4.66)

where J* = @y*u + dy*d is the electromagnetic current. Since the pattern of
symmetry breaking is SU(2);, x SU(2)g — SU(2)rr (in our current notation
we have Y* = T® = 7°/2 as generators of H), we see that A$ = eT®. In addition,
the unbroken isospin leads to A% = 0 hence the Dashen’s stationary condition is
satisfied. Sothe estimation of the pseudo-Goldstone boson is easy in this case: to
lowest order, we expect that the contribution from one photon exchange does not
give any mass to the neutral pion. Since the X% (chiral) charges are electrically

neutral and hence commute with J& .,
(m30)" =0, (4.67)

while the charged ones receive

(mi.)" = e’ M?. (4.68)

SF, is either of order MeV or GeV, depending on the interactions being considered (colour
or technicolour).
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The strong-dynamics part is embedded in
1 v
M2 = = [ @Dy (@)(0IT {Jru(@) v (0) ~ Jau(@)Jal0)} 0).  (4.69)

where the unbroken and broken currents are just the vector and axial vector
currents, respectively. As expected, the correction is proportional to the
parameter corresponding to the term that breaks the symmetry (m2 ~ e*M?7).
Notice that we have used the superscript v in (4.68) to note that this mass
correction comes from photon exchange only. Explicit symmetry breaking
perturbation from the quark masses, which affects both charged and neutral
pions, is neglected. We can even cheat a little by taking the M, measured
from experiments to determine the effects due to electromagnetic interaction.
In order to do so we have to bring back the contribution from non-zero quark

masses which also explicitly breaks the chiral symmetry.

Next we will workout the contribution to pion masses according to non-
Z€r0 My, My, .... This is sort of unnecessary if we insist on finding out the
value of M$ from experiments. Still this example may give some idea of vacuum
alignment. Let us note that the quark mass perturbation can be written as

- 1 - 1 -
H, = muOu+ mydd = i(mu + mg)(Gu + dd) + E(mu — mg)(au — dd)

1 p 1 =
= E(mu + mg) PV + E(mu —mg) Ty, (4.70)

which means this explicit breaking term also prefers the breaking of axial isospin
symmetry while leaving the (vector) isospin there: the term containing ¥'¥
is invariant under the isospin transformation but not under the chiral one.
The effect of the explicit isospin breaking 73 operator (recall the coupling with
electromagnetic field) from the second part is suppressed by the small value of
m,, —mg (comparing to m, +mg).-The point is that, without the mass terms m,,
and mg which keeps the vacuum in the ¥V direction, other possibilities related

by an.SU(2) x SU(2) transformation lying on a linear combination between
Py ~ T, and &% ~ Uy°ToT (4.71)

are equally possible. It was the mass terms (4.70) that align the vacuum in this
example. Gauge and Yukawa interactions can also do similar jobs. For further
reference, we note that in general the H, can be written as a linear combination

of the commuting generators of the group in question (including an identity);
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Hy = cou’ + czu’
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(4.72)

where u° is proportional to a unit 2 x 2 matrix and u® = ¥7°¥. An unbroken

isospin clearly implies c3 = 0 so that m, = mygy = m.

To workout the pion masses due to non-zero quark masses using (4.24),

we need to evaluate
| [ ey (ol [Zio(0), [Zi(0), m¥ ) ¥ )] 0)

where J%, = ¥(z)y°y° - ¥(z). First we recall that

{Ta), ()} = 0= {¥,(x), % ()}
(B0 Ua(y)} = bapd’(x—y).
Then
{\If(o)%wvovs‘lf(o), ‘Tf(y)‘If(Y)}

= [(0).%(0)s, ¥(¥), ¥(v)s] (7°7°/2)a73s

_ (\pg{%, U3 — UV, U5},
LT, — U L, ‘“I',B}) (T;T”)am%

= (00, % 0 [0 U] ) ()

< <\I’L‘I'6(7:7570)a5 = ‘I’L‘I’ﬁ(ﬁlv5)w> a°*(y)

=2 (@L\Ifa(%mv"’v")as> 8%(x);

which leads to

[ &y [724(0), m¥@)e(w)] =m0

(4.73)

(4.74)
(4.75)

(4.76)

(4.77)
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Next,
7—23
[ &2 [ 000, M2 ()]
_ [ @z [Fxnrs e O e (TonBg®
= T |¥(x)yy 5 (x), ¥, 5(277)a5
T* T"
- /d3:1: [\I"Tr‘lrﬁ’m‘l’jx%} (7075?)7,53(?7570)&5
t T* . T°
=m / A’z Us( 577" = 17T 7 )asb’ (%)
1
= mU¥s(1° {7, 7" Ya
= maTE™. (4.78)

which brings us to
(0] [X4, [X5,H']]|0) = m(0|au + dd|0)6** . (4.79)

Therefore the masses of the pions due to non-zero quark masses are

1 _ = 2 _ _
m2 = —ﬁm<0|uu + dd|0) = —FT%m(0|uu|0> =Cm, (4.80)
where C' = — 2 (0|@u|0). It is important to emphasise that all the pions, charged

or neutral, received the same amount of masses.
Finally, the mass of the charged pion is

m2y =m2 + (m2y)" =ml +e’M:. (4.81)
Since the corrections due to the two explicit breaking sources are of the same
order, we find <
m v
Myt — Mo R (—2% (4.82)
Recap: under the influence of electromagnetism, the charged condensates
like

<’l_l,LdR> = <CZL’U/L> # 0, (483)

which were “equivalent” to the neutral condensates (4.65) when the electro-
magnetism was not introduced, will now repel other condensates. This means
they tend to stay further from one another (comparing to the case when
electromagnetism is absent) and are more difficult to produce. Hence they
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cannot be the true vacuum. The true vacuum will aligned itself to the neutral
condensate direction. We can also say that the electromagnetic interaction (i.e.,
weak gauge interaction) tries to make the condensate neutral so that the vacuum
energy is lowest, and the binding is highest. Consequently electromagnetic
symmetry is not broken by the condensate. In other words, we started with
the correct vacuum (4.65). In the next section we shall see that when this is not
the case, electromagnetic gauge symmetry can be broken and photons can be

massive.
4.1.3.2 Explicit Symmetry Breaking by Electroweak Interaction

Next, by letting the Goldstone bosons of the spontaneous symmetry breaking
coupled with the electroweak gauge fields, we find, as in the section 4.1.1, that
this introduces left-handed doublet and right-handed singlet structures. Let g
be the mean electric charge of the doublet. We find the weak coupling for the

case N =11is
L'=g Y Py T Y We + ¢ (Pry"TPr + qP7"¢) By, (4.84)

with the corresponding generators written as

o AZTF77, il ¢
ol )

based on a (¢, %¥r) basis®, where each box is a 2 x 2 matrix. In this case, we
still stick with the complex representation of the technifermions and hence the
usual pattern of symmetry breaking, SU(2);, x SU(2)g — SU(2)r.r, can be
studied. The “original?, vacuum- condensate (0gie%|0).= A36%, which can be

,(1 0
A (0 1) (4.86)

based on a row (U D;) and a column (Ur Dg). With this condensate, broken

represented by

and unbroken generators of G can be defined. Then the Gy generators in (4.85)
can be easily “partitioned” into unbroken and broken parts of G (vector isospin

®We use different notations from Peskin [70] who uses (¢, ¥%).
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and axial isospin)

. H (T%Ta) N (TT)} s

respectively.  Observe that (4.86) can be recovered from a rotated one
(LyiyhR"); for example, in the basis of (4.86),

, (01
A (1 O) (4.58)

(which comes in the wrong, electrically charged, pairs U,Dr = DiUr = A3)
by using a transformation of the weak gauge sector. This means there is no
alignment problem as we can always “choose” a vacuum condensate that leads
to phenomenological acceptable outcomes; namely, the one that is electrically
neutral. As all the vacua are equivalent under the electroweak symmetry SU(2) x
U(1), there is no chance for this group to evade breaking. So the three Goldstone
bosons from the broken axial isospin symmetry, though remain exactly massless
with the protection of the SU(2); weak gauge symmetry, were all eaten up by
the weak gauge bosons. The masses of these gauge bosons can be evaluated and

are equal to those found in section 4.1.

More interesting cases are those having N > 1. Let us stick with N = 2,
by introducing another similar copy of the UD doublet with the same charge
assignments. Most of the arguments used here are fairly heuristic, which are
sufficient to provide us the rudiments of a model that will eventually become
the Little Higgs. As usual, the pattern of global symmetry breaking is SU(4) x
SU(4)r — SU(4)r.r. One of thedirection of the condensate ‘that leads to this

breaking has the usual diagonal form
, (4.89)

based on a row (U D CrS;) and a column (Ur DrCrSg). The broken and
unbroken generators of G can now be properly defined. Then let us write the
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“fermion multiplet” to be acted on by weak interaction as
¥ = (Z/{L, DL) CL, SL)Z/{R) DR; CR) SR) . (490)

By using a 2 x 2 matrix that acts on the space of the two doublets (the family
space) we see that the gauge couplings, written in terms of the 8 x 8 (matrix)

generators, are

_ (Teet _
L — gz\lf,yu ( ,,,,,,,,,, @1 0) ywe 4 g Byt ( q el ) vB,. (4.91)

The 1 in T* ® 1 acts on the space between the two doublets. In this case we see
the additional symmetry group S. Electroweak interaction leaves us with two
copies of the left-handed doublets (U, D) and (Ug, Dg), as well as two similar
up-type fermions Ug, Cr and two similar down-type fermions Dg, Sg. Since the
members of the three set come with equal U(1) charge assignments, we then

have the additional global symmetry,
S:SU(2)L><SU(2)R><SU(2)R, (492)

where the SU(2)., gr remains unbroken when the spontaneous symmetry break-
ing of G = SU(4)L x SU(4)g due to the condensate occurs. The breaking of the
S section alone produces 2 x 3 = 6 neutral Goldstone bosons (since the global
symmetry S “links” members with similar charges). Consequently, out of 15
Goldstone bosons -produced, 3 representing the generators 7° ® 1 will be eaten
by the electroweak gauge fields. The other 6 of them will survive massless to a
physical spectrum. The remaining 6 Goldstone bosons may receive masses by

interacting with the gauge bosouns.

To work out the Goldstone bosons’ masses, we seek for terms that are

not invariant under the alignment of vacuum in (??). We note, similar to (4.87),

that
g T“®]1§ Jrg' 2q+T3®]1§
2 T*®1 2 2+ T 1

9 -T*®1 ¢ [ -T°®1
5 +5
2 T*®1 2 T°e1

where the second term corresponds to the broken generator. An inspection of the

)

(4.93)
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form of the above generators reveals that the SU(2) couplings do not contribute
to the Goldstone boson’s mass (notice the signs of the upper left and the lower
right blocks and see the Dashen’s formula (4.62)). The relations in (4.48), saying
that only the mixing (J;,Jg) contribute to the ©-dependent part of the potential,

also confirm our inspection.

The unpleasant results of having Goldstone bosons in the physical
spectrum can be avoided by fixing the source of the problem; namely, the
symmetry that links between the family. One of the possible ways to do so is to
associate the different U(1) charges of the electroweak gauge group as follows.
For

U
/ Y=A (4.94)
D, L
and for
C:
<L> Y=-A, (4.95)
St
o4
as well as
1 1
Y(Z/{R):A+§ Y(DR):A—§
1 1
Y(Cr)=—-A+ - Y(Sg)=—-A - 5 (4.96)

which completely prevent the existence of additional group S. The U(1)
exchanges are now expected to contribute to the vacuum energy. On the basis
(4.90) the U(1) interaction becomes

o 0 10T
gIy [ +A B,
T°®1 1LeT?
A
A
A
' A
= I gy ¥B,
2 A+ 1
A—1
A1
A1

(4.97)
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With the usual “diagonal” vacuum condensate (4.89), we can determine the
unbroken and broken generators.

Next, we will quote the results found by Preskill [71] and Peskin [70]
that: in addition to the 7 diagonal (in the space of the two doublets) broken
generators consisting of

T°®1,1®T° and T*®T?, (4.98)

there are 8 of the broken generators coming out in the forms that allow mixing

between quarks of different families like ZC which appearing in the form

,,,,,,,,,,,, By 3 (4.99)

,,,,,,,,,,,,,,,,,,,,,,,,,

where F' are 2 x 2 matrices having 1 or i in one of their elements (while other

elements are zero). For example, the Z/C mixing comes from

==
F .= .
Any vacuum rotated by SU(4);, x SU(4)g transformations should be equivalent

when Gy interactions are absent. However, with Gy interactions turned on,

the set of degenerate vacua
LyiwhR' = AL R =N LR' = A*% (4.100)
1

are not all equivalent but it was found that there are only two configurations of
the condensate that are the stationary points; namely the (4.89) and

1

5 = . (4.101)
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This latter vacuum condensate is invariant under the different SU(4) transfor-
mations. To see which one of them will be the minimum of the true vacuum we
have to find the mass of the pseudo-Goldstone bosons. A quick estimate clearly
yields,

m? o< g? A2 M? (4.102)

because turning off g’ restores a larger symmetry. However, a full calculation by
Preskill [71] and Peskin [70] shows that there some of them, which are

mis o gPA(A+1)M?,
m3, o« g?A(A—1)M?, (4.103)

that have the potential to be negative when |A| < 1. When it is so, we know
that the vacuum in (4.89) is not stable and the preferred one, with the influences
from the B* interaction, will be (4.101). To see this notice that when |A| > 1
the form of the generator (4.97) is “almost” SU(4).r symmetric (especially
when |A| >> 1). We have to preform a rotation on the U(1) Gy generator
and partition the resulting generator into an unbroken and a broken part with
respect to the configuration of the condensate. The rotated generators must

satisfy

SoTr {UA§UA§} man, ory Tr {UAﬁUA}"‘,} maz, (4.104)
which is the case for the condensate (4.89) when |A| > 1. Hence we also expect
that the rotated current preserve as much as possible the SU(4).,r in the
way that the trace Tr {UAYUAY} be maximum. This can be accomplished by
a rotation on the lower-right block of the U(1) Gy interaction matrix in (4.97)

into

A+1

) t gl —A +1
UAlowerfrightU - 5 A_1 (4105)

-A-1

(notices the two terms in the middle). Doing so is just equivalent to a switching
between Dg and Cg and therefore the form of the condensate (4.101). That

condensate leads to the pairings

(UyUhr) = (D1Cr) = (C1Dr) = (51Sg) £ 0 (4.106)
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which have energy lower than (4.89) when A < 1. The existences of charged
condensates in (4.106) signify the breaking of U(1)..

4.1.4 Another Pattern of Symmetry Breaking: Real Represen-

tation

Now we will explore another possible pattern of symmetry breaking that is
relevant to Little Higgs models. The group of interest corresponds to fermions
in real representation, r of the strong interaction group with the property that
the product of r with itself contains a singlet and hence the fermion condensate

appears in a symmetric form.

Before we go to the real representation, let us first recall the convention
where all quarks are left-handed (transform under N and N). Then for a Dirac
spinor ¢ we have P9 = Py P2 where o, f and £*® are two-component spinor
indices and the 2-index Levi-Civita (antisymmetric) tensor, respectively. The
important feature we require is that the condensate must be invariant under a
strong interaction gauge symmetry Ggirong (i.€., Gstrong 1S DOt broken) that binds
the condensate together. Then the form of the condensate also depends on
how the fermions transform under this G.one and is characterised by a Girong-
invariant tensor A"°. Denoting %, j, etc... as flavour indices, the operator to

form a condensate becomes”

(095 easts [0) (4.107)

The 7, s are the indices for the representation of the strong symmetry group and

A" 1s a Gtrong 1nvariant-tensor.

For 2N multiplets® of left-handed fermions with N in the complez
representation r while the other N in the conjugate representation r, we see
that the condensate is constructed from

% g T (4.108)

"If this form was used in the previous sections, we would have obtained the form

9!1
6o = < z _9%*)

(with the extra minus) for the generators of the Gy .
80dd numbers are equally possible. The 2N notations are used, just for this moment, for
compatibility with the previous discussions.
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where the strong interaction indices have been suppressed. When the left-right

notation is recovered (4.108) becomes the usual form

(Yr¥r) - (4.109)

Let us turn to the case of 2N multiplets of fermions transforming
under a real representation r, of Ggong such that a symmetric product of
this real representation with itself contains a singlet (or we cannot construct
a condensate). Therefore we cannot distinguish between left and right handed
fermions. So, unlike the previous case, the condensate is now a fermion-fermion
type (not fermion-anti-fermion). What follows is that the X, is also symmetric
due to the Fermi statistics between the indices of A(,;) and the e?#¥2¥5. The

Gstrong-1nvariant form becomes
petg sUWR (4.110)

This leads to a flavour symmetry G = SU(2N). Then the maximal subgroup
of G leaving the symmetric tensor X;; invariant, being the vacuum expectation
value of (4.110), is H = O(2N).

4.2 Non-Linear Realisation of a Symmetry

In this section we will introduce the concept or the “realisation of a symmetry”,
which is different from the representation of a group, and study some of its
formal properties. The considerations will be useful when we are dealing with
the problem where the “complete” high-energy theory is still unknown, or next-
to-impossible-to calculate, and we have to work with the effective low-energy
ones. A good example of a model to be modified in this aspect is the sigma
model concerning the pions. The hefty mass gap between the pions and all
other hadronic states in QCD suggests the possibility of describing the low-
energy hadronic physics in terms of the effective field theory where the only
kind of strongly interacting particles are the pion fields (Goldstone bosons). In
fact, this is necessary since we do not know which particle to associate with
the 0. We will follow up with what we have discussed on the linear realisation
of the chiral SU(2) symmetry in the section 2.2.2. There, we have seen that
the effective Lagrangian must share all the symmetry properties with that of

the high energy theory. However, it turned out that the linear version® is not

9Recall that “linear” means the broken symmetry is realised via linear transformations.
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very desirable when we want to concentrate on light particles only (pions as the
Goldstone bosons). It did not provide any rationale to cast off contributions
from higher order diagrams. This is where the non-linear realisation comes in.
It helps describe the low energy arena of the theory in terms of light particles
only while still preserves the symmetry of the high energy theory.

We will start with a brief discussion on some formal aspects of the
non-linear realisations in section 4.2.1, then followed by their application: the
non-linear sigma model [SU(N)]?/SU(N) in section 4.2.2. We will follow the
discussions by Scherer [72] and Weinberg [58]. Readers who seek for more formal,
and more general, treatments may want to look up the papers by Coleman et
al. in [30] and [31].

4.2.1 Formal Aspects

Let us consider an n-component vector called ®(z) with ¢*(z)’s as its compo-

nents. This enables us to define a vector space M,
M={&:M* - R} (4.111)

where, as usual, ¢ : M* — R. Then we can define an operation of a particular
group G 2> g on M by considering a map ¢ which associates (g, M) € G x M
with an element ¢(g,®) € M. This operation requires that ¢ has an identity 1

o(l,d)=12, Vé ¢ M (4.112)
and the mapping preserves the group structure (homomorphism)*°

09192, ®) = 091, 992, %)) (4.113)

for g, € G. If ¢ satisfies an “optional” condition (g, A®) = Ap(g,®), the
mapping is said to be linear-and ¢ will form a representation of G. Then recall
that in a theory with spontaneous symmetry breaking from G to H, the ground
state under consideration is invariant under a subgroup H. So the configuration
of &, say & = 0, can be associated a with the ground state. Therefore it is
required that ¢(h,0) = 0, where h hy, € H if hy € H and h, € H. In addition
we obviously require h™! € H for h € H. Then it can be shown (see Scherer

[72]) that we can set up an isomorphism (a bijective homomorphism) between

10Some literatures prefer the notation ¢(g;xg2) = ¢(g1) 0 p(g2)) where x and o are operations
on G and on M respectively.
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the left-coset and the Goldstone bosons. This requires that when picking up
any element of a coset gH, its action on the “origin” ® = 0 (our vacuum) is the
same as that done by g; i.e.,

¢(gh,0) = (g, ¢(h,0)) = ¢(g9,0), (4.114)

which means that different vacuum states may be reached by a transformation
in the coset space. It is then obvious, in this sense, that the coset gH must

depend on spacetime. In addition, the action of g € G on ® = ¢(gh, 0) satisfies

0(9,®) = p(99h,0) = & (4.115)

which means that the new left coset representing &' can be reached by
multiplying the coset gH by g; i.e.,, by a G—transformation. What we need
is then an appropriate variables to parametrise the coset space (G/H). What
we have shown above then uniquely defines the transformation behaviour of $
(which is our Goldstone bosons).

4.2.2 Non-Linear Sigma Model SU(N) x SU(N)/SU(N)

In this section we will discuss an extension of the linear sigma model considered
in section 2.2.2. Our goal is to find a way to deal with the low energy physics in
terms of the Goldstone boson fields that respects the 'SU(2) x SU(2) symmetry
and does not mix multiplets of the unbroken SU(2);, subgroup; namely the
triplet with the singlet, under general SU(2)x SU(2) transformations. We expect
that under the symmetry breaking scale, the sought for realisation allows the
o to be frozen out while only the pions (7) transform. This realisation of the

non-linear sigma model can also be served as a toy model for the Little Higgs.
4.2.2.1 Matrix Representationof the Goldstone Bosons

To illustrate the differences between the linear and non-linear sigma models we
will start with the matrix representation of the Goldstone boson (like what we
did in section 2.2.2). Consider a case where the symmetry is broken from G =
SU(N) x SU(N) = {(L,R)|L € SU(N),R € SU(N)} to its “vector” subgroup
H ={(V,V)|V € SU(N)}, where g = (L, R) denotes any element of the group.
The way g acts on an object to be considered should be clear from its notation.
Then the left coset of § = (L, R) is §H = {(LV, RV)|V € SU(N)}. Here it is
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helpful to introduce a matrix & = LR! satisfying
GH = (LV,RV) = (LR'RV,RV) = (LR!,1)(RV,RV) = (LR, 1)H, (4.116)

where (ﬁV, ﬁV) € H, valid for the subgroup elemets, is used in the last step.

Moreover,
94H = (LLR',R)H = (LLR'R'R, R)H = (L(LR")R',1) (R,R)H  (4.117)
tells us that ¥ transforms as
¥ ERRin (4.118)

Here, the identification of X with @ (in the previous section) is also transparent.

In the case G = SU(N) x SU(N), we know that the vector space M,

introduced in the previous section, is defined by
M={&:M* 5 R} . (4.119)

For example, when N = 2,3 we have n — 3,8 respectively. Now, let us define
another vector space formed by a set Hy of all traceless, Hermitian, N x N
matrices. The elements of M are related to the elements of Hy, called ¢, by

M, = {J; 3 Y ’HN} . (4.120)

We have seen the SU(2) example in the section on the linear sigma model:

B 25" 1o = (¢1 P oab - ”’2) (2121)

In this case, the realisation of SU(2) x SU(2) en M, is still a linear one.

Next, let us turn to the case where the set we defined does not allow the
formation of a vector space. Many possibilities are available. The simplest, yet
useful, definition is the one that maps IM* to a set of SU(N) matrices instead of
the hermitian traceless ones (the Hy). Obviously, the sum of SU(N) matrices
need not be of the SU(N) type. Therefore, we define

-~

Msz{q%:]M‘*—>SU(N)|2:exp{;f},$eM2} : (4.122)

™
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Then we set up the group action on Msj:
@ G x M3 — M3 (4:123)

where ¢ [(L, R), 5] = LER' € Mj. The successive transformations g, = (L1, R;)
then g, = (Lo, R,) are given by

0 191,009 2] = LiL.URLR, = ¢ (9192, %) (4.124)

which guarantee a realisation of G on Ms. The advantage of (4.122) is that we
can easily expand the exponential in terms of momenta; hence allowing us to
concentrate on the low-energy phenomena only. If the energy is low enough,
only the Goldstone bosons can be produced as they are the lightest particles
out there. In addition, as all that will be used in constructing the Lagrangian
(for the X or the @) are symmetry arguments, the underlying dynamics does not
concern us and the power of group theory will ensure that a theory based on a
particular realisation of the symmetry is equivalent to any other realisations (see
[30, 31]). This means we can choose to work with any one we find convenient (if

we keep working at low-energy region).

Now, let us see how to use this formalism in the context of spontaneous
symmetry breaking. First, consider the ground state ¥y = 1 which is invariant
under the vector transformation (V,V); i.e., 9[(V,V), %y = Xy, but is not so
under the axial one; namely, @[(4,4"), 5] = A'A" # 5. This is in contrast
to what we have seen in the linear sigma model, where the fields o and 7*
transform linearly (c.f. (2.26-2.29)) under both transformations corresponding
to broken and unbroken subgroups. The situation is different here. For the
unbroken subgroup(pure, vector. transformations) we-can make use of VV' =1
which leads to

by @ VoV - Vevvev'
QY .)VT:1+i WOt +.... (4.125)

% Q s Q0T
Vv _V<1+1F,r 2F,§+" 7. 282

Since the transformed matrix is still traceless, (4.125) brings us back to a linear

representation on Ms; ie.,

b VIV € My, (4.126)



124

On the other hand, for the transformation in the broken subgroup (pure chiral
transformations), we have
te pf t . ¢ ¢ t
AYA =A |1+i-——=+...|A =1+

z v ACA  A¢d

F, 2F?

... (4127)

Since we do not have the relation A'A" = 1(wrong) to put into the slot between
the ¢¢ in the last term, the transformation of the ¢ is highly non-linear. To see
that, let us write A" = €'® = 2" 50 that the above expression becomes
F : |
1+1?_(1+1@+'“) 1+1F—+... 1+i©@+...). (4.128)

™ ™

The non-linear realisation allows us to consider only the low-momentum
terms. We will keep working with the global SU(3); x SU(3)g case. The form
of ¥ is given in (A.38). First, a term without a derivative is proportional to a
constant

TrZ' S = constant . (4.129)

Those containing Tr¥ or ’I‘réB#Z)Z)T also vanish:

Tt = ﬁiTrX’:O
Tr[8,5'5] = ; i(@.4)='z] =0,

where we have used ©'S = 1 in the second equation. In addition, the term
Tr [(aﬁauz*)z] can be transformed into Tro*L'9, T without the need to worry
about the total derivative term. Consequently, the kinetic term for ¥ is given
by

F2 2 _ Aug "
ff{\r(aﬂzfaﬂz) = Ty <1Mi@> +...

4 R~
Ff aqipayb b 1 U Aa a
- ZT.r(,\a ¢,\aﬂ¢)+...:53 ¢°8,¢° , (4.130)

which is invariant for the case of global symmetry.
4.2.2.2 Real-vector Representation of the Goldstone Bosons

It might be more illustrative to consider the real representation of the Goldstone
bosons. This case should explain what we really meant by freezing the o field.
First, recall that SU(2) x SU(2) ~ SO(4). In the simplest case without the
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nucleons'?, the Lagrangian is

1 T u? T A2

with u? < 0 for the case under consideration. Note that & is a 4-component

vector

T = (¢1, b2, P3, ¢4) (4-132)

where ¢ is an isovector pseudoscalar field and ¢, is an isoscalar scalar field.

At a particular point z, the isovector (Goldstone boson) field can be set
to zero by a suitable redefinition of vacuum; i.e., writing the field as a chiral
rotation acting on the ®7 =(0,0,0,0,). In other words,

¢:(z) = Riu(z)oo(z), (4.133)
where 2 = 1,...,4. The 0y is given by the positive root of o7 = ¢? because the
matrix R(z) is orthogonal

RTR=1. (4.134)

This condition also fixes one of the element in R,,; i.e.,

ST . (4.135)
So the Lagrangian (4.131) is simplified to

1 " 1, L s s A 4
L = EBHUOB Og — 5006#R146 Ri4 — *50'0 — ZO'O . (4136)

The degrees of freedom described by ¢; are now transferred to the zero-vacuum
expectation value field'oq — /= u?/X and the parameters of the rotation matrix
R,s. Since only 3 parameters are required from R, one of the (infinite)

possibilities-is to chose them as R,4 where a = 1,2,3. We set up a map

Pa

— 4.137
¢ ¢4 + 00 ( )
together with
2(0. ¢a
Ry= 2 =72, 4.138

11 A more complete treatment, especially on the SU(3) group can be found in Weinberg’s book
[58].
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Here the R,4 is automatically given by (4.135);

1-¢ _ ¢
Ry=—-5=—. 4.139
Therefore,
1 0uCa0 e W A
L= 56#0'06#0'0 — 20’3(1#—{—7C2)2 — ?O'g — 10'3, (4140)

which is clear that the mass term for the ( is absent. The minimum requirement

that there are massless particles is now satisfied.

Now we can study the transformation of the Goldstone boson (. Using
the explicit forms of the generators given in (C.49) and (C.50), we find that
the ¢ and oy transform as an isovector and an isoscalar, respectively, under the

isospin (unbroken) transformation

== e (4.141)
gy — 0Og. (4.142)

It is clear that the Lagrangian (4.136) is invariant under this transformation. In
other words, unbroken isospin symmetry 1s realised linearly on the fields ¢
and gy. Next, we will find out how the ¢ transform under the broken symmetry.
First, recall that in terms of the original field, the broken (axial) symmetry is

linearly realised (as it should):

¢ — @+e€s00, (4.143)
09 —— —65'¢. (4144)

Putting these-into the (4:137),-we find that ,the ¢-and gy transform under the

broken symmetry in a non-linear way

) S¢S AR 4 ) (4.145)
0g — 0o,- (4.146)

Otherwise stated, the broken azial symmetry s realised non-linearly on the
fields ¢ and oy. If we define the so-called covariant derivative of the pion field

_ _OuC (4.147)

M_1+C2’
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we find that it transforms as

D, —D,+({ xe)xD (4.148)

o

leaving the Lagrangian invariant. Though the D, transforms in a linear way
under the broken subgroup transformation, the { does not. (4.141-4.142)
together with (4.145-4.146) define a non-linear realisation of the SU(2) x SU(2)
group. The striking feature of the non-linear realisation is that the triplet and
the singlet of the unbroken isospin subgroup do not mix, as shown in (4.146).
The singlet oy do not even transform. In other words, this means that the oq
plays no role in maintaining the invariance of the Lagrangian under the isospin
and axial transformations. Consequently, the physical content of the theory can
be changed in a legitimate way: we can toss away the o, degree of freedom by
arguing that it is very heavy, keeping its vacuum expectation value finite. In
this way the physical properties of process involving the light pions as external
particles will not change. Defining F = 2(0y), we find that the low-energy
effective Lagrangian becomes
A F;D“ Dy (4.149)
If we define the new pion field @ = F'¢, we get the usual form of the so-called
“non-linear sigma model”
Mo, 2
L= %m = %6“77 9T — %3“77 9, (4.150)
Moreover, we can now talk about how the SU(2), x SU(2)g is realised on the
pion field 7, with a few modifications on (4.141) and (4.145) without the need

to mention about the singlet at all.

4.2.3, « SU(N)/SO(N)-Non-Linear Sigma Model

In this'last example of a class of non-linear sigma models, we will consider the
SU(N)/SO(N) type. This pattern of symmetry breaking is due to fermions
transforming under real representation forming a condensate. First assume that
the space spanned by G/H is symmetric as mentioned in the appendix A.3. So
let us arrange the SU(N) generators in a form that is easy to work with. Then
recall that for any group element g € G we can write

g =¥, (4.151)
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It is clear that T" is Hermitian (since G is unitary) and traceless (det g = 1). Then
the symmetry properties of the complex matrix 7' show up when we decompose
T into two real matrices: 7% = A® + iB%. We have

AeT = A°, (4.152)
and
B = —B°, (4.153)

where the latter is antisymmetric. Consequently, we assign the A* and iB*®
to broken X? and unbroken Y* generators, respectively. The results are just
as we have advertised; namely, the unbroken subgroup can be spanned by an
anti-symmetric matrices and hence being the SO(N).

Now let us be more specific and consider the case when N = 5, which is
relevant for all the models we consider in this thesis. There are many possibilities

of symmetric condensates'? transforming as a 15 of SU(5). One of them is
26 — ]].5><5 . (4154)
Still, the one that was commonly chosen in the Little Higgs model is ([21])

0

ﬂ2x2
pI— 1 = 1 : (4.155)

12x2

This (4.155) can be connected to the 3j = 1 by a rearrangement of the basis
from the original basis 7'¢ corresponding to Xy by an SU(5) Uy matrix via

T¢ =UsT Uy (4.156)

12In the SU(5)/SO(5) model by Georgi and his colleagues [14], [16], present during the mid
80’s, they used different sets of vacua from from (4.155).
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with 2o = UpUp'. The explicit form Uy is not necessary but might help clearing
things up. Consider

141 0 0 1—i 0
0 1+i0 0 1-i
UO:; 0 0 2 0 0 : (4.157)
1-i 0 0 1+i 0
0 1-i 0 0 1+4i
We find that
00010
00001
UWUi=[00100 (4.158)
10000
001000

as advertised. In addition, we can wverify that Ug Uy = 15.5. To make sure
that the SU(5) generators enjoy the transformation by (4.156), let us write
T* = UpA°U, where the SU(5) generators A\° are given in section C.3.2. Then

[T°, T = [UeA°Uy, UpAUs | = Uo[X%, M|,
=2t 2L (4.159)

indicates that the SU(5) Lie algebra is satisfied. Up to this step, the explicit
forms of T%’s are not necessary. Then to see how 7'° acts on the vacuum g,

consider

T°5 = (Ul Ug) Usls "= UpAUp " = UoA*Up
= +(UAUp)" (4.160)

where in the last step we consider the (UyA°Up) as one piece of a matrix and the
plus and minus signs depend on whether the (UyA®Uy) is symmetric or not. It is
clear that the symmetry property of the whole piece depends on the A*. So we
have found the condition for partitioning the SU(5) generators into symmetric

(X?) and antisymmetric (Y*) parts. For the 14 symmetric generators we have

X = +UNT) = (UoNU.UUs)
= +H(X*D) = DoX*T. (4.161)
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Then the antisymmetric generators, corresponding to the SO(5) unbroken

subgroup, satisfy the minus version of (4.160); i.e.,

YiS, = —(UpY'lp) = —SoY* . (4.162)

There is also another way to arrive at the relations just found above. Ob-
serve that in the original basis the unbroken SO(5) (antisymmetric) generators
obey

Y=~y (4.163)
We find
0 = UY'U, +UY" Uy"

/ 7
= UY'UUUT + UpUs UL Y U,"
< Y'g, +2.Y . (4.164)

We can also work out this relation by starting with the X, right away.
By requiring that the wvacuum be invariant under H-transformation; i.e.,
exp{iozaYa}Z}Oexp{iozaY"}T = Yo we find, by expanding this expression,
So = (141’8 (1=ia'y")
= o +ia (Y% + T ) + O(a?) (4.165)
which clearly leads to
YiSo 4+ SoY = 0. (4.166)

The conditions (4:163) and: (4.155) do not only guarantee that the subgroup of
interested is .SO(5) but also provides a condition for finding the Y*’s. Then it
is transparent that broken generators satisfy the symmetric version

X5 — 8o X*' =0, (4.167)
which follows from the condition in the Xj = 1 basis
X" = X", (4.168)

with the transformation (4.156). Note that there are 10 antisymmetric genera-
tors Y of SO(5) and 14 symmetric ones of X* € SU(5)/SO(5). Knowing that
these generators are Hermitian and traceless, we can use the conditions on the
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vacuum expectation value to find their exact forms.

Then the Goldstone bosons are parametrised along the SU(5)/SO(5)
(broken) direction by symmetric generators as

S(z) = e @)X/ Fry @)X/ Fr (4.169)

The relation (4.167) provides the way to move exp{ilT*’X*}" through the &, and
rewrite the ¥ in the non-linear sigma model in a more useful form:

N(z) = 2 @XFrsy | (4.170)

In this SU(5) model, we expect that the Goldstone boson matrix looks fairly
similar to that of the SU(3) model given in (A.38). In addition, we “know
in advance” that we are going to deal with electroweak interaction. So let us
decompose the representations of the pions under the electroweak gauge group
as follows:

Lo @30 @ 21/2 @ 31 (4.171)

With some proper normalisations the Goldstone boson matrix is

wo ~ - _
TV W2 L E e
w V2 -2 = (] =ir°)/2 % ¢°
I°X* = | nt/v/2 (H°+in%)/2  /4/5n 7=/v2 (H®—ir%)/2
W - o B
- . wo
s @ @2 V2 -

We can organise the members into sub blocks that have definite electroweak
guantum numbers: a Hermitian traceless 2 x 2 matrix

L9 Loyt
Q=17 va©o| =were, (4.173)
ﬁ&l— —5w°

and a 2 x 2 symmetric matrix

ptt Lot
b= V2 , 4.174
(W ¢° ) e
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as well as a complex doublet

Tt
HT = (ng) : (4.175)

2

In the next chapter we shall see that the SU(2) triplet 2 will be associated with
SU(2) x SU(2) — SU(2) breaking. We write

Q H &

~ 7'] .

fz)=|H 0 H*|+-~—diag(1,1,-4,1,1), (4.176)
& HT Q =

where IT = IT X*. Then the Lagrangian is

1F?2 t

Lo {8,282} , (4.177)
which is constructed from non-trivial terms with lowest derivatives (momenta)
possible. The factor 1/2 is introduced give the right factor to the kinetic term
of the “would-be” Higgs due to the convention TrT*T® = §°°. This factor can
be absorbed at the cost of rescaling the ' and the fields inside the . As usual
for the non-linear sigma model, explicit mass terms for the Goldstone bosons
are not allowed due to the non-linear realisation of the broken symmetry on the
Goldstone boson fields. However, we know that gauge interactions break the
global symmetry at tree level. When the gauge interactions are introduced via
the covariant derivative such as

DFE = S + ig* W (T"‘Z} + Z)T"‘T) , (4.178)

they tend to-align the orientation of the original vacuum and results in the
Goldstone bosons acquiring masses from quantum effects. Their quadratic
divergent contributions can be evaluated from the (Coleman-Weinberg) effective
potential

A? F?

v -
90 2 (4r)? 4

Tr [(¢°T°S + g*ST°")(¢°S'T? + ¢°T°'5")| . (4.179)

4.2.4 AxSB = 4nF

One important thing that should not be left unmentioned when using the non-
linear sigma model (or most low-energy effective theories) is the suppression of
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the effects from terms of higher mass dimensions. In the context of effective
theory, dimensional operators are allowed as we are not going to touch the high-
energy region, regardless of the fact that they are non-renormalisable. So the
strategy we usually take is to collect all possible operators, constrained only
by symmetries of the theory, with some unknown coefficients. They will be
suppressed by factors proportional to % where E is the energy scale of interest.
In this way these operators will become important as we go up in energy. The
coefficient of the operators will determine which one becomes strong before
others.

The idea of this section is based on the justification of validity of the chiral
perturbation expansion when quantum effects are taken into account. According
to the previous paragraph, we further claim that for the perturbation philosophy
to work, the correction terms must be smaller than the “more principal” terms.
It is, however, not always the case without specific conditions on the cut off of

the theory as loop corrections with appropriate dimensions are always included.

Also note that in a theory like the linear sigma model (see section 2.2.2)
where m, ~ AF,, we can have more than one mass scales. One is the scale F;
(the decay constant) where the symmetry breaks, the other is the cut-off, or the
new physics scale, A ~ m,. For example, we know that there is a difference
of order 10 & 47 between the pion decay constant (F, ~ O(100MeV)) and the
cutoff of the chiral perturbation theory (Acuog ~ O(1GeV)). For each loop, we
get the suppression factor

m?2 A

o . 4.180
16m2F2  16m? ( )

Then we see that the loop correction will become large when the above expression
is equal to one. If we insist on working with a perturbation theory, we then have
to work below the scale

A ~ m2simeq(4nF,)? ~ (1GeV)? (4.181)

where the A is not too large.

A similar conclusion can be drawn in the case of a system described by a
chiral Lagrangian. The detail discussions are given in; for example, the papers
by Manohar and Georgi [73], Luty [74], and Cohen et al. [75]. The main ideas
are quite similar to those given above. The 4-pion vertex 7m* is extracted from

the usual non-gauged chiral Lagrangian %(Tr@ETGE). In this case, we have to
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™ ™

Figure 4.2: m — 7 scattering in the lowest order in p.

take into account the one-loop contribution to the m — 7 scattering (four powers
of external momenta - and we can expect logarithmic divergence) shown in the

figure 4.2 which comes with correction ofthe form

P’ dk 1 () AN 1 Auos

F* ) (2m) k> = F* (4m)> " w2

(4.182)

and compare them with the operators having higher mass dimensions (non-

renormalisable) like
2

F t t
gt (6zax'on0%") (4.183)

xXSB

which can also produce similar contribution (p*). We can also say that the
interaction like (4.183) is radiatively generated by higher-order corrections to
the tree level kinetic term.

The point is that once we change the renormalisation scale y by order (of
magnitude) 1, (4.182) will change by order

1
(47)2

(4.184)

3,

with-the extra factor (47)2 which will eventually result in a-new competition
(at different subtraction scale; for example) between that loop and terms with

F?/A2 55 by an order of magnitude In other words, a condition like

L
(4m)2”

2
F 1
A << @y (wrong) (4.185)

or
Aysg >> 4mF  (wrong) (4.186)
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which we might want to assume in order to suppress the effects of the higher-
dimension, non-renormalisable, operators such as that in (4.183) will not work
in general. This is because the typical size of the effects from these higher
dimensional operators is now of order 1/(4m)?; i.e.,

F? 1
pe . 4.187
AiSB (4m)? ( )
Therefore, it is better to assume
Acutoﬁ ~ AxSB ~AmF (4188)

which guarantees that the quantum corrections are of the same order of
magnitude as the remormalised interaction terms and that higher dimension
terms are always suppressed. At the scale A = 47 F, the non-renormalisable
interactions, once suppressed by the scale F' in the Lagrangian, become strongly

coupled. New physics is required there.

4.3 Vacuum Misalignment Caused by SU(2) x U(1)
Breaking

This section illustrates an application of various ideas we have gathered so far;
especially those on vacuum alignment and the non-linear sigma model. The
model to be discussed here was proposed by Georgi and Kaplan during the mid
80s and was resurrected in 2001 with the name Little Higgs. We will follow
some part of a series of papers by Kaplan et al. [12, 13], [15], outlining some of

their important findings!?.

In a few words, in this class of models the Higgs (scalar) is a pseudo-
Goldstone boson of a nonlinearly realised approximate global symmetry. Its
mass will be protected against large radiative corrections. It is exactly massless
if the symmetry is exact and the non-linear realisation trick tells us that they
can have only deriwative interactions. So the primary goal of the model is
to incorporate a fundamental scalar, or whatever resembles the Higgs, into
a system having global symmetry dynamically broken. Thus we expect that

there are two sources of explicit symmetry breaking: one is the weak gauge

13Kaplan et al. even proposed an SU(5)/SO(5) in [14] and [16], which can be considered as
the “prototype” of the Littlest Higgs model presented in the next chapter. Nevertheless, we shall
focus on the SU(3) x SU(3)/SU(3) model where calculations are simpler. The SU(5)/SO(5)
will be studied in detail in the next chapter.
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symmetry that is assumed to leave electroweak symmetry unbroken, the other
is the breaking of electroweak by other explicit perturbations. The first stage
of symmetry breaking is assumed to happen at a moderately high scale by
fermions, interacting via another kind of strong interaction forming condensates.
We shall call the parameter characterising this scale F' or F, analogous to the
pion decay constant. We shall call this interaction ultracolour (UC, for short)
and call those fermions wultrafermions. Unlike what happens in technicolour
theories, the ultrafermion condensate is aligned so that SU(2) x U(1) symmetry
of the standard electroweak survives at this stage of symmetry breaking. In the
language of 4.1.2, this means that there must be a room inside the unbroken
subgroup for the SU(2), X U(1)y to live in. Our additional task is to find a
pattern of symmetry breaking that allows the existence of a Goldstone boson

transforming in the same way as the Higgs doublet.

The task of the electroweak symmetry breaking at lower scale (My)
can be accomplished by introducing a perturbation that “turns” the ultracolour
condensate’s alignment away from its original SU(2) x U(1) preserving direction.
A tiny deviation will result in a smaller scale of the electroweak symmetry
breaking. The second stage of symmetry breaking is done by introducing a
fundamental scalar which Yukawa interacts with both ultrafermions and the
standard model fermions. This scalar will develop a vacuum expectation value
when the ultrafermion condensate is rotated by the perturbation. The Higgs is a
bound state between this fundamental scalar and a composite scalar (Goldstone

boson).

Having a fundamental scalar in the theory provides at least one benefit:
masses of the fermions‘can be-generated via-their Yukawa coupling with the
(vacuum expectation value of the) scalar field. However, we see right away
that this will spring up the hierarchy problem (and the need for fine-tuning)
as the fundamental scalar-has-no symmetry to. protect its mass from driving
itself up to the highest mass scale of the theory. However, we shall keep dealing
with the theory with the current knowledge that a special mechanism in Little
Higgs model will eventually solve (or prevent) the problem. Another frustrating
outcome we may have to face is that if the Ayc = 47F, the global (approximate)
symmetry breaking scale, is demanded to be too high the differences between
this composite Higgs and the Higgs from the conventional standard model may
not be easy to realise.

Now, let us begin with the spontaneous symmetry breaking at Ayc, by
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a condensate of ultrafermions. These fermions are in a complex representation
with
U
¥ =|D (4.189)
S

where we clearly have a SU(3), x SU(3)g in the flavour space. Then we assume
the form of the condensate

(Ol wk|0) =A% Y (4.190)

instead of (4.64), where Eéj is a unitary matrix. To deal with the pseudo-
Goldstone degrees of freedom, we use the non-linear realisation where the

bilinear (not the condensate) is,
Pinply = AT + ... (4.191)

where (X) = Xy. As usual, we have an octet of Goldstone bosons 7%(z) which
are introduced as fields parametrising the G/H space:

B(z) = ™ @I Er 53 gin® (@)T/ Fr (4.192)

where ¥, is a (“rotatable”) vacuum configuration. At this stage, it might be
helpful to recall the appendix A.2.1 that in this SU(3) representation we have
the “ultrameson” octet

(V2 +n/V/6 L K*
T —m°/V2+n/vV6  K° . (4.193)
K= K® ~21/+/6

The key player here is the K which eventually plays the role of the Higgs field.

Notice that the electroweak symmetry SU(2)x U(1) is not broken by the
condensate of the form
Do = e (4.194)

where T® = A%/2 is the usual SU(3) generator. This is clear as the T® behaves as
an identity in the SU(2) subspace and [T®, T3] = 0. If all the explicit symmetry
breaking interactions are absent, the vacuum (4.194) is always obtainable by
a SU(3) x SU(3) transformation. What we want to know is whether the true
vacuum is still characterised by this condensate %, even after the electroweak

interaction is turned on. If so the electroweak symmetry remains unbroken
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(when global symmetry is broken spontaneously).

The next step is to consider the ezplicit symmetry breaking terms;
namely, the SU(2) x U(1) interaction, the Yukawa couplings between a funda-
mental scalar and fermions or ultrafermions which preserve SU(2)xU(1), and the
SU(2) x U(1) invariant ultrafermion mass terms (which break the chiral flavour

symmetry). Starting with the electroweak interaction, the free Lagrangian is
B '
Lg D - Tr (D#ED”Z} ) (4.195)
where D, is the usual covariant derivative

D, = 9,% ~ig®A? (Q“Z} + ZQ‘“)
= 9.%ig A% QLT +igr A%, TQY (4.196)

acting on (N, N), under which the 3 transforms. The counterterms responsible
for gauge bosons exchange, to O(Q?) are required. Since the gauged (Q%, Q%)
transform as (Adj, 1) and (1, Adj) respectively, it is found that the invariant
object, to O(Q?) is

Tr (Q35Q3%') . (4.197)

The form of this effective potential can be thought of as an analogy
from the Gy = U(1) case (electromagnetism) with global symmetry breaking
SU(2) x SU(2)r/SU(2)y. We will follow exactly the strategy leading to (4.48)
and (4.53). Denoting ¢ as a doublet (say of u,d quarks), the U(1) current is
rotated by the G rotation as

Jby ==y T + ey T 3qr+ (G singlet)
— "JB (L, R)y= <q,v*L'T*Lq + qav" R T*Rqx + (Gsinglet)(4.198)

The potential from this U(1) interaction
Vi ~ € / dz DL (0|T(JE () J% (0))[0) (4.199)
then becomes

Ve ~ eTe(T°L'RT*R'L) / d4z D (0| T (J2, () J%5(0))|0)
= Ay Tr(T*LT?Y) (4.200)
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where Ay, is assumed to be positive and Ay ~ O(A*) (see Dimopoulos and
Preskill [76]).

Consequently, the effective Lagrangian becomes

F2
Log =" (D,BDHS) + (A)*Tr (Q°2Q°E') + ..., (4.201)
where the Q* = Q% = Q% are the usual SU(2) x U(1) written in terms of SU(3)

generators
Q* = {gT",gT% gT% gT®/V/3} . (4.202)

Next, we construct the effective potential in order to consider the vacuum
alignment when the SU(2) x U(1l) interaction is turned on. It was found
by Kaplan and Georgi [12] that the vacuum is characterised X, = exp{ifT®}
which means it leaves SU(2) x U(1) in the unbroken subgroup (these generators
commute). This is more or less like the case where the vacuum prefers
the electrically neutral configuration (#,ugr like) when the electromagnetic
interaction is introduced as an explicit perturbation. In the present case, it
“chooses” to behave as a SU(2) x U(1) singlet.

To see what happens with the ultrakaons let us consider

b (00 0 1 0 0

1

B=expyo 10 0 K°/2fp=10 c(K°) is(K°) (4.203)
"o K°%2 o 0 is(K° c(K°)

where ¢(K°) = cos(K°/F,) and s(K°) = sin(K°/F,). Then we can put this into
the potential (4.201) and shall see that the K° get mass of order O(g*(A1)?) ~
O(g?A3?).

It is now time to introduce-a fundamental scalar (Higgs) to the theory.
We expect that it will develop a vacuum expectation value at lower energy scale
(¢) = v << A. Since this scalar communicates with the ultra-K° and the

ultrafermions as well as the usual fermions via Yukawa coupling, we will use the

- [?) = ¢4+?¢5 . (4.204)
¢° ¢s + 197

doublet structure
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The real fields are numbered from 4 to 7 as they will be coupled with the
T4,...,T" generators; i.e.,
7 -_— -_—
‘CYukawa - Z (h'\PRTa‘I,L + y*\I!LTa\IrR) ¢a (4205)

a=4

Now observe that the chiral transformations (which also rotates the ultrafermion

condensate)
¥ — €Ty, (4.206)
Tp — 90, (4.207)
have an effect on U7V, for oo = 4,...,7 as
TRTOY, — e OV Ty, | (4.208)

This shows how the Yukawa coupling depends on the orientation 6

7
Lyuawa(0) = > (ye’ig\ffRT"‘\IfL + y*eie\ifLT“‘IfR) Po (4.209)
a=4
The introduction of the Yukawa coupling further “tilts” the vacuum. With
new explicit symmetry breaking perturbation introduced, we expect that the
condensate will further re-align itself. Since,the ultrafermions have very large
mass compared to the “ultrapion” scale F' or the strong dynamics scale A,
it is then expected that they will not show themselves up in the low-energy
effective Lagrangian. In the ¥ version (i.e., low energy effective Lagrangian),
the Lagrangian (4.209) can be rewritten as

Lovuraman(8) = (A2)° 27: (ve U Te{T“2} b - (4.210)

a=4

As we have added a new low-energy effective interaction (the Yukawa),

we also have to consider all possible interactions with the same mass dimensions
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(analogous to (4.200) and (4.201)). The resulting effective Lagrangian is
F? ps ! 1 7
Lyiaws =~ Tr{D,BD*E | + - 37 Dupa Do
a=4

7 A 7
3T Gue— 5 D (Bude) + (M)'Tr {@°50°7)
a=4 a=4

+(A23z4 (ve T {T*8} ¢a) + (As)* 3 (ve *Tr {T°%})"

a=

RS

7

+(Ay)* Z‘ye“aTr{T"‘E}‘ +(8s)* Y (ve M Tr {T*ST*5})
a=4

+he.. (4.211)

Notice that the mass parameters Ai,...,As need not be equal since each
operators can have its own scale which is determined by strong interactions
(just like the Ay, in (4.200) that depends on the spectral integral).

Now we will not follow the detail of their calculations but will quote the
results right away. The strategy is to start with the vacuum (condensate) that
preserves SU(2) x U(1) (1 is possible) and see if we can get pseudo Goldstone
bosons with positive masses at the end. It was found that the parameter which
decides whether to break or not to break the SU(2) x U(1) is the (as)* which
can be positive or negative. When (ozg,)4 < 0 the ¢ — K mixing will results in

(see Kaplan et al. series of papers [15] [12]) the mass squared matrix *

M3 yA?
2
M3y ~ (yA2 (o +y2)A2>. (4.212)

The situation at hand is interesting because if-it happens that

M < 3A2 M2 (4.213)

then the determinant of the matrix MjK will be negative (recall the arguments
leading to (4.103)). If that is the case, it was found that

(¢6) = My <1 - M£> (4.214)

where (¢s) is expected to be of O(100GeV). Also the vacuum is rotated to

(0|93 ¥%I0) = A6 +ie°(T°)7 (4.215)

14We will come back to a case similar to this in the Littlest Higgs model in 5.2.5.4.




142

where

6 ~ M<§<¢6> )

&N s (4.216)

Still we will not get the right order of magnitude of the Higgs mass unless we

fine tune the mass parameter

y2 A2

92

M3 ~ O( ) << A2, (4.217)

To sum up, we have outlined the strategy to realise the Higgs as a pseudo-
Goldstone boson from the global approximate symmetry. Though its mass can
be made as low as the electroweak scale, the lack of symmetry protecting it
from the radiative correction will generally drives the mass to the A? scale again
unless parameters are adjusted to extremely fine detail.

In addition to the naturalness problem, electroweak precision tests do not
favour this kind of model. The source of the problem is due to the fact that this
Georgi-Kaplan model is constructed from the chiral Lagrangian which is bound
by the cutoff A = 47w F which is the scale where the Goldstone bosons couple
strongly. The requirement that this non-linear sigma model has something to
do with electroweak physics is # ~ 100 — 200 GeV. Then we immediately end
up at the cutoff A ~ 1 —2TeV. This is not surprising at all and can be expected
right from the start since there is no symmetry protecting the pseudo Goldstone
boson from receiving mass at one-loop. In the next chapter we will see that
in the Little Higgs theories, there is a symmetry forbiding the Goldstone from
being massive even at one-loop.



CHAPTER V

LITTLE HIGGS MODELS

So far we have seen how the little hierarchy problem arises from the
framework of the standard model (c.f. section 3.4.2.2) and remains in some
theory that tries to go beyond (c.f. B.5). It is considered as a problem once
we have convinced ourselves from both theoretical arguments and experimental
facts that the Higgs should be light (c.f. 3.2) while the mass scale of the new
physics should be large. Also we have studied various interesting tricks or even
models that were proposed during the last three decades (c.f. 3.1, 4.1, 4.2, 4.3
) that provide us ways to avoid parts of the problems. Still, none of them gave
satisfactory results. In this chapter, we shall study how the Little Higgs model
deals with those problems.

We begin in section 5.1 by re-summarising the little hierarchy problem
which is one of the primary tasks for Little Higgs models to solve. Then we
will sketch the essential element of the Little Higgs mechanism; namely the
collective symmetry breaking. After that we will study the most economical
model known as the Littlest Higgs' in section 5.2. Finally, in section 5.3, we
present some interesting features of the Little Higgs model in the phenomenology

side. Conclusions to the Little Higgs will be given in 5.4.

5.1 Introduction to the Little Higgs

5.1.1 Desired Features.of the Little Higgs

We have seen in the sections 3.3 and 3.4 that electroweak precision tests call for
light _Higgs and new physics beyond 5 — 7TeV. On the other hand, we have
seen that the cut-off A of loop integrals (which also indicates new physics) is
required to be lower than ~ 2TeV in order to stabilise electroweak symmetry
breaking, making the Higgs naturally light. This little hierarchy problem put
stringent constraints on any new physics not only to the Little Higgs, thanks to
the advance in the precision tests during the last decade. So the idea is to find
a way to push the cutoff of the theory to the safe region, say ~ 10 TeV while
keeping the Higgs naturally light.

1For the outline of the Littlest Higgs, see page 149.
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In the section 4.3 on the Georgi-Kaplan model we have seen that the
Higgs can be realised as a pseudo-Goldstone boson of a nonlinearly realised
approximate global symmetry (see also the section 4.1.2). There, this “would-
be” Higgs is produced as a Goldstone boson of global symmetry breaking at
high-energy scale F' = A/(4m). Then explicit symmetry breaking interactions
(gauge and Yukawa) made them massive so that none of them survive massless to
the physical spectrum. Still, naively breaking the symmetry (explicitly) usually
results in the Goldstone bosons masses sensitive to the cut-off A, to one loop,
like

A2

Recall that, the requirement that the masses of the gauge fields should be of
order g2F? ~ g2v? already forces F' ~ 100 — 200 GeV and restricts the cut-off
of the Georgi-Kaplan model to be A = 47F ~ 1 — 2TeV. As a consequence,
everything we have been trying to avoid remains there, both the fine-tuning and
the too low lower bound of the new physics (which is not favoured by precision

electroweak tests).

The philosophy of the Little Higgs models is to construct a model that
has a mechanism to avoid the mass generation of the Goldstone boson at one-
loop. A modified version of the Georgi-Kaplan is then very tempting. Then the

Goldstone boson will be forced to receive mass (squared) of two-loop order

men (ﬁ)" - (f:)z (5:2)

which is further suppressed by a factor 1/167%. If we can find a way to do so,

the mass of the Higgs will come out naturally light for large value of A, say
A ~ 10TeV or more. The other by-product is that we can have the scale F
as high ‘as 1 TeV or so. The immediate benefit of doing so is that in the Little
Higgs models the plethora of Goldstone bosons and gauge bosons due to large
group needed to accomplish the Little Higgs mechanism (see next section) will
be pushed up to the energy scale where no direct detection has reached. This
feature is in agreement with what we have argued, in section 3.4.2.3, on the
cancellation mechanisms (of quadratic divergent diagrams) between particles of
the standard model and the extra heavy particles. Depending on the specific
model, the footprints of these particles on electroweak observables may or

maynot significantly alter the results of the precision electroweak tests.
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The job of focusing on the low-energy degrees of freedom is taken care
by a non-linear sigma model. The benefit of using a low-energy effective field
theory strategy is that many possibilities are available for us to take, if the low-
energy end agrees with the standard model. This is why there are many versions
of Georgi-Kaplan models or the Little Higgs models being mass produced.
Nevertheless, economical models having one Higgs doublet are preferable. For
phenomenological purpose at energies far below the cut-off scale (A = 47 F), the
origin of the global symmetry breaking should not concern us. We just have
to keep working at a scale below this particular cut-off otherwise all higher-
order non-perturbative terms become important (and may not be calculable).
Nevertheless, we have to keep in mind that we should not work at a scale way
too far below the cut-off or take F — oo (which is completely unreasonable, in
fact) as that would mean we lose the power of the non-linear sigma model. If
that is the case, the Higgs from the Little Higgs will be identical to the Higgs
from the standard model. So the model will cease to be useful since we cannot
tell the Higgs apart and the standard model use less ingredient to explain the
same phenomena. We therefore expect some deviations (foe example, by (two-
loop) order (’)(};—22)) from the properties of the Higgs predicted by the standard
model for finite F'.

There are basically two different types of the Little Higgs models if we
classify them by the structure of the gauge groups that are broken. One is a class
of models where a number of gauge groups are broken down to the standard
model group, using one linear sigma model. They are referred to as Product
Group Models. The Littlest Higgs model, by Arkani-Hamed et al. [21], that
will be focused on in this thesis falls into this category. The other types of the
Little Higgs is those where a single larger gauge group-are broken down to
the standard model one by a number of sigma models. . These latter kinds are
known as the Simple Group Models. The Simplest Little Higgs by Schmaltz

[35] is one of these models.

5.1.2 The Little Higgs Mechanism: Collective Symmetry Break-

ing

To prevent the one-loop correction to the mass of the Higgs another crucial
feature of Little Higgs; namely, the collective symmetry breaking is introduced.
We will concentrate on the mechanism designed for using with the product group

models which includes the model that we will study in detail: the Littlest Higgs
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model. The mechanism can be summarised in words (in the paper by Katz
et al. [77]) as “no single term in the Lagrangian breaks all the symmetry
which 1s protecting the Higgs mass”. In other words, the mass of the Higgs is
protected by introducing another “partially broken” global symmetries. One of
these global symmetries, alone, must be capable of acting non-linearly? on the

Higgs doublet in the form
H-—H+e (5.3)

and hence preventing the mass term M?|H|*> from being generated by the ra-
diative corrections. Then explicit breaking interactions are carefully introduced
such that each of these coupling, alone, will not break all those global symmetries
that protect the Higgs mass. As a result, it is possible to push the quadratic
divergence away from one-loop to higher loops, if several explicit symmetry
breaking interactions are turned on at the same time.

To make the story a bit less abstract, we consider the gauge sector of the
model. The simplest case comes from a model having two independent global
symmetry groups G1, G> € G; i.e., [G1, G2] = 0, and gauge each® subgroup G ;)
of these GG;. When a subgroup is gauged, we have the situation similar to those
studied in sections on dynamical symmetry breaking and vacuum alignment
(see subsections of 4.1). We see that gauging one subgroup, say Gw(), will
leave another global group (G,) survive, and vice versa. The global symmetry
is carefully arranged so that each is enough to protect the mass of the Higgs
(pseudo Goldstone boson). Denoting g; as a gauge coupling of G (;) we find the
quadratic divergent mass of the Higgs

9% 1 951 o

Tes T (am) (4r)

(5.4)

Other Goldstone bosons.are not protected by global symmetry and will receive
masses sensitive quadratically to the cut-off scale. Therefore, these particles
will be “pushed” up to high-energy region of the theory, leaving the Higgs
doublet alone in the low-energy spectrum of the non-linear sigma model. Similar
situation is happening with the gauge symmetry breaking which is triggered
by the global symmetry breaking. Some gauge fields will receive masses of a

2Remember that broken symmetry can be realised non-linearly.
3This is why the model belongs to the class of “product group”. More than one gauge
symmetry groups are broken to get the diagonal subgroup corresponding to the electroweak

group.
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few TeV, while there will be massless gauge fields associated with the survivor
(unbroken) subgroup to play the role of electroweak gauge fields. Electroweak
spontaneous symmetry breaking is then generated by a Coleman-Weinberg
mechanism (see chapter IIT) and Little Higgs mechanism has a good explanation
to keep this scale low and have the Higgs naturally light.

There is another way to view the situation mentioned above from the
bottom up. The quadratic divergent diagrams of the Higgs mass due to the
standard model particles are always there. Then heavy particles are introduced
so as to cancel those diagrams. Unlike the supersymmetry trick where the
cancellations occur between particles with different spin statistics (particles
and their superpartners) where the “equality of the couplings” is taken care by
supersymmetry, in the Little Higgs models the cancellations take place between
particles and their “heavier partners” but with the same spin statistics, and the
same quantum numbers. Cancellations in this manner require the “persistent”
relations between the gauge couplings and are taken care by some careful
placement of the gauge generators onto a particular representation®. This job is

directly related to the collective symmetry breaking mechanism.

There are also severe quadratic divergent diagrams generated by the top
quark. It too requires cancellations. A heavy top-like fermion is required, with
a definite coupling with the Higgs, to cancel the divergences. The remaining
quadratic divergent diagram caused by the self-coupling of the standard model
Higgs is also cancelled by the introduction of the heavy partner. We shall see

how the cancellations happen in a specific model as we go on.

To sum up, quadratic divergence diagrams from bosons are cancelled
by simailar diagrams .of other. bosons. .Similarly, fermions cancel fermions.
Therefore the particle spectrum; though quite rich, may not be as rich as that
of the supersymmetry®. This may not be a philosophically beautiful outcome
but may be easier on the phenomenology side. According to the fine tuning
arguments, at TeV scales it is expected to find some heavy pseudo-Goldstone
bosons, extra gauge bosons, and “some” extra fermions. In fact, the latter
were termed “some” because the fine-tuning argument requires only the top-like

partner exists, among the fermioninc partners, due to the fact that severeness

“Recall the cancellations of unwanted diagrams from those involved charged-changing current
correspond to W¥ and those involved the neutral currents (Z) which are not achievable without
the SU(2) symmetry relating the coupling constants.

5Of course, this is not always the case. But it is likely to happen in this way if we compare
“minimal” models from each theory.
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quadratic divergences from fermion are mostly due to the standard model top
quark.

In this thesis we shall concentrate on the minimal model known as the
Littlest Higgs and shall see how phenomena described above happen.

5.2 The “Littlest Higgs”

In the Littlest model, we shall assume that for some reason, a global symmetry
SU(N) is broken down to SO(N) which contains the standard model group
SU(2)r, x U(1)y. The origin of the breaking was not specified in the model but
we might think of a possible mechanism initiated by some kinds of fermions
transforming under a real representation of a strong interaction-like group (e.g.,
the ultracolour). Since we are requiring that the Higgs be realised as a pseudo-
Goldstone boson, we must find a specific group so that some of the Goldstone
boson transform under SU(2) x U(1) like the standard model Higgs doublet.
The smallest rank 4 group SU(4) is not qualified because there are no rooms for
the Higgs doublet.

So the simplest group to be used is the SU(5) which is the one used in
the original Littlest Higgs model proposed by Arkani-Hamed et al. [21]. The
breaking of SU(5)/SO(5) happens at a scale F' by a vacuum expectation value
of 1 — 2GeV with the cutoff A = 4nF'. The other requirement that there must
be a room for SU(2) x U(1) of the standard model in the unbroken subgroup
SO(5) is also satisfied by the structure of the group.

First, we will consider the implementation of the salient trick of the
Little Higgs; i.e., the collective symmetry breaking. We introduce two copies
of SU(2) x U(1) gauge groups: In other words, we gauge two subgroup of
G, G; = SU(2); x U(1); and Gy = SU(2)yx U(1),. At the scale Ag, the
same condensate that breaks the SU(5) also break the product gauge groups
[SU(2) x U(1)]? down to the standard model electroweak group. The trick of
collective symmetry breaking is accomplished with the requirement that each
G, commutes with a different (global) subgroup X; of G which, alone, is enough
to protect the Goldstone boson from being massive. The group structure is
G DO Gy X X1 + Gy X X5. Only when both gauge interactions are turned on
will the Goldstone boson be massive. This implies the masses of the Goldstones

are proportional to g;g,A?/(4m)* where the g;’s are the gauge couplings. We see

1,1
(am)z " 160

right away the extra factor suppressing this quadratic divergence.



149

As we have mentioned before, the electroweak symmetry is broken in the
second step due to the gauge and Yukawa interactions (which break the global
symmetry explicitly). The Coleman-Weinberg mechanism (see 3.1) is used to
explain the electroweak symmetry breaking.

This section on the Littlest Higgs is rather long and is organised as follows:
First, in the section 5.2.1 we begin by setting up the chiral Lagrangian of the
model and work out the gauge sector resulting from the first stage of the global
symmetry breaking. After that we will study the application of the collective
symmetry breaking from the top-down approach in section 5.2.2, and from the
bottom-up (where we can see how the loops cancel) in section 5.2.3. Then, in
section 5.2.4, we turn to the quark sector of the model where the extra top quarks
are introduced. At that time we will have particles in their gauge eigenstates
corresponding to the first stage of gauge symmetry breaking. Then, in 5.2.5,
we will consider the second stage; namely, the electroweak symmetry breaking,
where we will study the Coleman-Weinberg mechanism. After electroweak
symmetry breaks, we need to change the basis of the particles in the theory
to that of the “final” eigenstate. This will be done in section 5.2.6.

5.2.1 The Sigma Model and Gauge Sector

Once we assumed that the global symmetry breaks, we can start the study with
a non-linear sigma model the was introduced in section 4.2.3. We will begin
with the Lagrangian (4.177)

L= szﬁ{a 29,5} (5.5)
8 % % ) .

where the ¥ and the “pion” fields are defined in (A.41).

Then we introduce gauge-interactions so that the global symmetry is
broken explicitly: According to the collective symmetry breaking mechanism, 2
subgroups are gauged, which, in the littlest Higgs model is [SU(2) x U(1)]?. To
leave rooms for global symmetries to protect the pseudo-Goldstone bosons (the
Higgs) mass, these gauge generators must be placed at the right location of the
SU(5) matrices. Very soon, it will be obvious that the SU(2) x U(1) subgroups
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can be gauged as follows:
R e i
1 — '"W"";F 777777777777 ) Y;l — dlag(_3) _3) 2) 2) 2)/10 )
- O3xs

033 .
7= ( """ SXS‘_TG*> , Yo =diag(-2,-2,-2,3,3)/10, (5.6)

which clearly leave room for a global SU(3) in each subspace. Also notice the
appearance of the minus sign in @?. Gauging the subgroup means we use the

gauge covariant derivative

2
D% = 8,5 —iy [, Wi (Q:2 + Q") + ¢jBu(V; S+ 2Y])| . (5.7)

I

As usual, we will use the following shorthands for the gauge fields®

Wi, = WEQ2, By, = B,Y,. (5.8)

Consequently, the Lagrangian for describing low energy dynamics is

LA F—Q'I‘r{D ' D%} (5.9)
8 # K - -

Having the Lagrangian (5.9) on hand, we can work out the mass term
for the gauge fields (after the T receives a vacuum expectation value). Terms

relevant to our consideration are
a a a T
Ty g, W5 (@380 + Do@3 )| [0, Wh, (Q4T0 + To@5 )] (5.10)
Ik
for SU(2) and

Tr | 95Bis(YiBot Bo¥;D)} [9iBra(YeDo + oY) (5.11)
ak
for U(1) contributions. What remains are brute force. The resulting Lagrangian
is
F2 2 a ap a au 2 a ap
L= [GWEW — 29,9 WP, Ws* + g3 W5, W3 |
2

1F
g |98BuB — 2019:B1,B5 + 63 B, BY | - (5.12)

6The “hat” notation like VVW = W@, introduced in the section B on grand unification

theory, will not be used in this section to reduce eyestrain.
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Notice the appearances of the numerical factors preceding both terms. They
come from expressions like

Tr {Z0Q:Q; %0} (5.13)

and
Tr{E,Y;Y; 50} (5.14)

together with some generators being transposed. These terms depends on how

we gauge the subgroups with respect to the vacuum. In our choices, the non-zero

terms are
Tr {EOQ?Q?EO} = Tr {EOQ?TQ?TEO} = ;&‘jéab
Tr {Zo@i Re@ T} = T (BQITR@) = 5%, i#j
Tr {5Y;Yi3} = %
TH{EVTY) =
Tr {SY,Y;5} = +;, i
T {S R} = s i

(5.15)

where we have used Tr7%7?% = 26°°.

Now we observe that the condensate X, breaks the gauge symmetry
[SU(2) x U(1)]?> down to the diagonal subgroup SU(2) x U(1) corresponding to
the generator Q¢+ Q% and Y +Y? satisfying the symmetric condition (4.166) of
the generators. Since we are expecting a breaking of one of the SU(2) x U(1)’s,

we can use the “gauge freedom” in the transformation

. . i~ . 1T Ly T . T - T . T . T
3 — el QlelﬁYlery Q2615Y261H X/onell'IX /Fela Q1 e1,[3Y1 el Q2 e15Y2 (516)
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to remove some of the Goldstone bosons; namely, the triplet 2 and the singlet
n. So the remaining Goldstones are’

H 3
m-X=|H H* | . (5.17)
& HT

This means we can find a mixing angle (angles, in fact) to rotate the degrees of
freedom into the massive and massless gauge fields in a way fairly similar® to
what we have done in (2.90). Let us call these massive gauge fields W' and B’
and the massless ones W and B. The original mass matrices defined from (5.12)

are
F*( g —g19
M = 3 ! (5.18)
VY 4 <—9192 9
1 F2 g’Z _g/g/
2 r 1 192
M3132 N V% o . (5.19)
—919> g

which clearly tell us that we will have massive and massless fields (recall the
Weinberg angle in (2.92)) in the mass eigenstates. The new diagonal mass
matrices with respect to

L = ;Msvwgwa“ + ;MT?V,W;“W’““ + %MEBZB; + ; 7 B, B (5.20)
are obtained by the massive fields
W* = —cosyW{ + sinyWy§
B* = —cosy'B +siny'Bj . (5.21)
where
sing = 22 sty L 1 1% (5.22)

V9% + 93 o+ az

"Caution: Please note that since we are running out of symbols, in this section we use
symbols that are somewhat different from those used in chapter II and B. There we used H for
the Higgs doublet and A for the physical Higgs (the real, neutral, one). Now we use H for the
Goldstone bosons that will be eventually be “parts” of the Higgs and ® for the triplet.

80mne thing to notice about the mixing angles is that unlike the Weinberg angle, they do
not correspond to the mixing between the SU(2) and U(1) gauge fields. They characterise the
mixing of fields of the same type.
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Then the masses of these fields are
F gF
My = =—+/g? 2 =
W 2 gr+ 9 sin 29
F ; ; g'F
Mg = — L 5.23
B 2\/5\/ 9r T 92 /5 ( )

sin 29/

where g = g192/1/97 + 95 and ¢' = g,9,/1/97> + g5 are the SU(2);, and U(1)y
couplings in the standard model, respectively. Consequently, the remaining

massless gauge fields at this stage of symmetry breaking are fields orthogonal to
(5.21):

Wkt = sinyW{ + cosypW}

B* = siny'Bf +cosy'Bf, (5.24)
with
MW = 0
Mg = 0, (5.25)

which will be identified with the gauge fields of the electroweak interaction.
The gauge fields in (5.23), (5.23), (5.24) and (5.24) are living in their mass
eigenstates just in the region between the global symmetry breaking scale A and
the electroweak symmetry scale, say v. The electroweak symmetry breaking will
generate vacuum expectation values for some of the Goldstone bosons and hence
further introduce mixings between them.

5.2.2 Collective Symmetry Breakingin the Littlest Higgs Model

Having the pictures of the Goldstone bosons matrix, and the structure of the
gauge coupling in. mind, we can turn to the important feature of the model - the
collective symmetry breaking in thegauge sector, mentioned in the introduction.
The idea that the gauge symmetry is broken down to its diagonal subgroup
SU(2)xU(1) suggests that we can concentrate on the relevant degrees of freedom
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of the Goldstone boson matrix

T/V2 ¢ %
71-0*/2 % ¢0*
IPX* = | 7t/v/2 70 /2 /2 70/2 (5.26)
¢+t % /2
& ¢° /2 ,

where the missing elements (the triplet, and the singlet) can be feed to the
gauge fields. With this matrix, we can see how the global symmetries “protect”
the mass of the Higgs doublet by acting non-linearly on it so the mass terms
like MoH'H are forbidden due to a “shift” symmetry (see the section 4.2). By
observing the form of the generators in (5.14) we see that the both Qf and Y;
commute with the SU(3) generators embedded in the lower-right block of the
SU(5) matrices. Similarly, there is also SU(3) € SU(5) generators in the upper-
left block commuting with the Q3 and Y>. These SU(3) global symmetry, left
survived by some subset of the broken generators, manifest when one species
of the gauge interactions are turned off. First consider the Higgs (a Goldstone

boson at the moment) alone

m-X O Rt RO h- hO* ,(5.27)

where we have changed the normalisations for convenience. Observe that in each
block the Higgs fields can be written in terms of the SU(3) generators as, taking
h~ = ht*,

0. 0 At
0 0 A% | =Re(h")A+Im(h*)As + Re(h”)As + Im(h%)A;  (5.28)
Kt h° 0

and, similarly,

0 h+* hO*
Rt 0 0 | =Re(h")A; + Im(h")A; + Re(h%)Ay + Im(R%)As  (5.29)
R~ 0 0



155

In this way, we can turn off the gauge couplings one by one and see how the
residue global SU(3) generators act on the Higgs doublet. First, let us switch off
the Gw (1) gauge fields. Next, recall that the Gellman-matrices A, of the SU(3)
are embedded in the SU(5) generators as

~ A0
A = : (5.30)
0 02><2

which we have named it the SU(3), in the introduction section. Expanding the

exponentials of ¥, we find the series with respect to powers of F'

21 2 5

we then find the action of the global SU(3); € SU(5) on the &

i’ 9.\ . 2iII- i0-AT
Vo — e211'I X/FZO £ 619 Ae21l'l X/oneﬁ)\

. ¥ F.0
~ |1+1i6%
0 02><2
2i AT 0
2+ =(IT: X)X 1+i6°
{ 0 F( ) 0} ( ( 0 02><2>>
A0 A0 21
— 20 + 1209" == iga Eo + *]._.[ . XEO
( 0 2><2> ( 02><2> F
(5.32)

Since terms proportional to A, A2, A* and A® do not harm the Higgs doublet,
let us, for simplicity, take only the 6%,...,68" to be non-zero,. Using the Higgs
doublet defined in (5.27), we find

0 0 ‘g "0 o0
y 0O 0 65 0 0
1
20 + ’F'—H/ % XZO ~ Eo + —915 —9;7 0 945 967

0 0 —f6i5 0 O
0 0 —6; 0 O
2
+ 510 X5 (5.33)

where

945 — 04 + 195, 067 — 96 + 107 . (534)
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We did not work out the last term, FII - XX, in (5.33) because these terms
will not contribute to the Higgs’ mass. Alone, the transformations induced non-
linearly on the Higgs fields

At — AT —FOi +...
R — R —FO;, +... (5.35)

are enough to guarantee their masslessness. In a similar manner, the lower-right
global SU(3) also protects the Higgs by acting non-linearly on the doublet.

Let us return to (5.32) and keep all the 6’s in the transformation and
as well as recover the ® ftriplet so that we can find a more general form of
the transformation. The global SU(3); (lower-right) symmetry with parameters
€ ~ Ff acts on H and & as

Hi— H, +¢ +

G ; { o 5.36
W) éij S7 2 (bij 0 l(élHj + EjHi) 4+ ... ( )

and similarly for the SU(3), (upper-left) with parameter 7 we have

Hz—)Hl—f—ﬂz—f—

. (5.37)

GW(l) : {
where 7,7 run over component indices of each field. The appearances of the H
comes from the small 1,.5 from ;.

5.2.3 Bottom-up Approach of the Collective Symmetry Break-
ing

We have seen how the cancellation goes in the context of collective symmetry
breaking which can be considered as the top-down approach.. Now we will use
the bottom-up strategy instead and workout the terms in the Lagrangian that
can lead to quadratic divergences of the Higgs mass. This can be done by
expanding terms contributing to H'H. In the realm of the standard model we
have seen the quadratic divergences due to electroweak gauge fields. So we will
make sure that in the case of Little Higgs the contributions from the gauge field
corresponding to each Gy ;) alone is harmless and their collective effect will not
generate vertices leading to quadratic divergences when 1-loop effects are taken
into account.

The strategy in this section is simple: we collect terms from the
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Lagrangian (5.9) that are proportional to AAS'S where A stands for W2 or
B; and S stands for scalar fields. The remaining tasks are straightforward The

Lagrangian to begin with is

T

2
L = };QTI'{ {a,u,z — 12 [ng;-llu(Q?E + EQ‘;T) + g;BJ#(YBZ + EY']T)}}

j=1
2
0.8 —1)_ [0 W3(Q5% + £Q5T) + 6B (G + Y|

J=1

X

} |

(5.38)

First let us consider the contributions from WWH'H diagrams. They come

from
F? | N .
Lo, = ?’I‘r{ [“ig1 (WS + SWT) = igs (W5, S + SW,)]

[“ig: (WS + BWH) ~ iga(WHS + SWH])] }

2

B P AN -
_ ?Tr{ figy (B Wi+ Wi, Z') +iga(E'Wa, + W3,5)]
[—igu(WEB + SWHT) = igy(WE'S + SW+])] }
F? bty .t L uT
— §Tr gl(E Wlu—i—Wl#E )(W12+2W1 )
(S Way + Wa, B )YWEE # TWE )| + Loy (5:39)

Notice that we have separated out the terms involving g,g, into £, ,,. These

mixing terms obviously vanish when one of the couplings is turned off. Then

72 .
Lw, = ngTr{ETWmEW{‘T + 2 WLEw }

F? X
+8g§Tr{Z)TW2uEW2“T S W, EW }
+Ly g, + Tr{W W} terms
_ F2 2Tr ET ay b1 ET ay b T WaWb,u
= ?91 QIEQ; +X QL@ V1
2

v an(siomay’ + v'asmay fwswr
+Lg, g, + T{WW } terms

_F22 t ~Nasi 6T L1170 11700 F22 t ~ase T Lir7a 17700

_ 4g1Tr{Z Q5Q’ }Wle +492Tr{2 Q:5Q; }quwz
+Lg, g, + T{WW } terms

(5.40)
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Terms like TrIWWW are truncated here because they are not relevant to the
WWZXX loops. Now we are left with two similar expressions in (5.40).
this step we can explicitly work out contributions from each set of gauge fields
(corresponding to @; and Q-) separately. Then we can check whether turning
on one of them introduces the quadratic divergence diagrams to the Higgs mass.
Consider the g; terms. Expanding the ¥ (we will put the Wf#Wf“ and other
factors back later) and collect terms containing 2 ¥’s

21
EEEWIWI & Tr{zo l1+F(HX)_ﬁ(H X) ]Q?

[1 20 ) = 2 () ] zo@lf}

E {Q“( (I X0?) 300875y + (— (1T X)) Q3202 o

V< (H X)Q“( )(H X)2@Q° Eo}+others (5.41)

where “others” means interactions containing more or less than two X’s. Then
T . 2 a T
Lsswiw, = —FzTr{(H X 50Q8 Ele} . FzTr{(H - X)?Q150Q3 Eo}
4
+ FQTr{(H - X)Q3(TT - X)EOQZ{TEO} + others (5.42)

000
4 a -1 b1
= T o o mze'n | others

T¢ g1 0
00 e ™

— F2Tr {<1>T“<I>TT”T} + others (5.43)
The first two terms in (5.42) are zero due to the vanishing product Q“EOQ”TEO.

Gathering similar terms corresponding to the ), we find
g% agl 5T a bu gg agl bT a bu
Leswiw, = ZTI {‘1’7' e T }Wle + ZTr{QW &T }WMWQ , (5.44)

which shows that the terms that are potentially contributing to quadratic
divergent diagrams like W;W,TrH "H are absent. The Higgs mass term does
not receive 1-loop contributions from either W*' or W? interaction (via @Q*, @?).
It is even better to see large one-loop correction to the ’s mass appearing since
this implies that they prefer to be as massive as the largest mass scale of the
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theory and we do not have to worry about them so soon. This ®’s mass also
reflects the fact that the mass of ® is not protected by the extra global symmetry
SU(3).

Now we have to come back to the terms in £, 4, in (5.40) that was omitted
from the above consideration. They will tell us whether the “collective” effect of
turning both gauge interactions on adds severe quadratic divergence diagrams
to the Higgs mass. The cancellations between the light W and heavy fields W',
i.e., between the gauge bosons in their mass eigenstates®, should manifest due
to the presence of the mixing. To show such cancellations, we have made the

following substitutions (to the W, W' eigenstates)

Wi = —cW' s+
Wo* = sW' 4 cW**,
(5.45)
as well as
#‘2 = g2C08% = goc = g18inY = g8
V91 + 93

and put them into £, ,, in (5.40). First we write the £, ,,, neglecting the &'%

(5.46)

terms in the trace:

2

Lo = ?’I‘r{ ligy(B'Wa, + W, ) + iga(2' W, + W5, 2)]

[—ig (WIS + W) — igs(WfE + 2W])] |

F2
= 20T 50RO+ 0 TR Qtw )

G195 F*

|
+ 28wl 5'05m + 05w otz

(5.47)

9In the Littlest Higgs, and other models of Little Higgs in general, there are more than one
stage of gauge symmetry breaking. So there will be more than one mass eigenstates of the gauge
fields (two in our case).
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Los = glgéF 2WfW§Tr{22*Q‘;ngT} 91ng WeWTr {2@?2*@32}
= fel Swpwd ¢ Wgwfm{zz*cg;z@g }
~ glgéF (W“Wb+W“W”)Tr{2Z)O [1+?(H-X) F22(1'I X)]
1= 0 - x| my)

!
= SO wews + weWR)Ted (1L X)*2008 500% |

2 (wrewg 4 WEW) T (1 X)2 Qs 0@} 5 |

+9192(wa2” + W;Wf)Tr{(H - X)Q4(II - X)ZOQ;’TEO} + others

(5.48)
Note that
H'H 133 ' HT H' H*
(IT- X)? = H*® HH' + H*H' H3' : (5.49)
H'H SH' ' + HTH*
So
'r2bT7'1“ 00
T a
(- X)*Te@3 TeQi=I-X)*| 0 0 0
0 00
(H'H+ 3@ 0 0
= H*®7 7o 00 (5.50)
HTHT: 72 0.0
leads to

Tr{(H | X)ZEOQ’;TEOQ‘;} = U {(H'H Y #'8)5%). (5.51)
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Therefore,

8 (wrws + WiwiYTE{ (- X)*20@) 200t |

9192 DI (Wew? + Wew)Te {(H'H + &'#)5%)

2
_ 2—% [—2esW W™ + 2(s% — AYWW" + 25cW "W "]

Tr {(H' H + &')5*| . (5.52)

Calculations of the remaining terms in (5.48) can proceed in very similar manners
so we are not going to show them here. Collecting the results, together with the
g'gW'W version of (5.44):

- g agt bT (C4+S4) atr7b
RS {ora’r bT} 2= | ey (5.53)
4 sc , ’
we arrive at
2 of “N| o
LZEW’W — SL Wawb/.c i (C S )WaW/bu
4 e sc K
xTr {H*Haab 123" ®5% + 2a“<1>*abT<1>}
2
g latr7la f T
& | wewer (11 + 28'8)
(64 +34) atrslb agt _bT
— o “Tr {20°0 o @}} , (5.54)

which shows the collective symmetry breaking at work. While the terms
corresponding to TrH'H in (5.54) do not cancel in the Lagrangian, the one-
loop diagrams constructed from them cancel precisely since they both have
the couplings g2, but with opposite signs. Also notice the factor cot2y =
(coth. ~tany)/2. = (c* — §2)/2sc/in the WW'HH coupling which'is a unique
feature of the Little Higgs model.

Once we have done the SU(2) case, what we have to do in order to work
out the U(1) contributions is only making some modifications to the results
found above. The relevant parts of the U(1) interaction deduced from (5.38) are
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similar to those found in (5.40). So we paste them here

F? F?
Ly s = 5 oi VATV | BBl + P Te{TVnY; | B, BY
+Ly g + Tr{BB} terms.

(5.55)

Again we have separated the mixing terms within L, . and neglected terms
without Goldstone bosons interactions. What remain are the explicit calcula-
tions. The pure g; terms contribute
2 2 2 2
Lssp B & —FQTr{(H-X) Eo}’lEoYl} = FQTr{(H-X) Y}EO}GEO}
4
+F§’I‘r{(ﬂ CX)YA(TI- X)z:oylzo} + others.  (5.56)

Notice that now there is no reasons that the first two terms should vanish (due
to the diagonal structure of the ¥;). We find

Tr{(H : X)2Z)0Y12}0Y1}

. HHEH1+3® &' HT H'H* 1 00
:mOTr{ H*® HH + H*HT H' 010 }
HTH SH' & + H'H*) \0o 0 1

100
= Tr{(l'[ - X)2Y120Y120} (5.57)

1
. T.r{ _6(H'H + ®'®) + 4(HH' + H*H") — 6(33" + HTH*)}

where 1 indicates a 2 x 2 unit matrix. So our job is to make sure the HH terms
from the second line in (5.56) cancel these terms. We find

T{ (I X)Yi(IT - X)ZoY: o)
1
= MT‘r{S(HTH +®'3) - 12HH' +8H*H' + 1833 — 12HTH*} .

100
(5.58)
Then (5.56) turns to
Lssp s < —Tr{ —12(H'H+%'®)+8HH +H'H") —12(®3' + HTH*)}

+Tr{8(HTH + ')~ 12HH + 8H'H™ + 1898 — 12HTH*}

= Tr {502'®} . (5.59)
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It is clear that the contributions from the B, field should be the same way. We
have to stress again that these cancellations for each type are not fluke (i.e.,
valid only in some particular gauge choice) but are the results of some definite
of way of gauging the subgroup of the theory.

To see cancellations between the B and B’ fields, we proceed in a way
similar to that used in the case of W fields. After some straightforward, though
tedious, calculations we eventually arrive at

(c/2 1y 312)
s'c

1
Lsspp = ¢” lBuB“ S B“B'“} Tr {4HTH + <I>T§>]

(CIZ - 512)2

14 .

2
—g. [BLB’“Tr hH H} ~ s B.B*Tx[® @]] , (5.60)
which also shows the cancellations when one-loop diagrams are taken into

account. Notice that we have used

12 12
R 1Y A (5.61)
V9t + 97
This equation, together with, (5.46) can be rewritten as
L. Al 1
9 g 9
1 1 i
FTE = (5.62)

These relations (or their original form) will be helpful as their right-hand side
are measurable within the standard model.

Figure 5.1: Cancellations between the U(1) gauge fields
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5.2.4 Fermions Cancel Fermions

So far we have seen how the trick of collective symmetry works in the scalar
and gauge sector of the theory. In this section, we shall turn to the fermion
sector of the theory where the most severe quadratic divergence contribution
from standard model top quark lies in. We will write the top-bottom weak
doublet and the right-handed weak singlet!? as

t
gs = (;) and u/ (5.63)
3

It is expected that the structure of the fermion-Goldstone boson (Yukawa)
interaction will be fairly complicated (unfamiliar indeed) thanks to the non-
linear realisation of the Higgs. So we should list some of the features that we
anticipate before we move on. The very first one of such is that there should be
two additional heavy quark fields. Top-like they must be, or their contributions
will not mean anything to the diagrams from the standard model top. We shall
call them T and T"¢. Let us associate them the quantum numbers (3,1)y, and
(3,1) y,. In this way they transform as vectors in SU(2) (with correct U(1)
charge) and their mass term

yFTT" (5.64)

will not spoil the standard model’s electroweak symmetry. (We will reserve the
symbol T for later use.) Therefore, they are legitimately massive with mass
O(TeV). In addition, since they were “born to be” the standard model top
“cancellers” we do not need similar particles for the up and charm family due to

the fine-tuning arguments.

Recall that Yukawa interaction breaks a global symmetry explicitly. We
basically have more than one options to make sure that the Higgs remains
massless, with mechanism invoked in similar manners with collective symmetry
in the gauge sector. We can add a Yukawa coupling with the fermion such that
the extra SU(3) global symmetry is recovered when the Yukawa interaction is
turned off (zero Yukawa coupling). In other words, turning off one of the two
couplings should result in different extra global symmetry in the same sense as
what we have done in the gauge section. In addition, we can also demand that

10For the reason that we shall see, this uls"' is not necessarily the top. Also note that now we
use the small g; for the quark doublet instead of @; to ad void ambiguities.
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the standard model fermions be charged under only one of the gauge groups,
say the SU(2);. Having zero SU(2), charges means that turning the SU(1),
off will completely remove interactions between Goldstone bosons and fermions.
To keep the heavy fermions 7' and 7"¢ being weak singlets; i.e., singlets under
Q¢ + Q3%, we have to let them stay at the dead centre with respect to the SU(5)
matrices. Then let us collect the heavy fermions together with the standard
model quarks in an SU(3) “royal” triplet

b 2
X=|ts :( q‘°’> (5.65)

and let this triplet Yukawa interacts with the Goldstone bosons and the “right-
handed” T in an SU(3) symmetric way. It is not obvious (at least for the author)
but is still easy to verify that at tree level, the 3-Yukawa coupling (rather than
4-Yukawa one) like thu can be generated by the Lagrangian ([21]):

1 /
§y1F€¢jk€zyX¢Eja;Ekyugc (5.66)

where the antisymmetric tensors ¢;;, and ¢,,, together with 7,7,k = 1,2,3 and
z,y = 4,5, are introduced to ensure the desired pairings betweens the SU(3)
triplet, the singlet fermions, and Goldstone bosons; i.e.,

y1(ts b3)HLs- (5.67)

To digest the expression (5.66) a bit, let us first notice that the X;, denotes the
3 x 2 upper right block of ¥. To lowest (non-trivial) order, the 2 x 2 upper-right
block of % is just an identity matrix 15.5. Then the antisymmetric coupling
between the two X will single out only one (rather than 2from 2 3’s) Goldstone
boson field out of the product £75%,4%s.

With (5.66), the interactions between fermions and Goldstone bosons can
be extracted to desired order. Let us write out the ¥,, (or L), extracted from
the relevant components of 2i(II - X )3y/F (the upper-right corner), to the first
order:

1 0
Ve = 0 1 . (5.68)
iv/2 iv/2
P
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The contributions from the next order do not look very clean

Lt s L P dte -
h'th +T+¢ ot hoh +7+72

4: 0 ¢+¢0* ¢,7¢++ 0.0 \gﬁ 0 <£+[¢7
qu;,zndorder (08 _FE h,+h * + V2 + V2 h°h™ + ¢ ¢ * + B . (569)
hO*gt — i+ h—¢t 0% 40
V2 +ho V2 +h7

All together, the Lagrangian for Yukawa interactions becomes

1 /
Lt = EylFeijkemyxiijZkyu; + y2FTCT/C (570)

which is, after some expansions,

Ly = yfTT"
+iyy {—b3 l\/ifﬁ (V2R + h°*¢+)] ug

—t3 [«/iho + %(hdﬁ = \/§h°*¢°)1 wy

4T [—iF + %(fﬁh + AR+ 20T 29T + 2¢°¢°*)1 uéf}
+h.c. (5.71)

Let us inspect this expression more closely. First observe that y; respects the
global SU(3), (in the upper-left block)'’ and breaks the other.. Next, we see
the couplings between uy and both ¢; and 7. This means that the uy cannot
just be the usual standard model top quark (right-handed), otherwise we would
have to remove T and face with quadratic divergences from the top because the
T would not couple with the top.

Interaction. vertices can be extracted from the Lagrangian (5.71). In
addition to the usual 3-Yukawa coupling f fh (f stands for fermions and h stands
for scalars), there are the ffhh interactions from the second order expansions
with-a suppression factor 1/F. The f f interaction is also present. By inspecting
the 274 line in (5.71), we get the first order ffH coupling

— iy V283U (5.72)
and for the last line we get another first order coupling

y FTug (5.73)

1Recall that we partition the group as G D SU(2); x SU(3)1 + SU(2)2 x SU(3)2.
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and the second order one:

— %Thoho*u'sc. (5.74)

Notice the crucial extra minus sign in the second equation. These four-point

interactions can be curled up into a loop like that shown in fig. 5.2.

lyl.F
uy t
Bt 0

Figure 5.2: Fermion loop from the 2°¢ order interaction.

There are two loops from the interaction like (5.74). Though we cannot
identify the fermions we have on hand with physical particles, we can construct

fermion loops and watch the cancellations occur. These loops are shown in

u'e u, F iy F
3
—1\/§y1 —1\/5211 2 e
---- --- U T T Us
h h
T Ve S, A Rl

Figure 5.3: Cancellations contributed from the extra “top”

In addition, the mass of T comes from interacting with both the u% and
the T"¢. These mixings suggest that we introduce

1
T4 = —~=—=—==(yius +ysT)
Vi 95
1
u, = —————(—nT" + youy). (5.75)
VUi + Y3

Their inversions are

TIC

VUi + v3
1
re ———— (1T + you3), (5.76)

VYE + 3

1
———(—y1u5 + 1T°)
(

g
w
Il



which, after a few algebras changes (5.71) to

Ly = Fyyi +y3TTe

N V21y? V21y19s
VUi + Y3 VUi + 3

_|_y%]];'le(ﬂh—¢+++h0*¢+)Tc+t3(h—¢++\/§h0*¢0)Tc

VUi + 93

~T(h"h™ + h°h™ + 20" T ¢ = + 26T ¢ + 2¢°¢°*)TC]

(bR T + t,h°T] - [bsh s + tsh®ug]

1
+&ﬁ [b3(ﬂh—¢++ 3= h0*¢+)u§ + t3(h—¢+ + \/§h0*¢0)u§

Vi + U3

~T(hth™ +h°h% 29" + 2¢% ™ + 2¢°¢°*)u§] +h.c. (5.

168

77)

and we can now interpret the Fi/v? + y3TT¢ as a mass term for the heavy

fermion,; i.e.,

F\ly: + 95 =mr, (5.

78)

which clearly prefers an F. ~ O(TeV) scale. It is also helpful to define new

Yukawa couplings

V2
Y = 2y1y22 (5-
VYL + Y3
and
2 2
Vo (5.

Y )
Ve + 3

so that we can rewrite (5.77) in the new basis

Et = mTTTC
—yrGs HT® — y:Gs Hug

-1, *rmic —1 ~ *, ¢
+yTF [GsHT*] + Y [G:®H" ug] —

1

H'HT [y7T° + y,us
F\/§ [yT Yt 3]

—f(yTTTC +yTu)(@7 ¢ +¢7¢ +¢°¢") +he, (G

79)

80)

81)
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where the t3, b; and u§ are manifestly massless (at tree level). Therefore we can
identify them with the standard model quarks; i.e.,

t3 (—)tL, b3 HbL, ug —tg. (582)

In addition, in these new basis, we can rewrite the mass of the heavy quarks as

D) 2
:yt +yTF,

" (5.83)

mr

which should serve as a useful test of the model once the heavy top is found

since F' can be measured from other processes involving gauge interactions, etc.

The fermion-Higgs vertices are readily read off from (5.81). They are

shown in fig. 5.4. Then the relevant loops to the quadratic divergences due to

Figure 5.4: Heavy fermion vertices

fermions are shown in fig. 5.5 (with arrows removed).

t t
O w0y (O
h h h h
t T -7 TT~-l

Figure 5.5: Cancellations contributed from the extra “top” in mass eigenbasis.

To see how the cancellation goes in this case, we will evaluate the
contributions from the loops in fig. 5.5. It is clear that they are proportional to

d*k 1
(2m)4 k2
d*k 1
(2m)* k2 — mZ
yr [ d*k mgp

T — T loo = .
PETE | Gn)fk —mz

t — tloop o —yf/

t — T loop o< —¥y2

(5.84)
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Altogether, they give, to leading diverging terms

_2/d4k1_2/d4k 1 yr [ Ak my
Y] onerr V) ntkz—mz T F ) )tk - ma
Yrmr d4k) 1 Yr d4k mr

- F (2m)* k2 TF (2m)* k2 — mZ’ (5-85)

where we have used the relation (5.83). Clearly the dangerous parts cancelled.
The remaining terms (my dependence) that we neglected above leads to the

logarithmic correction to the Higgs mass

RIL

om; = —3 ln—= 5.86
— 8 Mo m (5.86)
or, in terms of the physical fields,
2 R 2
5 SYyimp A
(5mh = -3 87‘(’2 In ’m—% % (587)

If the heavy top is too heavy, the fine-tuning problem will resurface (similar to

the “stop” in minimal supersymmetric standard model).

We also need interaction terms for other fermions as they interact with
the standard model Higgs. Fine-tuning argument does not require the existences
of the heavy partners (other than those for the top quark) and the Lagrangian
is in the form

1
Vh, — iAngijkEmyXiZ;zE;;ydc S h.c.. (588)

where now x3; = 0. For example, recall the partially upside down triplet (with

one member missing)

dl S1
Xt =y | 0 1 oxer= e (5.89)
0 0

For the expression (5.66) to be neutral, we must provide suitable U(1); x
U(1), charges definitions of the fermions. The constraint between the two U(1)’s

is
Y, +Y; = Yau (5.90)

which is not very restrictive and is clear to leave one parameter unfixed. The
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free parameters can be fixed if we demand that the theory is anomaly free. Still,
doing so is not a very good idea as we are considering the model as an effective
field theory - more fermions to fix or to introduce anomaly problem may exist
already at the high-energy end of the theory. So it is best to leave things the
way they were. The U(1) (hypercharges) assignments of the fermions are listed
in the table

(S o)
k‘tz
0

Q ulc de L e’
-Yi. _]_%_Yu Yu %"'_Yu l%_Y;z -Yt.—z
Y—Z %+Yu _g_Yu _%_Yu _a+n 1_-Y<::'

+Y, | -L -7,

‘\10‘(\»—‘

1

ot

Table 5.1: Hypercharge assignments of fermions. Two free parameters Y, Y.
can be removed using the anomaly free condition. The table is
taken from Han et al. [3].

5.2.5 Electroweak Symmetry Breaking

The first task of the Littlest Higgs model is accomplished. What we have on
hands are bunches of particles; those with masses of order F' and those massless
particles which are the ingredients of the usual standard model. Still, the model
will not be useful unless we can reproduce electroweak symmetry breaking. So
we will evaluate the potential of the Goldstone bosons generated radiatively from
loop corrections and workout the new mass eigenstates of the Goldstone bosons

and the gauge fields.
5.2.5.1 Coleman-Weinberg Potential

Recall that our Higgs was born as a pseudo-Goldstone boson. So its potential
is basically zero at-tree-level. Explicit symmetry breaking terms (the gauge
coupling, for example) bring some effective interactions like the mass term
and the additional coupling (between 4 Higgs and 2 gauge fields) via quantum
effects. Electroweak symmetry breaking is then triggered by the radiatively
generated Mexican-hat type potential (negative and positive coefficients of
H'H and (H'H)? respectively). The Coleman-Weinberg mechanism is a good
candidate for explaining this. There are basically two types of the radiative
corrections from the Coleman-Weinberg mechanism to be described here. One
is logarithmic and the other is quadratic. The logarithmic part is easy since we
have sketched major parts of the calculations in various sections, especially in
section 3.1.4. Moreover, as is well-known, the logarithmic part is not very severe

(comparing to the quadratic divergent part). They will become important (i.e.,
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comparable) when the two-loop quadratic divergent calculations are considered

though. However, the 2-loop calculations are out of the scope of this thesis.
5.2.5.2 Coleman-Weinberg Potential: Logarithmic

Now we will begin with the radiative correction from the interactions between
the Higgs and gauge bosons. Recall (3.55), the logarithmically modified potential
from the gauge bosons

M (%)
A2

. 3
V,%w = ——, TrM}(Z)In

e (5.91)

The Mg2 is the mass matrix of the fields in the presence of the background %
(think of ¢, in section 8.1.1) which can be found by expanding the covariant
derivative in the Lagrangian (5.5). The result is (recall that the mass term is
proportional to the second derivative of a potential)

sm2 = 2 3202 1n 4 + g”M; 1nA—2 (5.92)
h,g — 6472 9 w! g B! . .

M2, M2,

Still the logarithmic corrections from the gauge fields are not very severe
comparing to the effects from the top quark. This is mainly due to large Yukawa
coupling of the top. Taking another formula from the section 3.1.4, the top loop
contribution is

o 3 = 2
Vidw = — 1o T (M(D)M (%)) 1n

M%) M, (%)

e (5.93)

which (recall the loop calculation in the previous section) evidently results in

3 2072 A2
yt mT In —5 (594)
8m? ma

B~
dmy ;=

where negative contribution to the mass can be traced back to the fermion loop.

It is this contribution from the top that triggers electroweak symmetry breaking.

Notice that the scalar (mainly the triplet) also contributes logarithmic correction

but is, again, overwhelm by the top effects. Such the effect can be written as
A2

MZ1n 7k (5.95)

dm? =
hs ™ 1672
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5.2.5.3 Coleman-Weinberg Potential: Quadratic

Now we will move to the potential due to the quadratically divergent loops with
gauge fields running in. The one-loop contribution from gauge fields can be
written as (recall (3.32) and the section 4.3)

ual 'A'
VY = (o )2TrM2(2) (5.96)

where (47)? is a generic one-loop factor. Let us concentrate on the SU(2)

interaction. The TrM7(X) can be evaluated from the kinetic term
T(%) = F° ) gl e (@790t (5.97)

We can also think of the (5.96) as the results of the vertex

9'2F2 T T

o5 T (@ + Q) *(Qrz + Zes )| witw,
92F2 T a

=2 Tr [2'QE8Q8" + NQI S Q| Wi W,
g2F2

Tr [(QFE)" QyX| W Wy, , (5.98)

where we have used ¥7 = ©*. Then the quadratic divergent contribution from
W running in the loop yields the factor A?/(4m)?; i.e

gz I A?

Tr [(QIZ) Q%] ——; (any:” (5.99)
Consequently the effective potential
o | 2F4 X
Vi e T [(Q0E)1QT] (5.100)

where we have used A = 47 F and a UV/-dependent coefficient a/2 ~ O(1) (which
contains the (47)% ) has been introduced. The U(1) contribution shows up in a
very similar manner so that we finally get

F2 /
Vecw = ag {9 Tr((@=)' Qi) + ¢ Tr[(v:D) Vx|

{
= of (g l(@em)Qsm + P T [(viE) iz

ol (3T (@32 Q35 + o e [(vm) m]} . (5.10)
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In order to extract some useful information from (5.101) we expand the ¥ and
keep terms involving more than one Goldstone bosons in VqCW Each gauge
interaction (i.e., those labelled 1 and 2) will allow different form of the H and
® appearing in, depending on the transformation properties under the global
symmetry SU(3); it manifests (see (5.36) and (5.37)). In other words, the

operators involved must be SU(3); preserving interactions. The result is ([21],
[31)

2

7
Pi; = 5p(HiH; + H;H,)

uad a !
View = 5(9% + g,°)F? oF

2

7
L= (92 + 92 )F2 ﬁ(HiHj + HjHi)

a , \ i .
- 5(93 90 )E lq’ijq’ij \ ?éiniHj 2F<I> H,H,
+2F 5 R 2F
1 KA T * TT*
+@3(H H; 4 H; H] )(HiHj+HjHi)]
ago 2\ 12 * % "
4 Foo.&,; & H;H; & H,;H;
+2(92+92) [ i ”+2F +2F
2F 2F
1 * IT* * LT*
+4F2(H Hj + HiH; )(HiHj+HjHi)] +...  (5.102)

where H;, ®;; denote the field components. Then we see right away that gauge
loops contribute to the triplet masses

Ms'~ ay/gi + g F ~ O(TeV). (5.103)

Notice that we have not taken into account the contributions from the top quark.

The case where we have the heavy fermion running in the loop is quite
similar. Recall that the Yukawa interaction between fermions and Goldstone
bosons in (5.70) preserves the upper-left global symmetry; i.e., the SU(3)s. So
the Coleman-Weinberg potential is, with the fermion loop factor —1,

2

ua a’ i
Vi = —SUIF? @y + o (HH, + HH)| +.... (5.104)
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This potential is constructed from the Lagrangian (see Arkani-Hamed et al.

[21])
1 g
View = —a'Z)\fF‘LEiwew“’Ejme”kskmnz*myeyzz*“ ) (5.105)

Notice how the triplet  receives contributions from the Yukawa interaction.

To get the couplings, we will cast the Lagrangians on hand in the general
form

Vow = AF2Tr (<I>*<I>) i\ (H<I>*HT _ H*@HT)
—2HH' + M\ (HH'")?
;

uad uad
= Vow + Viow — K*HH'.

(5.106)

Notice that we cannot do much with the u?HH " term in the Coleman-Weinberg
potential. Collective symmetry breaking trick pushes the mass of H to two-loop
which is of order

2(quad) A = (4nF) b F?

[l

Ha—teop ™ {gr2)2 = (T672)2 ~ 1672

(5.107)

This term competes with the logarithmic contribution from one-loop; i.e.,

20g) _ FIn(A?/F?)

1—loop — 1672 (5108)

The situation is beyond the power of the Coleman-Weinberg technique at one-
loop. Therefore we have to take p? as a free parameter and the condition that
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electroweak symmetry breaks is u? > 0. We then have, from (5.102),

Vow = —-up’HH'
+%(gf + ) F? [fﬁcp‘cb + ;F (h@'H" — H'®H') + LSW(HHT)Z]
+g(g§ +g2)F? lTr@TCP - 21F (h@'H" — H"®H') + 4;_,2(HHT)2]
+8a'y>F? l’I‘réch 4 ;ﬁ (r@'H™ — H'®H') + 41F2(HHT)2] t...
o 8 ]

4 32C2 512 cl2

pR— O —”
+%_a{fo: ) . e s)}+4dﬁ]

< (H@THT / H*@H*)
1 a g2 gl2 3 fyo
+a [2 {8’2; i 5202 + 8a’y1 (HH ) R (5.109)

which enables us to extract the couplings

2

¢4
Ay = "’[9 2y 9 ]+8a')\f,

2 52C2 s/2cl2
_ al o (Cz — 52) 2 (CIZ _ 3/2) 1,2
R e
2 2
_ a| g 9 1,2
)\4 = g [5262 - 5/26/2] +2a Yy - (5110)

So, the quadratically divergent Coleman-Weinberg potential is expressed in
terms of these couplings as

Vow = —p HH' + A(HH')?
+XFPTrd'® + i\F (H®' H' — H'®H') . (5.111)

To workout the true minimum, let us introduce the real elements of the
HT — hi + iho
hs + ihy4

¢y + i %(Cbs +i¢4)
T5(ds +iga) @5 +igs

fields as follows:

(5.112)
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so that we have
Trd'® = ¢;¢: (5.113)
and

H®'HT = (h?+ 2ihihs — h2)(¢1 — id2) + v2(hy + 1ho)(hs + iha)(ds — ida)
+(h3 + 2ihshg — h3)(Ps — ids) - (5.114)
as well as
H*®H* = (H®' H")* . (5.115)
Consequently, there are only real numbers left in the potential
Vow = —4”(h§+h34h3+ h) + Aa (R + b3 + b + hf)
Mo F2 (03 + 83+ 8% + 63 + 02 + ¢3)
+2g(h3R3 + R3h3 + h3h; + h3RS + R2hS + h3hS)
+2)\3F( —2¢1hahy + ahT — \/§¢3h3h2 — ¢2h3 — Bshuhs
+V2¢shshy — V2¢shdhy — 2¢shshs + Peh; — ¢6h421>5-116)
If we are expecting that electroweak symmetry breaks when u? > 0, the

potential (5.116) must be extremum when the vacuum points in the “neutral”
direction; i.e., the SU(2) x U(1) — U(1).n, direction,

(HT) = ( S ) (5.117)
/2
and!?
i(®) = (0 0) . (5.118)
0 v
which are equivalent to
(ha) = \/vﬁ (¢s) = —' (5.119)

12The factor i is introduced for later convenience.
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and

(h) = 0, i#3 (5.120)
(¢;) = 0;  J#6. (5.121)

The validity of these conditions can be directly verified by taking the considering

the first derivative of Vo in (5.116) and imposing the vacuum conditions; i.e.,

OVew OVew
=10 =0. 5.122
o I// A (5.122)

As a quick check, we will have a look at terms relating to ¢ and hs. The “¢g”

term is easy

Vew
Os

while the “h3” terms are a bit more involved

= 22X Fps + 2A3F(hZ — h3) (5.123)

6;/ZW — 2V/3NsFhuhs + 4Aahi 2 + others (5.124)
1
av,
WCVV F —2\/§A3F¢3h3 + 4)\4h2h§ + others (5125)
2
3;/ZW — 24Py + A5 Fdohs + ANahs(RZ h2 + B2 + R2)
3
+others (5.126)
agZW — 40, F(fshs + dehs) + trehiha + others (5.127)
4

where “others” denotes terms that do not even contain the h; or ¢¢. In fact
the first three terms in (5.117) vanish altogether by the conditions (5.120) and
(5.121). The survivors of these conditions are

Vew = DX F2(@6) + 2Xs F (hs)?
agzw = 4XsF(Pe)(hs) — 2u*(ha) + 4Aa(hs)’ . (5.128)
4 o

So the conditions (5.119) are satisfied when

2 /1'2

Y :)\4_A§/)\2’

(5.129)



179

and

2
,_Ag’U

v = N 2F

(5.130)

Notice that the relation (5.129) tells us that the free parameter u? should be
of order ~ (100 GeV)? as we are expecting that M7Z ~ 2u? = 2v%(Ay — A2/X,).
The considerations posted around the equation (5.109), stating that u? ~ %,
therefore suggest the hierarchy

V2 ~ 3 ~ ” .
16m2  (1672%)2

(5.131)

Notice that this results are obtainable from dimensional analysis. Since the
F2
1672

arguments, the separation between the two scales characterised by v? and A?
can be said to be “natural”. In other words, the scale v ~ 100 GeV — 200 GeV is

naturally produced, without the requirement of fine-tunings, for A in the range

factor

and v? ~ u? have their origins from the collective symmetry

A ~ 10TeV — 30TeV . (5.132)

Now we can trade the 3 couplings (A’s) with the parameters u?, v, and v’

44202
8F v u?
A 24,2
e ST ||| (5.135)

4 v4 — 16 F2y"?

5.2.5.4 Gauge and Mass Eigenstates of the Goldstone Bosons

Once there is the second stage of symmetry breaking (electroweak), we must
deal with the new mass eigenstates of the gauge fields. Before doing that, we
also have to find the relations between the gauge and mass eigenstates of the
Goldstone bosons in order to collect the physical particles (remember that 3
Goldstone bosons will be eaten by W= and Z).

There are 10 real fields representing the Goldstone bosons; namely the

h;’s and ¢,’s. So we are expecting a 10 x 10 mass matrices with ¢; and h; mixed
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inside:
1 0%V,
2 cCw
=Z 5.136
ab 2 aagabg . ( )
where
h,; =1,...,4
- { ¢ . (5.137)
Ga; a=2>5,...,10

Obviously this M? is a symmetric. We will partition the matrix M? as follows:
M? M?
MIZ,L(ax4) MIZ,R(exﬁ)

which is still not-diagonal. We have found that the a 4 x 4 upper-left (UL)
block!? is

MI%'L =
— 2 4+ vy 0 0 0
0 — @ +v3 A, 0 0
0 0 — % + 302N, — 2F A3’ 0
0 0 0 —p? 4+ V3N + 2F A3
(5.139)
while the 6 x 6 lower-right (LR) block is
M[2,R -
F2)\, 0 0 0 0 0
0 "F% D0 0 0 0
0 F2) 0 0 0
? (5.140)
0 F2)\, 0 0

13The full 10 x 10 matrix is given in (C.69) page 257.
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Still, there is the off-diagonal block. We present the 4 x 6 upper-right (UR)

block (the lower-left is just a mirror image as M? is symmetric)

MZZIR:
00 0 Fu)s 0 0
0 0 —Fu)s O 0 0
(5.141)
00 0 0 0 V2Fu)s
00 0 0 —+/2Fu); 0

It is not straightforward to diagonalise the M2 in this form. However, since
there are very few off-diagonal elements, we can “re-shuffle” them to get a more
desirable matrix. For example, consider the element 3 = hs; and ¢* = h,. We
see that we can construct a 2 x 2 block matrix by switching between ¢* and ¢19;
ie., setting £* = £10. = ¢ €10 — ¢* = h, and € = &€ = h;. We obtain the
hs — ¢s mixing matrix

17 B — 24 302 A, — 2F 50" V/2F ),
(hage) V2Fu);s F2),
w? —vt 4 16F%0"2 4 30v* — 16 F%v? 8/2F2uv’
Vi — 162y 8\/§F2’U’U' 4292

vi — 16F2y"2 4ﬁF2U’U' 2 F2¢)2

22 ( vt 4+/2F?yo/ >
(5.142)

where we have used (5.133), (5.134) and (5.135). By recalling (5.130) we further

approximate v’ = v?/2F. Then we get

Ml ~ 2[[1.2

5 4/1’2};12 ,U2+i

M, =~ (% 37) (5.143)
v* — 16 F2y”

Since the mixing that we are dealing with at the moment is that between A3
and ¢s and we know that the position of A3 in the doublet (i.e., its quantum
number) is just that of the Higgs in the standard model, we can then safely say
that

&

2 2u° (5.144)
‘1)4

2MEF? (v + 35z )
vt — 16 F2v"

(5.145)
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Notice that we have introduced the notation & for the physical Higgs; i.e., in its

mass eigenstate after electroweak symmetry is broken.

Next, we will have a look at other blocks. A quick glance that there are
8 off-diagonal elements of the matrix M? (c.f. (C.69)) tells us that there will
be one 2 x 2 diagonal matrix left after the reshuffle of the basis. That matrix,
corresponding to the field ¢; and ¢, (£° and £°), is

F2)\ 0
M£1¢2:M§>++ 1 ( ’ )

0 F2)\
2M; F? 0
— o2t | - (5.146)
0 v471éLF2v’2
In the new basis, we will use
St =3/i. (5.147)

The remaining eigenvalues of the /2 are fairly non-trivial (still, brute
force is always possible). Hence, we will use some heuristic arguments to “guess”

what should they be, rather than diagonalise them explicitly.

At this stage we have paired up 4 rows and columns corresponding to
&' — €19 and ¢° — ¢°, we then have 6 pairs to go. However, notice that as there
are 3 diagonal elements F2\y = 2M£F2 left unpaired, the remaining 2 x 2 blocks
will be of the form

F2), aFvA
2 AFvAs (5.148)
aFvl; X

where o is a numerical factor (say, +/2) and X is one of the following elements

—p? 4 02 (5.149)
— U 4 vEAg + 2F A0 (5.150)
F?), (5.151)

Also notice that we cannot let the h; and h, stay at the same positions in
the matrix M? because of their off-diagonal elements. Therefore, in the new
basis, there is no 2 x 2 sub-matrix having —u? + v? in both of the diagonal
elements. Similar argument also applies to the case of having F2)\, in both

diagonal elements. Consequently all the remaining mixings will be of the h — ¢
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type. One of them is

. F2) Foul
2 = 2 arEvAs (5.152)
a1 Fuds —u? + 12X, + 2F 30’

and the remaining two are

. F2)\ Fuy)
172 = A (5.153)
asFvls —u +v

By using (5.133), (5.134), and (5.135), it is easy'* to see that one of the
eigenvalues of either A2 or M? will be zero while the other are proportional
to

4u’F? (’U2 + a’v'2>
vt — 16F292 '’

(5.154)

where o' is a numerical factor (depending on the members of the matrices).
Finally, we can set up another convention that further simplifies things: we
arrange the matrix so that the mixings above occur between fields in the real
and imaginary part in the same manner that h3 and ¢ does (recall hz +ih, and

¢s + ips). This trick will help us arrange the mixing angles more easily.

So far we have considered the mixings of the A; and ¢; in the “final”
mass eigenstates defined by the electroweak symmetry breaking. We see that
masses of the members of the Higgs doublets in these mass eigenstates are zero
except for the one that corresponds to the physical Higgs of the standard model.
Such the three massless members are the Goldstone bosons that survive massless
throughout both stages of symmetry breaking. They are exact Goldstone bosons.
Of course, they will not make it to the physical spectrum as they will be “eaten”
by the electroweak gauge fields. In addition, the triplet Goldstone bosons & are
now massive as expected. At.tree level, the mass eigenstates of & are degenerate
where (c.f. (5.112)),

2 M F?v’

2 2,
This immediately points out the conditions
vt > 16F?v?, (5.156)

4Remember that the eigenvalues of the matrix (a

b
b c) are 2(a+c) + 1/(a —c)? + 4b2.
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or

I
V2 v?

ha R 5.157
V2 < 16F2’ ( )

which tell us how much the contributions from the triplet ® get suppressed. It
also tells us that the vacuum expectation value v’ of the triplet is fairly smaller
than that of the Higgs doublet; for example, v/ ~ 5 — 20 GeV.

5.2.6 After Electroweak Symmetry Breaking

Once the electroweak symmetry is broken, both the Goldstone bosons and the
gauge bosons will have their new mass eigenstates. They can be obtained
by diagonalising their corresponding mass matrices and evaluating the mixing
angles in the similar fashion to those shown in the previous section.

5.2.6.1 Final Mass Eigenstates of the Goldstone Bosons

In this section we will follow up what we have left in the previous section on the
mass eigenstates of the Goldstone bosons. Let us denote the mixing between h3

and ¢¢ as'®
h,3 = i Cog —So ;L
&)l ) o1

where ¢, and sy correspond to the mixing angles, and # is the Higgs of the
standard model. Still we need to find how the other two components mix;
namely, the A4 and ¢s in terms of the “to be eaten” Goldstone bosons G° and

the neutral pseudoscalar ®F. We write

h 1 — GO
o [ e N (5.159)
Ps \/§ Sp Cp $F
which results in new real and imaginary parts, in terms of the mass eigenstates,

R’ = \;5 (coﬁ — 305130) + i\;i (cpé’o — sp®F + v) (5.160)

1 - ~ 1 - .
(0 0 P i 0 li
P = \/E(spG 4 cpd )+1ﬁ(soh+coé +«/§v) . (5.161)

15We follow notations of sines and cosines used in Han et al. [3].
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Then the next step is to write out the mixing angles’®. Using the formulas in

the footnote below and the matrix elements; for example, from (5.142), we can

get the rough approximations

5 v
G ~ 1-8—+
v
12
v
2
S 8—
0 'U2

(5.165)

orcg=1-— 4%22 and so = 2\/5% . Then, the other mixing angles can be found

in a very similar manners. They are
& |~ 1-8=
sp
Next, we define the final mass eigenstates of the charged fields

+ - 5+ 5+
h™ = ¢,G" —5,®

i¢+ — (3+é+ + C+é+) .
as well as

i¢++ i C'I">++ i

(5.166)

(5.167)
(5.168)

(5.169)

18Recall that if m; and m, are the eigenvalues of a matrix M, then there is a matrix U that

diagonalises the matrix M according to

T - cosf —sinf\ [a b cos@ sind\ (mi; O
UMU" = (sin9 cos 8 ) (b c) (— siné cosf)  \ 0 my
_odfatc—af(a—-c)? + 4b 0
| B 2 0 a+c++/(a~c)?+4p?

Then we can solve for the mixing angles:(cos 8, sin ) asfunctions of a, b, c as

cos®f = [(a—c) ++/(a = c)? +4b2} /2¢/(a — )%+ 4b% = 1 — b?/(a—c)?,

and sin® 6 ~ b?/(a — c). Besides, we have

2b

a—c’

tan 20 =

(5.162)

(5.163)

(5.164)
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Then we get the mixing angles

X
—
|
i

2
I

(5.170)

5.2.6.2 Final Mass Eigenstates of the Gauge Fields

Once we have specified the vacuum expectation value of the Goldstone bosons
fields, we can evaluate the mass of the gauge fields from kinetic terms (in
the covariant derivative). Since the calculations in this section are rather
tedious (though straightforward), we will not reproduces the results found in
the literature by Han et al. [3], for example. Instead, we will try, more or
less, to use heuristic arguments that can guide us to the results and also try to
analyse them.

Now the Goldstone boson matrix is

0O 0 0 0 O
0.0 ¢ 0 v
m-X| = 10% 00 2 (5.171)
0O 0 0 0 O
0 X Zmg @
Then
0O O 0 O
. 0 2iv iv O
201X F
YEw. = € Y, EO:EO+~F— 0O iv 00 1iv
0 0O 0 O
0 iv . 0. 2iv’
0 0 0 0 0
2
. 0 v 20v' 0 4 (UT + v’2>
~ 0 200’ 202 0 200’
0 0 0 0 0
v? 12 ! 2
0 4(I+U ) 2vv° 0 v

(5.172)
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So

0 0 0 1 0

2 2iv’ iv 2vv’ (v2+4”/2)
O "mt% Fom 0l )

Yew=| 0 -2 — 20 By +0(55) (5.173)
1 0 0 0 0
v3+4v'? iv v’ v iv’

0 1_( F2 ) F_2F2 0 _1722+2F

This matrix will be put into the usual kinetic term

F? g
Lygw=—To{ DB DT} | (5.174)

8 EW

To the lowest order (include only X,), we obviously recover the mass matrices
that were obtained in section 5.2.1. Thus, it will be helpful if the calculation
is performed based on the mass eigenstates so we can easily see the corrections
from electroweak symmetry breaking.

Since the calculations will be painstaking (as we shall see, the author will
take results from other sources), we will try some heuristic arguments based on
our considerations done in the previous chapter. First, recall that to first non-
zero order (the O(g?v?)), there will be interactions between the Higgs and the
Goldstone bosons while the other pseudo-Goldstone bosons are massive and do
not interact with the gauge bosons . Thus, it can be expected that the form of
all the corrections (to the gauge bosons mass matrices) to the first order O(v?)
will be proportional to

ég%z or gg'zvz ,etc... (5.175)

where 3, standing for various forms of all possible coefficients, can be a function
of the mixing angles (c,c, s, s’). The factor 1/4 can always be obtained with
proper definitions of the vacuum expectation value v and v’. In addition, the
factors. g, ¢’ should go along in a consistent manners with the corresponding
gauge fields (gg'v?W B’, for example).

178till, we have seen that electroweak symmetry breaking introduced mixings between the two
types of the pseudo-Goldstone bosons. The effects of mixings and hence the dependencies on v’
will show up in higher orders.
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Then our heuristic arguments tell us that the mass terms “should” look

like
LG O 1, tayisia 2 1 o o] oo
Comologpey % 5 [Mir = o Wwe ) (13— G070 | BB
+; (ig%Q) WiWe + ; ( g'2v2) B,B*
+; <'64192v2> WIW'™ + 5 <ﬁ 2" 2> B,B"™
+; (igg vz) |BsWEBF 4 BW 2 BY + BsWB* + BsWSB"|

(5.176)

where (; stands for a function of the mixing angles (from the first stage of
symmetry breaking). Also note the differrent definitions of masses of the charged
and the neutral gauge fields.

The higher order effects will introduce the splitting between the masses
of neutral and charged gauge fields. This is not beyond our expectation since
there are mixings between the Goldstone bosons (the H and the ¢) which were
eventually eaten by the gauge fields (see the section 4.1 on dynamical symmetry
breaking and vacuum alignment). Here, we will show how to multiply matrices
and collect various terms here, and instead will refer to the result found by Han

et al. in [3]. The mass terms in the unmixed basis are
L _ 1W1awlap M2 1 2,2 1BI Blp, M2 1 2,2
Zew = 5V w — 297V +§,u BT L9
1 v? v’
+ -
+WHW # [49 v <1— 6FQ+4>]

Lo o 11, , E v"?
+2WMW“[-QU 1—6?5'{'8’2

1 v
e

/2
3

WaW/ap 1 2,U2(C ) _ B B 1g/2,u2(c )
49 2sc K 4 2s'c!

1 (c® — s?) 1 (c? — 5?)
_W/SBy 1.2 - WSB/p 02
# [4gg v 2sc # 4gg v 2s'c!

1 cs' sc
WZRBH |—Zgg'v? | — + =] . 5.177
T [ 8ggv (sc’+cs’>] ( )
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We should keep in mind the condition (5.157) that though ”2 <1 F2’ the O(%z )
effects are not negligible, and so do O(ﬁ) terms. These effects will show up in

the masses of the light gauge bosons (in their new mass eigenstates).

Now let us consider the charged W, W' bosons. Denoting, m%, = 19%v%,

we have the 4 x 4 mass matrix

—mZ, + MZ, _mip(e=e)
mV%VV(Cz_SQ) ey | ®lae (5.178)
- 2cs (1 Y 4 W v2 )

where we have used the basis (W'", W, W'~, W ). Then observe that the off-
diagonal terms are considerably smaller than the MZ,. So we can easily evaluate
the eigenvalues. Let us denote the eigenvalues of this matrix as MW?E and MWEE,
for heavy and light gauge bosons respectively. We then find,

mi,(c? — %)% /4c?s?

M2, =+Mg, —m3 + ,
i T ity (S e )
4
= Mg/ — mW+O( v (5.179)
M2,
and
Z 2
5 - T 92 v

Note that both mass terms come with different orders of magnitude. We have

neglected the O(;;;VVVI ~ O(%) as it is small comparing with the mass of M2, in
the first term, while we keep terms up to (9(;,—2) in the eigenvalue (mass) of the
light gauge field. At this point, it should become clear that had we neglected the
(’)(I";—Z) terms-in (5.177); we would have faced with the “too simple” mass term

of the light gauge bosons
My, = my, (wrong) (5.181)

which is inconsistent with the mass of the heavy gauge boson; one shows mixings,
the other does not. Consequently, it is easy to verify (direct substitutions) that

the final charged gauge fields mass eigenstates Wy, Wy, are given by
Wi = W - (@ - W
S 2F?2
’U2

+ _ v _ "+ +
Wo = 2F2$c(c SYW™ + W (5.182)
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Now, let us turn to the mixings of the neutral gauge bosons. The situation
is rather involved as, according to (5.177), the mass matrix is not reducible to
the 2 x 2 block matrix (direct product with 15.5,). Let us denote mz = gv/2cy =
mw/cw = g'v/2sy where ¢y is (the cosine of) the Weinberg angle

.9 (5.184)
AN Eh |
Again, let us note the frequently used relations
912
?m?y = S iTiam (5.185)

The 4 x 4 mass matrix found is listed in (C.4). With a quick glance at (C.4)
we see right away that one of the eigenvalues should be zero (located in the
lower-right 2 x 2 block).

We require that electroweak symmetry breaks down to U(1)e,,. Thus, one
zero eigenvalue of the mass matrix (C.4) is expected. Notice that the appearance
of the zero mass gauge field (the photon) is fairly non-trivial especially if we try
to diagonalise the 4 x 4 mass matrix (C.4) directly. Still, it might be helpful if

we write the 2 x 2 lower-right block of the mass matrix (C.4) as

s = K
ME = S < (5.186)
—SyMmymyz K syymz K
where
’U2 ,U/2
K= 1) 3AL 19315 4 5.187
( 62 M '112) ( )

Notice that -we cannot just push this 2 x 2 block M2, out since there are off-
diagonal terms in the 4 x 4 matrix.. However, it can be seen that the off-diagonal
2 x 2 matrices of (C.4) have one zero eigenvalue and is by itself diagonalisable. So
our heuristic argument suggests that we can somehow rearrange (transform) the
basis such that we can separate one of the element, say the one corresponding
to lower-right most (s3,m%K), from the first two components, so that this
component mixes with only the members of the lower-right 2 x 2 matrix.
Therefore, the zero eigenvalue in (5.186), if there is any, is an exact zero. The

other one (i.e., the physical Z), which must be non-zero by construction, must
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have some terms that are mixed with the other elements from the heavy gauge

fields masses. Clearly this matrix M7, has eigenvalues,
0 and(mj, + siym%)K, (5.188)

and therefore tells us that there is a final mass eigenstate that represents the

photon.

With the above reasonings, we can begin with the mass eigenstate of the
photon

Al = s, W3 + ¢, B*. (5.189)

The other mass eigenstate of the light gauge field (the Z) must be orthogonal to
(5.189) as well as the other two eigenstates of the heavy fields. Thus, it is best
to separate out terms that mix with the A; from others. So we follow Han et

al. [3] and introduce the notation (that is consistent with the eigenvalues)

. V2 v
Z¥ = W - syB*+ 2 ﬁw’?’“ +z3 ﬁB"‘ (5.190)

where the z¥’ F2 and z% F2 will play the role of the mixing “angles”, which
also explicitly tell us that the mixing between light and heavy gauge field are
suppressed by a factor Z;. With these mass eigenstates, we can further look for
the form of those of the heavy fields. Denoting, the heavy fields as Zy and Ay,
and demanding that they are orthogonal to each other and to the light gauge
fields, we write

2

ZE — WP _zy ;2 B —ay' U ey W — sy B9) (5.191)
AL = BE mHﬁW'E‘“ e ;,2 (cwW* — swB*),  (5.192)

where zy characterises how the heavy fields (W2 and B) mix. It is found that

/ 1
zy = ———sc(c® - s?)
Cw
, 5
= — (- s7). (5.193)
2SW



Then, for the light fields, the eigenvalues are

v
F2 \6

MAL = 0.

Next, eigenvalue for the heavy neutral Z field is found to be

2 2 2 2 2 599 sc(c’s” + s°c?)
Mz, = My — My = MzSwo e o n  nae)
2 s'c’ (592s"c”? — g%s%c?)

So we define

5 ,scs'c(c?s"%+ s%c?)
TH=1599 £ on2  pee2q2)
277 (5¢2s"c”? — g2s2c?)

Then (5.196) becomes

z
2 y . 2= 2\NAN N6, 7 H
Mz, = My —my M 25W s 2
2
Sy T
y . 2 2 w <H
= M /_mW<1+C%VS'2C/2> :
The other eigenvalue of the heavy field is
M2_1M2_22+2$H
An = VB MzSy mws 2
1 o2 Lo
= 2 2 .2 w <~ H
= gMe=mzsw\l=n 55
w

5.2.6.3 Final Mass Eigenstates of the Top Quarks

2 2 /11, a2 | O/ 212 v
Mz, = m3z|l-— f+1(c — 5°) +Z(c —5%) +8§

2

|
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(5.194)

(5.195)

(5.196)

(5.197)

(5.198)

(5.199)

Recall that the top quarks (the top and its partners) interact via the interaction

term in (5.70). After electroweak symmetry breaks, the pseudo Goldstones are

in their new mass. eigenstates, the top quarks mass eigenstates will further mix.

So let us write the mass term in the Lagrangian as

Et = —mttLt% — MTTLT_E .

(5.200)

However, we know that the mass matrix of the fermions in the gauge eigenstates

basis is, in general, neither symmetric nor hermitian (but the M fM} is hermitian

and positive). But once we assume that the original mass matrix is rewritable as

a product of a unitary matrix and a hermitian matrix, it is possible to perform
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a biunitary transformation
S'MT = Mgiagona (5.201)

where both S and T are unitary'®. This means left-handed and right-handed
fermions have different relations between the mass eigenstates and the gauge
eigenstates. With (5.201), the mass term in the Lagrangian (for fermions %, in

general) is diagonalised as follows:
,()E/LSSTMfTTT,LpR > &LMdiagonal";bR (5202)

where ¢ = SY, and Yy = Tg.

Still, this is not the whole story. We know that other fermions in the
theory also have similar mixings between gauge and mass eigenstates (recall the
CKM matrix). Then by requiring them to interact with the pseudo Goldstone
bosons in the same way as the tops, we need to make some further adjustments
with parameters (like the couplings) or else the hierarchy of the fermions will
come out wrong. This will introduce more complexities (and ambiguities) into
the model. Nevertheless, recall that fermions in the first two generations do not
bring up severe quadratic divergences like the top quark does. Then the Yukawa
couplings of fermions in those generations do not need to be protected by the
global symmetries that are encoded in the interaction (5.70). Thus, one of the
ways to simplifies the consideration is to assume that the fermions interact with
the Goldstone bosons via other types of operator!®; for example,

QLH(X) (V) u' (5.203)

where X and Y are some components of the ¥ that receives vacuum expectation
value of order F' and 7,s are integers. If we do so, the by-product we get is
the extra freedom for choosing the U(1) charges of fermions-in the first two
generations because there is no global symmetries to fix them as those in the

top quark case.

With various possibilities for the quark couplings described above, it is
best to simplify things by concentrating on the top quark alone. We denote the
top quark and its partner in the gauge eigenstates by 77, Tr and ¢, tg and write

18For more information on the biunitary transformation, see, for example, Cheng and Li [50].
19See Csaki et al. [78] for the modifications of the interactions of the Yukawa couplings and
the U(1) charges of the first two generations.
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the mixings as

t, = cpts—s;t (5.204)
T, = s;ts+ct (5.205)
and
tr = CpuUf — Spt° (5.206)
TN A te (5.207)

where the left-handed and right-handed fields are rotated with different param-
eters s, and sg. Notice that we use uf instead of u; since we have to start
over and expand ¥ (with the electroweak expectation values) from the Yukawa
interaction Lagrangian. Also observe that now we will use T (not 7). Then

the top quark mass matrix is

F(sin % 2 F(1 /2
0 ygF
giving

ViF? (5% 2+ (1 +02/4) viF?5(1+¢)/(2v2)

M.M =
H ( Y2F25(14¢)/(2v/2) y2F?

) (5.209)

which is clearly Hermitian. Notice that we have used 5 = sin(v/F) and ¢ =

cos(v/F). Then the mixing angles are

2
Y1 v

S, — 5.210

g (y%‘l‘y%) F ( )

for the left-handed quarks, and

) 3 1 y2 ,U2
31.-‘3:5[1—02 <§— <y%;y§>>ﬁ] (5.211)
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for the right-handed ones. The mass of of the tops in their new eigenstates are®

YU v y;
m ~ = |14+ pB—=—"— 5.212
g \/5[ F2y%+y§] (5:212)
’U2 y2
Mr, = i ar |-t (5213)
F2yi +y3

where (§ is a numerical value of O(1). Notice that the left-handed quarks will
not mix unless the electroweak symmetry breaks, unlike the right-handed ones
which always do. Actually, we are already aware of this fact from the mixing
formula (5.75) which tells us the the right-handed (top-like) singlet appearing
in the Lagrangian (5.70) does mix with the right-handed heavy quark.

5.3 A Survey on the Phenomenology and Issues of
the Little Higgs

So far we have studied various aspects of the model building of the Littlest Higgs.
Currently, in 2007, we are at the time where the next generation accelerators like
the LHC (CERN) is scheduled to begin its operation within the near future. We
have seen that there are some free parameters and some new particles needed to
be introduced in the model and hence opening possibilities for the experiments as
there are more processes to choose. Thus, the Little Higgs should be interesting
in the sense of experiments. In addition, since the model have a fairly large
number of parameters comparing with the standard model, we generally expect
to see some footprints or some theoretical constraints that allow us to distinguish
the Little Higgs model from others (or the model is not useful at all as it needs
more ingredients to predict similar things).  In this section we will describe
some of the interesting phenomenological results we can get from the model.
The relevant articles that provide insightful information on:the Little Higgs
phenomenology include those by Han et al.” [3, 33] and Perelstein et al. [79]. It
is highly recommended that the interested readers consult these nice articles.

5.3.1 Unitarity and the Cut-Off

First we begin with our claim on the cut-off of the theory that the cut-
off scale, which indicates strongly interacting systems or new physics (with

spontaneous symmetry breaking, for example), is pushed up to the two-loop

20We use the subscript L for the quarks in their final eigenstates because we run out of some
proper indices.
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order at O(10TeV). Recall that this is due to the factor A ~ 4w F which is
obtained from naive dimensional analysis. However, we also have seen that
in the electroweak theory, unitary calls for new physics at 2 TeV rather than
4y ~ 3TeV as expected. The situation is quite similar in the Littlest Higgs
and there are now more pseudo Goldstone bosons to produce various forms of
unitarity violating diagrams (also recall that the gauge bosons scattering can also
be described by using Goldston bosons at high energies). The detail analysis on
a general Little Higgs models performed by Chang and He [80] shows that the
unitarity bound Ay comes as soon as 3 — 4TeV if we set F' ~ 1TeV. Actually,
this low unitarity bound is more satisfactory as it means that the high-energy
limit of the theory and the new physics (recall the technicolour model) can be
reached soon. Unfortunately, we shall see in the next section that the Littlest
Higgs is very tightly constrained by the precision electroweak tests and it is not
likely that F' be that low.

5.3.2 Bound on the F from Precision Electroweak Tests

Let us begin with some unsatisfactory fact. Consider the heavy gauge bosons
that are partners of those in the standard model. Recalling, (5.180) and (5.194)
for the masses of the light gauge fields, we see that their ratio is

MWIZ, ’U2 5 ,UIZ

~ |14+ =2(?-5?%)?2 -4 5.214
c2, M2, t g ) i (5.214)

which is more than obvious that we have lost the custodial symmetry (see section
2.3.5). Unfortunately, this fact alone is enough to put the theory into a very tiny
corner of the parameter space and will eventually rules out the Littlest Higgs
(not the whole class of models): Nevertheless, this should not be beyond our
expectation at all, not only from the appearances of the mass terms, but also
from the fact that there is no room left for the global SU(2) symmetry to act as
the custodial symmetry. The collective symmetry breaking results in gauging
all the possible two SU(2) subspace when the matrix under consideration is
SU(5). Therefore there are no global symmetry left to prevent the p from
being altered. In addition, since the source of the custodial symmetry breaking
lies in the order O(;’,—Z) (or O(%j)), we look for the culprit at the same order.
By recalling the (2.160) we see that the possible source of the problem is the
effective “non-doublet” from of the Higgs. Thus, we will focus on the triplet &.
By expanding the % to the second order letting the fields receive electroweak
vacuum values, that the neutral component of the triplet contain the HH ! (and
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hence the electroweak vacuum expectation value), acting like the Higgs triplet.
This custodial symmetry SU(2)) can be used as an essential tool to test if the
Little Higgs can evade the precision electroweak tests.

The modification (5.214) also tells us that either the second and the third
terms miraculously cancel, we need v' << v and ¢’ ~ s’. Notice that we cannot
take the mixing angles to be too small because that would mean strong couplings
of the gauge interactions (for example, recall ¢’ = g'/g5). The lowest values are
usually taken to be ¢ = 0.1. Cséaki et al. have done the fittings related to
precision electroweak tests of the Littlest Higgs in [6], and we will present some
of their results. They evaluate the bound of the “decay constant” F' as a function
of ¢’ (or ¢) within various values of*! a. The example of the fit is shown in figure
5.6. They used My =115 GeV which was found to yield the lowest bound and is
consistent with the current excluded Higgs mass. In short, what they basically
found is

F>4TeV (95%C.L.). (5.215)

On the one hand, the larger-than-expected lower bound of the F' pushes
the cutoff of the theory (i.e., the scale of the new physics) up to 3 x 4 ~ 12 TeV
or to 4w x 4 ~ 50TeV which is plausible from the precision electroweak tests
point of view. On the other hand, the high value of F' means that the mass of
the top partner is raised up, to Mz = 5 — 6TeV, and hence the return of the
naturalness problem. If it is the case, there would be the need of fine-tuning to
1 — 2% level in order to get the Higgs light. In addition, let us recall that even
though the quadratic divergent diagram cancels, the top quark, as well as other
particles, contribute to the Higgs mass squared the logarithmic terms. For the
top-quark we have (recall (5:94))
3yimip 1 A

In —; (5.216)

dm2, = —
L. 872 ma

which is fairly harmful if the mass mr of the heavy top is too high. The situation
is now worse than the previous case. The primary goal to solve the naturalness
problem is gone.

21The convention of the a in the Coleman-Weinberg potential may be different form paper to
paper. In this thesis, we use 1/2 of the a in Csaki et al. [6].
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Figure 5.6: The region of parameters excluded (below the curves) at 95% C.L.
where ¢ varies from 0.1 (shown in solid line) to 0.99 (dot-dashes
line). The shaded region is totally excluded. (Taken from [6].)

5.3.3 Particles in the Littlest Higgs Model

The particle spectrum of the Littlest Higgs model, as an economical model,
is interesting as the new particles, which were introduced to cancel the severe
quadratic divergences, can be probed within the reach of the next generation
accelerators (for example, the LHC or the ILC). We will point out some features
of the Littlest Higgs model that can be used to distinguish it from others; namely
the heavy top.and the extra pseudo Goldstone bosons. (the triplet ®).

5.3.3.1 Heavy Tops

The heavy top plays very important role in cancelling the quadratic divregent
contributions from the top of the standard model. Besides, due to the fine-
tuning arguments, the heavy top must show itself up before ~ 2 TeV. Recalling
(5.213), we find

Mz, ~\/y} + y3F S V2F (5.217)

However, taking the value F' suggested by the previous section, the bound rises
beyond the limit of acceptable fine-tuning. Anyway, this is rather interesting
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as it will still be within the probing range of the LHC if we take F' ~ 1TeV.
Beyond that, recall that there is the equation (5.83)

2 2
:yt_'_yTF,

5.218
Yr ( )

mr

which serves as the unique feature of the Little Higgs obeyed by every Little
Higgs model (See Perelstein et al. [79]). The quadratic divergences cancellation
mechanism will not work without this relation. All the four parameters are either
known or can be measured (probably indirectly) if the heavy top is found. This
heavy top can be produced either alone (via W gauge field and the other quark
in the family) or in pair (via pair-production) at the LHC.

The fact that the heavy top lives in the same multiplet with ¢ and b of the
standard model helps a little. By little we mean we have to mess with hadronic
process and the results generally come with wide uncertainties (comparing to
processes in the lepton colliders). Since the heavy top mass is of TeV order, the
uncertainties may be as high as hundreds GeV’s ([79]). The decay width of the
Ty is dominated by the decay products th, tZ and bW where others come with
v?/F? suppression factor. In the same paper, Perelstein et al. found

mT'!/%
641

+
(T — t7) ~ "I 2 W) (5.219)

I'(T — th) ~ 5

where the T' — bW/ covers half of the fraction. This implies the (approximate)
total decay width of the T°
yr

I'p ~ 22— . 5.220
T 167rmT ( )

Suppose we take mp 2> 2TeV and y; ~ yr (which is-legitimate) the width
becomes I'r ~ 50 GeV which is rather small but still distinctive.

5.3.3.2 The Light Higgs and the Heavy Scalars

Since the goal of the Little Higgs model is to provide some explanations for
having a light scalar (i.e., the Higgs), then once the Higgs is discovered, it may
or may not be easy to distinguish the Littest Higgs from other models. For
example, naively we have to take the range of the Higgs mass predicted by
other models like supersymmetry into account. Then we have to check whether
the (discovered) Higgs mass falls into the common range of the mass shared
between Little Higgs and others or not. If it does, then it is difficult and we
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need to perform further investigations to distinguish between them or we have
to look elsewhere. In addition, notice that the correction to the mass of the
Higgs comes with the factor O(v?/F?) which is of a few percent order. This also
adds difficulties for distinguishing between the Higgs from the Little Higgs and
the standard model.

The existence of extra scalars is a unique feature of the Little Higgs
models. Furthermore, we can even use the scalars to distinguish one Little
Higgs from another. The larger the global symmetry group is the more the
scalars to be found at some TeV scales. Nevertheless, the naturalness argument
tells us that the extra scalar can be rather heavy since the quadratic divergent
diagram from the standard model Higgs quartic coupling is not very severe. By
< 5 — 10TeV, we then see that a

[

recalling that 10% fine-tunings calls for Ms
direct production of the heavy Higgs may not be easy to carry out. Still there
is nothing saying explicitly that the ® cannot be as light as 1 — 2 TeV so the
possibility of direct production cannot be left out.

In the littlest Higgs model we have a triplet consisting of one neutral and
two charged (the + and the ++). The interesting process concerning the triplet
is the W, W, scattering where the the triplet can contribute ®*+ « W+W+.

5.3.3.3 Heavy Gauge Bosons

Heavy gauge bosons are common features of physics beyond the standard model
due to large gauge group structure and symmetry breaking. Still the TeV size of
these gauge fields make them available for the next generation accelerators and
there are some features that can let us distinguish from others. They will allow
the measurements of some important parameters of the model; for example, the
“decay constant” F' and the additional parameters from the gauge sector like
tany = ¢ = i—j or tan®y)’ = j—f = % In addition; if we take only the SU(2)-like
gauge fields into account, we are then left with only 2 important free parameters;
namely, F' and tan®. This means we need few experiments to deal with these

parameters. For example, from (5.23) and (5.23) we have, to leading order,

0.65F
M, = ~
W 78 = sin 24
0.16F
My, = ~ (5.221)

~ sin2y’
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Then we find a problem, a very crude approximation on (5.23) reveals that

F
My, < — 5.222
Ag ~ \/E ( )
which can be somewhere below a TeV, depending on the value F'. The mass of
this “heavy” gauge boson ranges from ~ 400 GeV to ~ 1 TeV. This is not friendly
with the precision electroweak tests at all. Light gauge fields of hundreds GeV
scale, if exist, should show up as contributions to electroweak observables.

5.4 Conclusions on the Little Higgs model

So far we have studied the Littlest Higgs which is the most economical model
in its class that is proposed to resolve the naturalness problem while remains
perturbative up to about 10 TeV and hence being “friendly” with electroweak
precision measurements. We have seen how the mass of the Higgs is protected at
tree-level by non-linear realisation of the global symmetry and at one-loop from
quadratic divergences by the collective symmetry breaking. In addition, masses
of other particles are generated via explicit symmetry breaking of the global
symmetry in a way that is consistent with the collective symmetry breaking.
The cancellations between quadratic divergent diagrams were evaluated in detail
from the point of view of both the non-linear realisation of the symmetry
(on the transformations of the Higgs) and the loop-corrections from various
particles. Various mass eigenstates of the physical particles, both before and
after electroweak symmetry breaks, were evaluated to some detail. In the last
section we presented some important phenomenological features of the Littlest
Higgs model.

Unfortunately, the minimal model showed some signs of inconsistencies
with both the fine-tuning and precision electroweak measurements. The amount
of fine-tunings are worse than advertised and the contributions from the partners
to the standard model particles are not very well controlled. These problems,
however, did not rule out the whole classes of the Little Higgs models. Though
the Littlest Higgs by itself has some problems, it can be used as a prototype and
can be easily modified to more sophisticated model. There were many Little
Higgs models developed along the path provided by the Littlest Higgs with the
aim of resolving the specific problem in mind. The extensions are usually done
by extending the global symmetry group, or using more groups so that there are
more rooms for additional symmetries to be used. The Littles Higgs with the
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custodial SU(2) symmetry by Chang and Wacker [81, 82| fall in the this kind
of examples. Another example is the Littlest Higgs with T-Parity by Cheng
and Low [24, 23, 83] where there is an additional mechanism preventing the
electroweak observables from receiving tree-level contributions from the heavy
particles which are usually the source of the problems with precision electroweak

measurements.

The Littlest Higgs, along with many of the Little Higgs models, come
without any explanations on its ultraviolet (UV) completion; roughly speaking,
without mentioning how the global symmetry breaks. One of the interesting
ideas on the UV completion was inspired by the theory concerning ultracolour
interactions presented in section 4.1 and 4.3 where ultrafermions transform under
the real representation of a SO(7) and the Little Higgs becomes a composite
particle. That model is proposed with the name composite Littlest Higgs by
Katz et al. [77].

Many, if not most, particles predicted by the Little Higgs models are
expected to be within the reach of the next generation accelerators especially
the LHC and the ILC. With some state-of-the-art design on the experiments,
various properties of the physics to be as an extention of the standard models
can be studied. Physicists are very confident that the standard model is not the
end of the story and something interestng must be discovered soon in the LHC.
The Higgs is very likely to be found. With the upcoming experiments, we will
know whether it is Little Higgs, supersymmetry, or something else that has its

role in particle physics.



CHAPTER VI

CONCLUSIONS

In this review-type thesis, we have introduced the Little Higgs models (especially
the Littlest Higgs) in a natural way by gathering essential ingredients step by
step; filling the gap left out by most of the review papers of the Little Higgs.

We began by bringing up the relevant ingredients of electroweak sector
of the standard models and studied the effects of loop-corrections to the mass of
the Higgs with additional helps from the Coleman-Weinberg mechanism. This
lead to the theoretical bound on the mass of the Higgs. In addition, to convince
the readers that the Higgs should be light, we have presented supportive findings
from the precision electroweak measurements. In this way, we have transparently
introduced the problems of naturalness and fine-tuning concerning the Higgs
(and other elementary scalars) and finally the Little Hierarchy problem of the
standard model. In the appendix we also briefly presented the ideas of unification
of the gauge couplings which convinces us that the standard model should be
thought of as an effective field theory of some fundamental theory lying below the
Planck scale. Some aspects of the SU(5) grand unification theory are introduced
so that we have picked up how to deal with representations of particles, running
of the couplings, and the Big Hierarchy problem.

Once we have formulated the Little Hierarchy problem, we presented some
interesting extensions or alternatives of various mechanisms of the standard
model. Dynamical symmetry breaking mechanism was investigated in some
detail where we have learned how to implement the BEH mechanism without
elementary scalars. Besides, the section on dynamical symmetry breaking has
provided us a nice way to understand the problem of vacuum alignment and how
the Goldstone boson becomes massive due to the introduction of explicit global
symmetry breaking interactions. Then we studied the method for concentrating
on the low-energy degrees of freedom (the Goldstone bosons) of a theory via
the non-linear realisations of a symmetry together with the non-linear sigma
model. We finished the introductory parts by briefly outlining the pre-Little
Higgs model; i.e., the Georgi-Kaplan models.

In the chapter on the Little Higgs, we showed how the general Little Higgs
models solved the little hierarchy problem. We have focused our detail study
on the Littlest Higgs; including the collective symmetry breaking mechanism



204

and the cancellations of the quadratic divergent diagrams, and gauge and mass
eigenstates of various particles. Some possible phenomenological properties, or
hopes, for distinguishing the Little Higgs models from others were discussed.
The section dedicated to serve as a conclusion on the Little Higgs models is
presented at the end of chapter V.

Though this article does not serve as a self-contained introduction to the
Little Higgs as there are several topics that we have left from our discussions (as
mentioned in the section 1.2.2) for the reason that their comprehensive analyses
take space and time, it is still hoped that various aspects presented in this thesis
are sufficient, or at least satisfactory, to give the readers some “feelings” of the
non-supersymmetric physics that can be thought of as an extension of standard
model.
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APPENDIX A

SUPPLEMENTARY MATERIALS

In this appendix we present some important and interesting topics that do not
fit anywhere in the thesis. In section A.1 we very briefly discuss some basic
ideas of symmetry that are relevant to our studies in this thesis. Basic concepts
of representations of a group is summarised in section A.2. Then in A.3, we
turn to discuss why the space of G/H, which is referred to in spontaneous
symmetry breaking phenomena, is symmetric. Finally in section A.4, we present
an alternative, easier, method to evaluate the effective potential.

A.1 A Few Words on Symmetry

The form of transformations of the fields ¢*(z),(z =1, ..., N) in the Lagrangian
that is usually relevant to most physical phenomena is the (linear) unitary one;
ie.,

o — ¢+ 1T (A.1)

T%(a = 1,...,m) is called the generator of the transformation and can be
written in the form of N x N matrices (acting on the index ¢). What defines the

generators is the commutation relation
[T?, T?] =i (A.2)

where f9%€ is the Lie-algebra structure constant. The U(1) generators are defined
by a set of generators that commute with ‘everything else. The remaining
members having non-zero commutators among themselves are called simple
subalgebra. The latter can also be adjusted to satisfy the relation

facdfbcd f | kéab (A3)

which remains valid in any representation. A particular value of £ will lead to
the desired form of the kinetic term. The first priority is given to the kinetic
term because it is one having the largest possible symmetry. Given a specific
type of the field (scalar, fermionic, etc...) we can deduce the symmetry of

the Lagrangian by requiring that the kinetic term be invariant under a linear
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transformation like (A.1)}. Then, the mass term can break the symmetry into
its subgroup if the mass (squared) matrix does not commute with the generator
of the group. The interaction terms will further restrict the symmetry down to
a smaller subgroup.

The logic introduced above also applies to the case of N Dirac fields 9,
grouped into an N component vector ¥. Nevertheless, the situation is slightly

different here. At first it looks as if the largest symmetry of the kinetic term
ivyv (A.4)

is SU(2) x U(1). However, by recalling that the left- and right-handed fermionic
field can be constructed from the Dirac field ¥, we see that the kinetic term
(A.4) becomes

iU, 00, +iUed¥y (A.5)

which means that the chiral fields ¥, and ¥ are allowed to transform differently
under the SU(2) x U(1) transformations. Still, this is not all we can do. By

making use of the charge conjugated field
e =Cvu* (A.6)

where C? = 1, c' = C, Cy**C = —v#, we can rewrite the charged conjugated
right-handed field as a left-handed charged conjugated field with the opposite
U(1) “charge” (not necessary the electromagnetic one); i.e.,

(Yr)® = (¥°)L- (A7)

Since all the fields are now left-handed, they can be grouped together in

127
e (o) "

and hence the kinetic term (A.5) becomes
iTeT, (A.9)

which clearly possess SU(2N) x U(1l) symmetry. Since fermions and anti-
fermions are allowed to mix in (A.9), the SU(2N) x U(1) defined above is not

1A set of N massless real scalar field may provide a good example. The reality of the field
and the invariant of the kinetic term under (A.1) automatically implies that the symmetry is

SO(N).
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legitimate in most cases in the standard model (where we need to distinguish

between particles and anti-particles, especially when they have charges).

A.2 Representations of a Group

This section summarises some basic facts on the representation of a group.

Before we get to the formal results, let us recall a loose meaning of
the representation. The idea of representation becomes useful when we have
some ideas of the group for the problem in mind. The choice of the group is a
phenomenological question. Suppose that we are dealing with force described
by a group of N x N unitary matrices having determinant 1; i.e., the SU(N).
Then we say that a particle experiencing this force transforms under some
representations of SU(N). In other words, its state is described by a vector
in some vector spaces where the elements of SU(N) acts as unitary operators.
Obviously, the simplest vector space can be constructed from a N column
vector, resulting in the fundamental representation. This also brings up the
“conjugate” representation where the N x N unitary matrices act on a row vector
from the right. The conjugate representation may or may not be “equivalent” to
the fundamental representation. In addition, we can also “sandwich” a traceless
hermitian matrix between two SU(N) elements in a specific way, which results
in the adjoint representation.

In gauge theories, we have to deal with at least two kinds of symmetries;
namely, the gauge symmetry and the flavour symmetry. The first being a local
type while the second is of a global one (and not necessarily continuous, in fact),
referring to a symmetry of the theory that are not (yet) gauged?. Still they are
more or less related. The action of a flavour symmetry generator must resulting
in mapping the gauge fields into themselves. So the gauge fields before and after
mapping must belong to the same irreducible representation of the gauge group.
This means that generators of a flavour symmetry must commute with all the
gauge generators; i.e., they act on different spaces and hence we can associate
different indices for both. A quantum number for a specific flavour generator
for some of the representations of the gauge group is now possible because the
flavour generators behave like a constant with respect to the gauge generators.
Consequently, suppressing these indices and putting all fermions into the left-
handed version, the kinetic term is a sum of all the kinetic terms from different

2There is no reason that the global flavour symmetry be the same as the global symmetry
correspond to the gauge symmetry.
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(irreducible) representations:

S UrD¥ry . (A.10)

Each ¥z, behaves as a vector in a flavour space. Then the rotation group
corresponding to the dimension dg of the flavour space is the SU(dr).

Now let us move on to the formal properties. A representation (denoted
by R here) of a group with the structure fo% is specified by a set of traceless
Hermitian matrices T3 having dimension dz x dr. T’z will be qualified for being
a representation only if they satisfy

[Tk, Tr) = if***Tx (A.11)

which are defined by the original generators 7'® of the group defined by the
fundamental representation. Two representations are said to be equivalent
(physical properties described by them are indistinguishable) if the exists a

transformation governed by a fixed unitary matrix
XATEX — T, (A.12)
for all a. If this transformation reduces 7’7 to the block diagonal form
to
—1lma t?Q
X ThX = , (A.13)
e

the representation is-said to be reducible and we write

R=r:®r,0 - DTy . (A.14)

Otherwise, the representation is irreducible.” In the latter case, we can define

the quartic Castmir invariant C(R) by
(T7%T7%)ij = C(R)dy; - (A.15)

This follows from [T°T°%,T° = 0. Moreover, for any representation, the

generators can always be adjusted so that

Tr(TETE) = T(R)6% (A.16)
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where T'(R) is called the index of the representation. Taking the trace of the

representation indices 7, 7 we find
Tr (TrTg);; = C(R)dr . (A.17)
Summing over the generators (a, b) in (A.16) eventually results in

C(R)dr = T(R)de . (A.18)

Observe that (A.11) also implies

[T, T = —if*Tg (A.19)
or
[T%, —Tx] = if**(~T%) (A.20)

which means —T%* also obeys the commutation relation(A.11). If T2 and —T2*
are equivalent the representation R is said to be real. If there exists a matrix V'
such that

LT = TRV (A.21)

with V' # I for all a then it is pseudo-real. For example, V = o, for
the fundamental representation of SU(2). When both conditions fail, the
representation is said to be complez. The complex conjugation representation
R is defined by T = —T#".
Now, notice that (A.11) and (A.16) tell us that
i

Jo = ey T T TRITE) (A.22)

which means f°° is completely anti-symmetric (the trace on the right-hand
side is cyclic). This also shows that the structure'constant f°°° is an invariant
symbol of the group. Now, we can define the adjoint representation by

(T3)" = —if** (A.23)

which automatically implies that (Tﬁ)bc is Hermitian. The T} satisfies the
commutation relation (A.11). By construction, the dimension of the adjoint
representation is equal to the representation of the group. This leads to

T(A) = C(A). (A.24)
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When the anti-commutator is used instead of the commutator in (A.22), the

anomaly coefficient of the representation A(R) can be defined:
abe 1 a b c
A(R)d™™ = _Tx {[T3, THIT - (A.25)

Notice that now d®®* is totally symmetric. Then (T%)ij — —(T&)’, yields the
important relation
A(R) = —-A(R). (A.26)

This plays an important role when we want to find the representations of a group
that are anomaly-free. A(R) automatically vanishes in the real or pseudo-real

representations.

When the real representation and its complex conjugate one are not
equivalent, it is helpful to use up and down indices - up for the fundamental

representation and down for its conjugate:
Pl 1< Wy
¢ =(¢): = ¢i. (A.27)

Then the elements of generator T2 are written as (T%2) ;- 'This means for the

conjugate representation: (T%)ij — —(T2Y,. Then it is easy to see that ¢,¢ is
an invariant symbol. The other important invariant symbol is the 63 . We find

i~ (1+i0°TR)* (1 +i0°T%),'6F =6} + O(6%), (A.28)

which means that a singlet (or trivial) representation is always there in R ® R;
ie.,
ROIR=1@--. (A.29)

Since the generator matrix T'3, carrying an additional index from the adjoint

representation (a), is also an invariant symbol, we can write
RIRXA=1 - . (A.30)

With the helps of (A.29) and the fact that A = A, this leads to the fact that the

product R ® R always contain the adjoint representation:

ROIR=10AD- . (A.31)
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When R is the fundamental representation N or the SU(N), (A.31) reduces to
N@N=1@A. (A.32)

For example, 3® 3 =1+ 8.

Next we will look at some of the important applications of the repre-
sentations. First we know that weak interaction teats left-handed and right-
handed fermions differently. But trying to introducing a right-handed as a
charge conjugate of the left-handed one leads to a behaviour under a gauge

transformation like
Yr — Yr +1e5(=T)Y5 (A.33)
if
Y — Y+ TPy, . (A.34)

So we may or may not get the equivalent transformation rule for the right-handed
fields depending on what kind of representations of the gauge symmetry group
these fermions transform under. If the representation is real, the generators 7
are all imaginary and antisymmetric. Hence left and right-handed fermions in a

real representation transform the same way.

A.2.1 The Meson Octet

Now we will consider the construction of the meson octet. Let us begin with the

quark triplet which transforms under a fundamental representation of SU(3)

u
p=|d|, (A.35)
S

as well as its conjugate

v=(a,4d5). (A.36)
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Since the matrix 4 contain both singlet and octet parts, we will consider

Y~ Sl Tgg

(2ut — dd — s5)/3 ud us
= diu (—ui + 2dd — s5)/3 ds
sl sd (—ui — dd + 253)/3

(A.37)

In this quark basis, we can identify the states with the physical particles. They
can be written as

TW/; - ;]13X3Tr¢'lﬁ o II- X

7 /2 + n/ (6 mt Kt
P T —n’/v2+m/vV6  K°
K- Ko —2n/+/6

(A.38)

where 7° oc (u@l — dd)/+/2 and 7 « (u@ — dd — 2s5)/+/6. Their transformation
properties will be made clear if we collapse them into pieces

ﬂ.O
ﬁ 7T+0 K+ %
. - _n 0 o
I-X «x |« e + ) K° | A 7% ,
= 0 n
K- K —2\/”é
(A.39)
or write them in terms of the Gell-Mann matrices, given in C.3.1,
3 7
IT- X o0 YO A%+ Yo KA + nAd, (A.40)
a=1 a—4

Notice that the kaons transform as a complex doublet under the SU(2) subgroup
(the doublet structure shows up right away after we “hide” the s quark
dependence). They will plays the role of the standard model Higgs doublet
in many sections of this thesis.
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For reference, we also write down the “pion” matrix for the SU(5)/SO(5)

case
_% _ \/LTO 0_w+ H* V20Tt —iy/2¢"
1 —wm o HY gt i+ ¢
m-X = —— H- H™ \/8/5n H* H®
iv2¢~" i~ H- -9 -1
g~ gl H  —wt 2

(A.41)

A.3 The Space G/H is Symmetric

In this section, we will study the behaviour of unbroken (Y*) and broken
(X*#)generators, for a symmetry breaking G — H in a more general way, and
show that the space G/H spanned by X? is symmetric. This happens in most
of the cases when we deal with spontaneous symmetry breaking and worth some

discussions.

Starting with a particular vacuum, we can always partition the G-
generators 7 into the broken and unbroken ones, depending on how they act
on the specific vacuum. A proper normalisation scheme can be given to these
generators. By assumption, the unbroken generators Y* have the following Lie
algebra

Y, YV S (A.42)

Since we know that Y*’s and X*’s are orthogonal; Tr(Y*X?) = 0, the condition
Te {Y*[Y?, X*]} =Tr {[V*, Y/IX*]} ~ Tr(Y X) =0 (A.43)

implies that the commutator between the two kinds of generators are
[Y*, X7 =1if*" X", (A.44)
The problem is that without further condition, we do not have any

constraint for the commutators of the broken generators (they do not necessary

form a group). So we must write

[X*, X*] = if*Y" + f2v XY (A.45)



222

To go on, we “assume” that the broken and unbroken generators behave under
a parity operation P as follows:

P(X)=-X  P(T), (A.46)

which seem to be phenomenologically acceptable. So the “algebra” of the broken
generators becomes
[X¥, X7 =ifv=y" (A.47)

so that in this sense, the (coset) space defined by X* is symmetric.

A.4 The Return of the Tadpoles

In this appendix we present another interesting technique to evaluate the
effective potential. Instead of expanding of the effective action in the way we
have done in (3.21), we will expand it about another arbitrary point (now non-

zero, but not necessary the minimum of the potential), namely ¢. = w, i.e.,

/d4 A4z, T (21, 20)[pe(21) — 0] . [e(@n) — ],
(A.438)
so that the l"(n_)w’s are now the proper vertex functions for a new theory which the
fields ¢.’s are replaced by ¢' = ¢. — w. Using the same reasoning as those used
in arriving at (3.24), we see that the effective potential (for the new “shifted”
theory) becomes

eff ¢c) - Z Fd) w(O )[¢c(x) - w]n . (A49)

Notice that the theory is shifted in the sense that the Lagrangian now contains
the new field ¢’ which gives rise to new vertices depending on w. According to
(A.49) we see that

dVes

dw et

N (A.50)
where I‘fi,l,)w is 1 times the tadpole diagram of the shifted theory. Therefore, the
effective potential can be recovered by evaluating the tadpole diagram in the
shifted theory, integrate with respect to w, and finally replace w with ¢.. This
starts to look good as we now need a diagram (the tadpole for the ¢.) instead
of an infinite number of diagrams as we did in previous sections.
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To see how this works, let us consider a system of massless scalar field
with potential V(¢.) = %(ﬁf, which becomes, for the shifted theory,

_ )\ 4 )‘ 3 )‘ 2 42 )‘ 3 )‘ 4
V(ge) = 9. — WO+ W — jwde+ jut (A.51)
We can extract the ¢¢p¢ vertex as —idw, and the effective oc—dependent mass

(squared) for ¢. as Aw?/3. So the tadpole diagram in Fig.(A.1) contributes

d*k
~2) (@n)rkey Aw2/2

(A.52)

where the factor 1/2 is the symmetry factor. After integrating with respect to

Figure A.1l: A scalar tadpole diagram.

w, multiplying by i, and replace w with ¢. as prescribed above, we find

1 d%
2/ (2m)*

In [k + A¢?/2] (A.53)

which yields the same result, apart from some irrelevant constants and the

dropped £, as those obtain in (3.32) which used the diagrammatic method.

Let us-see the applicationto theloop diagram having gauge fields running

inside. We consider the gauge-scalar interaction term
1
562¢2A“AM (A.54)
so that the “shifted” theory contains
1 1
§e2¢2A”A# + Eezsz”A# — fwpA* A, . (A.55)

Thus the gauge-gauge-scalar and the mass terms for the shifted theory are
—ie*wg,, and e*w?, respectively. The tadpole contribution from the gauge field
is shown in Fig.(A.2). Now we have the tadpole diagram multiplied by i



Figure A.2: A gauge boson tadpole diagram.

/ d*k 20 9" — kPR JR?  r d*hk 3w
(2m)* Iuv ™ g (27m)* k2 + e2w?

which yields, after integrating with respect to w and setting w = ¢,

3 dk
iz | s In(k + e62),

(2mr)*
hence - 4(M) e o
e
‘/e c) — 4]- S
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(A.56)

(A.57)

(A.58)

Notice that the factor 25/6 can be removed (absorbed to somewhere else, to be

more precise), for future convenience, by choosing a new subtraction point M;

ie.,
3e*(M)
6472

¢2
M2

V;ﬁ(¢c) = ¢3 In

(A.59)



APPENDIX B

THE SU(5) GRAND UNIFICATION THEORY

Most of the topics that are dealt with in this appendix are related to the unified
gauge theory. However, our main goal here is only to gather the basic structures
of the theory including particle multiplets, gauge interactions, and symmetry
breaking. Then we can study the Big Hierarchy Problem at the end.

This appendix is organised as follows. We begin in section B.1 by
investigating the structure of the group SU(5) so that we can pick up the
appropriate representations for describing particles in the standard model. Then
in section B.2 we introduce the gauge structure to the theory and construct a
gauge invariant Lagrangian. After that we can set up the scene of spontaneous
symmetry breaking in section B.3, where the appropriate scale of the SU(5)
breakings will be investigated using simple renormalisation group equations in
section B.4. Finally we can talk about the hierarchy problem in section B.5.

We start with a hope in mind that all the known (gauge) interactions of
the standard model; namely, the electroweak and strong interactions, described
collectively by the product group SU(3)c x SU(2)r x U(1)y, can be somehow
unified into a gauge theory that relies on a larger symmetry group, called G.
This G must contain the standard model group as a subgroup. In addition G is
preferably a simple one. Then it is hoped that the larger gauge group may help
to deal with some problems that the standard model cannot provide answers;
for example, the non-integral electric charge of quarks (and their relations to
leptons charges which must be*“assumed” in the context of the standard model)

and the existence of many “copies” of quark and lepton families.

These difficulties may be resolved by introducing a larger gauge group of
the unified theory which allows the possibilities of having quarks and leptons
in the'same representation. The minimum requirement for doing so is that the
group of interest must be simple or at least has a simple group containing the
standard model group as a subgroup. In addition, to accommodate the charge
quantisation problem, we look for a gauge theory depicted by a simple Lie group
which have a particle multiplet that allows the correct relations of charges of
particles in that multiplet. This implies that the group we seek for must allow
complex representations, or it will not have a room for the representation of
SU(3)xSU(2) xU(1) (which is complex). Moreover, we know that the standard
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model group is of rank four since it contains four commuting generators. Thus
the group G must, at least, have that rank. These arguments rule out many

possibilities, leaving the smallest group having rank four which is the SU(5).

B.1 The Group Structures and the Particle Contents

Now let us consider the structure of SU(5). It is clear that here we have two
five dimensional representations. This tells us that it is not possible to put
all the standard model particles into the fundamental representations, which is
one of the shortcomings of the SU(5). The group has 52 — 1 = 24 generators
where four of them are diagonal and traceless. The forms of the generators are
not unique and they can be recombined (using linear combinations) to give the
desired forms depending on the groups that we want to embed in the SU(5).
Nevertheless, the definition of generators must get along with experimental facts.
We know that weak interaction is colourblind (and the SU(3) strong interaction
does not “know” the existence of the electroweak). This requires that the SU(3)
generators have zero eigenvalues for the leptons components and the SU(2) x
U(1) generators behave as unit matrices (or zeroes) with respect to the SU(3)
generators. Thus, we assign the first three indices of the SU(5) to the SU(3)
and the last to indices to the SU(2). Then we call the 24 generators }A;, and put
the first eight for the SU(3) and the last three for the SU(2). The generators for
the SU(3) C SU(5); i.e., the A; - - - A\g can take the usual forms (the Gell-Mann'’s
matrices); for example, the diagonal ones are

1
0 O e 0 O
1

—-1-0 0 e 0

A3 = 00 0 : As =1.0 10 ;% (B.1)
All the SU(2) C SU(5) generators contain the Pauli matrices; i.e.,
0
0

)\20+i = 0 . (B2)
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We see that this particular partitioning of the fundamental representation of the
SU(5); namely?
5—(3,1,C1) ®(1,2,C,), (B.3)

induces the specific elements of the U(1) generator which must be both a unit
matrix with respect to the SU(3) and SU(2), and traceless. This means that

(3,1,-1/3) & (1,2,1/2),
is allowed (up to an overall U(1) factor) while
(3,1,1/3) @ (1,2,1/2),

is not. So we choose
)\24 - ~ —% . (B4)

Notice that all the generators of the SU(5) used here are constructed so as to
satisfy
TrAsAs = 20as (B.5)

which is necessary to reproduce the correct (conventional) factor in the kinetic
term. For future reference, let us use the tensor notation, the general repre-
sentation of SU(5), 1/;;1132 , consisting of the fundamental 7* and the conjugate
fundamental representations ¢; = (47)* transforms as

kiiokp

viir = (U ve) (Uh - 03 o (B-6)

where matrix U contains the generators A? defined above; i.e.,
; ) a[)\a]i‘
U, = exp {—1a T] : (B.7)

Now let us see if the arrangements of the representation that we have just
done fit with the particle content of the standard model. From the standard

1We use the notation (A, B, C), where A ,B, and C stand for the representations of SU(3),
SU(2), and U(1) respectively.
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model, the 15 fermions for each family live in
(3,2,1/3)1,(3,1,4/3)r,(3,1,-2/3)r,(1,2,-1),,(1,1, —2)g, (B.8)
or if we regard everybody as left-handed:
(3,2,1/3)1,(3,1,-4/3),(3,1,2/3),(1,2,-1),(1,1,2), (B.9)

where the right-handed fields are replaced by the left-handed ones via charge
conjugation

(¥r) = (¥) =95 (B.10)

It is important to emphasise that the concept of chirality and electric charges
will make sense only after the electroweak symmetry is broken. We only use
them as bookkeeping devices for the moment. Note that the charge-conjugated
fields must be defined in the same ways as that of the Higgs (see (2.134)); i.e.,

(L) = (_01 ;) (:) - (fy) : (B.11)

which is required to get the appropriate T3 values for the SU(2) doublet,

otherwise it would be the e® that possesses T° = —%. So we see that a slight

modification of the generator Ass to

—2
3
2
5 =
Y = g)\24 = -3 ), (B12)
1
1
leads to the electric charge
1
73
1
3
_ _ 1
Q—)\23+5 = —3 , (B.13)
1
0

where As3 is the usual SU(2) isospin (in SU(5)). Evidently, the charge Q
here commutes with our SU(3) generators. It is then clear that the 5 (the
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fundamental representation)
5=(3,1,-2/3)®(1,2,1) (B.14)

contains the right-handed down-type quarks and the right-handed antiparticles

of leptons. Then the conjugated representation
5=(3,1,2/3)® (1,2, -1) (B.15)

contains the standard model particles (i.e., dg, e~, and v,.). As a convention

we use separate indices in tensor notations, e, 8, ... for SU(3) and r,s,... for
SU(2) as follows:

5:9' = {9597}, (B.16)
where, as is obvious, 2 = 1,...,5, a =1,2,3, and r = 4,5. In other words, we
have

dy ds
ds ds
5:(Yr) = | ds | , or  5:Yp=|d5 | . (B.17)
e e
Vel r Ve) L

where the subscript of the quark field d denotes colour. It is important to keep
in mind that by putting quarks and leptons altogether in a multiplet, we have
to accept that they are indistinguishable at wvery high energy scales where the
SU(5) symmetry is valid. However, we know that the masses of quarks and
leptons are far from being similar. Then it is obvious that we must find a way
to properly describe the breaking of the SU(5) into the standard model group,
SU(3) x SU(2) x U(1). In the tensor notation we find-that the operator @
defined in (B:13) has eigenvalues

Q°l(:) = _QE’E}&]’ (B.18)

where 7 here refers to the components of the SU(5) spinor and the eigenvalues
of Q. Consequently, (B.17) and the vanishing trace of (B.13) partially answer
the question of the charge quantisation in the standard model.

To find room for the remaining 10 particles, it is obvious that the next
representation we should try is the direct product of the fundamental ones. Since
the dimensions of the symmetric and antisymmetric parts of the 5 x 5 (which
can be written as 5 x 5 matrix) are 15 and 10 respectively, the (5 x 5)4 is then
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our target. By recalling that

3X3:63+§A, and 2X2:35—|—1A, (Blg)
we find

10, = (3,1,-4/3)+(3,2,1/3)4 + (1,1,2), (B.20)

155 = (6,1,-4/3)+(3,2,1/3)s +(1,3,2), (B.21)

The 10 fits well with the remaining particles. The next task is then to locate
the right place for each particle in the 10. First, the antisymmetric tensor for
the 10 can be constructed from the 5; i.e., the ¢, as follow

b7 =Y — Py (B-22)

So
10 : ¢ = {wﬁ, ¢°‘T¢45} . (B.23)

It is follows that the charge operators from each representation add up like usual
U(1) (diagonal) generators; namely,

QY = @* + Q' = Q¥ (B.24)

and hence leading to the symmetric operator

20 OBV RR
3 3 3 3
— _2 2 _1
3 3 3 3
o] _ | _2 _2 2 _1
) = 3 3 3 3 (B-25)
2 2 2
3 3 3 1
1 1 _1
3 3 3 1
Similarly,
_4 _4 1 1
3 3 3 3
_ 4 _4 1 1
3 3 3 3
[10] 4 4 11
Y = 3 3 3 3| (B-26)
1 1 1
3 3 3 2
1 1 1
3 3 3 2

which clearly show how to throw the remaining 10 particles into them. Those
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particles are (3,2,1/3),(3,1,—4/3), and (1,1,2). Still, the sign of the fields
inside the 1'% are not fixed at this stage, but can be done so when we consider

the mass eigenstates. Following Langacker [84], we use

1
b — Pyl B.27
¢ \/5 L ( )
and write
0 u§  —us i —u; —d;
; Susls uS | —us —ds
10 : w0 = —— Wl —ds | - (B.28)
Uy U U3z 0 —ef
dl d2 d3 e 0 L
We can also write the 10
0 Us —Uy | —u§ —df
/ —-uzg. 0 Uy | —u; —ds
U iaus  Us 0 —e
ds das ds e 0 R

which, playing the similar role as the 5, describes anti-particles. We finally have
the multiplets for all the particles in the first family of the standard model. The
similar constructions can be done for the other two families. Notice that there
is no room left for the right-handed neutrino in the 5 + 10 representations. The
simplest possibility to have massive neutrinos is to introduce the vz as a singlet

of SU(5). However, we will not consider the case of massive neutrinos here.

According to the appearance of the multiplets we have on hand, it is
clear that there is (or, at least, should be) one quark family corresponding to
eachlepton family. Moreover, the appearance of quarks and the corresponding
antiquarks in the same multiplet means that it is possible that a particle like
a proton decays. This is one of the prominent prediction of the theory (which,

however, eventually ruled out the model).

B.2 The SU(5) Gauge Sector

The group SU(5) has 24 gauge fields which live in the adjoint representation of
the group that is the non-singlet part (the 24) of 5 x 5 = 24 + 1. Let us define
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the matrix field as
a—24 )\a

A, = Zjl oA (B.30)

where A% are the SU(5) gauge fields and denote (A,); = (A,):;. For example,
in the SU(3) case we have A} = (A* — A%)/4/2. Then due to the way the
SU(5) representations are partitioned, we know that the SU(5) gauge fields
must contain the standard model ones; namely the (8,1) for SU(3), and the
(1,3) for SU(2) x U(1). This can be easily verified by using 3 x 3 =8+ 1 and

(B.19),

5x5 = [(3,1,2/8)+(1,2,-1)] +(3,1,-2/3) + (1,2,1)]
— (8,1,0)+(3,2,5/6) + (3,2,-5/6) + (1,3,0) +2(1,1,0)(B.31)

which leads to the decomposition of the gauge bosons
24 = (8,1,0) + (1,3,0) + (1,1,0) + (3,2,5/6) + (3,2,-5/6), (B.32)

A (G5, (W), B (A3)5 , (A} (B.33)

with the fields ordered according to (B.32). Here we are still using the
representation indices o and 7 in the same way as in the previous section.
Observe that the last 12 gauge fields carry both flavour and colour and form
coloured isospin doublets as expected. Literatures usually call the fields (A*)% =
X¥ and (A*)5 = Y# which are collected in

X X§ Xy
3,2) — B.34
(3,2) (Yf‘ Yoy (B.34)
and their “antiparticles”
b S ria
(3,2)—~.| X5t ¥ (B.35)
X v

where the subscripts label colours. The U(1) gauge field (A%*) couples with
A2q in (B.4) not the Y in (B.12) while the SU(3) and SU(2) gauge fields are

constructed from the generators of their corresponding subgroups in the usual
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way. Consequently, we have

X1, Y
1 8 ay)a c c
1 ﬁza—lG,u)\ X2/.L Y.2u
A, = —& X?f# Yécu
2 We Wt
Xl# X2u X?w V2 K
Yio Yo Yoo | W, —T%
_2
3
_2
Y i B.36
1
1

where the Z and the photon are constructed from the equations resemble (2.90)
and (2.91)

Z, = -A7sinby + A} cosby (B.37)
A, = A% cosBy + A sinby . (B.38)

where W3 = A2 etc.

Now, let us promote the transformation (B.7) into a local version taken

care by
U(z) = e i9s9°()2%/2 (B.39)

Then we can write the covariant derivative for the SU(5), in a general form, as

a

. g A
D# = 6# — lg5A#? , (B40)
and for its SU(3) x SU(2) x U(1) subgroup

e I 1IdIN L VLY
D,=0,~ 1957GM - 1g?W# - 19/5314’ (B.41)

where g; denotes the QCD coupling. When acting on the fundamental

representation of SU(5), the covariant derivative (B.40) takes the usual form;

ie.,
i i - 9 i| i
(OF vy = |50, - 1 %5 (4,3 | (B.42)
or simply
DEWE = 5, Wbl — ig; A, w1 (B.43)
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Similarly, we have

(DIVg); = [6]8 + 1\[(,4“)3] (B.44)

for the conjugate of the fundamental representation. The structure of the
covariant derivative depends on the representation it is acting on. So this is why
we introduced the superscript [5] for D,. However, as it is usually clear from
the context what the “target” of the covariant derivative is, we will omit that
superscript from now on. These definitions of the covariant derivative control
how the gauge fields transform; i.e.,

Ay —s URMU 1= anﬂU—l , (B.45)

so as to ensure that D,¢ transforms in the same way as the fundamental
representation. Consequently, the “kinetic term” for the 4% becomes

L8 = TPpwhl, (B.46)

The part for the 10 is a just bit more involved. Referring to (B.22), we see that
the 1% transforms as

Y U (Y= Ylyt) = UyH (U7, (B.47)
or W — ¥y T. This implies, using (B.7), that

a#\I,[lo] L (3“\1,[10]) UT + (8,U) W™ o (ol (3#UT)
= (g, el T

3 a)‘ 10 [10] aAT T
—igsU 8,6 I+ ol 6 0 u', (B.48)
and suggesting the covariant derivative for the 10; namely,

[10] [10] : a)‘a [10] [10] a)‘Ta
D#\I’ — 8#\1! —105 Auaq, +‘I’ A“T

= 9,91 — gy [A, 900 + ¢4 ], (B.49)

or
(Duw)? = 8,97 — i (A" + (A)iw™] (B.50)

which ensures that the transformation

D, ¥ — U(z)D,¥MU (z), (B.51)
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is always satisfied. So the Lagrangian for the 10 is
£ — iy [@r“f’]w@[ml] . (B.52)

Consequently, we arrive at the Lagrangian for the kinetic part of the fermions

(and their interactions with gauge fields)

Lin = T BYE 1 iTr [TD9 = i@R)(BY5) + i(Fa)is(Bn)”
= @) [i6i0 + LAY way
+@E)s B8R + 2 {RWE + (e}
= (FR): i858+ S (A (wa) + (B5)s [i010 + 22 ()] (v9) (B.59)

which, upon extracting some terms out; for example,

3 3
g c o c\s g g c g 3 ¢ ¢
LR AR = L dnXieh— LY dnYivy  (B5Y)
i—1 i=1
convinces us that in this SU(5) theory, a proton decay (to leptons) is possible
with the X* and Y* as mediators.

B.3 The Breaking of SU(5) Part I

The SU(5) is clearly not the exact symmetry of nature. In this section we
will see how the SU(5) symmetry is spontaneously broken into the "3 — 2 — 1"
symmetry of the standard model where some gauge fields become massive via
the BEH (Higgs) mechanism. Since nobody has seen a quark turns itself into a
leptons or vice versa, then it has to be assumed that the SU(5) gauge mediators,
if exist at all, must be very heavy so that they cannot only escaped the current
detectors but also gives reasonable predictions (decay. rates, for instance) that
agree with experiments. Another constraint tothe symmetry breaking is that
the SU(3)¢ and U(1).,, must survive as we believe that they are exact.

We see that to get from SU(5) to the SU(3) x U(1) theory, the symmetry
must be broken via two stages and hence two “Higgs” particles are required.
One of them is the standard model Higgs that taking care of the lower energy
breaking stage SU(3)x SU(2)xU(1) — SU(3)cXU(1)em. The other corresponds
to the breaking of the SU(5). So this heavy Higgs must have very large vacuum
expectation value so as to guarantee that 12 of the SU(5) gauge bosons are heavy.
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This is required since we have not yet seen them, as well as their effects. Let the
vacuum expectation value of this heavy scalar field be of order Mgy, then the
masses of the heavy gauge bosons My will be of this order. Hereafter, we will
invert the argument by saying that the energy scale of the symmetry breaking of
SU(5) will be of order Mx. Let us call this latter scalar field X. In addition, it
is required that when this 3 develops a non-zero vacuum expectation value, the
potential must still be invariant under the sub group H = SU(3) x SU(2) xU(1).
Therefore, the ¥ must contain a singlet when its representation is decomposed

with respect to H.

One of the candidates for the GUT breaking Higgs, which is also found to
be the simplest one, is obviously the adjoint representation (which is the same
as that of the SU(5) gauge bosons)

- Ak
24 : 2= 72“. (B.55)

(note that it is a traceless hermitian matrix). The renormalisable scalar potential
that does not depend on its overall sign (a convention; i.e., ¥ — —% symmetry)

can be written as

- B e e 2012 | b e
V(X)) = —~2—TIE 1= 1 [TI“E ] + ETIE ) (B.56)
where
Trs? = nini,  Teht = niThmiE. (B.57)

For the electroweak symmetry breaking, the lighter Higgs can be a quintet &

(the fundamental representation)

55 (3 113 W)} | E (e A), (B.58)

where the H is the usual standard model (GWS) Higgs doublet (remember
that o = 1,2, 3). The potential for the & is assumed to be the symmetric one
(® - =9)
b3 ot As , ot
V(®) = —7@: $) + T@ $)? (B.59)

to prevent ®3 interactions. Notice that the interaction between 3 and H; namely,

Ves = a(Tre?)®' & + 5(3'52) (B.60)
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are also possible. The most general potential is therefore

2 Ken | Ofmeol? , boes M 2
V(£ e) = ~ I8 +Z[Tr2] + o Ts - E2pf <1>)+ (<I> )
+a(Trs?)@'® + (2'5%9), (B.61)

As there is a desert between the two symmetry breaking scales, the effects of the
$, which we assume to be light, on the 3 should be negligible. In addition, as
we have said earlier, the $ must live in some subgroup of the survival subgroups
from the first step of symmetry breaking. This sets a constraint on the form of
®.

At this stage we will treat the two stages of symmetry breaking separately.
Let us concentrate on the SU(5) breaking part, with uZ > 0. Though the
SU(3) x SU(2) x U(1) is embedded in SU(5), it is not the only possible choice
when SSB occurs. The parameter that “decides” the which subgroup to break
to is the b in (B.56). The rough idea of the influence from the parameter b on
the group SU(N) is as follows. The ¥, being a traceless Hermitian matrix, can
be diagonalised by an SU(N) transformation to a matrix having elements that
are real numbers. So the potential (B.56) can be written as

VE) - BT HRE) e - (B

where ¢ is the Lagrange multiplier introduced to ensure that the matrix is
traceless. Upon minimising of the potential, we get a set of cubic equations
and hence there are three different roots (with constraints). Put differently,

U(N) —5 SU(Ny) x SU(N,) xSU(N — N, — Na). (B.63)
It is found that (see Langacker [84]) for b >0,
SU(N) — SU(N;) x SU(N — N;) x U(1) (B.64)

together with Ny = N/2 or N; = (N + 1)/2 for N even or odd respectively.
When b < 0 the symmetry breaking pattern is

SU(N) — SU(N — 1) x U(1). (B.65)

Now let us come back to the SU(5) and concentrate on the case b > 0.
The vacuum expectation value that is invariant under the SU(3) x SU(2) x U(1)
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is
- . 3 3

(0]2]0) = diag ('u, U0, =5, —211) : (B.66)

In addition, this vacuum expectation value also constraints the value of a which
is @ > —7b/15 (otherwise the potential would not be bounded from below). We

can write the potential in terms of this (0|3|0) and minimise it with respect to

the parameter v. This leads to the condition v? = 152: j?% which we will rewrite
> 15 b
a
hAT »2—112 + ?vz (B.67)

for future references. Moreover, group theory also tells us that the gauge fields
X'’s and Y'’s will be massive as the generators associated with them do not
commute with (B.66). These mass terms can be obtained from the gauge
invariant kinetic terms.

To construct a kinetic term of the Higgs %, recall that fields in an
adjoint representation will have components transforming as vectors. Then the
usual form of the gauge the covariant derivative of a scalar field 3 in a vector
representation 3¢, defined by N= E“é—a

D,2% = 9,5% —igs ARV (B.68)

adj] — a pa
where A4l = T°A9,

representation; namely,

can be traced back to that for a field in the adjoint

~

D% =3,% —igs[A,, ZI- (B.69)

The appearance of the minus sign, instead of the plus sign (in other words, a
commutator instead of an anti-commutator) as used for the 10 is due to the fact
that the adjoint representation is constructed from 5 x 5 O 24 while the 10 is
from 5 x 5D 10.

Now we can evaluate the mass terms of the gauge fields which are given

by the'term in a Lagrangian that is quite similar to (2.72); i.e.,

L (o s P | o (1A (2
ST{DL(E) D(E) | = T {([A,, (D))} (B.70)
With the choice of the vacuum given by (B.66), it is then clear from the

commutator appearing in (B.70) that the standard model gauge bosons remain

2 As usual, this vacuum expectation value can always be reached using an SU(5) transforma-
tion.



239

massless in this stage of SSB. Since the field ¥ appears in the potential (B.56)
via Tr3", other possible choices, reachable via the unitary transformation
(3) = U(L)U~' are equally possible and maybe convenient in some cases.

To work out the masses of the gauge field, we first note that

& =-v, (B.71)
which results in
gg A S 2 1 gvzgg a pau a 2
ST (A B = S A A T {2, Y (B.72)

Those A, surviving the commutators are ones corresponding to A“_ (the X and
the Y bosons) together with factors i%. Therefore,

9v?g?
8

25 inl i iulyri 25v%g2 By iufyri
() (X Xa vy === (X¥X, +Y*v;),  (B73)
where 7 denotes colours (the factor 2 comes from the trace), which leads to the
mass terms

(B.74)

Now let us turn to the next stage of the symmetry breaking. Observe
that the potential (B.59) has a non-zero vacuum expectation value (squared)
23

V2 =3 dy = g (B.75)

which we will rewrite in terms of the mass of $ as
B3 F v (B.76)
Recall that in the fundamental representation, we can arrange

1)
$(2)
=90 ]. (B.77)
h—l—
hO

Still this does not completely fix the form of the ¢, as the vacuum can point
in any direction of the 5. Nevertheless, the assumption that the SU(3)c being
exact forces the &, to be in the 4 or 5 direction. Moreover, since we know that
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the SU(2) x U(1) will eventually break down to the U(1).,,, we then plant the

non-vanishing expectation value to the neutral component

B = &Y = (B.78)

o O O O

’Uo/\/5

Then the spontaneous symmetry breaking should proceed in the way fairly
similar to the case in electroweak symmetry breaking. However, it might be
obvious that the process is not that simple. We are dealing with 2 fundamental
scalars in the theory and trying to claim that their vacuum expectation values
are so different so as to suppress the effect of the heavy particles at low energy
scale (My,). As we have seen in section 3.4.2, there is no mechanism to keep a
scalar particle naturally light. Then, it is more “natural” for the masses of these
scalars to have the same order of magnitude, namely My ~ Ms ~ Myx. The
thought of grand unification, however, forces us to take the standard model as
a low energy effective theory and we are left with no choices but to force the
masses of the two scalars to be so different. Failure to do so may result too large
contributions to the vacuum expectation value of 3 from the light scalar & via
the cross couplings in (B.60). The need to force the two scalars, namely the 24
and 5, inevitably leads to the gauge hierarchy problem or the Big hierarchy

problem.

The hierarchy problem mentioned above is not the only problem we
have. As the multiplet of the light Higgs is extended to the 5, it can initiate
the transition between quarks and leptons via Yukawa couplings. Hence this
provides another way for-a proton to decay.-Consequently, it is not only the 33,
but also the triplet () for ¢ = 1, 2, 3, that receives mass of the My scale. In fact,
it is the cross couplings (B.60) that take care of this job. A particular structure
of the matrix ¥ will provide My scale masses to the triplet while leaving the
standard model Higgs light.

We will pause the treatment of the spontaneous symmetry of the SU(5)
for a moment and discuss briefly on the grand unification scale so that we can
have a feeling of how severe the (big) hierarchy problem is.
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B.4 Where Does This Happen?

Our “guess” that there exists a large unified gauge group like SU(5) simply means
that the couplings of the standard model must meet each other at a particular
energy scale. Such a scale should be fairly large due to the slow running of the
couplings. In this section we try to be more qualitative and see what this energy
level is and what consequences it leads to. There are basically two ways to look at
the situation: one is from dimensional grounds with some rough approximations
to see what we can expect from the experimental side, the other is to use the
renormalisation group analysis to estimate the unification scale.

First, let us consider the somewhat naive dimensional analysis. The
process we will consider is the proton decay (which is predicted from the theory).
Still, the result will be fairly reliable if we first make an assumption that
the unification scale be much larger from the weak scale, which should be so
that we have not seen any footprints of the GUT physics or the X and Y
bosons. This helps further simplify the rough estimation in general, because the
initial and final particles are hadrons and the intermediate interactions involve
a number of particles; for example, the fundamental fermions and the heavy
gauge bosons. The argument is similar to what happened in the transition from
Fermi’s theory to Glashow-Weinberg-Salam’s theory; but taken the opposite way
around. In other words, we take the standard model as a low energy effective
theory of a grand unification theory, which we do not understand yet. This
allows us to approximate the transformation from quarks to leptons via the X
boson as Fermi’s point interaction; i.e., the local version of the interaction at
low energies should be capable of “replacing” the non-local interactions, using
only the building blocks of the standard model.. Thus we just introduce the
dimension-6 operator like

2
(J\ific) uy uéy,d (B.79)

with many indices suppressed. Still, this allows us to use the typical decay width
analogous to that of the Fermi’s model (e.g., the muon decay):

4
I' (;Z{) m; (B.80)

where m,, is the mass of a proton. Then the lifetime can be calculated from
7 =T'"!. Since, it is well-known that a proton does not decay or at least lives for
a very long time, its lifetime 7, should be greater than 10% years. Consequently,



242
we get the typical unification scale
My ~ 10** — 10°GeV, (B.81)

which is still moderately lower than the Planck scale (so we do not have to
worry much about gravity). However, it brings us a “desert” of about 12 orders
of magnitude between the weak and the grand unification scale.

Before we discuss about the running of the couplings, let us first identify
the SU(5) gauge coupling with the coupling of the electroweak subgroup
SU(2) x (1). Consider the relevant interaction terms deduced from the covariant
derivative D, in (B.40) we find that the U(1)y coupling ¢’ for the electroweak

3
= \/;gg,. (B.82)

This identification is crucial in order to look for the unification scale otherwise

theory is related to the gs by

the running of the U(1).,, coupling will not meet others. To see this let us
recall that in a non-Abelian group like SU(5), we can fix the normalisation
of the generators of the group by an equation similar to (B.5). However, we
do not have such the Lie algebraic relation to fix the normalisation of the U(1)
generator (and we have put by hand further assumptions such as the unit charges
of protons or electrons). At this point we immediately find a by-product. The
Weinberg angle is predicted at the unification scale to be

g/2 3
Si].'l2 GW SRR o (B83)
9:+9% 8
where the “scale-down”. relation requires the renormalisation group analysis

which also depends-on the value of the unification energy scale.

Let us call the gauge couplings as

g2

= (B.84)

a;
where 7 = 1,2, 3 denoting the gauge group U(1), SU(2), and SU(3) respectively.
The way these couplings run is affected by the particles content and their
representations which is mathematically determined by the renormalisation

group equations
dai

dln u?

= —Bal + 0(a?). (B.85)
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The ; is the usual coefficient in the beta function:

2 1
B: = “an ?C (G;) — 3 ;T(Rf) —3 ET(RS) (B.86)

where C(G;) is the eigenvalue of the quartic Casimir operator and T'(R) is
the index for each representation; n; denoting the number of fermions in each
representation. Note that for the SU(N) group we have T(N) = 1 and T(4) = N
for the fundamental and the adjoint representations, respectively. For further
information, we also note that Tson)(N) = 2 and Tson)(A) = 2N — 4 for the

fundamental and the adjoint representations of SO(N) respectively.

From now on, we will always assume that there are three families (n, = 3).
The estimation has to be done with care as it means will neglect every possibility
of finding new particles before the My scale which affects the renormalisation
group equations. This includes the heavy gauge bosons and the heavy scalar
altogether. In other words, we have to assume that at these heavy particles
beyond the Mx scale can be “integrated out” which implies that our estimation
remains valid only if we consider u? << M%. Consequently, we find that
for strong interaction group SU(3)c, where quarks live in the fundamental
representation

Bz =

SO N s7)

- X3—=22XNgX -| = ——
am | 3 3 2 am

where we have used n, = 3 in the last step. Similarly, the 3 for the SU(2),, is

1711 2 1 1 1 1 4
—[x2—><><4><ng><—><]:—
4m 2 3

P> = 3 3 2 372

(B.88)

where we have neglected the contribution from the Higgs in the last step. Notice

the extra factor %, which is there to assure that we count only the left-handed

fermions. Finally; for, the U(1)y we recall, from-(A.16); that T'(Ry) = 2Tr(Y?).
So T(Ry) = % per family
1 2 1 20 1] 5

_tr2 1 2 11_5 B.89
b= 73%2% 3™ 6 T3 (B.89)

Consequently, the solution to (B.85), to one-loop, is

1 _ 1 G: w?
a(p?)  ai(Mg) " Eln <M)25> : (B.90)

By requiring that all the couplings are equal at the unification scale (az = ap =
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gal = as) we can arrange the as(Mx) and Mx in terms of the known values at
My (electroweak) scale as follows:

1 1 Bs [ M2
S i 2 P W
a(M3) ~ as(ME) ' 4m (M}%
sin’ Oy (M2) 1 +@1n M3
a(Mz)  as(Mg)  4m o \ M
cos? Oy (M3) 1 b1 <M§>
= WALZ) mp .- Py (22 B.91
2a(M3) as(M%)  4Ax M2 ( )

where we have used g; = e/cosfy and g» = e/sinfy,. These equations are
readily solvable, we find

1 — 1 . '83 :61 ‘f‘ﬁz
as(Mz) ~ By+ 2 — gﬁg, < a(M3) + Ot3(M§)> (B.92)
as well as . - 1 s
z4r 4 s N
In <M}2{> '] B+ By — %ﬂ3 <Ot(M§) a3(M§)> . (B.93)

Taking the approximate values from [63]; namely, a(M2) = 1/128, az(M3) =
1/8.48, and sin® 8y, (M2) = 0.231, together with (B.87-B.89), we find that

as(M%) =1/41.5  and My ~ 10®GeV, (B.94)

which agrees, to some degrees, with our “guess” value of My for the proton decay.
Though this agreement convinces us that our assumption that nothing shows
up between the electroweak and the unification may be sensible, it brings us an
obvious problem: why the two scales are so different? To see the difficulties the
hierarchy problem brings-to us, we go back tothe Higgs sector of the SU(5).

B.5 The Breaking of SU(5) Part II: The Big Hierar-
chy Problem

Let us return to the cross coupling between ¥ and ®. Since we know that there
is a desert between the two symmetry breaking scales, the extra SU(2)-breaking
term added to the vacuum expectation value of the heavy scalar field 3 should
be small. As usual, we can parametrise the SU(2)-breaking part by a diagonal
matrix proportional to 7% = A,3 (recall Cartan subalgebra). So (see Buras et al.
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[85])
. B 3 A23
(0|x[0) = d1ag<'uv'u ¥y )—5 5
3 ¢ 3 €
_ g S Sy (=21 ) . B.
diog (v,,0, (=3 — D), (~5 + )0 (B.95)

Since the SU(3) x SU(2) x U(1) symmetry is restored by taking A’ = 0 we should

have, to lowest non-zero order,
1 (Yo 4 —24
€ XA /P O(107%%), (B.96)

where K is some constant that should somehow proportional to a=!, b~! an so
on, in order to keep the SU(2) breaking effect of 32 small comparing to that of &
(i.e., v << p). The potential (3, ®,) becomes a complicated function of the
vacuum configuration related variables v?, v2, € and u%, u3, o, B, a, b. Now we
can minimise it with respect to the parameters v, vy, €. The explicit form of the
potential as well as the calculations will be tedious but straightforward. So we

will not working them out here. The results are (again, see Buras et al. [85]),

15a 7b

uz = 71}2 - 51}2 + av? +3 ﬁvo (B.97)
Az

T 7110 + 1500+ ,32} — 3efv? (B.98)

which are the slight modifications of (B.67) and (B.76) respectively. In addition

35; ( ) , (B.99)

guarantees that the effects of SU(2) x U(1) breaking at the Mx scale is negligible.
However, the unnaturally smallness of v, /v clearly lead to the problem in (B.98).
We know that the cancellations, which keep vZ small, between the terms on the
right-hand side of

A 7

7%3 ua — v [15a + (2 — 33) ﬁ} (B.100)
will never happen in a natural way as they require fine-tunings of the parameters

to one part in 10%4.

Before we leave this section, Let us have a look at a sketch of the
unification of couplings as shown in Fig. B.1 taken from Dienes [7]. As the
plot was made in the time where people have enough data from experiments, we
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can then check whether the three couplings really meet at a point. Note that the
thickness of the lines show uncertainties from experiments, and that the indices
of the couplings «a; denote the corresponding group, as well as that o; already
included the factor 5/3.

60 I _ ort(w) -

40 — —
20 — Standard —
- Model .
| o5 (1) ]
O | | | | ‘ | | | | ‘ | | | | ‘ | | | |
0 5 10 15 20

log,, (1/GeV)

Figure B.1: The sketch shows how couplings of the standard model almost
unafy ([7]).

As we shall see from the figure, the couplings do not not meet (in contrast
to what people used to think in the 70’s). By the way, this is not a bad news.
If we insist on having unified interaction, a theory (e.g., SO(10) unification,
supersymmetry, etc.) to be a candidate to explain or support it must provides
more particles to “bend” the running of the couplings to the desired unification
point. In fact, it-opens possibilities for many types of particle physics beyond
the standard model as “the desert is not that boring”.



APPENDIX C

MATHEMATICAL FORMULAE

In this appendix we present some important mathematical formulae that are
frequently referred to (maybe implicitly). In addition, in section C.3, we present

several generators the groups that we used in the thesis.

C.1 Dirac vy Matrices

Formulae in this appendix are taken from the book by Quigg [39].
Useful identities

a2 = APy — Py = 2(9M g — vV g*) (C.1)
Vv = —2% (C.2)
YNV = 4Gup (C.3)
Y Yo Yodu (= 2oV Wu (C.4)
VYo YoV = 2000 ¥aYe — VooV Vr) (C.5)
g i 14 g

T E WYY = e Y (C.6)

ag i v
75’7 &= ge/,wpafyufy ’Yp (C7)

Frequently used identities:
(1-7°)?7 = 2(1—19°) (C.8)
1 + 5 1 — 5



Trace technology:

Tr[y,] = 0
Tr[odd no. ofy's] = 0
Trlver] = 49w
Tr(¢h] = 4a-b
Tr[Yu Y Yel = Al9uToo — GueGvo + Guo 9]
Tr[y’] =0
Tr[y*y,] = 0

Tt %r] = 0
Tty %7,] = 0
ﬁ[757u7u7p70] =) 4ig,i00

In addition we present the formulae for the € tensor:

— €M e po, = O)(848L — OF0Y) — 6,(6467 — 6+5Y)

A v v
4067 (080, — 056,)
—€*PM e s /= 2(0FOY — 6H6Y)
—s“ﬁweaﬁw = 607

C.2 Feynman Parametrisation

The formula

dz 1 z
/ [az +b(1 = )22 bl(a < b)z + b]

yields

1 /1 dz
ab  Jo [az +b(1—z)2°

Then the general formula is obtained by successive differentiations:

]_ 1 l—z1 l—21—..2pn—1
= I‘(n)/ d:rl/ d:z:g.../ dz, 1
0 0 0

a1Q9...0p
1

[az; + asZo+ ...+t a,(l—21 — ... — 2, 1)|"
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(C.20)
(C.21)
(C.22)

(C.23)

(C.24)

.(C.25)
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Most of the integrals concerning us can be deduced from the Waicked rotated

version:

d*k k"
(2m)d [k%2 — C + ig|™

where C' is positive. Note that

I’r‘,m -

- m/dkE k%
(k% + C]™

d
212

/ddkE - /d|k||k|d_1de—1 = —d/d|k||k|d‘1,
I'(%)

where |k| = \/k%k% + k- k. The integral 7, ,, can be evaluated
! G 1)’"m<41>€/202+r_mr(2+r—-r( —'/’—2+§.
mm T (ame\ e r'2—2%) I'(m)

The following integral is usually encountered

i /4Am\#P20(1+ ¢

of o B
’ (4m)2 \ C €
L (LU

(A SO+ O(e))

where

2
A, =—-—v+Indn
€

and v is the Euler-Mascheroni constant. The other one is the “tadpole™

—InC).

Tox = {52

Consider the integral involving spacetime indices

kHt . ook
I#I Hp:/
(27r)d k2 + 2k - P — M2 + e
We have

I =0

v . 2 v
= T6m 2§C' g*(3+2A, —2InCY)

I = 167r2(_A5+1nC2)Pé)

. i1 Y v
B = 50 [CoM (i Ac—mC) +2(A - AP Py

(C.26)

(C.27)

(C.28)

(C.29)

(C.30)

(C.31)

(C.32)

(C.33)
(C.34)

(C.35)

(C.36)
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where
oy =0 (C.37)
Go=m (C.38)
oy = ot (C.39)
G = 2*ri+ (1—a)mg +ami —ori, (C.40)

with 7, and m, defined as the momenta running in the loop (related to external
momenta) and its corresponding “mass” in the sense of

2 I
(gwl;d J;co = Dkn: (C.41)
where
DIk 1800 S mo\ e (C.42)
and
Ty = zn:pi =0 (C.43)

1
J

Ty = Zpi, 7=1,...,n—1. (C.44)
1
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C.3 Various Symmetry Generators

C.3.0.1 Pauli Matrices

, (o1 , [0 —i ., [1 0
N L R AR

0 10 [0 -1 O
7 UV LSS (C.46)
V2 O '
010 o 1 O
1
™ # 0 (C.47)
~1
C.3.0.3 SU(2) Real Representation
i —1
T — = T2 _1
1 ’ i
—1 i

T3 _ ,,,,,,,,,,,,,,,, (C.48)
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C.3.0.4 SU(2) x SU(2) ~ SO(4) Real Representation

(C.49)

(C.50)

AONUUINLUSNNS )
ANRINIUIVENAY
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C.3.1 Gell-Mann Matrices

Observe that the patterns of the matrices are extremely easy to remember. We
have the Pauli matrices embeded in the upper-left block:

010 0 —i 0

A= 100 =i 0 0 (C.51)
000 0 0 0
NA

X =0 -10 (C.52)
0 0 0

as well as some elements “similar” to the Pauli matrices spread elsewhere:

0 1 00 —i
A ="loo00 X=100 (C.53)
1.000 i 0
0. 00 00 0
A= "10 0 1 AT=10 0 —i (C.54)
g5 0i 0
L [to0o
Mo ="=—=101 0 C.55
73 (C.55)
T

C.3.2 SU(5) Generators

We can use e€xactly the same philosophy to “memorise” the SU(5) generators!
We will use 7% = 2* where TrT°T® = 1§°°. We shall use the same symbols with
the Gell-Mann matrices since the different should be clear from the context. We
only try to distinguish between them when it is necessary. The first 8 generators

1Observe that there are 14 symmetric “real” generators and 10 antisymmetric “complex”
generators.
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are just the Gell-Mann matrices embedded in 5 x 5 matrices.

) ~~ ~ ~
© I~ 00 o
0 0 0 0
O (@) (@) O
p— p— p— N—r
\J
©O o o o o
——————~_ ——  _ © o o o o
O 0O 0o oo @0 00 oo oo o ~
© o | oo
O O 0O 0o o © 0 0 o0 o0 oo oo o
O o ooo &9 000 o640 0o °© 7 e oo
. O O o o o - O O O O
T o oo o o O —- o o
O - O O O y 17f
{\
| I I I
Sk © 0
B 1 ~< ~<
\|/
T
RS Ao © Mg, o o) ool oy alal @
o o o o o
ORNCF O IR\SWaNe Yapo o o 1oddlo o
©o o o o o
o‘cfel Bl WY o
o o o o o WO @ oNa, o 'S o
—

oo oo © 1 ©2°° 50000 © o .~ o o
©O 4 0O 00 H OO0 o0 O -+ 00 OO0 o o o
I Il [l [l
— o 0 o~
< < < ~<

The 2 x 2 lower-right block contains the Pauli matrices
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Then we will the remaining blocks with 1,1 or i, —i:

—~~ —~ —~~ —~ o) —~
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The last diagonal generator is

-2 0 00
. 0 -2 00
Ag=——| 0 0 -200 (C.68)
V15
0 30
0 0 3

C.4 The Mass Eigenstate Matrices

The non-diagonalised non-transformed matrix M? from (5.136) of the Goldstone
bosons, and the other M2 of the neutral gauge fields (5.177) are



M? =
[ —,U,Z + 'U2>\4
0

o O O o

2 —
MWW’BB’ -

0 0 0 0 0 0 Fu)s 0 0 |
—p? + %) 0 0 0 0 —Fovxs O 0 0
0 —p? 4+ 302X, — 2F )30 0 0 0 0 0 0 V2Fv)s
0 0 —p2 + 20 +2FA30" 0 0 0 0 —+v2Fu)s 0
0 0 0 F?Xy 0 0 0 0 0
0 0 0 0  F?) 0 0 0 0
—Fu)s 0 0 0 0 F2) 0 0 0
0 0 0 0 0 0 F2) 0 0
0 0 ~v/2Fu)3 0 0 0 0 F2), 0
0 V2Fu); 0 0 0 0 0 0 F2Xy |
(C.69)
—m2, + M2, —399'v° (2—5 + %) —39%v%cs (% - §%) —399'v%cs (¢? — §?)
—299'v? (% + %‘Zf) —m%,s%, + M2, —599'v%cs (¢ — §?) —39"%v%cs (¢? — §?) (©.70)
—29%v%cs (* — s?)  —iggvies(? —s%)  mi, (1 — % 8;’—2/2) —199'v? (1 - % + 8;’;2) .
—2g'v%cs (2 —s?)  —1g%v%cs (2 — $?) —1gg'v? (1 /- % + 8;’;2) m%s2, (1 — % + 8;‘,’;2)
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