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CHAPTER I

INTRODUCTION

1.1 Introduction

The standard model of particle physics, especially the electroweak sector,
pioneered by1 Glashow, Weinberg, Salam, 't Hooft, and Veltman, is one of the
most successful theories ever proposed. Its predictive power has been con�rmed
time after time by experiments. However, there is a part of the theory which
is still far from complete. The main engine of the electroweak sector relies
on the philosophy of spontaneous symmetry breaking which is explained by
the so-called Brout-Englert-Higgs mechanism (more commonly called just as
the Higgs mechanism). The BEH mechanism in the Glashow-Weinberg-Salam
(GWS) theory is operated by an elementary scalar particle called the Higgs. The
role of this Higgs is more or less indispensable as, roughly speaking, masses of
all other particles depend on it (e.g., the couplings are even proportional to the
Higgs' mass). Besides, the good high-energy behaviours of the standard model
rely on the existence of the (fundamental) Higgs or any particle having similar
properties. This is where the problem shows up. Every particle predicted or
required by the GWS theory has been found except the Higgs. As a result,
its mass remains an unknown parameter, rendering the electroweak symmetry
breaking sector the poorly-understood part of the model.

At �rst sight, having one particle left undiscovered seems not to be a
problem as physicists have been facing with the problem of the missing pieces
for a long time (the neutrinos, the charm, and the top may be good examples).
However, the Higgs, being a fundamental scalar, is unlike others. While
physicists have come up with various reasons (e.g., symmetries) for predicting
and explaining the �light� mass of gauge bosons and fermions, the standard
model itself cannot explain anything about the mass of the Higgs except that
it must be as large as the mass scale where the model is expected to work (the
cut-o�) if loop corrections are taken in to account. So the next question is,
phenomenologically, how large should the cuto� be? How heavy should the
Higgs be?

1For citations on well-known articles of the standard model, we refer the readers to other
review articles or even textbooks (see the references).
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There are several evidences making physicists never thought of the
standard model as the holy grail of particle physics. The clearest one is that it
does not explain anything about gravity except that the standard model works
as long as gravity is negligible. This implies the standard model must have a
dead end at the Planck scale (where gravity becomes important), no matter
what. In other words, it must be regarded as a low-energy e�ective theory
of some �more complete� theory. Then, it would have been a disaster if the
standard model is completely satisfactory in all other aspects as it would mean
that the Higgs is as heavy as the Planck scale (1019 GeV). This contradicts
our common sense as we know that all other members that were found up to
now never weight more than 200 GeVs. Fortunately the standard model is not
that complete. Interactions in the standard model is well-described by a product
gauge group SU(3)colour�SU(2)weak�U(1)hypercharge which is phenomenologically
useful but theoretically unsatisfactory. As can be expected by an optimist, an
analysis on how the coupling strength of each interaction changes with energy
revealed that all the three couplings come very close to each other at energies
around 1014�1015 GeV, showing the sign of �Grand Uni�cation�. A prototype of
a grand uni�cation theory was proposed during the 70's by Georgi and Glashow
[8], which, again, is operated with the arguments of spontaneous symmetry
breaking relying on fundamental scalar particles. So it seems that now there
are two cut-o� scale; one is at 1015 GeV where the standard model ceases to
work and the grand uni�cation theory comes in, the other is at the Planck scale
1019 GeV. Then the properties of fundamental scalars tell us that the masses of
both �Higgses� should be equal to their corresponding scales. That is what a
theory can tell us and this is where experiments come in.

The discovery of the particles in the standard model, especially the
electroweak gauge bosons, as well as the advances in the precision electroweak
tests, tell us that the mass of the Higgs (of the standard model) should be only
a few hundreds GeV's. Due to the fact that the quantum corrections to the
mass of the Higgs are quadratically sensitive to the cuto�, this means extreme
adjustments are required in order to make a collection of large numbers turns
out to be a small one. This is known as the �ne-tuning or naturalness problem.
In other words, the Higgs is light without reasons (from the model). To make
the Higgs naturally light, there must be new physics somewhere below 1�2 TeV
(i.e., small cut-o�). However, the results from the precision electroweak tests
tell us that the new physics will not show up below 5� 10 TeV (i.e., large cut-
o�), which certainly not go along with the naturalness arguments. Altogether
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the problem is usually referred to as the little hierarchy problem or the LEP2

paradox [1]. An understanding of the electroweak symmetry breaking cannot
be regarded as complete without solving these problems.

Several attempts have been made to deal with the �ne-tuning problem.
Some rely on the cancellation mechanism between the dangerous diagrams
from heavy (yet unobserved) particles and the standard model maintained by a
symmetry, such as supersymmetry. Some do not use an elementary scalar in
the model at all. Technicolour models (see Farhi and Susskind [9] or Kaul [10]
for reviews), based on a scaled-up quantum chromodynamics with symmetry
breaking mechanism analogous to the BCS theory in superconductivity, fall into
the latter category. In addition to these models, there were some attempts,
�rst pioneered by Georgi and Pais [11], to realise the Higgs as a pseudo
Goldstone boson, a Goldstone boson that becomes massive via explicit global
symmetry breaking interactions. More serious attempts along this line were
made by Georgi, Kaplan and others [12, 13, 14, 15, 16] during the mid 80's.
Nevertheless, their models still su�ered from the naturalness (and even the
little hierarchy) problem. As a consequence it looks as if supersymmetry
(including, supersymmetric grand uni�cation and superstring theories) is the
most promising candidate. Still, it is not the only solution.

When particle accelerators have been constantly developed, the oppor-
tunities of direct, along with precise, studies on physics of the electroweak
symmetry breaking were broaden. Then there comes the Large Hadron Collider
at CERN, scheduled to begin its action in 2008 or so, where TeV physics will be
probed directly for the �rst time. Many models were proposed with the hope
that they can be somehow tested in the LHC.

In 2001, the Georgi's models were resurrected with the inspirations from
the extra-dimension physics (deconstruction) by Arkani-Hamed et al. [17, 18, 19]
and Hill et al. [20] in a class of models called Little Higgs. The crucial ideas
of the Little Higgs include the one called collective symmetry breaking, which
plays the similar role as supersymmetry. The �rst realistic model designed
dedicatory for being the theory beyond the standard model was proposed
by Arkani-Hamed et al. in a minimal model called the Littlest Higgs [21],
which is based on a product gauge group. The mass productions of the Little
Higgs models began after that. The other type of the Little Higgs model

2 The LEP (Large Electron and Positron) collider is the particle collider, operated during
the 90's, at CERN.
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which is based on a simple group was later proposed by Schmaltz and (the
other) Kaplan in 2004 [22]. Since the Little Higgs models were constructed
from the framework of the non-linear sigma model, there are many rooms
available for modi�cations. Even though the littlest Higgs, which is the most
economical model, su�ered from various phenomenological constraints, many
�modi�ed� versions were proposed including the one so-called Little Higgs with
T-Parity, by Cheng and Low [23, 24], which succeeded in avoiding con�icts with
electroweak precision tests. A work in combination with supersymmetry is even
possible (see, for example, Csáki et al. [25] or Berezhiani et al. [26]). Most
importantly, like supersymmetry and some other models, the particle spectrum
of the Little Higgs models contain various particles within the reach of the LHC.
This means it is highly possible to perform even some direct search and see which
model suits best for being recognised as physics beyond the standard model.

1.2 About the Thesis

1.2.1 Objectives of the Thesis

We have seen the reason for studying the Little Higgs. Now let us move to the
reason for making this thesis. Rather than being a detail analysis of various
Little Higgs models, this thesis should be considered as a �prelude� to the Little
Higgs. This is because though there are some reviews of the models available,
most of the topics in Little Higgs physics are not readily accessible for readers
with just the basic knowledge on the rudiments of the standard model. In
many papers, some important detail of calculations in Little Higgs were left to
be desired. In addition, while there are very large numbers of nice reviews on
the foundation of the standard model, only some numbers of resources that are
designed to �ll the gap (especially for the route to the Little Higgs) are available.
So we try to make the bridge that helps to provide smoother transitions from the
standard model to the some theories beyond it, not just the Little Higgs. This
thesis is focused on the non-supersymmetric path as there are various articles
on supersymmetry.

Still, it is not possible to cover all the important topics along the way to
the Little Higgs, or to develop the story from scratches in the precise manners.
Therefore, we will try to gather the models and tools that we already have on
hand and study some important aspects. Once we are familiar with those tools,
we can get into the Little Higgs arena with the strategy: we will �translate� what
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we do not yet know into the form or the system that we know how to deal with.
We will focus on some detail of calculations when it is necessary. So this is a
downside of the work; namely, we will gather as many ideas as possible while
keeping some important insights, hence making some ideas not �probed� to their
deepest level. We will use heuristic arguments on the thoughts that are related
to the common ones and will go into some calculations for the topics presented
in few literature.

1.2.2 What the Thesis Does Not Offer

There are some important topics that should have been included but are rather
too �big� to �t into the thesis in a systematic manner. The left-out topics
include (with examples of nice articles in parentheses): e�ective �eld theory ([27,
28, 29]), generalisation of non-linear realisation of symmetry ([30, 31]), detail
calculations on loop corrections and beta functions3, and precision electroweak
measurements ([32]). The author tried to �dilute� some of the topics above
and injected them into some related topics from time to time. Nevertheless,
the interested readers are advised to consults the suggested articles and the
references therein.

On the Little Higgs model itself, there are many topics that are not
included in the thesis. For example, there is only one Little Higgs model, namely
the Littlest Higgs, being studied here for the reason that it is the most economical
model available. Though it will be shown later that while the model fails to
survive the constraints from precision electroweak measurements, it does not
mean that it is not useful anymore. Besides it is the model that have been
studied most, comparing to other variations of the Little Higgs. This is simply
due to the reason that the Littlest Higgs can be easily extended or tuned to
cope with speci�c problem, and that it shares many things in common with the
its modi�ed version. For a comparison between the two famous Little Higgs
models; namely the Littlest Higgs and the Little Higgs from a simple group,
we advise the reader to consult the review papers by Schmaltz and Perelstein
mentioned earlier, as well as the comparison on the phenomenological point of
view made by Han et al. [33].

3See standard textbooks that provide the background �eld method for calculations of the
beta functions.
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1.2.3 Other Review Articles

As of mid 2007 there are few review articles providing various aspects of the
Little Higgs models. Those that were aware of by the author will be listed
below. Many of these reviews may provide some deeper insights of the Little
models than those presented this thesis. So they are highly recommended to
readers who are interested in as most of them are available on the arXiv. The
author would also like to apologise to authors of articles that were not recognised
below.

The �rst short, but illustrative, article providing an introduction to the
model was given by Schmaltz in 2003 [34]. There he presented the Simplest
Little Higgs which is pioneered by himself and Kaplan [35], [22]. Later, Schmaltz
also provided two review articles (more detail); one in [36] with Tucker-Smith,
and the other as a lecture note in the TASI 20044 [37]. For the Littlest Higgs,
there is a nice review just published by Perelstein in 2007 in [38]. He emphasised
on the Littlest Higgs model (which is our main topic of the thesis) and some
on the theory space model (�Moose� type) as well as the Simplest Little Higgs,
together with their phenomenology. There is also a very nice paper on the
phenomenology of the Littlest Higgs model by Han et al. [3] which we use as
one of the main articles.

There are also few master's theses related to Little Higgs models. Two
are from the theory group at NIKHEF including, �The Hierarchy Problem in
the Standard Model and Little Higgs Theories� by Maarten Brak (University of
Utrecht) in 2004, and �Extensions of the Standard Model and their in�uence on
single-top� by Erik Lascaris (University of Twente) in 2006. The Little Higgs
model mentioned by these two theses is the Littlest Higgs model. The other
master's thesis is �Little Higgs Models: E�ective Gauge Theories Stabilizing the
Electro-Weak Scale Employing Collective Symmetry Breaking� by Jos Postma
(University of Groningen) in late 2006, which focuses on the the Simplest Little
Higgs.

1.3 Organisation of the Thesis

The structure of the thesis is organised as follows. In chapter II, we will recall
some fundamental concepts of the standard model. We focus on the idea of

4The lecture is provided in the school proceeding and is available online at
particle.physics.ucdavis.edu/workshops/TASI04/.
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spontaneous symmetry breaking and will study its application in the Glashow-
Weinberg-Salam model. Though we will try to use the bottom-up strategy as
much as possible, the treatments in this chapter is rather standard. Therefore,
a casual reader may want to skip with some quick glances into the section 2.2
which we study the linear sigma model, the main tool for studying spontaneous
symmetry breaking in this thesis.

Then in chapter III we will study how the loop corrections (quantum
e�ects) a�ect the status of the standard model. To some detail, we learn how
to deal with the loop corrections using a technique provided by Coleman and
Weinberg which will be used to explain how electroweak symmetry breaks in
Little Higgs models. There we will also point out various limitations on the mass
of the Higgs, from both theoretical and experimental points of view, including
the precision electroweak tests, which convince us that the Higgs should be
light. At the end of the chapter, we summarise some of the shortcomings of the
standard model, especially the little hierarchy problem, which will tell us the
basic requirements of physics beyond the standard model.

In chapter IV, we gather various techniques that are used in many theories
beyond the standard model. The main objective of the chapter is to provide the
building blocks not only of the Little Higgs, but also of some aspects of the
physics beyond the standard model in non-supersymmetric direction. It is best
to have a quick glance at the appendix B where we present a short discussion on
the minimal version of the grand uni�cation theory, the SU(5). This example
should provide simple, but complex enough, situations that let us learn how
to deal with particles appearing in various representations of the theory. We
begin the chapter by bringing up another way to implement the BEH (Higgs)
mechanism, but without requiring the existence of any fundamental scalars;
i.e., dynamical symmetry breaking. This is the rudiments of a class of theories
called technicolour. The same section will provide important viewpoints on the
alignment of vacuum, explicit symmetry breaking, and the pseudo Goldstone
bosons. After that, we study the formulation of the non-linear realisations of a
symmetry which serve as a crucial tool for dealing with low-energy degrees of
freedom of a theory. One of the resulting models called a non-linear sigma model
will be used extensively in the chapter of Little Higgs. Later in that chapter, we
present the simplest version of the Georgi-Kaplan model, which utilises what we
have studied in the chapter and serves as a prototype of the Little Higgs.

In chapter V, we will introduce the Little Higgs models, which bring up



8

the way out of the problem mentioned in chapter III by utilising what we have
developed in IV. We will focus on the Littlest Higgs model. There we present
detail calculations on most of its topics, leaving some lengthly calculations as
outlines. After discussing the model building part, we will very brie�y discuss
some of the important �ndings from the phenomenological side of the model.

The conclusions of the thesis are given in chapter VI.

In the appendices, we provides several useful and interesting materials.
Some rudiments on group theories can be found in appendix A. In the same
appendix we also present an alternative way to evaluate the e�ective potential.
A review of some aspects of the SU(5) grand uni�cation theory, which contains
useful ideas of representations of a group and the hierarchy problem, is provided
in the appendix B. Finally in the appendix C we list important mathematical
formulae.

1.4 Conventions and Notations

These are essential notations that will be used throughout this thesis. Still, not
all of the notations are standard and might be changed slightly from section to
section depending on the contexts.

� The expression A ' B = C means A ' B and B = C.

� We use ' for an approximation and � for a very rough approximation.

� Electric charge of a particle is given by Qe where e is positive.

� The index i on quarks and leptons �elds or doublets (LiL, Qi
L, eiR, uiR,

etc. . . ) denote families.

� Q (sometimes appears with subscripts or superscripts) usually means an
electric charge while QL means the left-handed quark doublet.

� The superscript c denotes charge conjugation unless in some special cases
it means the charm quark (i.e., the charm doublet Qc

L).

� A scalar �eld (both real and complex) is denoted as �. A scalar multiplet
will be denoted as �, � or �̂, �̂ depending on the context.

� The physical Higgs particle is denoted as h while the complex �elds living
in a doublet or so will be denoted with superscripts as h0, h+, h�, etc.



CHAPTER II

ASPECTS OF ELECTROWEAK PHYSICS

This chapter will give a brief review of the electroweak sector of the standard
model. The presentations will be deliberately �non-rigorous� as we will try to
build up various ideas as naturally as possible (some hand-waving arguments
appear from time to time due to lack of spaces). The development of the models
without gauge symmetries will be outlined in section 2.1. Implications from
that section will underline the importance of a gauge theory. So mathematical
aspects of spontaneous symmetry breaking, which are crucial for many gauge
theories, will be discussed in section 2.2 and the results will be used frequently
in this thesis. Many of the outcomes from the �rst two sections will be gathered
up in the section 2.3 where we present the Glashow-Weinberg-Salam model for
the electroweak interaction. Though we try to introduce the topics in natural
ways, the contents are rather standard. So a casual reader may want to skip this
chapter with a glance at the sections on the linear sigma model in 2.2.2 and the
custodial symmetry SU(2) in section 2.3.5.

2.1 Weak Interaction Before Gauge Theories: In

Plain English

In this section we give an overview of some aspects of the developments of the
standard model. Since this kind of information are widely available, we will not
go into detail (especially, the mathematical ones). Please have a look at other
review literature; for example, by Quigg [39], Aitchison and Hey [40], and Morii
et al. [41], and the references therein for further information.

The �rst model capable of describing weak interactions (the beta decay)
is based on an analogy from electromagnetism, resulting in a current-current
interaction (Fermi's model) where the currents involved are of �charge-changing�
type. The advantage of the model is that it allows some crucial phenomenological
features; namely, the maximal parity violation (i.e., weak interaction treats
left- and right-handed particles di�erently), and universality of couplings (all
fundamental fermions participate in weak interaction with equal coupling
strengths). It was found that hadrons experience weak interaction in a slightly
di�erent manner from leptons. This is not surprising as now we know that they
are considered as composite particles. At the �fundamental� level, the model
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show similar family structures of leptons and quarks, which will be another
crucial foundation of the standard model.

The locality of the interaction in Fermi's model brings up the problem of
unitarity and renormalisability. Problems come from the fact that the coupling
constant in the model is dimensional, which leads to the fact that a cross section
of a particular process grows too rapidly with energy, rendering the theory
useless in the sense of a perturbation theory at some energy scales. In the
case that we want to deal with physics at these �deadly� energy scales (which
are reachable by current experiments), we can no longer ignore the problem by
consider the Fermi's model as an e�ective low-energy theory. It is also clear that
dimensionality of the couplings ruins the renormalisation programme of weak
interaction.

The problems mentioned above can be solved by further following an
analogy from electromagnetism. Still, the picture of a gauge theory is not
readily available for the weak interaction as the gauge �elds cannot be introduced
in a naive way. This is because the range of weak interaction is very limited
(massless gauge �elds are not applicable) and there were only charged-changing
currents in the model (group theoretically incomplete since there are only two
force mediators in an �SU(2)-like� theory). Still, the intermediate vector boson
picture, being its �higher� energy limit, is helpful and consistent with the Fermi's
theory. The �matching� between the two models allows a prediction of the mass
of the vector bosons in terms of the Fermi coupling constant (naive dimensional
analysis works as well). The mass of the gauge boson then acts as the energy
scale of the theory. Its huge mass of O(100 GeV) explains why Fermi's model
works well - the �working arena� of Fermi's model lies at energies far below the
mass of the vector boson, rendering the picture of contact interactions viable.
Nevertheless, without a gauge theory as the main engine, the theory still su�ers
the problem of renormalisability and unitarity, only slightly less severe. The
source of the problems lies in the longitudinal components of the vector boson
and the trick for removing that component is applicable only to gauge theories.

An important step towards the standard model has been made when
the existence of the neutral (i.e., charge-conserving) weak current and its
corresponding (intermediate) vector boson were aware of, or at least anticipated.
The need for the neutral vector boson can be explained from the theory side as it
helps �soften� several processes involving the charged-currents. In addition, the
neutral current gives us a clue that renormalisability might be possible. However,
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a particular adjustment by hand (for example, to adjust the couplings between
the charged and neutral vector bosons and fermions so that severely diverging
diagrams vanish) is needed and is guaranteed to work only at the energy scale
where the adjustment was made. If just kicking the neutral vector boson into
the game is not convincing enough, a simple analysis on the operator having
the form of a conserved charge in a gauge theory also shows us that neutral
weak boson must exist in order to close (i.e., complete) the group theoretical
structure.

Weak interaction on the hadronic sector is more complicated. Neutron,
protons, and other hadronic states enter weak interactions with coupling
constants, especially the axial-vector part, that seem to be di�erent from that of
leptons. This problem, as mention a few paragraphs ago, subdued with the
introduction of quarks as an internal structure. During the time when the
family structure of the leptons were not very convincing and only 3 quarks
seemed to be required, the asymmetry between leptons (strange quark did
not have its partner) left strangeness-changing charged-current processes poorly
explained. It was Cabibbo who suggested a hypothesis that quarks entering
weak interactions are not the quarks in their mass eigenstates. The picture
allowed a pair up between the s and u, allowing the s to live (in a small �room�)
in the u� d family, merging with the d as the Cabibbo's down quark.

Solving one problem of the process involving charged current brings
up another problem when the neutral current is taken into account; namely,
the process dealing with strangeness-changing neutral current is not heavily
suppressed in the way people in the labs have seen. The problem of �non-
diagonal� interaction of the neutral current is solved in an easy-to-expect,
yet elegant, manner by making an analogy, under weak interaction processes,
between quarks and leptons. The missing piece (the charm quark) was proposed
as a partner of the quark orthogonal to the Cabibbo's down, completing the
family structure, solving the above mentioned problem. The idea of families we
have on hand can be easily (and successfully) extended when one member of the
family was found.

We cannot leave this section without emphasising that to keep ourselves
in the main courses that will eventually lead to the Little Higgs model, we
have solely outlined very small fractions of what are important and interesting
landmarks in the art and science of theoretical and experimental particle physics
during the �pre-electroweak� era. It is by no means expected that this short
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outline alone will convince the readers to believe in what were written above
and those who are interested are strongly encouraged to go spend some times
with various review articles available out there.

2.2 Hidden Symmetries

Now as we are convinced that electromagnetic and weak interactions can be
uni�ed by the use of a gauge theory, we face an immediate di�culty right away:
while we know that the gauge �elds mediating weak interaction are massive,
an explicit breaking of gauge symmetry by introducing mass terms for the
gauge �elds is not preferable. The gauge �elds must be massless or else the
corresponding gauge symmetry is violated. However, it is essential to underline
that the reason that the mass terms are not introduced by hand is not because
they spoil the beauty of gauge symmetry, but because they make the theory
non-renormalisable (and hence loses its predictive power). Still, this is �ne if
we restrict ourselves to low energy phenomena. However, in order to keep up
with the current accelerators and to construct a gauge theory that describes a
uni�cation between electromagnetic and weak interactions and so on, we must
�nd a way to let the gauge �elds be massive without spoiling gauge symmetries.
When it is possible, a renormalisable theory is much more preferable.

The way that seems to work so far is commonly known as the BEH
or the Higgs mechanism (or the Brout-Englert-Guralnik-Hagen-Kibble-Higgs-
Anderson mechanism; see [42], [43], [44, 45]. [46]). It is the interplay between
the spontaneously breaking of global symmetry and the gauge symmetry of
electroweak interaction. In short, the BEH mechanism tells us how the gauge
�elds become massive by interacting with the Goldstone bosons1.

In general, the mechanism requires that the Lagrangian under consid-
eration contains a sector preserving a gauge symmetry and the other sector
generating spontaneous breaking of a global symmetry

L = Lgauge + LSB : (2.1)

The existence of the Lagrangian that describes global continuous symmetry
G broken spontaneously to its subgroup (say H) is required so as to break
the gauge symmetry of the Lgauge. In other words, we can say that the BEH

1Despite its name, the Higgs particle is another story from the BEH (Higgs) mechanism. As
we shall see, the BEH mechanism operates with or without the Higgs particle.
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mechanism always occur when a gauged continuous symmetry is spontaneously
broken. Notice that, it is not necessary that the global symmetry G be the
same group as the gauge group (which is the SU(2)�U(1) electroweak in most
of our considerations). However, for phenomenological purpose on electroweak
symmetry breaking, G must be big enough to contain the electroweak gauge
group and H must be at least as big as the electromagnetic gauge group (which
is the exact, unbroken, one).

The general idea of spontaneous breaking of a global symmetry will
be explored in the next section, followed by its application in a model called
the sigma model. The second part, which is the main ingredient of the BEH
mechanism, that is played by the gauge sector will be discussed after that.
Related discussions in the following sections can be found in Chanowitz [47],
Pokorski [48], Georgi [49], and Cheng and Li [50].

2.2.1 Formalism

Here we will discuss about spontaneous symmetry breaking (SSB) in quite a
general way. Let us begin with the fact that in some systems, the symmetry
that is used to describe physical laws is not realised in its original form. In those
system it is usually found that invariance of the ground state is not necessary the
same as the invariance of the Hamiltonian (or the Lagrangian). Now suppose
that we have a degenerate set of ground states2, say j0i, which will lead to
di�erent physical states in the context of quantum �eld theory (think of a system
of ferromagnets below the Curie temperature). In addition, let us say that the
Hamiltonian is constructed from an object called �. Then we see that it is
possible to �nd a symmetry transformation fU(g)jg 2 G: � ! �0g that leaves
the Hamiltonian (or the Lagrangian) invariant

UH0U y = H0 (2.2)

but acts on a ground state in a non-trivial way

U j0i = j00i 6= j0i : (2.3)
2In this section, the Hamiltonian formalism will be used.
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This implies that U does not connect states (which is constructed out of the
ground state by the �elds �i) that form an irreducible representation of G:

U j1i 6= j2i (2.4)

which means h1jH0j1i 6= h2jH0j2i. In other words, the degeneracies of the
energy eigenstates (spectrum), which are supposed to show up according to
the symmetry of H0, disappear. This also means that there exists a particular
�eld �i whose vacuum expectation value transforms (non-trivially) under the
operation G; i.e.,

h0jU y�iU j0i 6= h0j�ij0i (2.5)

which suggests that
h0j�ij0i = vi 6= 0 �! SSB : (2.6)

Which element of the � will be given non-zero vacuum expectation value
is a question that has to be handled with care. Suppose we have associated the
correspondence between physical particles and the �elds in the Hamiltonian, as
well as �xed the interpretation of the symmetry generators right from the start.
Though each of the ground state in the space of the degenerate vacua results in
equal vacuum energy, phenomenological observations will restrict only a speci�c
set of the �eld �i to have non-zero vacuum expectation value. Otherwise we
get a �wrong� ground state with the same mathematical relations between the
generators but di�erent meanings.

The other way we can go is that we start with a speci�c pattern of
symmetry breaking. This completely de�nes a complete set of degenerate ground
states, which we demand to be equivalent if they result in the same pattern of
symmetry breaking. The choice of a ground state then becomes purely a matter
of convention. After picking one up, we have to �nd its matching set of broken
and unbroken generators. Then we have to re-associate the �eld in question
with their new (and correct) physical interpretations. The resulting Lagrangian
or Hamiltonian may be in an unfamiliar form which, however, can be recovered
into the usual form by performing a G transformation on the �elds. One of the
clear example is the linear sigma model that we shall soon meet in section 2.2.2.

To sum up, SSB occurs when the global symmetry (corresponding to the
subgroup H of G) of the ground state is not the same as the global symmetry (G)
of the interaction of the Lagrangian or the Hamiltonian of the system. We may
also view this result as follows. For a spontaneously broken symmetry system
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consisting of particles corresponding to the �, the interactions between these
particles are arranged such that it is preferable to �ll the vacuum with them
instead of leaving it empty. The vacuum expectation value plays the role of the
order parameter which signals whether to break or not to break the symmetry.
It should be emphasised that the order parameter is not necessary a fundamental
scalar. A composite object like a fermion condensate � �   is allowed as well.
The latter case will be examined in more detail in section 4.1.

For the case of continuous symmetries, we express the group elements in
terms of the symmetry generators (or charge) Qa; i.e., U = e"aQa . Then we have

�i �! e"aQa�ie�"
bQb = e�i"aQaij�j (2.7)

where Qa
ij is the matrix representation of the group, obeying the same algebra as

those of Qa's. So we say that when the charge does not annihilate the vacuum

Qaj0i 6= 0 ; (2.8)

(or Qavi 6= 0) then SSB occurs and this particular Qa is called a broken
generator. Supposing that a ground state occurs when the �elds takes a value
that is denoted collectively by �0; In other words, when there exists a subgroup
H � G having elements h 2 H that leave the ground state invariant h�0 = �0,
we say that G is spontaneously broken to H. In this case, the number of broken
generators are dim(G)�dim(H). Notice that the elements corresponding to the
broken generators do not form a group (clearly, they do not have an identity).
However, they do form a coset G=H, which is basically a set whose elements
themselves are sets of the G group elements3. It is an equivalence class de�ned
to contain all of the elements of G related by a multiplication by an element in
H.

In principle, we do not know which direction (choice) of the subgroup
H will be when spontaneous symmetry occurs. Suppose we have x 2 G=H, by
construction this x will not leave the ground state invariant:

xj0i 6= j0i : (2.9)
3The left coset (of g) is a set de�ned by gH = fghjh 2 Hg in one element of G=H.
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However, the pattern of symmetry breaking and the structure of the group have
not changed under this action. This means that we can de�ne a vacuum

j
i = xj0i (2.10)

which in turns de�nes another subgroup H 0 of G. The point is that, without
other interactions; it is obvious that the new subgroup H 0 is equivalent to the
old one, the H. Interesting situations will show up when we turn on other
interactions which has a preference in a speci�c orientation of the subgroup H
and the energy of the vacuum will depend on its orientation. We will come back
to this case in section 4.1.2.

Now we will jump directly to the Goldstone theorem, which can be found
in many literature nowadays. It says that each broken generator of a continuous
symmetry G leads to a spectrum of LSB corresponding to a massless (its energy
vanishes in the limit of zero momentum) spin-zero particle, whose state denoted4
by j�i, that can connect to the vacuum by the �eld operator � or the current
J0; i.e.,

h�j�(0)j0i 6= 0 ; h0jJ0(0)j�i 6= 0 : (2.11)

This massless particle is called a Goldstone boson. In general, a Goldstone
boson can be created or destroyed by a symmetry current associated with the
broken generator Qa. This also implies that the number of the Goldstone bosons
equals the dimension of G=H and does not depends on what representations the
�elds belong to. The Lorentz invariance tells us the matrix element between the
Goldstone boson and the vacuum state can be parametrised as

h0jJ�a(x)j�k(p)i = �ip�F a
ke
�ip�x (2.12)

where F a
k is a constant matrix. In many cases, when the currents are the ones

that correspond to an irreducible representation of the broken generators, the
matrix F a

k can always be diagonalised; i.e., F a
k = F�ak. Upon taking � =

0 in (2.12) and the assumption (2.11) which says that the conserved charge
corresponding to the broken generator does not annihilate the vacuum, we �nd
that F is non-zero. Then the conservation of the current J�a implies

h0j@�J�a(x)j�k(p)i = m2
�F

a
ke
�ip�x = 0 (2.13)

4We usually use the � for the reason that pion is the usual suspect for being a Goldstone
boson. See later sections.
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which reproduces the Goldstone theorem; i.e., m2
� = 0 .

Now we will turn to the case where the SSB is generated by elementary
scalars. Let us consider a set of real scalar �elds with the corresponding potential
that is invariant under a particular global symmetry group G (which maybe
O(N), SU(N), etc.). This means

(T a�)i
@V
@�i

= 0 (2.14)

where T a is a generator (not necessarily corresponding to an irreducible
representation) of G and (T a�)i = T aij�j. Spontaneous global symmetry breaking
from G to its subgroup H occurs when the structure of the potential of �i leads
to the non-zero vacuum expectation value

h0j�ij0i = vi ; (2.15)

with
(T av)i

8<: = 0 for a = 1; :::; nH
6= 0 for a = nH + 1; :::; nG

(2.16)

Note that it is not necessary to restrict the vacuum to a particular mth direction
like h0j�ij0i = vi = �imv (though this is mostly the case when we deal with
SSB). Using (2.14), the vacuum con�guration (2.15) implies

@2V
@�i@�k

(T a�)i = 0 ; (2.17)

that the (T a�)i for nH + 1; :::; nG are the Goldstone bosons with the relations

h0jJ�a(x)j�k(p)i = �ip�(T av)ke�ip�x : (2.18)

Let us call the T a for a = nH + 1; :::; nG a broken generator ~T e with indices
renamed so that e = 1; :::; (nG � nH). Then the �i can be parametrised such
that the Goldstone bosons lie along the direction of the broken generators,

�i = ei ~T eij�
e(x)=v(vj + �j(x)) ; (2.19)

which means they are obtained from a ground state by a symmetry trans-
formation with spacetime-dependent parameter. Here �i(x) and �i(x) are
orthogonal. When the vacuum is aligned along the mth direction we get
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� = ei ~T eij�
e(x)=v�jm(vj + �j(x)) which can be arranged so that

� = ei ~T e�e(x)=v

0BBBBBB@
0
...
0

v + �

1CCCCCCA =

0BBBBBB@
�1
...

�nG�1

v + �

1CCCCCCA+ higher orders : (2.20)

For the special case where the potential has the well-known�Mexican hat� form,
we see that � is a Goldstone �eld in the valley direction and � is a massive �eld in
the radial direction. Observe that the symmetry G can be �realised� in terms of
the transformation of the �elds �! � while the �a transforms in a complicated
way. To linear order, we have �a ! �a + constant, which clearly protects the
�'s from being massive. The transformation of the Goldstone bosons does not
concern us at the moment since they will eventually be traded with the massive
gauge bosons (see section 2.2.3). We will come back to this story in the section
4.2.

Before we move on, it is very important to stress that spontaneous
symmetry breaking is a solely theoretical concepts and the mechanism itself
has nothing to do with experiments. The quantity directly related to SSB such
as the vacuum expectation value of a scalar �eld can only be �touched� indirectly
only within a particular theoretical scheme; i.e., it has no direct connection with
experiments.

2.2.2 The Linear Sigma Model

We will illustrate the idea of spontaneous symmetry breaking (SSB) by an
example of the linear sigma model. A popular example of the model is the ��4

theory with the mass term �2�2. However, in this section we will used another
realisation of the scalar �eld which can be served as a simple prescription for
dealing with pions. Though the model was originally made for describing chiral
symmetry breaking in the strong interaction regime, the idea will be useful when
we consider other symmetry breaking phenomena including the Little Higgs.

Pions are like no other hadrons. We know that hadrons consist of 2 or 3
quarks, 2 for the case of pions. So it is tempting to guess that the mass of a pion
should be somewhere around 2 � 1 GeV=3 � 700 MeV where the 1 GeV is the
mass of a proton. However, it turns out that the mass of a pion is approximately
135 � 140 MeV while other hadrons, like the �, are heavier than � 800 MeV.
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Consequently, we do not have much choice but to construct an almost massless
particle out of the massive ones by regarding the pions as (probably composite)
Goldstone bosons. This is why we need to use spontaneous symmetry breaking.
This is where the sigma model comes in.

Now let us turn to the linear sigma model. Consider a system consisting

of massless (zero bare mass) nucleon doublet N =

0@p
n

1A and a massless spin-0

�eld � consisting of a pion triplet π and its company, a scalar meson �. Since the
nucleon �elds are massless, the theory does not possess only the SU(2) isospin
symmetry but also a larger symmetry group which is the SU(2)L�SU(2)R chiral
symmetry de�ned by

�NL = i"aLT
aNL ; �NR = i"aRT

aNR : (2.21)

Both can be grouped together in the more useful form

�N = i("a � 5"a5)T aN ; (2.22)

where "a = ("aR + "aL)=2 and "a5 = ("aR� "aL)=2. As usual, we can reverse the logic
and say that this chiral symmetry �protects� the nucleon from being massive.

What is often referred to as the sigma model is actually the scalar
(�) part that contains the potential of � which is arranged so as to generate
spontaneous symmetry breaking. It is a renormalisable �eld theory5. This �
system interacts with fermions via Yukawa interaction. The Lagrangian of the
whole system L is therefore

L = i �N=@N � g �N�N + L(�)

= i �NR=@NR + i �NL=@NL � g �NL�NR � g �NR�yNL + L(�) ; (2.23)

which is invariant under the SU(2)L� SU(2)R symmetry if the � transforms in
as follows:

� �! L�Ry (2.24)

for NL ! LNL and NR ! RNR. In other words, � transforms as the (2; 2)
representation of the SU(2)� SU(2). There are many forms possible for the �
and we will use more than one of them in this thesis. The symmetry that is

5This linear sigma model stands on its own as a theory for describing spontaneous breaking
of a chiral symmetry. Unlike the non-linear version, it is not to be considered as a low-energy
e�ective theory of QCD or so.
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manifested depends on the form of the �eld �. Here we pick out one that allows
us to conveniently work with isospin symmetry. The � can be decomposed into
the triplet π and the singlet �

� = � + iτ � π (2.25)

where its elements transform under the SU(2) isospin transformation N !
eiε�τ =2N as

π �! π + ε� π ; � �! � (2.26)

and under the axial transformation N ! eiεA�τ 5=2N as

π �! π + εA� ; � �! � � εA � π ; (2.27)

or in short (notice the di�erent meanings between "a and "abc)

� �! � + "aA�
a (2.28)

�a �! �a � "abc"b�c � "aA� : (2.29)

Then it is found that the conserved vector and axial vector currents are

JV� = �N�
τ

2
N + π � @�π (2.30)

JA� = �N�5 τ

2
N � (π@�� � �@�π) (2.31)

respectively. After this it is easy to evaluate the conserved charges (from the
� = 0 component). With these conserved currents on hand, we can reverse the
argument below (2.22); i.e., the non-conservation of the currents can be used as
a measure of the nucleon masses6.

Next we will construct the potential for the �. The invariant object is
constructed from the �eld � via Tr�y�. By nature of spontaneous symmetry
breaking, we expect that there is a particular energy scale such that the SU(2)�
SU(2) symmetry manifests at high energy but is hidden at energy below this
particular energy scale. The Lagrangian for � that leads to SSB is given by

L(�) =
1
2

Tr(@��y@��)� �
4

h
(Tr�y�)2 � F 2

�

i2
=

1
2
@��@�� � 1

2
@�π � @�π � �

4

h
(�2 + π2)� F 2

�

i2
; (2.32)

6It is better to use this statement when we refer to quark masses since we can talk about
their bare masses in a more proper way.



21

i.e., the form of the potential leads to a minimum at

�2 + π2 = F 2
� ; (2.33)

rather than at 0. Later we shall see that F� is the amplitude for a chiral current
to create a Goldstone boson out of the vacuum, hence its name the pion decay
constant. All �directions� of the ground state, determined by which �elds (π, or
�) are given non-zero vacuum expectation values, are equivalent as they satisfy
(2.33), and are connectable via SU(2)L � SU(2)R transformations on �. Once
a speci�c vacuum is �chosen�, the symmetry is spontaneously broken down to
SU(2). But which SU(2)? Fortunately, the Lagrangian (2.32) tells us that all of
the available vacua have the same energy and we are at liberty to pick out the
desired, phenomenologically correct, one. Recall that axial symmetry implies the
existence of a particle with mass similar to that of a neutron, but with opposite
parity. Such the particle has never been found. So it is expected that the axial
symmetry is broken, not the isospin (recall, mu � md). In other words, chiral
symmetry SU(2)L � SU(2)R should break down to SU(2)L+R. Consequently,
the vacuum must be an isospin singlet but transforms (being non singlet) under
a chiral transformation; i.e.,

Qa
V j0i = 0 ; Qa

Aj0i 6= 0 ; (2.34)

where QV and QA are constructed from (2.30) and (2.31). In other words, only
the isospin �charge� disappears into the vacuum. So the vacuum is said to be
��lled� with the isoscalar meson � alone; i.e.,

h0jπj0i = 0 ; h0j�j0i = F� : (2.35)

Now let us consider the state built from the vacuum by de�ning the
shifted (physical) �eld

�0 = � � F� (2.36)

which has zero vacuum expectation value (VEV). This leads to

L = i �N=@N +
1
2
@��@�� � 1

2
@�π � @�π

�gF� �NN � 1
2

(2�F 2
�)�02

�g�0 �NN + ig �Nπ � τ5N � �
4

�
�02 + π2

�2 � �F�(�03 + �0π2) ;

(2.37)
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where it is clear that the trace of the SU(2)�SU(2) symmetry is hidden from the
particle spectrum. The SU(2)�SU(2) symmetric term (�2 + π2) now describes
interactions between the � and the π. In the Lagrangian (2.37) we see a nucleon
with mass mN = gF� interacting with a massive scalar �eld � having mass
m� =

p
2�F� and a triplet of massless �elds π. Here the �elds π (the pions)

are the Goldstone bosons corresponding to the broken generators Q5. Now the
axial vector current (2.31) becomes

JA� = �N�5 τ

2
N � π@��0 + �0@�π + F�@�π : (2.38)

Notice that the term linear in the Goldstone boson �elds (π) leads to the
transition between the Goldstones and the vacuum via the axial current:

h0jJA�a (x)j�b(p)i = �ip�F��abe�ip�x ; (2.39)

where a corresponds to the broken generators. For further references, we note
that

h0jJaV �(x)J bV �(0)j0i / �ab

h0jJaA�(x)J bA�(0)j0i / �ab

h0jJaV �(x)J bA�(0)j0i = 0 : (2.40)

What we have also learnt here is that since the nucleon is massless in
the absence of (chiral) symmetry breaking, its mass should also lie within the
order of the symmetry breaking scale. In this sense we regard the � ' m�

as the mass scale of the theory where �new physics� shows up. Later we shall
see that this new physics may be weakly interacting theory with spontaneous
symmetry breaking (like what we are currently doing) or strongly interacting
one7. Since the scale F� is completely arbitrary, it can be set to the value that
we �nd appropriate. At �rst sight it seems that if we assume that F� (and hence
the m�) be very high, 1 for example, we can describe the low energy physics
involving only the Goldstone boson �elds by decoupling the � and the nucleons
N 's from the Lagrangian (2.37). This also means setting the quartic coupling
� to in�nity. The problem is that this idea does not work. While the removal
of the �eld N is perfectly allowable, the naive removal of the � destroys the

7This case happens when we set � very large and hence the Landau pole stays close to the
mass scalem�. So we have to introduce some cut-o� before the theory we have on hand becomes
unreliable. See section 3.2.1.
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SU(2) � SU(2) symmetry altogether. Even worse, if we try to keep working
while pretending not to worry too much about the symmetry, the e�ect of the
� is still there in the ��� and the ���� couplings. This means a process like
�� ! �� still has an in�nite contribution from the coupling, and hence cannot
be neglected. A nice way to deal with the low energy physics in terms of the
Goldstone boson �elds while still being SU(2)�SU(2) invariant will be discussed
in section 4.2.

2.2.2.1 Remark 1: Another Representation

Let go back to the vacuum condition (2.33). It also reminds us the similarity
between the structure of SU(2)�SU(2) and SO(4) . In the real representation,
isospin generators become, for example,

T 1
V =

0BBBBBB@ �i
i

1CCCCCCA T 2
V = : : : (2.41)

Other generators are displayed in appendix C.3.0.3. The generators for the axial
transformation must involve a change made to the �; i.e., the 4th component,

T aA =

0BBBBBB@
i

�i

1CCCCCCA T 2
A = : : : (2.42)

Then the SU(2)� SU(2) quadruplet can be written as

� =

0BBBBBB@
�1

�2

�3

�

1CCCCCCA : (2.43)

Note that this quadruplet (of real �elds) still transform as a (2; 2) under the
chiral group. For the case that the symmetry is broken to SU(2)V , this �eld can
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be parametrised as (see (2.20)),

� = exp

8>>>>>><>>>>>>:
�i
F

0BBBBBB@
i�1

i�2

�i�1 �i�2

i�3

�i�3

1CCCCCCA
9>>>>>>=>>>>>>;

0BBBBBB@
0
0
0p

π2 + �2

1CCCCCCA : (2.44)

Observe that this �transfers� the degrees of freedom of the Goldstone bosons to
the parameters of the SO(4) rotation.

2.2.2.2 Remark 2: Different Choices of the Vacuum

Another thing to remark is what we have mentioned in the section 2.2.1 (page
13). It can be shown that a di�erent choice of vacuum; say, h�1i = h�2i = h�i = 0
and h�3i = F 6= 0 also leads to the same physical content where the �1; �2; �
are the Goldstone bosons. The mass terms for the nucleon will look like

igF� �N5� 3N (2.45)

which can be reverted to the usual mass term �N 0LN 0R + �N 0RN 0L by a rotation on
NL by �i� 3 while leaving NR not transformed.

2.2.2.3 Remark 3: The Background Field Point of View

In this remark, we review a realisation of the symmetry breaking that makes the
claim �vacuum �lled with a scalar �eld� more transparent. Let us say that the
minimum of the potential in (2.32) occurs at8 � = �c = F�. This means after the
symmetry is broken, the state of a particle is described by an excitation of the
�eld � near the classical �eld �c. This excitation can be described by changing
the variable

� �! � + �0 : (2.46)

Just notice that �0 is considered as a constant background �eld (no kinetic
term) and is not necessarily the same as �c. Then quadratic-�eld part of (2.32)

8For simplicity, we will deliberately be less rigorous and focus on the �eld � alone with the
assumption that the reader will remember that we always have the π in the system.
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becomes

L(� + �0)� � +
�
2
�2F 2

� � 3
2
��2

0�
2

= ��
2

(3�2
0 � F 2

�)�2 : (2.47)

In addition, we also have various interaction terms between �, π and the
background �0. In general when �0 6= 0 we see a � �eld propagating with
e�ective mass

m2
� = �(3�2

0 � F 2
�) ; (2.48)

assuming that 3�2
0 > F 2

� . Only when �0 = �c = F� will the e�ective mass m�

become

m2
� = 2�F 2

� > 0 : (2.49)

Clearly, this �eld description allows us to view the current situation as follow.
There is a particle (�eld quanta) corresponding to the �eld � with m2

� = 2�F 2
�

propagating in the vacuum �lled with the constant background �eld �0.

2.2.3 Gauge Theory with SSB: Conventional Aspects

In this section we consider the important part of the BEH mechanism: when
the (spontaneously) broken generator of LSB �coincides� with the generator of
the Lgauge. In other words, it is the case when the Goldstone bosons (from
spontaneous breaking of a global symmetry) are coupled with the gauge �elds
of Lgauge. Universally of the coupling strength tells us that the gauge bosons
couple with universal strength to all quanta carrying the charge of the gauge
group. Then it is almost transparent that in the minimal model with one vacuum
expectation value, the masses of the gauge bosons are determined by the gauge
coupling constant.

Let the scalar �elds �i (corresponding to the global symmetry G) couple
with the gauge �elds of a (local) gauge group Ggauge. When Ggauge = G, we
say that the global symmetry of the system is promoted into the local (gauge
invariant) one. The coupling between these �elds and the gauge �elds W a

� is
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displayed in the kinetic term

1
2

���@��i � igW a
� (T a�)i

���2 =
1
2

(@��i)2 � igW a
� [@��i(T a�)i]

+
1
2
g2W a

�W
b�(T a�)i(T b�)i : (2.50)

which clearly re�ects the universally property. Recall that in the � sector, we
have

�i = ei ~T eij�
e(x)=v(vj + �j(x)) ; (2.51)

where the �'s were used to parametrise the Goldstone boson for the global
symmetry case. Gauge symmetry claims that not all of the particle represented
by the �elds displayed above (the gauge �elds W and the �) are physical and a
gauge transformation W� ! W 0

� removes all the � dependence (i.e., by setting
the gauge transformation parameter �(x) = �T c�c(x)=v). Actually nothing
is missing because the gauge �elds, which is equal in number to the missing
Goldstone bosons, in the system are massive with their masses described by

M2
cd =

g2

2
(vyv)T cW 0c

� T
dW 0d� : (2.52)

In other words, the Goldstone bosons become the longitudinal degrees of freedom
of the gauge �elds. For this reason these � are called the �would-be� Goldstone
bosons. Literature may prefer to say that the Goldstone boson was �eaten�
and become the longitudinal polarisation of the gauge �eld. Remember that
mass terms for charged and neutral particles are di�erent in most standard
conventions.

To illustrate how this works, let us consider the Abelian U(1) case,

L = j@��� ieA��j2 � �
 
���+

�2

2�

!2

� 1
4
F��F �� : (2.53)

where the global symmetry is spontaneously broken when m2 < 0. The vacuum
expectation value (for �) v = h0j�j0i = (��2=�)1=2 and the parametrisation

�(x) = �(x)ei�(x)T=v

0@0
1

1A (2.54)
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where T =

0@ 0 i
�i 0

1A bring us the �eld

�0(x) = �(x)� h0j�j0i = (�(x)� v)ei�(x)T=v

0@0
1

1A ; (2.55)

that has zero vacuum expectation value. The Goldstone boson (�) degree of
freedom can be removed by choosing an appropriate U(1) gauge choice called
the unitary gauge, say �(x) = ��(x), where only physical particles show up in
the Lagrangian. Gauge symmetry is said to be broken spontaneously (or hidden)
and we get

�0g(x) = �g(x)� h0j�gj0i = (�(x)� v)ei�(x)T=v

0@0
1

1A (2.56)

A�g (x) = A� � 1
ev
@��(x) (2.57)

which leads to the Lagrangian

L = �1
4
Fg��F ��

g +
1
2
@��0@��0 +

1
2
e2v2A�A� � 1

4
��04

+e2v�0A�A� +
1
2
e2�02A�A� � �v2�02 � �v�03 ; (2.58)

where the gauge �eld becomes massive with mass determined by the couplings,
mA = ev, as expected. Nevertheless, gauge invariance is not spoiled but is
hidden; i.e., (2.58) is still gauge invariant. The price we have to pay is the
existence of the uninvited guest, the massive scalar �eld (the �0 here). When the
BEH mechanism is implemented in the standard model, the missing particle is
commonly known as the Higgs.

However, since the massive gauge �eld is generally not friendly with
renormalisation, we must �nd another gauge where renormalisability is manifest.
Remember that the theory was renormalisable, at least, before the symmetry
had been hidden. Here, let us parametrise � = (' + i�)=

p
2. Denoting the
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physical �elds as '0 = '1 � v and �0 = �, the Lagrangian then becomes

L = �1
4
F ��F�� � 1

2a
(@�A�)2 +

1
2

(@�'0)2 +
1
2

(@��0)2

+
1
2
e2v2A�A� � evA�@��

��
4

('2 + �2)2 � �v(�2 + �2)�� e2vA�A�'

�1
2
e2A�A�'2 � 1

2
e2A�A��2 + eA��@�'� eA�'@�� ; (2.59)

where the second term is the gauge �xing term. Let us further work this out in
more detail. When �rst line of (2.59) is taken as a free Lagrangian, we easily
read o� the free propagators in the Landau gauge (a! 0)

A� : � i
p2 (g�� � p�p�=p2) � �iD��

0 (2.60)

' :
i

p2 � 2�v2 (2.61)

� :
i
p2 : (2.62)

Next recall that since the scalar �eld carries the quantum number of the
symmetry current, the Goldstone boson (the �) can couple, via the gradient
coupling, with the gauge boson according to the term �evA�@��02 with the
coupling constant ev. The mass term can also be viewed as a vertex. Both are
displayed in �g.2.1. We can also arrive at the similar pictures using the fact

�ievp� ie2v2

Figure 2.1: Contributions from the scalar �eld

that the Goldstone bosons have non-vanishing couplings to the electromagnetic
current which couples to the gauge �eld A�:

h0jJ�(0)j�(p)i = ip�F�: (2.63)

This also yields the same coupling iF�p� where we can identify F� = v.
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To calculate the propagator for A� we �rst evaluate �(p2) de�ned from
the vacuum polarisation tensor

i���(p2) = e2
Z

d4xeipxh0jTJ�(x)J�(0)j0i = i(g��p2 � p��)�(p2) (2.64)

which, to the lowest order, we �nd

=
ie2v2q��

+
�i(p�p�=p2)e2v2

= ie2v2g�� � i
p2p

�p�e2v2

= ie2v2
 
g�� � p�p�

p2

!
(2.65)

which means �(p2) = e2v2=p2. Notice that this vacuum polarisation tensor is
transverse; namely,

p���� = 0 : (2.66)

Moreover, since the �(p2) is singular when p! 0, it cancels exactly the massless
pole p2 = 0 of the gauge boson propagator given in (2.60). This can be seen by
recalling that the A propagator, constructed from a geometric series, is given by

D�� = (D0 +D0�D0 + : : :)��

= � i
p2

 
g�� � p�p�

p2

!"
1 +

e2v2

p2 + : : :
#

= �i
g�� � p�p�=p2

p2 �m2
A

(2.67)

= �i
D��

0

(1� �(p2))
: (2.68)

Put di�erently, the A acquires mass through its pole (of its propagator) at
mA = ev. It is important to emphasise that the Goldstone boson does not
appear as an external particle (because it is not the physical one). So it maybe
useful to �nd the other gauge that removes the coupling evA�@��, which is
found to be accomplished by the gauge �xing

� 1
2

(@�A� � �ev�)2; : (2.69)

This gauge, which was shown by 't Hooft to preserve renormalisability [51], is
known as the R� gauge (�R� stands for renormalisable). With this gauge �xing,
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the �rst two lines of (2.59) becomes

L � �1
4
F ��F�� � 1

2�
(@�A�)2 +

1
2

(@�'0)2 +
1
2

(@��0)2

+
1
2
m2
AA

�A� � 1
2
�m2

A�
02 ; (2.70)

leading, when being regarded as a free Lagrangian, to the propagator for the
gauge boson

A� : � i
p2 � e2v2

"
g�� � (1� �)p�p�

p2 � �e2v2

#
= �i

g�� � p�p�=m2
A

p2 �m2
A

� i
p�p�=m2

A

p2 � �m2
A

(2.71)

which can be easily seen to reduce to the unitary gauge (massive gauge �eld) in
the � ! 1 limit. The unphysical pole in the propagator of A� can be shown
to cancel exactly with the other from the propagator for �0. The Landau gauge
and the 't Hooft-Feynman gauge are recovered in the � = 0 and � = 1 limits
respectively.

The result in this discussion can be easily extended to the non-Abelian
case. The expression for the mass of the gauge boson (2.52) can be rewritten
(with some obvious generalisations) in this way

g2

2
(T cvy)i(T dv)iW 0c

�W
0d� (2.72)

which gives us the mass matrix

m2
ab = g2(T av)i(T bv)i : (2.73)

Moreover, the interaction between the gauge �elds W and the Goldstone bosons
is then generalised to

� igW a
�@

��i(T av)i (2.74)

which leads to the transition amplitude

� i
= gp�(T av)i (2.75)

and eventually to the W propagator

= im2
ab

 
g�� � p�p�

p2

!
: (2.76)
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When there are more than one coupling in the theory there will be more
amplitudes of the form like (2.75) corresponding to di�erent couplings between
di�erent kinds of the Goldstone bosons and the gauge �elds.

2.3 Gauge Theory for Electroweak Interaction

From now on we will work with the assumption in mind that interactions are
explained by local symmetries. When gravity is excluded, the �local symmetries�
then reduces to �gauge symmetries� and we are will be ready to proceed with
the tools on hand. We begin in 2.3.1, where we will argue heuristically to
�nd the suitable gauge group. Then we associate particles their electroweak
quantum numbers, grouping them into doublet-singlet structure. The physical
current like the electromagnetic current will be constructed and expressed in
terms of currents corresponding to the electroweak gauge group. These currents
will interact with the gauge �elds. The detail of the latter will be shown in
section 2.3.2. All those sections alone will be, to some degrees, useless because
the concepts of electric charge and so on will not make any sense unless the
symmetry breaking occurs. So in section 2.3.3 we present the usual strategy
of the spontaneous symmetry breaking; namely the BEH (Higgs) mechanism
triggered by a fundamental scalar. After that we will show, in section 2.3.4,
how fermions, whose masses protected by chiral symmetry, receive masses by
interacting with the Higgs particle. Finally the idea of custodial symmetry
SU(2) will be introduced in 2.3.5.

2.3.1 The Gauge Group for Electroweak Interaction

In this section we will start with a �given� structure of the fermions and their
interactions with the bosons that are known so far according to experimental
observations of weak and electromagnetic processes. We shall seek for the
appropriate gauge group in order to realise the theory as a gauge theory. Then
we can study some properties of the corresponding gauge �elds and imagine how
they should look like after spontaneous symmetry occurs, pretending that we
do not care (for the moment) that they are massless.

Weak interaction can be explained by the prescription of interactions that
is rather similar to the electromagnetic one; namely by introducing 3 (spin-1)
bosons and let them couple with fermions. Since two of the bosons are charged,
the interaction between these bosons and a photon is inevitable. Therefore,
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it is very tantalising to look for a theory that �uni�es� electromagnetic and
weak interactions into the electroweak one. The main task is simply to look
for a suitable gauge group. By �suitable� we mean that the group must not
only be large enough to contain at least 4 gauge bosons and allow us to �t
all known fermions into some of its representation, but the group should also
require minimal introduction of new particles. The SU(2) seems to be a good
candidate but is, however, not good enough (see next paragraph). Therefore,
we will look for an extension of this group.

We will list the �elds that the sought-for theory is supposed to handle.
The three lepton families are0@�e

e�

1A
L

;

0@��
��

1A
L

;

0@��
��

1A
L

; e�R ; ��R ; ��R ; (2.77)

and are now regarded as doublets and singlets (not just a collection of �elds).
The right-handed electron, muon, and tau are also needed since they participate
in electromagnetic interaction. They are expected to appear as (electroweak)
singlets because charged-changing current weak interaction does not �touch�
right-handed particles or left-handed anti-particles. The right-handed neutrino
�elds are not needed because they do not participate in weak interaction. The
left-handed doublet LL and right-handed singlet lR are given explicitly by

LlL =
1� 5

2

0@�l
l

1A ; lR =
1 + 5

2
l ; (2.78)

and similarly

�LlL =
�
��l �l

� 1 + 5

2
; �lR = �l

 
1� 5

2

!
; (2.79)

Quarks appear in quite a similar structure except that all of them have right-
handed partners0@u

d0

1A
L

;

0@ c
s0

1A
L

;

0@ t
b0

1A
L

; uR ; d0R ; cR ; s0R ; tR ; b0R : (2.80)

Notice that the arrangement of fermions in doublets and singlets in this way
automatically leads to parity violation in weak interactions. However, it is
important to remember that this does not explain �why� parity is violated. It
just describes �how�. Also remember that members of the multiplet are exactly
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the same before electroweak symmetry is broken. In addition, their masses are
protected by chiral symmetry. Only after the spontaneous symmetry breaking
occurs will the de�nitions of masses and charges be technically reasonable.

A uni�cation with electromagnetism means that we must incorporate the
electric charge Q into the group as a symmetry generator. Mathematically, this
immediately rules out the SU(2) group because the generator of SU(2) must be
traceless (T3 is not quali�ed for being electric charge: neutrinos are neutral while
electrons have charge �1). Phenomenologically, the group SU(2) is also rejected
as we have seen that there is a neutral gauge boson for weak interaction. In
other words, SU(2) can provide only 3 gauge bosons while 4 are required. Then
the next candidate that is just big enough to allow the room for 4 gauge bosons,
which is the one that nature seems to chose, is the group SU(2)� U(1).

The U(1) in SU(2) � U(1) does not correspond directly to pure electro-
magnetism (i.e., its charge cannot be the electromagnetic one) and there is no
physical reason for it to be so. Actually the U(1) charge cannot be Q since Q
has a preferred direction in the weak isospin space as it distinguishes e from �e
and so on. In other words, Q is not a �constant of motion�. What we need is a
new quantum number corresponding to an operator which commutes with the
SU(2) generators Ta. Let us call it the weak hypercharge Y . The connection
between the U(1) (hypercharge) or its gauge boson, which we will call B�, and
electromagnetism or A� (photon) can be identi�ed only with the use of further
physical arguments. So it is common to denote the gauge group for electroweak
interaction as SU(2)L � U(1)Y .

The form of Y can be found by observing that for each lepton or quark
family, the electric charge Q can be decomposed into two parts. The �rst is the
right-handed part called QRight which obviously commutes with Ta. The second
is the left-handed part9 QLeft that can be further broken down into

QLeft = T3 � 1
2

Z
d3xLylLl (2.81)

for the lepton family, and

QLeft = T3 +
1
6

Z
d3xQyqQq : (2.82)

for the quark family. Here the indices l and q stand for lepton or quark families
9It should be clear from the context that these do not mean the left- or right-handed quark

doublets.
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(not summed here). Since the second part of QLeft commutes with Ta, we then
see that Y / Q� T3. So we set a convention

Y = 2(Q� T3) : (2.83)

Let us denote the SU(2)L coupling as g and the U(1)Y coupling as g0. Before
proceeding further, let us notice that though we can start with g0 = g, there is no
symmetry that relates these two couplings (e.g., we cannot write Y in terms of
a commutator of the SU(2) generators). This also means they are renormalised
di�erently and tend to di�er from one another as we watch them �run�. Once we
have the de�nition (2.83) and the fermions structures (2.77) and (2.80), we can
assign the hypercharge to all fermions as shown in Table 2.1. The assignment

Table 2.1: Hypercharge assignments for fermions.
fermions T T3 Q Y

�e; ��; �� 1/2 1/2 0 -1
eL; �L; �L 1/2 -1/2 -1 -1
eR; �R; �R 0 0 -1 -2
uL; cL; tL 1/2 1/2 2/3 1/3
d0L; s0L; b0L 1/2 -1/2 -1/3 1/3
uR; cR; tR 0 0 2/3 4/3
d0R; s0R; b0R 0 0 -1/3 -2/3

of hypercharges leads to, for example, the electron's electromagnetic current

J (e)�
em = ��e�e = ��eL�eL � �eR�eR

= ��LeL
�

0@0 0
0 1

1ALeL � �eR�eR

= ��LeL
�
�1

2
� T3

�
LeL � �eR�eR ; (2.84)

and the charge changing current

J (e)�� = �e�(1� 5)e = 2�LeL
�

0@0 0
1 0

1ALeL = 2�LeL
�T�LeL (2.85)

J (e)�
+ = 2�LeL

�T+LeL (2.86)
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where T� = T 1 � iT 2. So it is now clear how these currents are related to the
SU(2) and U(1) structures. In addition, notice that (2.83) allows us to �de�ne�

J�em = J�3 +
1
2
J�Y ; (2.87)

where
J�a = �LlL

�T aLlL : (2.88)

The de�nition of the hypercharge also implies that the gauge interaction
term contains

gT aW a
� +

1
2
g0Y B� = g(T 1W 1

� + T 2W 2
�) + T 3(gW 3

� � g0B�) + g0QB� ; (2.89)

where the factor 1=2 is a convention (recall that T a = � a=2). By inspecting at
one of the neutral (charge-preserving) part, we see that the term (gW 3 � g0B)
must corresponds to the Z due to its coupling with T 3. Moreover, since A is
orthogonal and linearly independent of Z we then have the relations

Z� = 1p
g2+g02

(gW 3
� � g0B�) = �B� sin �W +W 3

� cos �W (2.90)

A� = 1p
g2+g02

(gB� + g0W 3
�) = B� cos �W +W 3

� sin �W ; (2.91)

where the �W from

sin �W =
g0p

g2 + g02 ; cos �W =
gp

g2 + g02 (2.92)

is de�ned as the weak mixing angle or the Weinberg angle. After using (2.90)
for Z and inverting the expression (2.90) and (2.91) for B and W 3, we put them
into (2.89) and obtain

gT aW a
�+

1
2
g0Y B� =

gp
2

(T+W+
� +T�W�

� )+
g

2 cos �W
(2T 3�2Q sin2 �W )Z�+eQA� ;

(2.93)
where W�

� = (W 1
� � iW 2

�)=
p

2, and

e = g sin �W = g0 cos �W (2.94)

which is de�ned by inspecting the coupling between A� and Q. Notice that the
factor 2 in the Z� term in (2.93) is a convention - to make it parallel with (2.87).
Observe that Z has non-zero coupling with neutrinos as expected.
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2.3.2 Interactions Between the SU(2)�U(1) Gauge Fields and

Fermions

Now we (should) have convinced ourselves how the gauge SU(2)L � UY (1)
group has something to do with the physical �elds (W�; Z;A) for the (low-
energy) e�ective weak interaction and the electromagnetic one. The next task
is then to work out explicitly their interactions with matter �elds. This can
be accomplished in the familiar way; i.e., by introducing the gauge-current
coupling. Here we will concentrate on the leptonic part of the theory. The
hadronic (quark) part will look somewhat similar. By inspecting (2.89) we �nd
that it is reasonable to write the neutral current10 as

J�NC = 2J�3 � 2 sin2 �WJ�em ; (2.95)

so that

Lint = gJa�W a
� +

g0
2
J�YB�

=
g

2
p

2
(J+�W+

� + J��W�
� ) +

g
2 cos �W

J�NCZ� + eJ�emA� : (2.96)

Observe that the neutral current for electron (family) can be written out
explicitly as

J (e)�
NC = 2�LeL

�T 3LeL � 2 sin2 �W
�
�LeL

�
�1

2
� T 3

�
LeL � �eR�eR

�
= �LeL

�

0@1 0
0 � cos 2�W

1ALeL + 2 sin2 �W �eR�eR

=
1
2

���(1� 5)� + �e�
��

2 sin2 �W � 1
2

�
+

1
2
5
�
e

= ���(C�
V � C�

A
5)� + �e�

�
Ce
V � Ce

A
5
�
e ; (2.97)

where

C�
V =

1
2
; C�

A =
1
2
; Ce

V = �1
2

+ 2 sin2 �W ; Ce
A = �1

2
: (2.98)

The universality and the fermion family replication tell us that the superscripts
on each lepton family are actually overkill; i.e., all neutrinos have CA = CV = 1

2

and all e, �, and � share the same CV 's and CA's. The total contribution from
10In some literatures, the �neutral current� include the electromagnetic current which is also

a charge-preserving (neutral) type.
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a number of left-handed lepton doublets LiL =

0@�i
li

1A
L

is then

J�NC =
1
2
X
�i

��i�(1� 5)�i +
X
li

�li�(CV � CA5)li (2.99)

together with
CV = T 3 � 2Q sin2 �W ; CA = T 3 ; (2.100)

In some cases, it is useful to introduce the �chiral coupling�

CL = CV + CA = 2(T 3 �Q sin2 �W ) (2.101)
CR = CV � CA = �2Q sin2 �W : (2.102)

Then the leptonic neutral current part of Lagrangian can be written as

LZ =
g

2 cos �W

X
i

n
�i�(1� 5)�i + li

h
CL�(1� 5) + CR�(1 + 5)

i
li
o
:

(2.103)
This means the neutral current of the SU(2)�U(1) theory can be expressed in
terms of the variables that are frequently considered as

LNC = �X
i
e�li�iA� +

1
2

 
M2

WGF
p

2
cos2 �W

!1=2X
i
�i�(1� 5)�iZ�

+
1
2

 
M2

WGF
p

2
cos2 �W

!1=2X
i
li
"
(2 sin2 �W � 1)�(1� 5)

+2 sin2 �W�(1 + 5)
#
liZ� : (2.104)

Similar terms, with slight modi�cations of the chiral couplings, are applicable
when quarks are brought in.

It is important to emphasise that what we have done so far is mostly
to convince ourselves that the SU(2)L � U(1)Y gauge �elds are related to the
physical �elds11. In other words, we have used a bottom-up approach. We still
have not used one of the essential features of gauge theory, namely the coupling
between the gauge �elds and the particle �elds via the gauge covariant derivative.
This is considered as a top-down approach where what we have found so far can

11Though these �elds must be massless at this stage, we know that this can be resolved by
the BEH (Higgs) mechanism.
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be summarised in the Lagrangian

L =
X
i

i �	Li�D�	Li +
X
i

i �	Ri�D�	Ri

�1
2

Tr
n
F a
��T

aF ��aT a
o� 1

4
B��B�� (2.105)

=
X
l

i�LiL
�D�LiL +

X
l

i�liR
�D�liR

+
X
i

i �Qi
L

�D�Qi
L +

X
i

i�uiR
�D�uiR +

X
i

i �diR
�D�diR

�1
4
F a
��F

��a � 1
4
B��B�� ; (2.106)

where 	 stands for all fermions and the D� is the covariant derivative

D� = @� � igT aW a
� � i

g0
2
Y B� ; (2.107)

or, using (2.96),

D� = @� � i
gp
2

�
T+W+

� + T�W�
�

�� i
g

2 cos �W

�
2T 3 � 2 sin2 �WQ

�
Z� � ieQA�

(2.108)
and

F a
�� = @�W a

� � @�W a
� + g"abcW b

�W
c
� ; B�� = @�B� � @�B� : (2.109)

The Lagrangian (2.106) contains all the �elds corresponding to all of the
elementary particles except the gluons of the strong interaction. The particle
content of the standard model (including quarks and gluons) can also be summed
up according to the way they transforms under the SU(3)C � SU(2)L � U(1)Y :

(3;2; 1=3)L ; (3;1; 4=3)R ; (3;1;�2=3)R ; (1;2;�1)L ; (1;1;�2)R ;

(8;1; 0) ; (1;3; 0) ; (1;1; 0) (2.110)

Though these structures may not look very satisfactory at �rst, they tell us that
all the particles cannot have bare masses. We say that SU(3)C�SU(2)L�U(1)Y
gauge symmetry protects the bosons from being massive and the chiral symmetry
does the same job with the fermions. This is not very satisfactory since nature
has no massless particles but photon and the gluons. Many ways of generating
masses are proposed and one of them is the BEH mechanism.
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2.3.3 Electroweak Symmetry Breaking

It is widely believed that the mechanism is the promising one, maybe due to
its simplicity, its analogy with superconductivity, or its minimal requirements
of new particles (just one). In this section we will consider the BEH mechanism
in the �minimal� sense; i.e., only one Higgs doublet will be needed. Before we
start, let us notice the important fact: when particles get their mass via the
BEH mechanism, their mass must be proportional to the vacuum expectation
value of a scalar �eld. This means that their mass must not be too di�erent from
each other and must lie somewhere below the energy scale of the theory (the
vacuum expectation value). However, we shall see in 3.4.2.2 that this argument
is true except for the Higgs itself (or any fundamental scalar particle).

The ingredient for the BEH mechanism to be discussed in the conven-
tional standard model is a scalar �eld with non-zero vacuum expectation value.
As we have said earlier, the reason why it exists is rather ad hoc. In other words,
the fundamental scalar �eld must exist, �otherwise the symmetry will not break�.
For the pattern of symmetry breaking, the simplest choice is to argue that the
global symmetry is exactly the same as the gauge symmetry in question. Since
the upper bound of the photon mass is very low, it is then assumed that the
U(1)em symmetry is exact is the symmetry of the vacuum and hence

SU(2)� U(1) �! U(1) ; (2.111)

which will be eventually identi�ed with the SU(2)L � U(1)Y ! U(1)em. One of
the Lagrangians that can do the job is

L(�) = @��y@��� �2�y�� �(�y�)2 ; (2.112)

with �2 < 0 . The pattern (2.111) requires that all the generators of the SU(2)L�
U(1)Y are �broken�; i.e.,

T ah�i0 6= 0 ; and Y h�i0 6= 0 (2.113)

while
Qh�i0 =

�
T 3 +

Y
2

�
h�i0 = 0 : (2.114)

Observe that we can write the T 3-Y combination of the broken generator as
T 3 � Y

2 which will later be associated with the Z. So the simplest form of the
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� that can interact with the SU(2) gauge �elds is then a doublet12, often called
the Higgs doublet H,

H =

0@h+

h0

1A (2.115)

with Y = +1 . To ensure that the vacuum does not carry electric charges, the
vacuum can be aligned13 such that

hHi0 =

0@ 0
vp
2

1A ; (2.116)

with v2 = ��2=�. How about the triplet? In case we want to include the
�Higgs� triplet, there are more freedom on assigning the charges of the �elds.
For example, we can have a triplet consisting of �++;�+;�0, or �+;�0;��, etc.
In the �rst case we have

� =

0BBB@�++

�+

�0

1CCCA (2.117)

together with the associated isospin

T 3(�) =

0BBB@ 1
0
�1

1CCCA : (2.118)

This triplet will have the hypercharge assignment Y = 2 (from Q = T 3 + Y=2).
The isospin generators T a for the triplet version are given in the appendix C.3.

Following the section 2.2.3, we parametrise the Higgs doublet as

H = exp
�

i
T a�a

v

�0@ 0
v+hp

2

1A ; (2.119)

where �a's and h now have zero vacuum expectation values. The �eld h
corresponds to the so-called Higgs particle. After that we couple the system
de�ned by the Lagrangian (2.112) with the electroweak gauge �elds. In this
state we may say that the SU(2)�U(1) is promoted to a local symmetry. Then
the gauge �xing �a = �a=v clearly removes the unphysical degrees of freedom,

12Notice that we have introduce the speci�c symbol H for the Higgs doublet, rather than the
�. The symbol � will be used for other purposes in later chapters.

13For more detail on vacuum alignment, see section 4.1.
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leaving

H =
v + hp

2

0@0
1

1A : (2.120)

Therefore, the Gauge invariant Lagrangian reduces to a simple (but less elegant)
form

L =

�������@� � igT aW a
� � ig0Y

2
B
� (v + h)p

2

0@0
1

1A������
2

��2

2
(v + h)2 � �

4
(v + h)4

=

������
 
@� � i

gp
2

�
T+W+

� + T�W�
�

�
�i

g
2 cos �W

�
2T 3 � 2 sin2 �WQ

�
Z� � ieQA�

!
(v + h)p

2

0@0
1

1A ������
2

��2

2
(v + h)2 � �

4
(v + h)4 (2.121)

or

L =
1
2
@�h@�h� g2v2

4
W+
� W

�� +
1
2

g2v2

4 cos2 �W
Z�Z� � 1

2
(�2�2)h2

+
g2v
2
hW+

� W
�� +

g2v
4 cos2 �W

Z�Z� +
�2

v
h3

+
g2

4
h2W+

� W
�� +

g2

8 cos2 �W
h2Z�Z� +

�2

4v2h
4 : (2.122)

By observing the quadratic terms listed above, we see that the SU(2) gauge
boson are massive and identify

M2
W =

g2v2

4
; (2.123)

as well as
M2

Z =
g2v2

4 cos2 �W
=

M2
W

cos2 �W
=
g2 + g02

4
v2 : (2.124)

Notice that the mass terms are de�ned a bit di�erently; i.e., M2
WW+

� W�� and
1
2M

2
ZZ�Z� . We see that the quadratic term A�A� is absent and the photon is

massless. However, the price we have to pay in a gauge theory with SSB is the
introduction of the Higgs particle. Its mass is given by

M2
h = �2�2 = 2�v2 : (2.125)
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Without quantum e�ects (see the section 3.1.5), this value can be anything in
principle, including a value very close to zero. It cannot be predicted within
the framework of the standard model so that it (Mh) has to be taken from
experiments. Unfortunately, no one has ever seen the Higgs so far and we only
know that v2 � (246 GeV)2. Nevertheless, we can still learn something about
the mass of the Higgs. Recall that what we have done so far relies on the validity
of perturbation technique. So it is required that � < 1 which means

M2
h < (350GeV)2 (2.126)

or else perturbation theory will break down.

Still, the masses of the W 's and Z can be evaluated from the low energy
phenomenology. Using the �matching� relation between the electroweak coupling
and the Fermi constant

g2

8M2
W

=
GFp

2
; (2.127)

(2.123) and the value of the Fermi constant obtained from experiment, we �nd
the vacuum expectation value parameter

v =
�p

2GF

��1=2 ' 246GeV (2.128)

or the vacuum expectation value of the scalar �eld hHi0 ' 175GeV. Then this
leads to the tree-level predictions

MW ' 78 GeV ; and MZ ' 89 GeV ; (2.129)

where the latter one (that predicts the mass of the Z) is one of the prominent
features of the model.

2.3.4 Fermion Masses

In this section we will have a quick glance on how quarks become massive within
the conventional BEH mechanism. The results of the previous section allow
us to safely say that masses of the gauge �elds in the spontaneously broken
gauge theory are the consequences of the interactions between the corresponding
particles and the Higgs doublet. So it is expected that fermions (leptons and
quarks, to be speci�c) can be �dragged� in a more or less similar way. The
problem is that the couplings between scalars and fermions do not originate from
the gauge interactions, so we do not really know what �forms� of interactions to
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put in. The gauge symmetry of the Lagrangian only tells us what cannot be put
in but does not tell us what what to look for. Thus, the usual strategy applies:
start with the simplest one that is renormalisable, then leave the remaining works
to experimentalists. In other words, the mass of the fermions must be thought
of as free parameters in the context of the standard model and only experiments
will tell what their values are. Since there are many kinds of fermions in the
theory, their coupling strengths may di�er by many orders of magnitude - from
� 10�6 for an electron to � 1 for a top quark. Again, the standard model do
not have explanations for this.

The simplest gauge invariant form of scalar-fermion interaction is the
�h  � Yukawa interaction

LY � �yf 0
h

�f 0R(HyFL) + ( �FLH)f 0R
i

= �yfvp
2

h
�f 0Rf 0L + �f 0Lf 0R

i
= �yf 0vp

2
�f 0f 0 � yfp

2
�f 0f 0h ; (2.130)

where
FL =

0@f
f 0

1A
L

(2.131)

This readily tells us that the mass of the T3 = 1
2 member of the SU(2) fermion

doublet is
mf 0 =

yf 0vp
2
: (2.132)

This also says that the coupling between the Higgs and the fermions is
proportional to the fermion's mass. For example, we have

ye =
p

2me

v
� 2� 10�6 : (2.133)

Observe that while this kind of mass term is �ne for the leptons as the neutrinos
are automatically massless, it is not su�cient to provide any of the T3 = �1

2

quarks. Thus we have to ��ip� the Higgs doublet in a speci�c way; i.e., we
introduce the conjugate of H:

~H = i� 2H� =

0@ h0�

�h�
1A ; (2.134)

which is also an SU(2) doublet, with Y = �1. It is clear that this will lead
to the masses of the up-type quarks when the scalar �eld receives the vacuum
expectation value. So the general Yukawa interaction between the scalar and
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fermions in the SU(2)� U(1) theory is supposed to be of the form

LY = �yil(�LiLH)liR � yid( �Qi
LH)diR � yiu( �Qi

L
~H)uiR + h:c: : (2.135)

However, this is not entirely correct. There is no a priori reason why quarks
must pair up within their own family member, which is de�ned by weak
interaction, and interact with the Higgs. So the following couplings are also
possible

( �Qu
L

~H)uR ; ( �Qu
LH)dR ; ( �Qu

LH)sR ; ( �Qu
LH)bR

( �Qc
LH)dR ; ( �Qc

L
~H)cR ; ( �Qc

LH)sR ; ( �Qc
LH)bR

( �Qt
LH)dR ; ( �Qt

LH)sR ; ( �Qt
LH)bR ; ( �Qt

L
~H)tR

+h:c: (2.136)

Each of them requires its own coupling constant (not all independent) which
must be chosen so as to give the correct quark masses; i.e., the quark �elds
u; d; c; s; t, and b are the mass eigenstates not the electroweak (gauge) eigenstates.

2.3.5 Custodial Symmetry SU(2)

What we have done so far was to assume the existence of the complex scalar
doublet to break the global (and hence the gauge) symmetry SU(2) � U(1) !
U(1). In this section we shall see that this SU(2) � U(1) is not the largest
symmetry the Higgs system can have and study the consequences.

Let us start with the Higgs system alone, neglecting all the gauge
symmetries. This system is described by the Lagrangian (2.112), rewritten here,

L(H) = @�H
y@�H � �2HyH � �(HyH)2 : (2.137)

Also recall that we have the conjugate given by (2.134)

~H = i� 2H� =

0@ h0�

�h�
1A : (2.138)

The point is that we can treat both H and ~H on equal footing by introducing a
matrix

� � p2
�

~H;H
�

=
p

2

0@ h0� h+

�h� h0

1A (2.139)
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which satis�es

�y� = 2HyHI = 2Idet � (2.140)

and is pseudo-real (see the appendix A.2) via

�y = � 2�� 2 : (2.141)

Then the Lagrangian (2.137) becomes

L(�) =
1
4

Tr(@��y@��) +
�2

4
Tr(�y�)� �

16

h
Tr(�y�)

i2
: (2.142)

Clearly the Lagrangian has an SU(2)L�SU(2)R global symmetry which will be
spontaneously broken to the SU(2) when

h0j�j0i = v1: (2.143)

Neither the left- or the right-handed transformations leaves the vacuum expec-
tation value invariant

Lh0j�j0i 6= h0j�j0i ; Rh0j�j0i 6= h0j�j0i (2.144)

but their combinations Ry = L does; i.e.,

Lh0j�j0i 6= h0j�j0iLy = Lh0j�j0i 6= h0j�j0i : (2.145)

Consequently the Lagrangian (2.142) is equivalent to the linear sigma model
Lagrangian introduced in (2.32), except for some irrelevant di�erences in the
de�nitions of the couplings. Observe that now we have a set of degenerate vacua
parametrised by an SU(2) transformation. So we arrive at an interesting result:
when all the electroweak interactions are switched o�, the Higgs Lagrangian
alone has a global symmetry that is larger than that is required by the
electroweak symmetry of the standard model. This extra symmetry on the
(pure) Higgs sector is known14 as a custodial symmetry SU(2) for a reason
that we shall see in this section and in the section 4.1.1.

If we follow the usual strategy of the sigma model and gauge all the global
SU(2)L�SU(2)R we would have seen that out of the 6 gauge bosons (one triplet
for the SU(2)L and the other for the SU(2)R), only 3 would have become massive

14Some literature refer to the global SU(2)R as the custodial symmetry, while some prefer to
mention the whole SU(2)L � SU(2)R.
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while others remain massless. However, we know that nature did not chose this
path and only the SU(2)L and U(1) � SU(2)R are gauged. Here, 4 gauge bosons
are massless. To see things more clearly, observe that a local SU(2)L � U(1)Y
transformation on H(x)

H �! e�ig�a(x)Tae�ig0�(x)YH (2.146)

is transferred to the �(x) �eld as

� �! e�ig�a(x)Ta�eig0�(x)Y T 3 (2.147)

where T a = � a=2. In addition, notice that the T 3 is attached at the U(1) part due
to the di�erent hypercharges of the two Higgs doublets. Then the introduction
of electroweak symmetry explicitly breaks the global SU(2)L � SU(2)R. The
dangerous part comes from the hypercharge coupling as the U(1)Y is planted in
the SU(2)R part, as a subgroup, of the transformation (2.147). This equation
tells us that to gauge the sigma model (2.142), we introduce the SU(2)L�U(1)Y
covariant derivative on the �(x)

D�� = @�� + igW a
�T

a�� ig0Y �B�T 3 : (2.148)

Consequently, the gauge invariant Lagrangian is

L(�) =
1
4

Tr(D��yD��) +
�2

4
Tr(�y�)� �

16

h
Tr(�y�)

i2
: (2.149)

In this way we can reconstruct the standard model using the � �eld instead
of the Higgs doublet and follow the usual strategies. Observe that the Yukawa
couplings which are allowed by the electroweak gauge symmetry explicitly break
the global SU(2)L � SU(2)R as well.

As we have said earlier, not all the electroweak interaction breaks the
custodial symmetry, only the U(1)Y does. When the g0 is turned o�, we have
cos �W = 1, and the covariant derivative reduces to

D�� = @�� + igW a
�T

a� : (2.150)

This adds the global SU(2)R
� �! �Ry (2.151)

back to the Lagrangian, recovering the SU(2)L�SU(2)R global symmetry. Since
W a
� is an SU(2)R singlet, it is also a SU(2)L+R triplet. Then the action of
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covariant derivative on the vacuum is

D��0 = igW a
�T

a�0 = i
gv
2

0@ W 3
� W 1

� � iW 2
�

W 1
� + iW 2

� �W 3
�

1A (2.152)

leading to the mass term

1
4

Tr(D��y0D��0) =
g2v2

4
W a�W a

� (2.153)

withMW� = MW 3, as expected. In this aspect, we can view the equality between
the masses of the charged and neutral bosons

M�2
W

M2
W 3

= 1 (2.154)

as a result of the global symmetry SU(2)L � SU(2)R. Note that when the
electromagnetic interaction is absent, the weak isospin is strictly valid and the
Z mass would be the same as the W mass.

We can go further by bringing back the hypercharge which results in

D��0 = igW a
�T

a�0 � ig0�0B�Y T 3 = i
gv
2

0@W 3
� � g0

g B� W 1
� � iW 2

�

W 1
� + iW 2

� � �W 3
� � g0

g B�
�1A

= i
gv
2

0@ Z�
cos �W

W 1
� � iW 2

�

W 1
� + iW 2

� � Z�
cos �W

1A : (2.155)

In other words, the `hypercharge� interactions corresponding to the neutral and
electromagnetic ones introduce the di�erence between the mass of the charged
bosons and the neutral boson Z�

M2
W

M2
Z

= cos2 �W : (2.156)

This brings us to an important quantity - the rho parameter

� � M2
W

cos2 �WM2
Z

= 1 ; (2.157)

which is respected at tree-level while the value obtained in the lab deviates
very slightly. Hence, it can be said that the global SU(2)L � SU(2)R symmetry
protects the relation (2.157) between the masses of the electroweak gauge bosons;
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and hence its name the custodial symmetry15

The other bene�t the custodial symmetry provides comes from, again,
the very tenuous (but calculable) deviation from the tree-level prediction � �
0:99� 0:01. The other essential feature of the �-parameter is that it is sensitive
to the additional Higgs �elds. To see this, let us consider a system consisting of
the Higgs �elds (scalar) hn in various representations Rn of SU(2), each comes
with a T 2 eigenvalue Tn(Tn + 1). By restricting ourselves to neutral vacuum
expectation values, we can write

D�vn ! g
2

h
T+W+

� + T�W�
� + gT 3W 3

� � g0T 3B�
i
vn (2.158)

which we can easily evaluate Pn(D�vn)yD�vn. Then the mass of the gauge �elds
are written in terms of the eigenvalues of these T 2 and T 3

n of T 3

M2
W =

1
2
g2Xh

Tn(Tn + 1)� (T 3
n)2
i
v2
n

M2
Z =

�
g2 + g02

�X
(T 3

n)2v2
n (2.159)

where vn is the vacuum expectation value of the neutral scalar �eld in the nth

representation. Notice that these formulae make sense only when all the Higgs
are properly aligned (see section 4.1.2) so that the SU(2) part of the electroweak
symmetry is broken (not the U(1)). Then the �-parameter becomes

� =
P

[Tn(Tn + 1)� (T 3
n)2] v2

n

2
P

(T 3
n)2v2

n
: (2.160)

This relation put a strong constraint on the form of the Higgs; in other words,
only the Higgs doublets are welcome. For future references we write

M2
W =

"
g2

g2 + g02
P

[Tn(Tn + 1)� (T 3
n)2]v2

n=2P
T 2

3 v2
n

#
M2

Z : (2.161)

The moral of the story is that, as we shall see in section 4.1.1, there are
many ways to incorporate the custodial symmetry to the theory, either with
or without the fundamental scalar. What is important is the breaking global
symmetry which also implies the Goldstone bosons which will eventually be the

15The name custodial symmetry is fairly generic and may apply to other symmetries that
protect some particles from getting large mass. Hence, in general, we may refer the custodial
symmetry to a symmetry protecting the small value of a parameter from receiving large radiative
corrections (the vanishing of the parameter leads to a symmetry forbidding radiative corrections
from inducing non zero value of that parameter). An example of this aspect of the custodial
symmetry is the chiral symmetry protecting the fermion mass presented in section 3.4.2.2.
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longitudinal component of the gauge bosons. In other words, these Goldstone
bosons were �seen�, though indirectly, in the labs. The excellent agreement of the
predicted � parameter and those measured in experiments convinces us that at
least the philosophy of spontaneous symmetry breaking should have something
to do with nature, one way or another.



CHAPTER III

QUANTUM EFFECTS IN THE STANDARD
MODEL

In this chapter we will study techniques for dealing with the quantum
e�ects in the standard model. Once we are accustomed with the idea we can
further analyse the problem they bring in. In the section 3.1, we will start
by studying how the radiative corrections (from particles running in loops) have
in�uences on the potential of the system which can eventually result in symmetry
breaking. Then in section 3.2, we will analyse some of the bounds on the mass of
the Higgs from the theory side. A brief review on the experimental constraints
will be presented in the section 3.3. After gathering things up, we will study
some shortcomings of the standard model that are relevant to the Little Higgs
in 3.4.

3.1 Coleman-Weinberg Mechanism

The goal of this section is to discuss how to �nd the true vacuum of the system
when spontaneous symmetry breaking occurs with quantum e�ects taken into
account. Basically, we will study a quantum �eld in the presence of a classical
external source (not necessary scalars) where the object that plays an important
role is the e�ective action and the e�ective potential. We shall eventually see
that spontaneous symmetry breaking can occur, due to radiative corrections,
even when we do not start with the �Mexican hat-like� potential.

A number of nice articles on the Coleman-Weinberg mechanism are
availables and will be our main references. They include, the original paper by
Coleman and (Erick) Weinberg themselves [52] (summarised in Pokorski [48],
Huang [53], and Cheng and Li [50]), papers by Sher [54] and Brandenberger
[55], as well as books by Rivers [56], Srednicki [57] and (Steven) Weinberg [58].

3.1.1 The Effective Action

Consider a Lagrangian describing an interaction between a scalar �eld � with an
external source J . Recall that the generating functional Z[J] for the full Green's
function constructed from a vacuum-to-vacuum transition amplitude, is related
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to the connected one, the W[J], by

Z[J ] = h0j0i =
Z
D� exp

�
iS[�] + i

Z
d4xJ(x)�(x)

�
=

1X
0

1
N !

(iW [J ])N = eiW [J ] ; (3.1)

where S[�] =
R

d4xL(�) and N is the number of connected components. Here
the W [J ] is expressed in terms of the connected Green's functions (sum of all
connected diagrams with n external �elds):

W [J ] =
X 1

n!

Z
d4x1 : : :d4xnG(n)

conn(x1; : : : ; xn)J(x1) : : : J(xn) : (3.2)

Then the classical �eld �c(x) is de�ned as a vacuum expectation value of �(x)
in the presence of the source

�c(x) =
h0j�(x)j0iJ
h0j0iJ =

�W [J ]
�J(x)

(3.3)

where the second equality tells us that it can be written in terms of the connected
diagrams. Then let us de�ne the (quantum) e�ective action, which is a functional
of the expectation value of the �eld in the presence of the source, as a Legendre
transformation (�dual�) of W [J ]

�[�c] = W [J ]�
Z

d4xJ(x)�c(x) ; (3.4)

where J(x) here is the current obtained, in terms of �c(x), from (3.3). This
description easily leads to the �dual equation of motion� of (3.3)

��[�]
��(x)

�����
�c

= �J(x) ; (3.5)

where quantum e�ects (loop corrections) are already included. The formula
helps us �nd the (external) �eld �(x) in the absence of the source as it is the
one that makes � extremum. This explains why � is called the e�ective �action�.
Observe, that if we assume that the vacuum expectation value of the �eld �(x)
is zero when the external �eld is turned o�; i.e.,

��[�]
��(x)

�����
J�0

= 0 ; (3.6)
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then the extremum condition is stated as

��[�c]
��c(x)

�����
�c�0

= 0 : (3.7)

Also notice that, by construction, W [J ] is also a Legendre transformation of
�[�], namely

W [J ] = �[�c]�
Z

d4x�c(x)J(x) ; : (3.8)

To illustrate the role of the � as the e�ective action and make things a bit
less abstract let us see what we will get if we use it instead of the usual action
S[�]; i.e., consider

exp fiW�[J; ~]g �
Z
D� exp

(
i
~

�
�[�] +

Z
d4xJ(x)�(x)

�)
(3.9)

where the dimensionless parameter called ~ is introduced. Next recall that for
every (connected) diagram, the number of un�xed internal momenta is equal
to the number of loops and that the overall factor of ~ is equal to ~L�1. This
means the L-loop term in W�[J; ~] carries a factor ~L�1. Thus, W�[J; ~] can be
expressed as a power series of ~ as

W�[J; ~] =
1X
L=0
~L�1W (L)

� [J ] (3.10)

which is dominated by tree-level (L = 0) diagrams in the ~! 0 limit. To isolate
the tree-level contributions in (3.10) we use the method of stationary phase
(also known as the steepest descent, or saddle-point approximation) to evaluate
the integral (3.9). Observe that the classical �eld, by de�nition, extremises the
combination

�[�] +
Z

d4xJ(x)�(x) (3.11)

and hence leads to

exp fiW�[J; ~]g / exp
(

i
~

�
�[�c] +

Z
d4xJ(x)�c(x)

�)
; (3.12)

giving, to order ~�1,

W (0)
� [J ] = �[�c] +

Z
d4xJ(x)�c(x) = W [J ] : (3.13)

In other words, the tree-level diagrams generated by the e�ective action �[�]
gives the complete connected diagrams and hence a complete description for
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scattering amplitude in the original theory that is described by the action S[�].

Now, let us leave the formalism for a moment and see how the e�ective
action is evaluated. First we try to work out the W [J ] in the path integral
Z[J ] = eiW [J ]=~ by using the saddle-point approximation where the saddle �point�
�s is obtained from

� [
R

d4y(L+ J(y)�(y))]
��(x)

�����
�s

= 0 : (3.14)

In the simple example where L = 1
2@

��@��+ V (�) we �nd

22�s + V 0(�s) = J(x) : (3.15)

Note that the �s depends on the structure of the potential and hence need not
be unique. Next, we write � = �s +

p
~��, expand the exponential of Z[J ] about

the saddle point, and then, to the lowest order in ~, we obtain

Z[J ] � e i
~ [S[�s]+

R
J�s]

Z
D�0 exp

�
i
Z

d4x
1
2

h
(@ ��)2 � V 00(�s)��2

i�
: (3.16)

As the second integral is now in the Gaussian form, we use the formulaZ
D� exp

�
�1

2

Z
d4x�(x)K�(x)

�
= (detK)�1=2 = (expfTr lnKg)�1=2 (3.17)

and arrive at

Z[J ] = exp
(

i
~

�
S[�s] +

Z
J�s

�
� 1

2
Tr ln[22 + V 00(�s)]

)
; (3.18)

which means, to order O(~),

W [J ] =
i
~

�
S[�s] +

Z
J�s

�
+

i~
2

Tr ln[22 + V 00(�s)] : (3.19)

By observing that �c = �W [J ]=�J = �s + O(~) allows us to replace �s by �c
within errors of O(~2). Then we �nally arrive at the Legendre transformation
(the e�ective action)

�[�c] = S[�c] +
i~
2

Tr ln[22 + V 00(�c)] +O(~2) : (3.20)

The techniques used here can be easily generalised to the case when fermions
and gauge �elds are taken into account.
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Now let us see what we can do after we have the e�ective action on hand.
The e�ective action can be expanded in the following ways: in powers of �c

�[�c] =
X
n

1
n!

Z
d4x1 : : :d4xn�(n)(x1; : : : ; xn)�c(x1) : : : �c(xn) ; (3.21)

or in position space, with the local term de�ned as the e�ective potential Ve�(�c),

�[�c] =
Z

d4x
�
�Ve�(�c) +

1
2
Z(�c)(@��c)2 + : : :

�
(3.22)

where Z(�c) is the wave function renormalisation, or in powers of momentum

�[�c] =
Z

d4x
X
n

1
n!

n
~�(n)(0; : : : ; 0)[�c(x)]n + : : :

o
: (3.23)

Note that �(n)(x1; : : : ; xn) is the proper vertex function (or one-particle irre-
ducible, 1PI, Green's function) and ~�(n) is its momentum space representation.
These set of expansions tell us that Ve� is e�ective in the sense that its nth

derivative is the sum of all one-particle irreducible diagram for the original
�eld with n vanishing external momenta; that is to say,

Ve�(�c) = � 1X
n=2

1
n!

~�(n)(0; : : : ; 0)[�c(x)]n : (3.24)

Observe that the summation starts from n = 2 since the tadpole diagrams can
be safely neglected1 because it is momentum dependent and can be subtracted
by a particular renormalisation for the mass counterterm anyway.

Using the e�ective action from (3.20) with the assumption that �c is a
constant when the source is turned o�, and using

Tr ln[22 + V 00(�c)] =
Z

d4x
Z d4k

(2�)4 ln[�k2 + V 00(�c)] ; (3.25)

we �nd that

Ve�(�c) = V (�c)� i~
2

Z d4k
(2�)4 ln

"�k2 + V 00(�c)
k2

#
+O(~2) ; (3.26)

where we have shifted the potential by a constant / � R d4k ln k2.

It is important to note that the reason that we use loop expansion is
because we want to deal with the expansion in terms of a parameter that

1Tadpoles do not disappear automatically since there is no symmetry argument that forbids
the existence of the tadpole here (unlike in QED).
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multiplies the Lagrangian so that the results are not a�ected by the shifts of
�elds, e.g., when symmetry is broken, or by the di�erent way of partitioning the
Lagrangian into free and interaction parts. Moreover, this expansion parameter
can even be set to 1 without ruining the convergence of the result since we can
always rescale the �elds in the Lagrangian to absorb the change. This is unlike
the situations in the usual perturbation theories where we expand the object of
interests in terms of the parameter (e.g, the coupling constant) that multiplies
a particular part of the Lagrangian.

3.1.2 Spontaneous Symmetry Breaking and Effective Poten-

tial

Radiative corrections are usually thought of as being small; i.e., we treat them
as perturbations. The point is that: despite of their size, if they induce terms
related to spontaneous symmetry breaking the e�ect will be enormous in the
sense that we may come up with a totally di�erent theory. So now we will
discuss how the e�ective action method works in the case when symmetry breaks
spontaneously; that is, when the vacuum expectation value of the external �eld
does not vanish and has a constant value v. Instead of (3.6), we now set

��[�]
��(x)

�����
J�0

= v ; (3.27)

so that
��[�c]
��c(x)

�����
�c=v

= 0 : (3.28)

Then it is found that the e�ective action generates the 1PI vertex function for
the shifted �eld �� = �� v.

The case we will take as an example is a self-interacting, ��4, massless
scalar �eld theory where the un-renormalised Lagrangian is

L =
1
2

(@��)2 � �
4!
�4 (3.29)

which clearly shows no signs2 of spontaneous symmetry breaking at tree level.
The generalisation to �n case is possible but not necessary since a theory having

2As we shall see in section 3.4.2.2, the choice of vanishing mass parameter for the scalar
�eld, though leading to interesting phenomena, is just as unnatural as others because there is
no symmetry protecting the mass of the scalar.



56

�n for n > 4 is not renormalisable. The (normalised Lagrangian) is then

L =
1
2

(@��)2 � �
4!
�4 +

1
2
Z(@��)2 � 1

2
B�2 � 1

4!
C�4: (3.30)

where the terms with coe�cients A, B, and C are counterterms introduced so
as to absorb the cut-o� dependence. Observe that since we did not assume the
re�ection symmetry � ! ��. Mass renormalisation counterterm must also be
introduced as we did not explicitly impose any reason to prevent it. Since the
structure of �4 does not allow any diagram with odd number of external lines,
we only have to consider the diagrams shown in (3.1) which gives a contribution

+ + + : : :

Figure 3.1: Loop diagrams for a �4 theory.

~�(2n)(0; : : : ; 0) = i
(2n)!
2n2n

Z d4k
(2�)4

"
(�i�)

i
k2 + i"

#n
; (3.31)

where the factor preceding the integral is a symmetry factor which is introduced
to avoid over-counting contributions from diagrams having the same structure.
Notice that 1=2n factor is due to Bose-Einstein statistics of the �eld. To one
loop, this results in the e�ective potential

Ve�(�c) =
�
4!
�4
c +

1
2
B�2

c +
1
4!
C�4

c + i
Z d4k

(2�)4

X
n

1
2n

"
(�=2)�2

c

k2 + i"

#n
=

�
4!
�4
c +

1
2
B�2

c +
1
4!
C�4

c +
i
2

Z d4k
(2�)4 ln

 
1 +

��2
c

2k2

!
=

�
4!
�4
c +

1
2
B�2

c +
1
4!
C�4

c +
��2

64�2�
2
c +

�2�4
c

256�2

 
ln
��2

c

2�2 � 1
2

!
(3.32)

where we have performed a Wick rotation to the momentum Euclidean space,
integrated using a large momentum cut-o� k2

E = �2, and discarded terms that go
to zero in the large � limit. The equation (3.32) also shows that the corrections
to �2 and �4 terms are quadratically, and logarithmically divergent respectively.
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Next, we will try to absorb the cut-o� parameter by imposing some
renormalisation conditions that �x the values of the counterterms. As usual,
the renormalised mass squared of the �eld is de�ned as the value of the inverse
propagator at zero momentum; i.e., ~�2(0) = �2. Hence we have the condition

d2Ve�

d�2

�����
�=0

= �2 ; (3.33)

which can be used to determine the counterterm B. However, if we move on
to the renormalisation condition for the coupling constant using the four point
function

~�(4)(0) = � ; (3.34)

i.e.,
d4Ve�

d�4

�����
�=0

= � ; (3.35)

we will face the problem of the infrared singularity from the logarithm right
away. However, this singularity is just an artifact resulted from a particular
renormalisation choice, namely the fact that the usual subtraction is performed
at �nite value of momenta characterised by a mass scale. So we introduce the
alternative condition at an arbitrary mass scale M :

d4Ve�

d�4

�����
�=M

= �(M) ; (3.36)

and set the wave function renormalisation counterterm Z(M) = 1 instead of the
usual one (Z(0) = 1). The condition (3.36) yields C = � 3�2

32�2

�
ln �M2

2�2 � 25
6

�
and

hence leading to the e�ective potential

Ve�(�c) =
�(M)

4!
�4
c +

�2(M)
256�2 �

4
c

 
ln

�2
c

M2 � 25
6

!
(3.37)

which seems to shift the minimum away from the origin to the location satisfying

�(M) ln
h�i2
M2 = �32

3
�2 +O(�) : (3.38)

However, since the term on the left hand side of (3.38) is large and negative for
small �, the quantum correction will be larger than the tree level part. The two
terns in (3.38) are of order � and �2 respectively and hence are not comparable in
the sense of perturbation theory. Though the approximation is not very reliable,
we see that the quantum correction must have something to do with spontaneous
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symmetry breaking.

3.1.3 Massless Scalar Electrodynamics

In the previous chapter, we have seen that the one-loop approximation lead
to the e�ective potential with corrections lying outside the territory of validity
of perturbation theory. The problem is actually not from the formalism itself,
but from the fact that there is only one coupling in the theory which is clearly
not enough when we want to consider an interplay between the classical term,
O(�), and the one-loop term, O(�2). Thus we guess that the e�ective potential
technique may be able to give a �perturbatively correct� result if we introduce
another independent coupling (hence another interaction) to the theory so as to
��x� the loop-correction and also prevent it from getting too large.

In this section we consider the Lagrangian

L = �1
4
F ��F�� + j@��� ieA��j2 � �

3!
(���)2 + counter terms

= �1
4
F ��F�� +

1
2

(@��1 � eA��2)2 +
1
2

(@��2 + eA��1)2

� �
4!

(�2
1 + �2

2)
2 + counter terms (3.39)

which describes a system of complex scalar �eld coupled with photon. It is clear
that the theory has a U(1) gauge symmetry and hence the photon is exactly
massless (at tree level). Notice that we have decomposed the complex scalar
�eld into two real �elds � = (�1 + i�2)=

p
2. Let us see what diagrams will

contribute. First notice that the gauge coupling introduces the trilinear coupling
�A�@� which generates the diagrams like that is shown in Fig.3.2. However, the

Figure 3.2: A loop generated from a trilinear coupling in (3.39). The dashes
refer to other parts in the diagram.

vanishing of external momenta tells us that the momentum for the scalar is
the same as that of the gauge boson. When we choose to work in the Landau
gauge, the contributions from this kind of diagrams vanishe due to the vanishing
contraction between the momentum of the scalar �eld and the gauge boson
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propagator. Consequently, we are left with diagrams having the same structure
as those considered in the previous section which are shown in Fig.3.3.

�1; �2

+

�1; �2

+ � � �

+

A�

+

A�

+ � � �

Figure 3.3: Loop diagrams that contribute to Ve�(�c) in scalar electrodynam-
ics

Loop calculations can be simpli�ed by noticing that variable entering the
e�ective potential is only the combination (�2

1 + �2
2) which, therefore, allowing

us to switch o� the external �eld �2 and consider only the �1. It is then clear
that the contributions from the these loop diagrams have the same structure as
the scalar loop that we dealt with earlier. The symmetry factors (the number
preceding the integral in (3.31) are di�erent for each kind of loop, however. For
example, a loop having �2 running inside is associated with the factor �2�

4! �
2
1�2

2.
The result is found to be (See Coleman and Weinberg [52])

Ve�(�c) =
�(M)

4!
�4
c +

1
64�2

"
5�2(M)

18
+ 3e4

#
�4
c

 
ln

�2
c

M2 � 25
6

!
; (3.40)

where the factor 3 comes from the trace of the gauge propagator (the g�� �
k�k�=k2 part). Even though � and e4 emerge from di�erent order of loop
calculations (zero-loop for � and one-loop for e4), they are independent which
means they are comparable. Thus, there is nothing preventing us from assuming
that � � e2 � 1 such that � is of order e4. If this is the case3, then the term

3In fact, Coleman and Weinberg had shown in [52] that if this is not the case, we can always
make it such by changing the renormalisation scale. In other words, SSB occurs for any arbitrary
small parameters � and e.
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containing �2 can be neglected and (3.40) becomes

Ve�(�c) = �4
c

"
�(M)

4!
+

3e4(M)
64�2

 
ln

�2
c

M2 � 25
6

!#
; (3.41)

which yields
V 0e� = �3

c

"
�(M)

6
+

3e4(M)
16�2

 
ln

�2
c

M2 � 11
3

!#
: (3.42)

So the e�ective potential is minimum for non-zero h0j�j0i when

h0j�j0i = M exp
"

11
6
� 4�2�(M)

9e4(M)

#
: (3.43)

When the renormalisation scale M is adjusted so that h0j�j0i = M we arrive at
the result

� =
33
8�2e

4 ; (3.44)

which is interesting if we remember that we started with independent couplings �
and e. Though these parameters are related in (3.44), the number of independent
parameters is not reduced to 1. This is because the dimensionless parameter �
has been transmuted into the dimensional one (the h0j�j0i). Nevertheless, the
� can still be taken as the free parameter of the theory. It is then clear that the
U(1) symmetry is spontaneously broken if the e�ective potential is written in
this form

Ve�(�c) =
3e4

64�2�
4
c

 
ln

�2
c

h�i2 �
1
2

!
; (3.45)

where h�i � h0j�j0i . So there exists a (would-be) Goldstone boson correspond-
ing to the direction of the broken generator. Then this Goldstone will be eaten
by the (photon or photon-like) gauge �eld via the gauge interaction (like the
usual BEH mechanism). The gauge �eld then becomes massive with

m2
V = e2h�i2 : (3.46)

In addition, the resulting e�ective potential (3.45) tells us right away that the
scalar particle develops mass from quantum e�ects which is proportional to the
strength of the coupling between itself and the gauge �eld, namely

m2
S =

d2Ve�

d�2
c

�����h�i =
3e4

8�2 h�i2 : (3.47)

It is also pointed out in Coleman and Weinberg's paper [52] that the high-order
corrections are small enough so that they will not turn the origin of the potential
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back into the absolute minimum.

In addition we note that the relation

e4 =
m4
V

v4 (3.48)

can be generalised to the case where there are many gauge bosons as

e4 !
P
V m4

V

v4 (3.49)

where now the m4
V is fourth power of the gauge boson mass matrix in the

background �c (recall that in the zero loop M2
g;ab � g2v2T aT b).

As a �nal note there is another method where we can evaluate the
contribution from the tadpole alone (with some modi�cations). The method
is interesting and can be used to provide a quick check as well. It is presented
in the appendix A.4.

3.1.4 Extension to Non-Abelian Cases

Now we want to determine the contributions to the e�ective potential when there
are (non-Abelian) gauge bosons and fermions in the system. Since scalar �elds
come in a multiplet (let us call it �c), we will assume for simplicity that only one
scalar �eld gets a vacuum expectation value (i.e., we will assume �c � ReH0 = h
when we deal with the standard model). Also notice that, because the internal
lines in the loop carry indices, we have to consider the transition between indices
which is archived by introducing the matrix element

m2
s;ab(�c) =

@2V0

@�a@�b

�����
�c

: (3.50)

This is a generalisation to the mass matrix which contributes to each vertex.
This will reduce to the Goldstone boson mass matrix when the �c takes the
classical vacuum expectation value (see the relevant formula for the Higgs mass
in (2.48)). So they generate diagrams that can be thought of as generalisations
of those shown in Fig.3.1. We have to take every possible arrangement of the
vertices and internal lines into account. This results inX

all ai

m2
s;a1a2

m2
s;a2a3

� � �m2
s;ana1

= Tr[m2
s]
n (3.51)
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for each diagram with a �xed number of external lines, say n. Calculations are
very similar to those in (3.32) and the resulting one-loop e�ective potential is4

V (1)
s (�c) =

1
64�2 Tr

(
[m2

s(�c)]2 ln
m2
s(�c)
M2

)
; (3.52)

at a particular renormalisation scale M . Then it is clear that in a basis which
make m2

s diagonal, the one-loop contribution becomes

V (1)
s (�c) =

1
64�2

X
�
m4
s;�(�c) ln

m2
s;�(�c)
M2 ; (3.53)

where m2
s;� are the eigenvalues of the mass matrix.

Next, consider the contributions from non-Abelian gauge �elds. Again,
the form of the e�ective potential will depend on the gauge choice while the
resulting physical quantities evaluated from it will not. Thus we will (again)
work in the Landau gauge. Similar to the previous case of scalar �elds, we
de�ne the �mass matrix�

m2
g;ab(�c) = gagbTr

n
�ycT

aT b�c

o
; (3.54)

(no summation), which contributes to every vertex. At tree-level, we recover
M2

W � g2v2=4, for example. The rest of the calculations require nothing new
and the one-loop e�ective potential from the non-Abelian gauge loop, in gauge
eigenstates (diagonal mg), is

V (1)
g (�c) =

3
64�2 Tr

(
[m2

g(�c)]2 ln
m2
g(�c)
M2

)
; (3.55)

where the factor 3, again, comes from the gauge boson propagator.

Now let us turn to the fermion loop. The part of the Lagrangian that
contributes to vertices in loop diagrams is

� �	a fA(�c) + i5B(�c)gab 	b � ��	amf;ab	b ; (3.56)

where mf;ab = fA(�c) + i5B(�c)gab is the fermion mass matrix (it reduces
to the fermion mass after the scalars received a vacuum expectation value,
according to the �rst non-vanishing order). For n internal massless fermion

4The subscript �e�� is omitted when its meaning is clear from the context.
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lines, we �nd that the loop contributes

� � �mf
1
=k
mf

1
=k
� � �mf

1
=k
mf

1
=k
� � � �! trace term ; (3.57)

where all indices are suppressed. As a trace of odd number of the gamma
matrices vanish, only loops with even number of internal fermions survive. Thus
the neighbouring fermion propagators can be grouped in a pairm2

f
1
k2 ; i.e., n pairs

of this term for n even external lines. Also notice that, a fermion loop puts up
a factor �1 (Fermi-Dirac statistics from reordering the �elds in the loop). Now
we can proceed with the calculations analogous to the previous cases and obtain

V (1)
f = � 1

64�2 Tr

8<:hmfmyf(�c)
i2

ln
mfmyf(�c)

M2

9=; (3.58)

where the trace also runs over the Dirac indices5. In the simplest case where
there is only one Yukawa coupling y =

p
2mf=v, the fermion contributes6

V (1)
f = � N

64�2y
4�4

c ln
�2
c

M2 (3.59)

The factor N equals 4 for Dirac fermions (from a trace of the Dirac matrix), and
2 for Weyl or Majorana fermions.

Consequently, the one-loop contribution to the e�ective potential is

V (1)
e� =

1
64�2 Tr

(
[m2

s(�c)]2 ln
m2
s(�c)
M2

)
� 1

64�2 Tr

8<:hmfmyf(�c)
i2

ln
mfmyf(�c)

M2

9=;
+

3
64�2 Tr

(
[m2

g(�c)]2 ln
m2
g(�c)
M2

)
; (3.60)

which can be reduced to a more compact version7

V (1)
e� =

1
64�2

n
�2 + 3

X
g4
i �NX

y4
i

o
�4
c ln

�2
c

M2 : (3.61)

5The arrows of fermion lines forbid re�ection symmetry (i.e., the loops is oriented) but the
trace on the Dirac indices kills the odd terms so we have to sum over only the even terms.

6Notice that we are working with a colourless fermion. The right-hand side of (3.59) will be
multiplied by Nc for a theory with Nc colours.

7This simpli�ed form has to be used with care as we did not take the factors like colours into
account.
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Observe that in a theory with more than one couplings, it is possible that one-
loop diagrams dominate the tree-level diagrams without requiring large values
of coupling constants (and hence does not sacri�ce perturbation theory).

Before we leave this section, let us note that by recalling (3.26), the
general formula for the logarithmically and quadratically divergent parts of the
one-loop correction to the e�ective potential can be written as

V1�loop =
1

64�2

Z
d4kSTr ln(k2 +m2(�c))

=
1

64�2 Str
h
[m2(�c)]2 ln(m2(�c))

i
+

�2

64�2 STrm2(�c) + : : :(3.62)

where the supertrace is de�ned with STr = Tr(�1)F where F = 1 for a loop
containing fermions and zero otherwise.

3.1.5 Coleman-Weinberg Potential for the Electroweak The-

ory

In this section we will study the application of the Coleman-Weinberg technique
in the standard electroweak theory. Let us recall that the interactions that
contribute to the (one-loop) e�ective potential are

��(HyH)2 +
 
g
2
� aW a

� +
g0
2
B�
!2

HyH

�yil(�LiLH)liR � yid( �Qi
LH)diR � yiu( �Qi

L
~H)uiR + h:c: : (3.63)

The earlier sections tell us that the contributions from scalar, gauge, and fermion
loops are proportional to �2; g4, and y4 respectively. Now we have 2 charged W
bosons and 1 neutral Z. For the quarks, we can neglect all but the top, which
is the heaviest quark. The mass matrix in this (broken) basis W; Z is already
diagonal where

M2
W� = g2v2=4

M2
Z = (g2 + g02)v2=4 (3.64)

which means we will get an extra factor 1
16 in the e�ective potential (from (m2

g)2).
There will be an additional factor 3 for the top quark (comparing to the previous
section) since we have to include all the three colours. The e�ective potential
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(to 1-loop) in the general form is then

Ve� = ��2

2
�2
c +

�
4

�4
c +

3
64�2

� 1
16

�
2g4 +

�
g2 + g02

�2
�
� 4y4

t

�
�4
c ln

�2
c

M2

+
1

64�2

h
M2

h(�c)
i2

ln
M2

h(�c)
M2 +

3
64�2

h
M2

GB(�c)
i2

ln
M2

GB(�c)
M2

(3.65)

where

M2
h(�c) = (�2 + 3��2

c) (3.66)
M2

GB(�c) = (�2 + ��2
c) (3.67)

are the masses of the Higgs and the 3 Goldstone bosons in the background �c

(again, see the relevant formula for the Higgs mass in (2.48)). These Goldstone
bosons will not show up in the unitary gauge. To get the more familiar form, we
take �2

c = v2 = ��2=�. In that case, we usually write the one-loop contributions
as

V (1)
e�;g�f =

1
64�2v4

n
3
h
2M4

W +M4
Z

i
+M4

h � 12m4
t

o
�4
c ln

�2
c

M2 (3.68)

where MZ ; MZ ; Mh and mt are now the masses of the physical �elds. Observe
that fermion makes a large negative contribution (at large �c).

Let us consider the case when the mass of the Higgs (and hence the �)
is assumed to be small. This will eventually help us identify the lower bound
of the Higgs mass itself. In this case the �2 term in (3.61) can be neglected and
the major fermion contributions come from the top quark. The bound on the
mass of the Higgs is then based on the condition that the electroweak symmetry
breaking vacuum is absolutely stable against radiative corrections; i.e.,

Ve�(hHi) < V (0) (3.69)

where V (0) = 0. (Steven) Weinberg [59] and Linde [60] were the �rst two to
pioneer the work in this scheme. The bound on the Higgs corresponding to the
gauge bosons loop corrections was found to be

M2
h � 3

p
2GF

16�2 (2M4
W +M4

Z) =
3�2(2 + sec4 �W )
16
p

2GF sin4 �W
: (3.70)
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At that time (1976), the top quark had not yet been found and hence some
major contributions were missing. The relation above yields

Mh > O(10GeV) (3.71)

which is already in the range probed by experiments nowadays. This kind of
lower bound is superseded by the vacuum stability bound evaluated from the
framework of the running of the Higgs quartic coupling which we will consider
in section 3.2.2. Even more, this bound is also superseded by the the direct
search at LEP ([61]) suggesting that Mh & 114 GeV (95% C.L.).

3.2 Bounds on the Mass of the Higgs

There are many ways to understand the bound of the Higgs within the framework
of the standard model; i.e., as a limit of its �correctness�. We will consider only
the theoretical ones. This section should somehow convince the reader that the
Higgs should be light.

3.2.1 Landau Pole and Triviality Bound

Now we will use simple arguments to claim that the Higgs cannot be arbitrarily
heavy. Let us go back to the scalar theory with

L =
1
2

(@�h)2 � 1
2
M2

hh
2 � �

4
h4 : (3.72)

It is quite legitimate to use this simpli�ed version and compare it with the
interaction term in the Higgs potential (2.122). This agrees with the large-�
approximation in the renormalisation group equation in (3.86). The quartic
coupling scales with energy as8

�(Q) =
�(Mh)

1� 3
2�2�(Mh) ln Q

Mh

: (3.73)

The coupling increases with energy (Q) and will eventually hit a pole, blowing
up at a particular energy scale regardless of how small the �(Mh) is. The pole
is known as the Landau pole ;

Q1 = �Landau = Mhe2�2=3�(Mh) : (3.74)
8The variable Q means any energy scale in general, while � usually indicates the cut-o� of

the theory.
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�Landau decreases as we increaseMh and eventually they will meet at some point.
(2.125) tells us that for a �xed �Landau we can obtain the upper bound on the
Mh; i.e.,

M2
h = 2�v2 <

4�2v2

3 ln �Landau
Mh

: (3.75)

Still, we will further assume, hand-wavingly, the hierarchy

Mh < �Landau=2 (3.76)

since we do not expect to do anything with energy close to �Landau anyway.
Thus,

M2
h < (1070 GeV)2 : (3.77)

Observe that the choice (3.76) puts the limit of the � too far (� < 6). This
is �ne if we do not care whether the perturbative approach works or not - just
think of the TeV limit as the ultimate one. To get a reasonable constraint on
the quartic coupling, let us use Mh < �Landau=100 (which gives � < 1). This one
yields Mh < 415 GeV.

The consideration above is a crude one as it relies heavily on the choice
(3.76) and the arbitrariness of the Higgs mass itself. Who knows whether the
Higgs mass scale be much lighter than the Landau pole scale �Landau or just
about the same. Moreover, it is not expected that the standard model is valid
at arbitrarily high energy scale. So we will, as usual, regard the standard model
as a low-energy e�ective theory and introduce the � as the point where the
simple model stops to be valid and new physics enters. First, we observe that
we can input the known parameters at electroweak scale (MW ) into (3.74)

�Landau = MW exp
(

4�2 sin2 �W
3�

M2
W

M2
h

)
�MW exp

(
(370)

M2
W

M2
h

)
(3.78)

where we have used �(MW ) � 1
128 . Suppose we expect that the Landau pole lies

beyond the grand uni�cation scale (see B.4) 1015GeV we �nd

Mh . 3MW . 240GeV ; (3.79)

which is a very rough approximation. However, if the new physics is expected
to enter so soon; like � = 103 GeV, the Landau pole will be lowered and the
upper bound on Mh is relaxed to

Mh . 600 GeV : (3.80)
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Given a value of Mh, the upper limit � of the theory (the cut-o�) can be
evaluated as well. Observe that (3.73) can be written as

1
�(Mh)

=
1

�(Q)
+

3
2�2 ln

Q
Mh

; (3.81)

which implies that
1

�(Mh)
� 3

2�2 ln
�
Mh

(3.82)

In other words, this forces an upper bound of the �; i.e.,

�(Mh) � 2�2

3 ln �
Mh

: (3.83)

The equation is exactly the same as (3.75). However, here we see that the quartic
coupling is sensitive to the limit which we �claim� that the theory is valid. If
we set �!1, the coupling decreases to zero and this scalar sector will become
a free theory; which is said to be trivial. The bound of the � depends on the
Higgs mass as

� �Mhe4�2v2=3M2
h : (3.84)

For the Higgs mass in the range 120 GeV to 200 GeV, the � ranges from 1017 GeV
down to 108 GeV, which is very broad. This is why it is said that the Higgs mass
and the �cut-o�� scale are very sensitive to each other.

Notice that what we have done so far was based on the assumption that
the fermions and the gauge bosons are negligible up to the scale �. Moreover,
we also assumed that higher orders terms in � in the renormalisation group
equation are negligible. Still, their e�ects are not so negligible. To see this, �rst
observe that the factor 9

4�2 on the right-hand side of (3.81) is the coe�cient of
the beta function, satisfying

@�(Q)
@ lnQ

=
3

2�2�
2(Q) : (3.85)

A generalisation to the standard model case is obtained by the renormalisation
group equation for the quartic coupling

@�
@ lnQ

=
1

(4�)2

"
24�2 + 12�

�
y2
t � (9g2 + 3g02)

�
�6y4

t +
3
8

(2g4 + (g2 + g02)2)
#
; (3.86)
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together with similar couplings for the other couplings. The �rst thing we see is
that the running of the coupling is slowed down by the interaction of the scalar
�eld with the quarks and the gauge bosons. If the e�ects from self-interactions
of the quarks and the gauge �elds are negligible, (3.86) reduces to

@�
@ lnQ

=
12�

(4�)2

h
2�+

�
y2
t � (9g2 + 3g02)

�i � 24�
(4�)2 [�� �c] ; (3.87)

where �c � 1
2(9g2 +3g02)� 1

2y
2
t . Thus, if we insist on working with a perturbative

method, we have to impose the minimum requirement that the quartic coupling
not explode at a particular scale, which requires that

�(Q) < �c(Q) ; (3.88)

leading to the upper bound of the mass of the Higgs. Unfortunately, the
evaluation of the bound requires the knowledge of the running of the Yukawa
and the gauge couplings as well. Then the mass of the Higgs can be plotted as a
function of the mass of the top quark. The analysis by Beg et al. [62] suggests
that for Mt � 170GeV the Higgs is bounded to mh � 175GeV .

3.2.2 Vacuum Stability, A Lower Bound

In the case when the Higgs is light, (3.86) becomes

@�
@ lnQ

=
1

(4�)2

"
� 6y4

t +
3
8

(2g4 + (g2 + g02)2)
#
: (3.89)

When the energy scale under consideration is low enough that the strong
interaction becomes very strong, (3.89) is further trimmed down to

@�
@ lnQ

= � 1
(4�)2 6y4

t (3.90)

which simply results in

�(Q) = �(v)� 3y4
t (Q)
8�2 ln

Q
v
: (3.91)

Clearly, top quarks can drive the quartic coupling down to negative values,
preventing the breaking of symmetry which is the main ingredient of the
standard model. Therefore, we must impose the constraint

�(Q) > 0 (3.92)
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to avoid that. In this case, the running of the top's Yukawa coupling is, to
the lowest order, not a�ected by other couplings. So its renormalisation group
equation is in a simple form and the numerical results can be obtained easily.
The Yukawa coupling �runs� as

@yt
@ lnQ

=
1

(4�)2
9
2
y3
t + � � � ; (3.93)

which leads to
y2
t (Q) =

y2
t (v)

1� 9
(4�)2y

2
t (v) ln Q

v

; (3.94)

and
�(Q) = �(v)� 3

8�2y4
t (v) ln Q

v

1� 9
(4�)2y

2
t (v) ln Q

v

: (3.95)

The condition (3.92) then translates into

2�(v)v2 = M2
h >

3v2

4�2y4
t (v) ln Q

v

1� 9
(4�)2y

2
t (v) ln Q

v

=
3

v2�2m4
t ln Q

v

1� 9
8v2�2m2

t ln Q
v

: (3.96)

This means at the scale Q = �, there must be new physics showing up or the
vacuum stability is destroyed. In this way, we see that the lower bound of the
mass of the Higgs can be written as a function of the cut-o� and the mass of the
top quark. At present, this bound is also superseded by the direct search of the
Higgs at LEP (see section 3.3).

3.2.3 Tree Level Unitarity

For the case of the Fermi's current-current, the intermediate vector boson
theories, or theories based on the perturbation technique, unitarity bound plays
a very important role. In general, the scattering cross section may depend on
some parameter related with the C:M: energy which can be expanded in terms
of partial waves. The unitary bound is then basically a requirement that the
contributions from the tree level to the �rst partial wave expansion (s-waves)
of scattering amplitudes not exceed the unitary bound (think of an expansion
with coe�cients greater than 1; i.e., a scattering with probability greater than
unity). In this section, we will brie�y outline about the e�ects of the tree-level
unitary condition to the bound on the Higgs mass and the scale of new physics.
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For example, recall that in Fermi's theory we have � � GFE2
C:M:, where

d�
d


=
1

64�2s2 jMj2: (3.97)

Then the expansion of the scattering amplitude in terms of the partial waves
amplitudes

M(�) = �
X
J

(2J + 1)PJ(s; �)aJ(s) (3.98)

(� is a numerical value of order O(1), and s = E2
CM) tells us that

s <
�0
GF

; (3.99)

otherwise partial-wave unitarity is not respected by tree diagrams. In other
words, new physics (theory) must shows up at a scale

�F <
s
�0
GF

(3.100)

in order to modify Fermi's theory. It was found (see, for example, Chanowitz
[47])that �F � 1 TeV. Still, this does note necessary means that we must wait
till we reach the �F to see new physics and the new physics actually surfaces at
O(100 GeV) �MW ; i.e., at the electroweak scale.

Similar situations happen in electroweak theory where the process under
consideration is W+ +W� ! Z + Z and

s
16�v2 < 1 (3.101)

or, in terms of the cut-o�,

�SB <
p

16�v2 � 2 TeV (3.102)

By observing the previous case where MW � �F
10 , we can make an analogy by

introducing a mass scale of the �usual suspect" that may break the electroweak
symmetry; i.e., the Higgs,

Mh � �SB

10
: (3.103)

This may be a very rough guess of the mass of the Higgs. Still, the unitarity
bound can provide something more useful. Using (minimal) the standard model
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the contribution to the amplitude of W+ +W� ! Z +Z from the gauge sector
can be written as (taking the �-parameter to be 1)

Mg � g2

4M2
W
s =

s
v2 (3.104)

and the Higgs exchange (s-chanel) adds

Mh � � s
v2

s
s�M2

h
: (3.105)

(see Kolda and Murayama [5]). That is,

M�Mg � s
v2 � s

v2
s

s�M2
h
: (3.106)

Now we can compare between the cases of having and not having the Higgs (to
be more precise, the latter should be M2

h >> s). With the Higgs around, the
amplitude at s >> M2

h becomes

M = � g2

4M2
W
m2
h (3.107)

which, at least, does not grow with s = E2
CM and hence guarantees the good

behaviour at high energy. It was found that the unitarity bound gives ([5])

Mh < 780 GeV : (3.108)

Notice that this is bound on unitarity, not the strict bound on the mass of the
Higgs; i.e., the Higgs can be heavier than the value speci�ed in (3.108) and the
perturbation theory is not valid.

On the other hand, in the absence of the Higgs (or very heavy Higgs),
the amplitude grows in a way similar to the Fermi's case and is bound with the
�new physics� scale at � 2 TeV (recall (3.102)), which, is no longer reliable due
to large higher order corrections around that scale (unitarity is violated). This
is why it is usually expected that there will be new physics at �N < 2 TeV.

The moral of the story is that though unitarity bound does not act
directly on the mass of the Higgs, it strongly suggests that either the Higgs
or a Higgs-like particle exists or there is new physics at a TeV scale.
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3.3 Some Experimental Related Bounds

In this section we will brie�y review two important clues from experiments (both
direct and indirect search of the Higgs). One can be related to the bounds on the
mass of the Higgs and the other can guide us where the scale of the new physics
is. Since the topic of electroweak precision test is a very big and sophisticated
one, to keep us within the scope of the thesis, the content of this section will be
far from self-contained and logically consistent. What we are trying to do is to
outline a few of the crucial �ndings and to point out where to look for further
information.

3.3.1 Bounds on the Higgs From Precision Electroweak Tests

The (minimal) standard model is considered to be one of the most successfully
tested so far. Many parameters can be measured with extremely high degrees of
accuracy. So there are many ways to get the bounds of the mass of the missing
Higgs with clues from experiments. Here we will mention some of them.

First there is the Higgs direct production where we expect the Higgs to
reveal itself in the �nal state of the collision events. This may be the best way
to identify the particle if we can �nd one. However, the problem is that if we
still do not have large enough energy to produce one, we cannot conclude that
it does not exists. We can only mention about the excluded region. One of
the processes that looks promising is the Higgsstrahlung initiated from colliding
leptons, mainly electrons and positrons, as shown in Fig. 3.4 Unfortunately,

Z

H

Z

e+

e�

Figure 3.4: Higgsstrahlung e+ + e� ! Z + h.

despite its name, the Higgs has not been found yet. Still, this kind of experiments
gives a lower-bound of the mass of the Higgs. It was found at LEP (CERN) that
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([63])

Mh & 114:4 GeV ; (3.109)

at 95% C.L..

Apart from the direct searches, precision measurements can serve as
another crucial tools, thanks to the success of the standard model itself. The
strategy is simple, we focus on parameters that can be measured to some ��ne�
detail (say, better than one percent). Take them as �x inputs and put them
into relevant results from loop corrections. This will provide �best �t� values for
other parameters. These resulting best �t parameters can then be compared
with not only the parameters observed directly, but also with those predicted
from theory. On the one hand, the deviation (if any) of the latter will suggest the
need of the new physics. On the other hand, the excellent agreements (usually
valid up to a speci�c energy scale) will tell us that new physics is not welcome.

The tricks mentioned above will not apply directly in the case of the mass
of the Higgs as the resulting best �t parameter (since it has not been found and
its mass is not predictable within the framework of the standard model), but we
can use it for some other purposes (see later in this section).

Now one can study how the results from a model deviate from these
electroweak precision parameters. After takening some uncertainties from both
theory (e.e., the need of higher-loop calculations) and experiments (including
some input parameters like the mass of the top quark) into account, the global
�ts (to all electroweak data) of these data can be studied. Most of the cases,
the fundamental parameters

g; g0; �H ; �2
H ; yi (3.110)

(where �H and �2
H are given by (2.125)) are traded by a combination of

parameters that are directly (or easily) accessible by experiments and are
denoted collectively as fPg:

fPg �
(
� =

e2

4�
;GF ;MZ ;Mh;mi

)
(3.111)

where the mi's are fermion masses. For example,

sin2 2�W =
2
p

2��
GFM2

Z
: (3.112)
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Usually, �, GF , and fermion masses mi (except the top) are taken as input
parameters.

The case we are interested in is the mass of the Higgs. The best �ts result
is (Langacker [64])

Mh = 86+49�32 GeV (3.113)

which lies mostly inside the excluded region by LEP as shown above. Still,
naively, we see that this shows some room within the region 114 GeV�140 GeV .
Usually the best �ts for the Higgs is shown in the ��2 vs Mh plot where ��2 =
�2��2

min in the Fig. 3.5. In the �gure theoretical prediction with uncertainties
(usually due to loop corrections that are related with top quarks) is plotted as
a blue-band. The solid line represents the global �ts.
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Figure 3.5: A sample ��2 vs. Mh plot (from LEP EWWG '07 [4]).

In addition, the success of the standard model can be represented by
the plot of the �pulls� which are de�ned by the di�erences (of the observables)
between the values predicted by theory and the measured ones, divided by the
error from the theory side. The plot is shown in the Fig. 3.6. It does not only
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show that the standard model �ts very well with the results (from experiments)
but also that the results do not favour any additional particles of new physics9,
at least, within � 5 TeV.

Measurement Fit |Omeas−Ofit|/σmeas

0 1 2 3

0 1 2 3

∆αhad(mZ)∆α(5) 0.02758 ± 0.00035 0.02768

mZ [GeV]mZ [GeV] 91.1875 ± 0.0021 91.1875

ΓZ [GeV]ΓZ [GeV] 2.4952 ± 0.0023 2.4957

σhad [nb]σ0 41.540 ± 0.037 41.477

RlRl 20.767 ± 0.025 20.744

AfbA0,l 0.01714 ± 0.00095 0.01645

Al(Pτ)Al(Pτ) 0.1465 ± 0.0032 0.1481

RbRb 0.21629 ± 0.00066 0.21586

RcRc 0.1721 ± 0.0030 0.1722

AfbA0,b 0.0992 ± 0.0016 0.1038

AfbA0,c 0.0707 ± 0.0035 0.0742

AbAb 0.923 ± 0.020 0.935

AcAc 0.670 ± 0.027 0.668

Al(SLD)Al(SLD) 0.1513 ± 0.0021 0.1481

sin2θeffsin2θlept(Qfb) 0.2324 ± 0.0012 0.2314

mW [GeV]mW [GeV] 80.398 ± 0.025 80.374

ΓW [GeV]ΓW [GeV] 2.140 ± 0.060 2.091

mt [GeV]mt [GeV] 170.9 ± 1.8 171.3

Figure 3.6: The list of �pulls� of various electroweak parameters (from LEP
EWWG '07 [4]).

Finally, we can also summarise theoretical (triviality and vacuum sta-
bility) and experimental (precision electroweak) bounds in the �gure 3.7 taken
from the paper by Kolda and Murayama [5]. There the shaded block region
(on the left hand side) labelled �Standard Model� which is bounded from below
by direct search (see above) and the precision electroweak �best �ts� from the
standard model.

9See the next section.
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Figure 3.7: Bounds of the Higgs mass, including triviality, vacuum stability,
and precision electroweak tests [5]. The region above the dash
lines is disfavoured by naturalness arguments (see section 3.4.2).

3.3.2 Implications on New Physics

In this section we will roughly consider the in�uences from electroweak precision
tests on theories that are considered �beyond the standard model�. Now we will
regard the standard model as a low-energy e�ective theory of some higher-energy,
more complete theory. E�ective �eld theory is another big subject in physics
that requires much more careful treatments than what we are doing in this
section. The reader is encouraged to consult the following literatures by Georgi
[27] and those by his students: Kaplan [28] and Manohar [29].

What we are considering is more or less analogous to what physicists have
done half a century ago where the Fermi current-current model

GFp
2

� �(1� 5) � �(1� 5) (3.114)
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can be thought of as a low-energy description of the Intermediate Vector Boson
theory described by

LW = �1
4

�
@�W y

� � @�W y
�

�
(@�W � � @�W �) +M2

WW
y
�W

�

+g(J�yW+
� + J�W�

� ) (3.115)

having the vector boson's propagator

� i
(g�� � k�k�=M2

W )
k2 �M2

W
: (3.116)

With this propagator, the passage to low-energy limit (E << MW ) is transpar-
ent, andGF � g2

M2
W
. We trade the non-local interactions of the high-energy theory

(i.e., the intermediate vector boson theory or the standard model) with the local
interactions of the low-energy theory (Fermi's). To see this, just consider the
expansion

g2

k2 �M2
W

= �g2 1
M2

W
+ g2 k2

M4
W

+ : : : : (3.117)

The Fermi's Lagrangian (3.114) is constructed solely from the ingredients
available at low energy while the e�ects of the heavy vector bosons are encoded
in the �coe�cient� GF . The value of GF can be obtained from the low-energy
side only via experiments.

Now we will proceed in the step fairly similar to what we did above.
To consider the standard model as a low-energy e�ective theory, we have to
include the e�ects of all possible dimensional operators into the low-energy
e�ective Lagrangian. They will be denoted as O(4+p)i where (4 + p) � 5 is
their dimensions. Lower dimensional operators can be �absorbed� into operators
of the standard model (in LSM). Each operator is constructed solely from the
building blocks of the standard model where the e�ects of the heavy particles
beyond the standard model are encoded in its coe�cient. Experiments is the
only way to determine the values of these coe�cients if we do not yet know
exactly what the high-energy theory is10. The e�ect of these operators on the
predictions by the standard model will be suppressed by the mass scale (�)
preceding them. We write the low-energy e�ective Lagrangian as (see Barbieri

10See the section B on the SU(5) Grand Uni�cation in the next chapter. There we can
�calculate� the value of the Weinberg angle from the higher-energy theory.



79

and Strumia [2], and Han and Skiba [65])

Le�(E < �) = LSM +
X
i;p

ci
�pO(4+p)

i (3.118)

where � is the scale where the new physics is expected to show up. Then the
strategy is we throw in all possible forms of operators that are relevant to a
speci�c problem (here we need operators that are stringently constrained by
electroweak precision tests, otherwise we cannot evaluate the bound �) and do
not violate some particular symmetry (Lorentz symmetry, for example). The
dimension �ve operators include the cross-family interaction of the leptons

�ij
�

(LiLH
y)(LjLH

y) + h:c: (3.119)

where i; j are family indices, which violate lepton numbers, generate masses
of neutrinos when the Higgs receives a vacuum expectation value. Due to the
smallness, of neutrino masses, this operator is not a good candidate for the
problem we have on hand.

It turns out that operators that are useful for the electroweak precision
tests are of dimension 6 which include various forms of four-fermion interactions

OLd � (�LL�LL)( �d�d) ; (3.120)

Higgs-gauge intersections

OWB � (Hy�aH)W a
��B

�� ; (3.121)

(W �� ; B�� are the �eld strengths), or the higher order Higgs interaction

OH � (HyD�H)2 : (3.122)

Some of the �induced� operators will violate di�erent kinds of symmetries; for
example, baryon number, lepton number, or the custodial symmetry. For the
operators that break the essential symmetries of the standard model, such
as the CP, the corresponding lower-bound of the new physics must be very
high, say � 100 TeV. These operators will not be taken into account in this
context of the precision tests. We will focus on operators that respect some
symmetries of the standard model which we can watch the e�ects of them in the
experiments. Suppose we consider a particular operator that generates �avour
changing neutral current (which is well-maintained by the standard model) that
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are not observed in the laboratory. We can then evaluate the lower energy
bound � of that operator so that the new physics correspond to it is pushed up
to higher energy, making the e�ects from this particular operator �automatically�
unobservable at low energies.

We can go on with other operators in a similar manners. In general
one usually assume ci � O(1) (while they can be either positive or negative).
Once we choose the appropriate operators, the rich indirect experiment results
(precision tests) will do the rest of the job, translating the information into
the lower bound of the new physics corresponding to each operator. The more
agreements between the standard model and experiments, the higher the energy
of the new physics. Nevertheless, this is not the whole story. The Higgs mass
is still an unknown of the standard model. So the evaluations of the lower
bounds must include variation of the mass of the Higgs. Some of the examples
of the operators are taken from the papers by Babieri and Strumia [1, 2] and are
shown the table 3.1. What we can conclude is that new physics is not welcome
by precision electroweak test, at least below 5 � 7 TeV. In one shot, the table
3.1 also tells us that if the Higgs exists, it should be light (actually, if it does not
exist, the considerations we have done in this section will cease to make sense).
The lower-bound obtained in this way put a very stringent constraint on every
kinds of physics beyond the standard model. It is the requirement that every
theory proposed must �nd its way to avoid spoiling the bound.

Dimensions six operators Mh = 115GeV Mh = 300GeV
OWB = (Hy� aH)W a

��B�� 9:7 7:5
OH = jHyD�Hj2 4:6 �
OLL = 1

2(�L�� aL)2 7:9 �
O0HL = i(HyD�� aH)(�L�� aL) 8:4 7:5
O0HQ = i(HyD�� aH)( �Q�� aQ) 6:6 �
OHL = i(HyD�H)(�L�L) 7:3 �
OHQ = i(HyD�H)( �Q�Q) 5:8 �
OHe = i(HyD�H)(�e�e) 8:2 �
OHu = i(HyD�H)(�u�u) 2:4 �
OHd = i(HyD�H)( �d�d) 2:1 �

Table 3.1: The lower-bound of energy scale of new physics (in the unit of TeV)
evaluated from various dimension six operators, related to the mass
of the Higgs. This table shows the 99% C.L. bounds where the
blanks mean no �ts are possible. The table is from [1, 2].
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3.4 Shortcomings of the Standard Model

Though the standard model is considered as one of the most successful theory
of particle physics, its success is not unlimited. There are still problems or
frustrations that the model leaves to us. In this section we will consider some
of those problems; both from the general structure of the model itself and from
the its fundamental scalar (Higgs) sector.

3.4.1 The General Problem with the Model Itself

3.4.1.1 The Standard Model is Only Partially Unified

It is often said that the Glashow-Weinberg-Salam theory is a uni�cation theory
of weak and electromagnetic interactions. However, it is still quite frustrating to
think of any theory governed by a product group as a uni�ed one, especially due
to the fact that the coupling constants in the SU(2)L�U(1)Y theory are related
only through experiments. Therefore, the quest of a more �uni�ed� theory is not
out of questions at all. A quick review of the SU(5) grand uni�cation theory,
which solve this �problem�, is presented in the appendix B.

3.4.1.2 The Family Problem

It is important to note that the way we put the quarks in a particular family
(e.g., the up and down quarks) is not completely unique. This is because u
is actually related, by the SU(2), to the d, s, and b instead of just with the
d. Similar arguments apply to the c and t families as well. Moreover, the way
quarks and leptons are put in to a family is also not natural. The reason we
pair the e�, ��, and �� lepton families with the u, c, and t quarks family
respectively is partly due to their masses (which also a�ects the order they were
discovered - light particles were discovered �rst, of course). However, there is
nothing to guarantee that this must be so because in the standard model, there
is no mechanism describing the transition between quarks and leptons.

The problem described above is fairy related to the problem of number
of families in the standard model. Though the way particles are grouped into
a family is not unique, these particles nicely organised themselves into three
familes. Despite of phenomenological considerations, the standard model does
not have any explanation for this.
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3.4.2 Problems from The Higgs Sector

3.4.2.1 Electroweak Symmetry is Broken “Because it has to”

Spontaneous symmetry breaking is a very important feature of the standard
model. Actually the theory dealing with electroweak symmetry should �nd
its way to incorporate the BEH (Higgs) mechanism, otherwise the gauge bosons
will be massless. However, the Glashow-Weinberg-Salam model utilises the BEH
mechanism with the help of a fundamental scalar (the Higgs). As the title said,
the scalar sector of the standard model does not provide any explanation why the
electroweak symmetry is broken. We have to assume the �hyper-Mexican hat�
potential as the starting point or else the symmetry will not be broken. Clearly
this picture lacks any dynamical process that might occurs around the symmetry
breaking scale. Of course, this problem alone will not doom the whole theory.
However, a better mechanism with dynamical explanations for incorporating the
BEH mechanism, like the BCS theory in superconductor, would be nicer.

3.4.2.2 Quadratic Divergences: Part 1. Hierarchy Problem

There are many experimental evidences, or theoretical constraints, telling us that
the Higgs should be light. We have seen some of the latter kind of arguments
in section 3.2. However, it turns out that theories we have on hand tend to
introduce in�nities into this parameter in various ways via �quantum e�ects�,
i.e., loop corrections. Renormalisation programmes tell us that these can be
somehow controlled by adjusting free parameters in the theory. So now we will
consider the question whether these adjustments are natural and see whether
the Higgs is �happy� to be kept light when quantum e�ects are included. The
example we used in this section is actually a toy model. Still, the idea is readily
applicable to the standard model.

First we will start with the particle that are said to be �naturally light�.
They are the gauge �elds and the fermions. We will work out the fermion self-
energy and see why they are said to be so. To simplify the calculations and keep
focusing on the physics, we will use the Lagrangian for a fermion interacting
with a massive scalar �eld:

L = i =@ � @���@���m2
s�
��� �s(���)2 � yf  �+ h:c: : (3.123)

Notice that the �h:c:� actually contains only the Yukawa coupling term. In
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fact, this simpli�cation is somewhat legitimate because the top quark is the
heaviest fundamental particle we that have found. The �eld � is parametrised by
� = (h+v)=

p
2 and the fermion gets its mass from the tree level: mf = yfv=

p
2.

The scalar �eld contributes to the fermion self-energy via the diagram shown in
�g. 3.8. We �nd the self-energy

  

�

 

Figure 3.8: Fermion self-energy diagram contributed from a scalar �eld.

� i�f;s(p) =
 �iyfp

2

!2 Z d4k
(2�)4

iTr(=k +mf)
[k2 �m2

f ]
i

[(k � p)2 �m2
s]
: (3.124)

Recalling that the renormalised mass is de�ned as mR
f = mf + �mf , we �nd

�mf = �f(p = mf) = i
y2
f

32�4

Z 1

0
dx
Z

d4k0 mf(1 + x)
[k02 �m2

fx2 �m2
s(1� x)]2

(3.125)

where we have used the Feynman parameter for parametrising the integral (see
the appendix C.2). The calculation is straightforward. The term that remains
there when the cut-o� becomes large is

�mf;s = �3y2
fmf

64�2 ln
 

�2

m2
f

!
: (3.126)

This is not beyond our expectation since we know that the chiral symmetry
protecting the mass of the fermion is broken when the fermion interacts with
the scalar �eld; i.e., when Yukawa coupling (the mass term) of the fermion
is introduced. The chiral symmetry is restored when this parameter vanishes.
This means that the correction term �mf should be proportional to the term
that breaks the symmetry - which is the mf . Consequently, a fermion is said to
have multiplicative renormalisations which means it is natural to be light. In
other words, the chiral symmetry U(1)L � U(1)R plays the role of the custodial
symmetry protecting the fermion's mass.
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Now let us turn to the self-energy of the scalar �eld which, in this
simpli�ed theory, only comes from the interaction with fermion. We write

(mR
s )2 = m2

s + �m2
s : (3.127)

The corresponding diagram shown in �g. 3.9 results in

�

 

�

 
Figure 3.9: Scalar self-energy diagram contributed from a fermion.

� i�s;f(p2) = (�1)
 �iyfp

2

!2 Z d4k
(2�)4

i2Tr
n
(=k +mf)((=k � =p) +mf)

o
[k2 �m2

f ][(k � p)2 �m2
f ]

(3.128)

Then we �nd that the mass of the scalar �eld (or the Higgs) diverges:

�m2
s;f = �s(p2 = m2

s)

= � y2
f

8�2

24�2 +
1
2

(m2
s � 6mf)2 ln

 
�2

m2
f

!
+

1
2

(4m2
f �m2

s)
(

1 +
Z 1

0
dx ln

 
1� m2

s

m2
f
x(1� x)

!)
+O

� 1
�2

�35 : (3.129)

Situations are di�erent this time. Considering the quadratic divergent piece

�m2
s;f = � y2

f

8�2 �2 ; (3.130)

we see that is no symmetry recovered when the (bare) mass of the scalar reduces
to zero due to the fact that the correction is not proportional to ms. The
�physical� mass of the scalar becomes

(mR
s )2 ' � y2

f

8�2 �2 ; when ms = 0 ; (3.131)

which also illustrates that it is not protected by any symmetry. The scalar
(Higgs) seems to prefer to be as heavy as the largest mass scale of the theory
(the cut-o�). The severity of the problem then depends on the value of the
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mR
s that experimental results expect it to be, and also on the limit � that the

theory is expected to be valid. We have seen in the section 3.2 that the mass of
the Higgs should not be too heavy (comparing with electroweak gauge bosons).
Thus, taking mR

s = 100GeV, the rough approximation of the Higgs mass, and
� = 1019GeV, the Planck scale, we see that the correction �m2

s is huge and has
to be balanced by m2

s with amazing precision. To see this, let us write (3.131)
in terms of dimensionless parameters:

�2 � m2
s

�2 = �2
R +

y2
f

8�2 ; (3.132)

where �2
R � (mR

s )2=�2. Using the values of ms and � given above, together with
yf � 1, we �nd

�2 � y2
f
(1 + 10�32)

100
: (3.133)

In other words, the tree level parameter �2 must be adjusted to the 32nd � 34th

decimal places. If such the adjustment is not satis�ed the mass will come out
to be of order � = 1019GeV again. Even if it is so, higher order corrections are
very likely to violate it and hence in�nite re-adjustments are required. So we say
that the Higgs mass is quadratically unstable against the quantum corrections.
Too many �coincidences� are required to make it light. This is the �ne-tuning
problem.

In the appendix B, we show that the situation does not gets much better
if we take the standard model as an e�ective theory of some uni�ed theory at
a particular energy scale, say 1015 GeV. We show that there will be at least two
fundamental scalars to do the job of breaking the symmetry spontaneously. That
means we should expect two fundamental scalars with masses of order 1015 GeV
and 1019 GeV which are the cut-o� of the standard model and the uni�ed theory.
However, we know that one of the scalar, says the Higgs of the standard model,
should be as light as 102 GeV. Then there must be some unnatural separation
between the two mass scales and some extreme �ne-tunings must be done to get
things right.

The lack of naturalness and the requirement of �ne-tuning is commonly
referred to as the Hierarchy problem. In some literatures, it is also known as
the �big� or the �full� hierarchy problem when the e�ective theory is expected
to valid to the grand uni�cation or the Planck scales. One of the reasons that
this kind of problem is not currently considered as the defect of the theory is
because the extreme sensitiveness of the mass of the Higgs to the cut-o� did not
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manifest itself in the region that is already �probed� (indirectly) by experiments.
This is clear by setting � = 1 TeV in (3.132). However, the need for �ne-tuning
reappears as soon as we extent the cut-o� to 10TeV (recall the electroweak
precision tests and see below) whose veri�cation is within the reach of the LHC.

By the way, it is important to emphasise that the hierarchy problem is
not the problem of mathematical inconsistencies of the model but is more or less
a kind of phenomenological frustrations.

3.4.2.3 Quadratic Divergences: Part 2. Implications on New Physics

The Higgs of the standard model has three di�erent kinds of couplings. We
just have discussed the most severe quadratic divergent contribution due to
top quarks. Now we will include the loop corrections to the scalar (the Higgs)
from gauge bosons and the Higgs itself and perform some rough calculations.
By rough we mean we focus on only the contributions to quadratic divergent
diagrams. Then we can regard the �loop-particles� as massless since we will focus
on high energy limits of the theory.

Let us begin with electroweak gauge �elds (2 charged W 's and 1 neutral
Z) with the diagram providing major contribution shown in �g. 3.10. For
simplicity, we will assume that MW 'MZ .

h h

W;Z

Figure 3.10: Higgs self-energy diagram contributed from gauge bosons.

For each gauge �eld, the contribution is (Landau gauge)Z d4k
(2�)4 (ig��)

g2

4
�i(g�� � k�k�=k2)

k2 =
1
4

(3)g2
Z d4k

(2�)4
1
k2

=
3

64�2g
2�2 (3.134)

Observe the factor 3 from the trace of the propagator of the gauge boson (see
also (3.40). Altogether, the three electroweak gauge bosons add to the mass of
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the Higgs

�M2
h;g =

9
64�2g

2�2 : (3.135)

Out of all the loop contributions from quarks, that from the top quark
is the largest. As we might mentioned from time to time, this is not surprising
due to its large Yukawa coupling with the Higgs (or its large mass). We have
already evaluated the contribution from fermion �eld to a scalar in the previous
section (see (3.129). For the case at hand, we just need the factor 3 for quarks
have three colours. Thus

�M2
h;t = � 3

8�2y
2
t�

2 : (3.136)

Finally we have the quartic coupling of Higgs as shown in the �g.3.11.

h h

h

Figure 3.11: Higgs self-energy from its quartic coupling.

In this case we have

�M2
h;h =

i�
4

Z d4k
(2�)4

i
k2 4 =

4
64�2��2 : (3.137)

where 4 is a symmetry factor.

We now collect the corrections to the Higgs mass together and write

(MR
h )2 = M2

h(tree) + �M2
h;g + �Mh;h + �M2

h;t

= M2
h(tree) +

�
9g2 + 4�� 24y2

t

� �2

64�2

= M2
h(tree) +

�
9g2 + 4�� 24y2

t

� �2

160
(3.138)

which is just a more complex version of (3.131). Thus, the analysis is very
similar. Since there are no relations between the Higgs couplings, natural
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cancellations are hopeless. As in the previous case, the Higgs mass is obtained
naturally only when the cut-o� is at � 1 TeV which is the approximate limit
of current accelerators, while �ne-tuning is still required if we raise the cut-o�
to � 10 TeV of next generation accelerators. When � � 10 TeV we get the
approximation

�M2
h;g =

9
64�2g

2�2 ' 9
160

M2
W

v2 �2 � (800GeV)2 (3.139)

�M2
h;h =

4
64�2��2 ' 1

160
M2

h

v2 �2 � (450 GeV)2 (3.140)

�M2
h;t = � 3

8�2y
2
t�

2 ' � 3
40
m2
t

v2 �2 � �(2 TeV)2 (3.141)

where we have used Mh � 200 GeV. The illustration of the situation can be plot
in a chart shown in �gure 3.12presented by Schmaltz [34].

Higgs

tree

(200 GeV)
2

~2
hM

gaugetop

loops

Figure 3.12: An illustration of how bad the situation of the naturalness of the
standard model is, when � � 10 GeV.

In the previous section, we have argued that there must be new physics
somewhere within this scale. Now, we can turn the argument around and see
at what scales will we �nd new physics if we require only a few amount of �ne-
tuning. In other words, we will start by arguing that the loop correction should
not be much larger than the tree-level. Then the degree of naturalness (of the
mass of the Higgs) is evaluated by considering (see Casas et al. [66, 67] for a
more complete analysis)

F �
������(M2

h)
M2

h

����� : (3.142)

The mass of the Higgs would be most natural if we require F << 1. However,
this would imply � < 1 TeV which has already been ruled out by precision
electroweak measurements. So, let us say we want to �ne-tune no more than 1
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part in 10 (i.e., less than 10%), which means������(M2
h)

Mh

����� . 10 : (3.143)

The (3.143) then tells us that �SM < 2� 3 TeV (due to the large top quark loop
contribution) if we let the mass of the Higgs varies between 115� 200 GeV.

Remember that we have hierarchy of particles: gauge bosons, quarks,
and the Higgs. Each has liberty to live on its own. This means, providing a
particular acceptable amount of �ne-tuning, each kind of particle can �request�
new physics at di�erent energy scale, depending on how severe it contributes to
the quadratic divergent loop correction to the mass of the Higgs. As we have
seen, as the top quark contributes most, it requires (see, for example Schmaltz
[36])

�top . 2 TeV (3.144)

to keep the �ne-tuning better than 10%. For the gauge bosons and the Higgs
we have

�gauge . 5 TeV (3.145)
�Higgs . 10 TeV : (3.146)

With the limit of the current accelerators around 1 TeV, it is still �ne that we did
not see any signal of new physics. When we say new physics we mean that there
must be some other heavy particles (so that have not been seen already) that
produce diagrams to cancel the dangerous diagrams from the standard model
particles.

There are at least two ways to resolve the naturalness problem. One
is to remove the problem right from the start; i.e., remove the Higgs or any
fundamental scalar. The idea is every scalar (the Goldstone boson; for example)
in the theory is regarded as a composite particle. In fact, this is not a new idea.
It was used (and proved �correct�) in the physics of superconductor through
the BCS theory. The breaking of symmetry is dynamical and is managed by
composite scalar fermion condensates. Theories developed with this scheme in
mind are categorised in the class of technicolour. We shall investigate some
important features of dynamical symmetry breaking and technicolour in the
section 4.1.
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The other way out of the problem is using symmetry, as we may have
already mentioned from time to time. Symmetry can organise cancellations
between dangerous quadratically divergent loop diagrams. Supersymmetry and
Little Higgs fall into the examples of this kind. Actually, we may have seen
similar cancellations when we introduce the SU(2) electroweak gauge symmetry
to ensure the cancellations between dangerous diagrams from W and Z. In
supersymmetry, the cancellations occur between loops from particle having
opposite spin statistics (particles and superparticles) related via supersymmetry.
In Little Higgs, as we shall soon see, there is a global symmetry playing the role of
supersymmetry, to manage cancellations between particles of the same statistics.

Up to now we have been assuming that we do not believe in a perfect
coincidence so that there should be very few percents �ne-tunings, and that there
must be new particles showing up at around 2 TeV to cancel the unpleasant part.
Unfortunately, life is not that easy. The e�ects of the new particles cannot be
turned on and o� as we wishes. They will leave some footprints within the
precision electroweak measurements or processes taken place at energy scale not
far below the cut-o� �. Even though we can enforce the perfect cancellations
between the quadratically divergent diagrams by introducing some symmetries,
there will always be the logarithmic divergent diagrams left behind. That also
put some constraint on the cut-o� as well.

Still, this is not the whole story we can learn from the naturalness (�ne-
tuning) arguments. A careful reader might have noticed that the maximum
limit of the standard model with better than 10% �ne-tuning (say 2 � 3 TeV)
lies way below theminimum energy scale where new physics will appear (around
5�7 TeV) according to precision electroweak tests. If we take the precision tests
as our �rst priority and set �top we will eventually end up at arond 2� 3% �ne-
tuning. which is hardly acceptable. In addition, even if the �ne-tuning fails very
slightly11 and the Higgs turns out to be just �a bit� heavier, the other bound
from the precision tests saying that the Higgs should be � 100� 200 GeV is not
satis�ed. This problem is known as the little hierarchy problem or the LEP
paradox. Unless we take the �desperate� solution; i.e., ignore the �ne-tuning
and accept the world as is, we have to be careful when introduce new physics.
So the new physics predicts results which are deviated only slightly from those
predicted by the standard model (which agrees well with precision electroweak
tests).

11This is not likely to occur though. If the �ne-tuning mechanism fails, for any reason, the
mass of the Higgs will be driven to the cut-o� scale.



CHAPTER IV

PRELUDE TO THE LITTLE HIGGS

The purpose of this chapter is to provide not only the basic ingredients required
to understand the Little Higgs, but also many crucial ideas and thoughts that
should be useful for studying physics beyond the standard model in many
directions. In section 4.1, we consider another approach to the spontaneous
symmetry breaking which does not require the fundamental scalar. It serves
us as another way to implement the BEH mechanism, as well as gives us some
insights on the problem of vacuum alignment. As a by-product, it provides a nice
way to avoid the naturalness problem and provides the basis of understanding
the high-energy limit of the Little Higgs (the UV completion). We will show
some simple (but complex enough to be illustrative) model to point out how the
structure of the vacuum a�ects the pattern of gauge symmetry breaking. After
that we present methods to deal with low-energy e�ective theory in terms of the
non-linear sigma model in section 4.2. Finally, in section 4.3, we put the last
three main ideas together in a model that is considered as a prototype of the
Little Higgs.

4.1 Dynamical Symmetry Breaking

In this section we will investigate a gauge theory with spontaneous symmetry
breaking from di�erent point of view than what we have done in previous
chapters. Let us recall that what is important in the spontaneous breaking
of a global symmetry is the symmetry group G and H of the system (and the
representations used), not the existence of an elementary scalar. Spontaneous
symmetry breaking without an elementary scalar, usually dubbed dynamical
symmetry breaking, is our main topic here. In the �rst section (4.1.1) we will
see what happens to the electroweak sector if the Higgs does not exist. A more
general treatment will be found in section 4.1.2, where we include the discussions
of vacuum alignments. Formalisms of a situation where the global symmetry is
broken by weak interaction are discussed in section 4.1.2.1, together with their
applications in section 4.1.3.
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4.1.1 A Simple Case

Consider a system of massless quarks uL, uR and dL, dR living in a �avour
doublet and a colour triplet. Now let us say there is no fundamental scalars
included in this system. In this way, when the electroweak gauge couplings g
and g0 are turned o� we see that in addition to the gauge symmetry Gstrong of
the strong interaction, the theory will have a chiral symmetry G = SU(2)L �
SU(2)R, one acting on the doublet (uR; dR) while the other acting on (uL; dL).
This global chiral symmetry is sometimes dubbed �accidental symmetry� of the
electroweak Lagrangian for the reason that should be obvious. We shall see
that due to the nature strong interaction (colour), naturalness, hierarchy, and
triviality problems are solved (or prevented) in one shot.

Next, suppose that the system is arranged in a way that the quark-
antiquark condensate is easy to produce (i.e., the qq is the lowest energy state)
and tend to stay with each other with strong interaction as a �glue�. For a space
�lled with in�nite amount of these pairs to act as a vacuum, each pair must
have zero momentum and zero angular momentum. This immediately tells us
that helicity cannot be zero for each pair. In other words, chiral symmetry is
not respected by the vacuum. The chiral symmetry SU(2)L�SU(2)R will break
down spontaneously to SU(2)L+R vector isospin subgroup. The breaking is said
to be triggered by a �composite� scalar consisting of a quark bilinear having
non-zero vacuum expectation value

h�uLuRi = h �dLdRi 6= 0 ; (4.1)

which clearly provides links between right-handed quarks with the left-handed
antiquarks. The con�guration of the condensate maybe written as follows:0@h�uLuRi h�uLdRih �dLuRi h �dLdRi

1A / (��SB)3

0@1 0
0 1

1A ; (4.2)

where the ��SB is the energy scale where the breaking is expected to occur. For
strong interaction described by QCD, this scale lies around 1 GeV and should
not be confused with the con�nement scale �QCD which is somewhere around
1 GeV as well. Also note the pion decay constant F� � 100 MeV.

Before we move on, let us note the crucial fact that when electroweak
interactions are turned o�, strong interaction alone does not distinguish between
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up and down quarks. This means a con�guration0@h�uLuRi h�uLdRih �dLuRi h �dLdRi
1A / (��SB)3

0@0 1
1 0

1A ; (4.3)

is equally probable and is reachable by a unitary transformation. However, as
we shall see later, this is not a preferred con�guration when we turn electroweak
interaction on.

Now, recall that regardless whether there is a fundamental scalar in the
system or not, we always have the Goldstone theorem on hand when a global
symmetry is spontaneously broken. In this case, we have 3 Goldstone bosons
(the pions) corresponding to the broken axial currents (see the section 2.2.2).
Even in a case without a fundamental scalar like this one we are considering,
we should not write LSB = 0 though the interactions between the Goldstone
bosons and other particles many not manifest themselves in the Lagrangian.
Consequently, in the sense of the LSB given by (2.1), we �nd that we should
write

LQCD $ LSB ; (4.4)

where the role of the fundamental scalar was replaced by the fermion condensate.
Being the Goldstone bosons, we see that masses of these pions are protected to
all order. Their derivative interactions are characterised by a scale F� which
is typically of O(100 MeV). Other states are at ��SB >> F�. Empirically,
��SB � O(1GeV).

Notice that by saying that a pion is a �composite� particle, we mean at
energies higher than ��SB the particle has quark-antiquark substructure, bound
by strong interaction. However, at energies far below ��SB it looks point-like;
i.e., like other elementary particles. Then we can use the e�ective Lagrangian
to explain its behaviour (see later sections).

Now we will proceed to the second stage: when the electroweak in-
teraction is switched on and coupled with our system, and is treated as a
perturbation. The latter means the weak couplings are weak at the energy
scale where the strong interaction (the binding force) becomes strong1. Strictly
speaking, turning on a gauge interaction means we introduce a weakly interacting

1In principle, the �electroweak interaction� here cannot be the same as the one we are familiar
with. The gauge �elds in this case are very light. As we shall see this symmetry breaking
mechanism based on F� � O(100MeV) will result in the electroweak like interaction with
MW ;MZ � O(100MeV) not O(100GeV).
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gauge group GW � G such that2 when G is spontaneously broken to H, GW is
also broken to its subgroup, say HW , controlled by the intersection between
GW and H. In the case we are dealing with, it is clear that the global
chiral symmetry group must be broken explicitly to a subgroup preserving
the electroweak interaction. This case is interesting because the currents in
electroweak interactions are handed ones. So they can �communicate� with the
condensate the presence of symmetry breaking. Then the resulting interaction
will give mass to the gauge bosons. The following considerations will be rather
similar with those in the section 2.2.3. So let us just �ll what are missing.

The parts of the Lagrangian containing SU(2) � U(1) currents that are
capable of producing the pions are written explicitly as

gW a
� 

�
 

1� 5

2

!
� a

2
 + g0B� �

 
1 + 5

2

!
� 3

2
 

= gJ�aW a
� + g0J�YB� (4.5)

These currents produce the pions according to

h0jJ�agauge(0)j�b(p)i = ip�F��ab ; (4.6)

However, in this case there are two gauge �elds coupled with the neutral pion
with the couplings given in �g.4.1. Up to this point, we can proceed in the same

W 3
� �0

igF�p�

B� �0

ig0F�p�

Figure 4.1: Gauge bosons and pions couplings

way as what we did in the section 2.2.3. The diagrams in Fig.4.1 contribute to
the �(p2) in the vacuum polarisation tensor as follows:

�WW (p2) =
g2F 2

�

p2 ; �BB(p2) =
g02F 2

�

p2 ; �WB(p2) =
gg0F 2

�

p2 : (4.7)

The last term is coming from

W �
3 B�

= (igp�F�)
i
p2 (�ig0p�F�) : (4.8)

2It is not necessary that GW and HW be the SU(2)L � U(1)Y and U(1)em, respectively.
However, these are usually the cases.
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In this way, the mass terms for the gauge �elds can be read o� easily. They can
be organised into a mass matrix

M2 = F�2

0BBBBBB@
g2

g2

g2 gg0

gg0 g02

1CCCCCCA (4.9)

with rows and columns labelled by the states W 1
� ;W 2

� ;W 3
� ; B�. The 2�2 matrix

in the lower-right corner, corresponding to the W 3
� and B�, can be diagonalised

into
F 2
�

0@g2 + g02 0
0 0

1A (4.10)

with the eigenstates being the linear combinations (2.90) and (2.91)

Z� = 1p
g2+g02

(gW 3
� � g0B�) = �B� sin �W +W 3

� cos �W (4.11)

A� = 1p
g2+g02

(gB� + g0W 3
�) = B� cos �W +W 3

� sin �W : (4.12)

The eigenvalues of the diagonalised mass matrix are therefore

M2
W = g2F 2

� ; M2
Z = (g2 + g02)F 2

� ; M2
A = 0 ; (4.13)

which implies
M2

W

M2
Z cos �2

W
= � = 1 : (4.14)

What is interesting is that for any strongly interacting gauge theory with a chiral
symmetry breaking from G � SU(2)L � U(1)Y to H � U(1)em, in such a way
that SU(2)L�U(1)Y =�H, will always break the electroweak interaction down to
electromagnetism. Phenomenological constraints further requires that H must
also contain an SU(2) group to ensure that the relation (4.14) is satis�ed at tree
levels. We say that the SU(2) protects such a relation and hence its is the SU(2)
custodial symmetry (see section 2.3.5).

Though the relation (4.14) as well as the global symmetry that protects
it is the same as those found in the section 2.3.5, we tried not to claim right from
the beginning that they are the same. This is because we do not really know
what is the mechanism behind the electroweak symmetry breaking. Nor do we
know if the (standard model) Higgs doublet exists. But, as we have seen, various
theoretical arguments and their results together with some veri�cations from the
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laboratories convinced us that the electroweak symmetry must be broken. So
there must be three would-be Goldstone bosons produced and later eaten by the
W and Z gauge �elds. This assures, as we have mentioned from time to time,
that the Higgs doublet is not necessary and the important part is the symmetry
breaking pattern. The constraint (4.14) tells us that the custodial symmetry is
more or less vital for any model of electroweak symmetry breaking we use. Once
the custodial symmetry is there, it protects the � from receiving large radiative
corrections.

The results we have here show some nice features of the dynamical
symmetry breaking model in the sense that the inputs (parameters) of the
theory are minimal and the outputs are quite a lot. We started with massless
fermions forming condensates which broke the chiral isospin symmetry down to
the vector isospin symmetry. Then it was this strong interaction that broke the
SU(2) � U(1) down to U(1)em and gave masses to the gauge bosons. Still, the
numerical results are not satisfactory; for example, taking F� � 100MeV, we
�nd that the mass of the gauge bosons

MW � 30 MeV : (4.15)

are about 2500 times lower than the experimental values. This particular
problem was a motivation for the introduction of a stronger colour-like inter-
action called technicolour or hypercolour. Besides, observe that this simple
mechanism cannot give mass to fermions. Yukawa interaction is not an option
since the theory does not have fundamental scalar. This problem can be solved
in a modi�ed theory generically called the extended technicolour. We will not
pursue that topic here. Still it is worth emphasising that despite all the good
features and all the defects that the families of technicolour theories may have,
these kinds of theories do not have the Higgs (nor the Higgs doublet). A particle
having quantum numbers similar to the Higgs may exist but merely not quali�es,
phenomenologically, for being so. At least it does not have the Higgs feature such
as its couplings with other particles are proportional to their masses. Actually,
this is fairly obvious because it is �by construction�. We tried to avoid it right
from the beginning and it did not come back to us.

To sum up, we have tried to see what happens if the Higgs does
not exist. We saw that electroweak symmetry still breaks down to that for
electromagnetism and the weak gauge bosons are massive, though they are even
lighter than the pions, due to their interactions with the condensate.
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4.1.2 Explicit Symmetry Breaking and Vacuum Alignment

In a system where spontaneous symmetry breaking occurs, we have seen that in
many cases there exist in�nite possibilities of equivalent ground states (vacua).
The previous section provided one of the examples. An illustrative example
maybe the breaking of the global symmetry SO(3)=SO(2) of a ferromagnetic
system. Though we know that the symmetry is broken down to SO(2), we
cannot tell which SO(2) subgroup is left unbroken. An SO(3) transformation
will rotate a particular vacuum to others which results in the new unbroken
subgroup (which are equivalent). Nevertheless, things change when we apply
an external �disturbance� (in this case it is the external magnetic �eld) to the
system which breaks the SO(3) symmetry explicitly. In other words, the explicit
perturbation may transform as a 3-vector in SO(3) and will force a speci�c
SO(2) rotation that leaves it intact. Therefore, the SO(3) symmetry is not exact
even before the spontaneous symmetry breaking occurs. So, this speci�c SO(2)
(second) vacuummay not be the same as the choice picked up by the spontaneous
breaking mechanism. The interesting point is that instead of having the O(1)
as a survival exact symmetry that satis�es both the two vacuum alignments,
the system has the SO(2) as an exact symmetry. This means that the vacuum
of the spontaneous symmetry breaking tends to �align� itself with the explicit
symmetry breaking interaction. Some of the aspects of the vacuum alignment
will be reviewed in this section.

In this section, we will deal with explicit symmetry breaking in general
sense. Then we focus on the explicit breaking caused by gauge interactions.
Finally we will brie�y review some of the examples of the vacuum alignment
problems.

First let us recall the invariant condition (2.14) for a potential V0 leading
to spontaneously broken symmetry

@V0

@�i
(T a�)i = 0 : (4.16)

Suppose we introduce a small explicit symmetry breaking perturbation V1(�)
so that the new potential becomes V = V0 + V1, we will �nd that the vacuum
changes to � = �0 + �1 for a small �1. This new vacuum satis�es

@V (�)
@�i

�����
�=�0+�1

= 0 (4.17)
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and is no longer degenerate. Expanding this equation, the stationary condition
becomes

0 =
@V0(�)
@�i

�����
�0

+
@2V0(�)
@�j@�i

�����
�0

�1j +
@V1(�)
@�i

�����
�0

+
@2V1(�)
@�j@�i

�����
�0

�1j + : : : :

(4.18)

After a multiplication with T aik�0k = (T a�0)i and the application of a slightly-
modi�ed version of (2.17), we �nd, to the �rst order

(T a�0)i
@V1(�)
@�i

�����
�0

= 0 : (4.19)

As we have seen in the section A.4 on the e�ective potential, the above equation
technically tells us that the Goldstone bosons have no tadpoles (to �rst order
in V1). This equation also tells us that it is the symmetry breaking terms in
the Hamiltonian that control the alignment of the true vacuum. Hence this
condition is known as the vacuum alignment condition.

Group theoretical techniques allow us to �nd a condition to identify
whether the vacuum under consideration is the �true� one; i.e., whether it
has minimum energy. Consider a spontaneous breaking of global symmetry
group from G, with T a (a = 1; : : : ; nG) as generators, down to H, with Y i

(i = 1; : : : ; nH) as generators. The broken generators are denoted by Xz

(z = 1; : : : ; nG � nH). So the set of degenerate vacua is described by

j
(�)i = ei�zXz j0i : (4.20)

If G is an exact symmetry (but hidden), then the orientation of the H in G is
arbitrary. Now suppose we introduce an explicit breaking part, which introduces
a second vacuum alignment, into the system. By treating the small symmetry
breaking term in the Hamiltonian H0 as a perturbation, we �nd that the vacua
are no longer degenerate and are shifted by

�E(�) = h
jH0j
i = h0je�i�zXzH0ei�zXz j0i : (4.21)

In general, we do not know which vacuum aligns with H0. Look at the vacua
de�ned by (4.21). One of them, say the j0i, should correspond to the true
vacuum such that the �E(�) be extremal; i.e.,

@
@�z�E(�)

���
�=0

= ih0j[Xz;H0(0)]j0i = 0 : (4.22)
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Furthermore, the contribution from H0 must lead to an upward curvature of the
e�ective potential:

@2

@�x@�z�E(�)
���
�=0

= �h0j[Xz; [Xx;H0(0)]]j0i � 0 : (4.23)

These two conditions are also known as the Dashen's conditions. The latter
condition tells us that the Goldstone boson will acquire a mass matrix

m2
xz = C

@2

@�x@�z�E(�)
���
�=0

= �Ch0j[Xz; [Xx;H0(0)]]j0i � 0 ; (4.24)

where C is a constant that can be calculated using a technique, that requires
some knowledge on strong interaction, like the current algebra method (see
Dashen [68] or the review paper by Pagels [69] and the references therein) where
it was found that C = 1

F 2
�
. The Goldstone bosons that become massive, due

toapproximate symmetry (spontaneously broken from G to H but explicitly
broken by H0), are referred to as pseudo Goldstone bosons (sometimes called
pGB, pNGB, or just �pseudos�).

Instead of looking for a vacuum j0i that corresponds to minimal energy
by the method prescribed above, there is another way to view the situation on
hand. Let us say that we are given a �xed vacuum j0i. Then the problem is
to �nd a �G-rotated� perturbation H0(�) = U(�)H0(0)U y(�) such that the H-
invariant vacuum has minimal energy. The conditions that H0(�) must satisfy
are then (4.22), and (4.23). In practice, it may turn out that the masses of the
Goldstone bosons given by (4.24) are, or has a potential to be, negative. This
signi�es that we had picked up either the wrong vacuum, or the wrong H0(�),
or we have to �nd some conditions (on several parameters) that the particular
vacuum we have chosen is the true one. A G transformation on the perturbation
can also brings us, indirectly, the �preferred� vacuum.

4.1.2.1 Global Symmetry Explicitly Broken by Electroweak Interaction

Now, recall that gauge interactions can also explicitly break the global symmetry
even though the global symmetry is a result of another gauge symmetry. As
an example, consider a system of massless colourless technifermions which
behave likes u and d quarks3. Chiral symmetry then breaks dynamically due to
technicolour interaction. The reason technifermions are chosen instead of the

3Sometimes we will refer to the technifermions just as fermions when it is clear from the
context.
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quarks is because we can assume that the in�uences of the weak interaction
on the dynamics of the strong interaction acting on colourless technifermions
are moderately suppressed so that the pattern of symmetry breaking of the
global (chiral) �avour symmetry is not altered. This is because the technicolour
interactions are assumed to have energy scale much greater than the usual colour
ones. We will refer to the technifermions as U ; D; C; etc : : :. Global symmetry
is explicitly broken by the Yukawa interaction as well if the theory admits the
existence of fundamental scalars.

The gauge �elds are introduced by gauging a subgroup of G, called GW ;
i.e., promoting the GW to a local one. Though we are interested in cases where
SU(2)�U(1) � GW , many other possibilities are available. As indicated before,
it is not necessary that GW be the same as the global group G. So there may be
an intersection between H and GW . The so called the alignment of H relative
to GW , is not �xed but is determined dynamically such that the energy of the
speci�c vacuum is minimised. Another way of mentioning the vacuum alignment
problem is that �what subgroup HW of GW is left unbroken by strong dynamics?�

Particles in the spectrum are classi�ed as follows. The gauge �elds
corresponding to the overlapped section (of GW and H) will be massless because
there are no Goldstone bosons to feed to them. Moreover, the Goldstone bosons
corresponding to the intersection between the broken generators and the gauge
generators will be exactly massless and will eventually get eaten by interacting
with the corresponding gauge �elds.

Still, some of the massless Goldstone bosons will make it to the physical
spectrum while being massless if they are protected by another (non-gauged)
subgroup of G having all of its generators commute with GW . So, by
construction, this subgroup cannot be de�ned beforehand and may share its
generators with those corresponding to the unbroken symmetry. Electroweak
interaction can be responsible for generating such the group because it introduces
the doublet-singlet structure to the group which may or may not result in
the additional group depending on whether it treats each family di�erently.
The largest possible (maximal) subgroup of this kind will be referred to as S.
Consequently, the appearance of (weak) gauge interactions explicitly break G
to GW � S. Finally, there remain the Goldstone bosons whose masses are not
protected by either GW or S. These Goldstones will interact with the gauge
�eld and become massive. They are the pseudo-Goldstone bosons.

Now we will let some of the G generators coupled with the gauge �elds
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belonging to the group GW of weak interactions. In this section, it is helpful
to use di�erent indices for G-currents and GW -currents. The latter will be
accompanied by �rst few Greek indices �; �; : : :. With the use of the suitable
representation, the gauge couplings can be recasted into the form

L0 = X
�
g�A��J

��; : (4.25)

Though the GW -currents do not �know� anything about the global symmetry
and its breaking, GW must be a subgroup of G. Hence, the GW -current must be
a linear combination of some of the G-currents

g�J�� =
X
a
g�aJa� (4.26)

corresponding to the mixing between the unbroken and broken G generators Y i's
andXz's respectively. The g�a is provided to manipulate the linear combinations
of the couplings. Expressing things in terms of the G-currents will bring in
some convenience since, as we shall see, we have to consider a G-transformation
of an H0 constructed from the GW -currents J�. Notice that, under a global
G-transformation Ja transforms as an adjoint representation R(�) of G

g�U yJ��U =
X
a
g�aU yJa�U =

X
ac
g�aRac(�)J c� : (4.27)

In addition, we can decompose the generators of GW into the unbroken and the
broken G-generators, denoted collectively by,

� = �Y + �X ; (4.28)

which, obviously, depends on a particular choice of vacuum. This also means J��
can be projected into the subspace determined by the Y i and Xz such that the
resulting J corresponding to the unbroken and broken subgroups do not mix:

g�J�� = g�U yJ��U
���
Y

+ g�U yJ��U
���
X

=
X
ac
g�cRac(�)Jc�

���
Y

+
X
ac
g�cRac(�)Jc�

���
X

� UJ�Y� + UJ�X� : (4.29)

Observe that this way of projecting into Y i and Xz clearly depends on the
relative orientation of H and GW . We also de�ne the UJ�� 's in such a way that
they include the gauge couplings corresponding to the 2 parts of the current
given in (4.29). For convenience, �'s are then de�ned so that they contain the
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g's. These projections are useful because we know how the G generators act on
a vacuum.

Now we will arrange perturbations H0 due to weak gauge �elds in more,
group theoretically, useful forms so we can get better versions of the Dashen's
conditions. The exchanges of the gauge �elds contribute, to leading order in g,

H0(0) = �1
2
X
��
g�g�

Z
d4xD��

0��(x)T
n
J�� (x)J�� (0)

o
(4.30)

where D��
0��(x) is the free gauge boson propagator

D��
0��(x) = ih0jTA��(x)A�� (0)j0i � ���D0�� : (4.31)

This leads to the energy shift of a vacuum state j
i

�E(�) = �1
2
X
�

(g�)2
Z

d4xD��
0 (x)h
jTJ�� (x)J�� (0)j
i (4.32)

In general, the shifted energy depends on the alignment of the vacuum. Picking
a speci�c vacuum j0i we �nd that the vacuum j
i is related to others by an
element in G by j
i = U(g)j0i. So,

(g�)2h
jTJ�� (x)J�� (0)j
i = (g�)2h0jTU yJ�� (x)UU yJ�� (0)U j0i
� h0jTUJ�� (x)UJ�� (0)j0i : (4.33)

Only H-invariant quantities can contribute to the expression in (4.33) because
the vacuum is invariant under transformations belonging to the subgroup H. To
see what we have on hand, recall the assumption

h0jTJY� (x)JX� (0)j0i = 0 (4.34)

or
TrXzY i = 0 (4.35)

which brings us to

Tr
�
Y i[Y j; Xz]

�
= Tr

�
[Y i; Y j]Xz

�
= if ijkTr

�
Y kXz

�
= 0 (4.36)

and hence [Y;X] � X. Then, the further assumption that the symmetry
breaking respects parity in the sense that PY iP�1 = +Y i and PXzP�1 = �Xz,
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reduces the general relation

[Xy; Xz] = ifyziY i + ifyzwXw (4.37)

down to
[Xy; Xz] = ifyziY i ; (4.38)

which completely speci�es the symmetric space (G=H). Then it can be shown
that (see Peskin [70]) the product of two unbroken currents are proportional to
only one invariant, the �ij,

h0jTJ i�(x)J j�(0)j0i = �ijh0jTJY� (x)JY� (0)j0i
= Tr

n
Y iY j

o h0jTJY� (x)JY� (0)j0i (4.39)

Here, JY denotes any single generator corresponding to Y i and we do not sum
over them. Similarly,

h0jTJx�(x)Jz� (0)j0i = Tr fXxXzg h0jTJX� (x)JX� (0)j0i ; (4.40)

and
h0jTJY� (x)JX� (0)j0i = 0 (4.41)

allows us to write

h0jTUJ�� (x)UJ�� (0)j0i = h0jTUJ�Y� (x)UJ�Y� (0)j0i+ h0jTUJ�X� (x)UJ�X� (0)j0i
= Tr

n
(U y��U)Y (U y��U)Y

o h0jTJY� (x)JY� (0)j0i
+Tr

n
(U y��U)X(U y��U)X

o h0jTJX� (x)JX� (0)j0i
= Tr

n
(U y��U)Y

h
U y��U

io h0jTJY� (x)JY� (0)j0i
+Tr

n
(U y��U)X

h
U y��U

io h0jTJX� (x)JX� (0)j0i
= Tr

nh
U y��U

i h
U y��U

io h0jTJY� (x)JY� (0)j0i
+Tr

n
(U y��U)X(U y��U)X

o
h0jT nJX� (x)JX� (0)� JY� (x)JY� (0)

o j0i ;
(4.42)

where (U y��U)Y is a linear combination of the G-generators corresponding to
the current UJ�Y� . Clearly we cannot naively �undock� the U from an expression
such as

Tr
n
(U y��U)X(U y��U)X

o
= Tr

n
U��

X
U��

X

o 6= Tr f��
X��

Xg ; (4.43)
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where U��
X � (U y�U)X , because the mixing is implicitly described by (4.30).

The example of the above mixing and the dependence on the vacuum alignment
will be given below. Later, we will see the use of expressing the GW -currents in
terms of the unbroken and broken G-currents in the form displayed in the last
line of (4.42).

It may be illustrative to see things in more details: for the case SU(N)�
SU(N)! SU(N) the G-currents are

JaL� = �	L�T a	L = �	�T a
(1� 5)

2
	 (4.44)

JaR� = �	R�T a	R = �	�T a
(1 + 5)

2
	 ; (4.45)

which can be arranged into vector and axial currents in the usual way:

JaV � = �	�T a	 ; JaA� = �	�T a5	 : (4.46)

Then the GW currents and their transformations are

g�J�L� = �	L�g���L	L ! �	L�L
yg���LL	L ;

g�J�R� = �	R�g���R	R ! �	R�R
yg���RR	R (4.47)

where ��L;R are generators for the GW (which are actually a linear combination of
the T a's), and the UL and UR are the SU(N) matrices. In (4.33) we then expect
the following terms, due to J� = J�L + J�R,

h0jUJ�� UJ�� j0i / Tr
�
Ly��LLL

y��LL
�

+ Tr
�
Ry��RRR

y��RR
�

+Tr
�
Ly��LLR

y��RR
�

= Tr (��L�
�
L) + Tr (��R�

�
R) + Tr

�
��LUN�

�
RU

y
N

�
(4.48)

where UN = LRy is an SU(N) matrix, which clearly exhibits dependence on the
orientation. In terms of the generators these currents, the projections are given
by

��
Y = g�

X
i
Y iTr

n
Y i��

o
(4.49)

��
X = g�

X
z
XzTr fXz��g : (4.50)
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So the GW current can be decomposed to

g�J�� = g� �	���	 = �	���
Y 	 + �	���

X	

= g� �	�
X
i
Y iTr

n
Y i��

o
	 + g� �	�

X
z
XzTr fXz��g	 : (4.51)

Now let us come back to (4.42), where we have factored out the term

Tr
n
U y�UU y�U

o h0jTJY� (x)JY� (0)j0i (4.52)

which does not depend on the alignment � of the vacuum. The generators of
G as �seen� by the vacuum is the same no matter which direction it points to.
Consequently, the energy shift of j
i in (4.30) is

�E(�) = E0 +
1
2
X
�

Tr
n
U��

X
U��

X

o
Z

d4xD��
0 (x)h0jT nJY� (x)JY� (0)� JX� (x)JX� (0)

o j0i: (4.53)

The unbroken generators of GW raise the value of �E while the broken
generators try to lower it. It can be argued that the integral is positive (see
Preskill [71], or Peskin [70]). This is quite natural since the lightest particle
created by the broken current JX� should be heavier than the lightest particle
(massive due to explicit symmetry breaking) created by the unbroken one, the
JY� . The examples are the axial and the vector mesons, respectively. Therefore,
to �nd the preferred vacuum orientation, we have to �nd the con�guration which
minimises X

�
Tr
n
U��

X
U��

X

o
; (4.54)

which is the projections of the generators (corresponding to the currents) on the
subspace of possible equivalent representations of Y i or Xz. We may say that
the vacuum prefers the direction that results in the minimal number of broken
generators of GW in the projection. To see the meanings of what we have on
hand, recall that the interaction between the Goldstone bosons and the gauge
�elds is given by

h0jJ�� (0)j�x(p)i = ip���xF� : (4.55)
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Observe that the arguments preceding the equations (4.39) and (4.40) leads, in
the low energy limit, to

h0jTJ�� (p)J�� (�p)j0i � X
z
h0jJ�� j�z(p)i i

p2 h�z(�p)jJ�� j0i
=

X
z

[ip�F���z]
i
p2

h�ip�F���z
i

=
X
z

i
p�p�
p2 F 2

�Tr f��XzgTr
n
��Xz

o
= i

p�p�
p2 F 2

�Tr
n
��
X��

X

o
: (4.56)

On other vacua j
i, we �nd

h
jTJ�� (p)J�� (�p)j
i � i
p�p�
p2 F 2

�Tr
n
U��

X
U��

X

o
; (4.57)

which allows us to read o� the mass term for the (weak) gauge �elds

M2
�� = F 2

�Tr
n
U��

X
U��

X

o / g�g�F 2
�Tr

n
X�X�

o
; (4.58)

which can be compared with the results found in section 4.1.1. This means

�E(�) /X
��
M2

�� = TrM2 : (4.59)

The interpretation agrees with that below (4.54); namely, the GW and H prefer
to line up in such a way, determined by the fermion condensate alignment, that
the masses of the GW gauge �elds be minimal. Hence electroweak symmetry
is broken as little as possible. In other words, as a crucial result, the largest
possible subgroup GW (i.e., largest overlap between GW and H) will survive.

At this stage, we can convert (4.57) into a more useful form. Using the
vacua de�ned by (4.20), the Dashen's condition (4.22) becomes

0 =
@
@�z

X
�

Tr
n
(U y�U)2

X

o ���
U=1

= 2i
X
�

Tr f([Xz;��])X��
Xg

= 2i
X
�

Tr fXz[��
Y ;�

�
X ]g (4.60)

where the orthogonality TrfXY g = 0 and [X;X] = iY were used in the last
step. This tells us that the vacuum is stationary when Tr fXz[��

Y ;��
X ]g = 0 for

all gauge generators ��. The result is useful since it is entirely group theoretic;
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i.e, we do not have to mess with complicated strong dynamics. Next, consider

@2

@�x@�z

X
�

Tr
n
(U y��U)2

X

o ���
U=1

= �2
X
�

(Tr f[Xx; [Xz;��
X ]] ��

Xg+ Tr f([Xx;��])X([Xz;��])Xg)
= �2

X
�

(Tr f[Xx; [Xz;��
X ]] ��

Xg+ Tr f[Xx;��
Y ][Xz;��

Y ]g)
= 2

X
�

(Tr f[��
Y ; [�

�
Y ; X

x]]Xzg � Tr f[��
X ; [�

�
X ; X

x]]Xzg) (4.61)

Then the Goldstone mass matrix from the second Dashen's condition (4.24)
becomes

m2
xz =

1
F 2
�

X
�

(Tr f[��
Y ; [�

�
Y ; X

x]]Xzg � Tr f[��
X ; [�

�
X ; X

x]]Xzg)Z
d4xD��

0 (x)h0jT nJY� (x)JY� (0)� JX� (x)JX� (0)
o j0i (4.62)

which can be written in a less precise form as a combination of the masses due
to the broken and unbroken gauge generators

m2
NGB / m2

�Y �m2
�X : (4.63)

Observe that the latter tends to destabilise the vacuum. This mass term will
control the resulting subgroup of the gauge group.

4.1.3 Examples of a Symmetry Broken Explicitly by Weak

Gauge Interactions

In this section we will study the applications of (4.62) to the symmetry breaking4
SU(2N)�SU(2N)! SU(2N). We consider the case where the electromagnetic
or weak gauge groups are included in the SU(2N)� SU(2N) of G.

Consider a system of 2N left-handed and 2N right-handed massless
fermions transforming under the (same) complex representation of a strong
interaction gauge group. The system will have a global �avour symmetry namely
SU(2N)L � SU(2N)R. Then the condensate

h0j � iL jRj0i = �3�ij ; (4.64)
4The number N may be regarded as the number of the left-handed doublets when weak

interaction is taken into account.
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with i; j being �avour indices and5 � / F�, breaks the chiral group down to
SU(2)L+R (see section 4.1.1). At this stage, we have equivalent sets of vacua that
are related by a SU(2N)L � SU(2N)R (unitary) transformation Lh � iL jRiRy =
�ij�3LRy where LRy is a unitary unimodular matrix which can be parametrised
by the pion �elds (the Goldstones) �a(x); i.e., exp

n
�a(x)�a
F�

o
.

4.1.3.1 Masses of the Pions Due To Quark Masses and Electromagnetism

Now let us take the strong interaction to be the usual colour interaction for a
moment and regard the U ; D as the usual quarks u; d. Let the condensate that
breaks the chiral symmetry and keeps vector isospin be

h�uLuRi = h�uLuRi 6= 0 : (4.65)

We will consider the coupling of the Goldstone bosons produced above with
the electromagnetic �eld. The T 3 generator of the global symmetry (isospin) is
coupled with the electromagnetic �eld via Q = T 3 +Y=2 which has a preference
in the � 3 direction, and therefore explicitly breaks the chiral symmetry. In the
simplest case where N = 1 we know that these Goldstones are the pions. The
perturbation from electromagnetic interaction is

H0(0) = �1
2
e2
Z

d4xD��
0 (x)T fJ�(x)J�(0)g (4.66)

where J� � �u�u + �d�d is the electromagnetic current. Since the pattern of
symmetry breaking is SU(2)L � SU(2)R ! SU(2)L+R (in our current notation
we have Y i = T i = � i=2 as generators of H), we see that ��

Y = eT 3. In addition,
the unbroken isospin leads to ��

X = 0 hence the Dashen's stationary condition is
satis�ed. So the estimation of the pseudo-Goldstone boson is easy in this case: to
lowest order, we expect that the contribution from one photon exchange does not
give any mass to the neutral pion. Since the Xz

A (chiral) charges are electrically
neutral and hence commute with J�em,

(m2
�0) = 0 ; (4.67)

while the charged ones receive

(m2
��) = e2M2

 : (4.68)
5F� is either of order MeV or GeV, depending on the interactions being considered (colour

or technicolour).
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The strong-dynamics part is embedded in

M2
 =

1
F 2
�

Z
d4xD��

0 (x)h0jT fJV �(x)JV �(0)� JA�(x)JA�(0)g j0i: (4.69)

where the unbroken and broken currents are just the vector and axial vector
currents, respectively. As expected, the correction is proportional to the
parameter corresponding to the term that breaks the symmetry (m2

� � e2M2
 ).

Notice that we have used the superscript  in (4.68) to note that this mass
correction comes from photon exchange only. Explicit symmetry breaking
perturbation from the quark masses, which a�ects both charged and neutral
pions, is neglected. We can even cheat a little by taking the M measured
from experiments to determine the e�ects due to electromagnetic interaction.
In order to do so we have to bring back the contribution from non-zero quark
masses which also explicitly breaks the chiral symmetry.

Next we will workout the contribution to pion masses according to non-
zero mu;md; : : :. This is sort of unnecessary if we insist on �nding out the
value of M2

 from experiments. Still this example may give some idea of vacuum
alignment. Let us note that the quark mass perturbation can be written as

H0q = mu�uu+md �dd =
1
2

(mu +md)(�uu+ �dd) +
1
2

(mu �md)(�uu� �dd)

=
1
2

(mu +md) �		 +
1
2

(mu �md) �	� 3	 ; (4.70)

which means this explicit breaking term also prefers the breaking of axial isospin
symmetry while leaving the (vector) isospin there: the term containing �		
is invariant under the isospin transformation but not under the chiral one.
The e�ect of the explicit isospin breaking � 3 operator (recall the coupling with
electromagnetic �eld) from the second part is suppressed by the small value of
mu�md (comparing tomu+md). The point is that, without the mass termsmu

and md which keeps the vacuum in the �		 direction, other possibilities related
by an SU(2)� SU(2) transformation lying on a linear combination between

�0
V � �		 ; and �a

V � �	5� a	 (4.71)

are equally possible. It was the mass terms (4.70) that align the vacuum in this
example. Gauge and Yukawa interactions can also do similar jobs. For further
reference, we note that in general the H0q can be written as a linear combination
of the commuting generators of the group in question (including an identity);
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i.e.,
H0q = c0u0 + c3u3 (4.72)

where u0 is proportional to a unit 2 � 2 matrix and ua = �	� a	. An unbroken
isospin clearly implies c3 = 0 so that mu = md = m.

To workout the pion masses due to non-zero quark masses using (4.24),
we need to evaluateZ Z

d3xd3yh0j hJzA0(x);
h
JxA0(0);m�	(y)	(y)

ii j0i (4.73)

where JxA0 = �	(x)05 �x
2 	(x). First we recall that

f	�(x);	�(y)g = 0 =
n
	y�(x);	y�(y)

o
(4.74)n

	y�(x);	�(y)
o

= ����3(x� y) : (4.75)

Then �
�	(0)

� x

2
05	(0); �	(y)	(y)

�
=
h
	(0)y�	(0)�;	(y)	(y)�

i
(� x5=2)��0

�

=
�

	y�f	�;	
y
g	� �	yf	y�;	�g	�

+f	y�;	yg	�	� �	y�	yf	�;	�g
�

(
� x

2
5)��0

�

=
�

	y�	y	�	� � 0 +
h
	y�	�;	

y
	�

i �
(
� x

2
5)��0

�

=
 

	y�	�(
� x

2
50)�� �	y	�(

0� x

2
5)�

!
�3(y)

= 2
�

	y�	�(
� x

2
50)��

�
�3(y) ; (4.76)

which leads toZ
d3y

h
JxA0(0);m�	(y)	(y)

i
= m	y�	�(

� x

2
50)�� : (4.77)
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Next, Z
d3x

�
JzA0(x);m	y�	�(

� x

2
50)��

�
=
Z

d3x
�

�	(x)05 � z

2
	(x);m	y�	�(

� x

2
50)��

�
=
Z

d3x
h
	y	�;m	y�	�

i
(05 � z

2
)�(

� x

2
50)��

= m
Z

d3x	y�	�(
� z

2
550� x � 50� x

� z

2
5)���3(x)

= m	y�	�(0 1
2
f� z; � xg)��

= m�		�zx : (4.78)

which brings us to

h0j [Xz
A; [X

x
A;H0]] j0i = mh0j�uu+ �ddj0i�zx : (4.79)

Therefore the masses of the pions due to non-zero quark masses are

m2
� = � 1

F 2
�
mh0j�uu+ �ddj0i = � 2

F 2
�
mh0j�uuj0i � Cm ; (4.80)

where C = � 2
F 2
�
h0j�uuj0i. It is important to emphasise that all the pions, charged

or neutral, received the same amount of masses.

Finally, the mass of the charged pion is

m2
�+ = m2

� + (m2
�+) = m2

� + e2M2
 : (4.81)

Since the corrections due to the two explicit breaking sources are of the same
order, we �nd

m�+ �m�0 � (m2
�+)

2m�0
: (4.82)

Recap: under the in�uence of electromagnetism, the charged condensates
like

h�uLdRi = h �dLuLi 6= 0 ; (4.83)

which were �equivalent� to the neutral condensates (4.65) when the electro-
magnetism was not introduced, will now repel other condensates. This means
they tend to stay further from one another (comparing to the case when
electromagnetism is absent) and are more di�cult to produce. Hence they
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cannot be the true vacuum. The true vacuum will aligned itself to the neutral
condensate direction. We can also say that the electromagnetic interaction (i.e.,
weak gauge interaction) tries to make the condensate neutral so that the vacuum
energy is lowest, and the binding is highest. Consequently electromagnetic
symmetry is not broken by the condensate. In other words, we started with
the correct vacuum (4.65). In the next section we shall see that when this is not
the case, electromagnetic gauge symmetry can be broken and photons can be
massive.

4.1.3.2 Explicit Symmetry Breaking by Electroweak Interaction

Next, by letting the Goldstone bosons of the spontaneous symmetry breaking
coupled with the electroweak gauge �elds, we �nd, as in the section 4.1.1, that
this introduces left-handed doublet and right-handed singlet structures. Let q
be the mean electric charge of the doublet. We �nd the weak coupling for the
case N = 1 is

L0 = g
X
�

� L�T� LW�
� + g0

�
� R�T 3 R + q � � 

�
B� : (4.84)

with the corresponding generators written as

�� 3
0@ T�

0

1A ;

0@ q
q + T 3

1A ; (4.85)

based on a ( L;  R) basis6, where each box is a 2 � 2 matrix. In this case, we
still stick with the complex representation of the technifermions and hence the
usual pattern of symmetry breaking, SU(2)L � SU(2)R ! SU(2)L+R, can be
studied. The �original� vacuum condensate h0j � iL jRj0i = �3�ij, which can be
represented by

�3

0@1 0
0 1

1A (4.86)

based on a row ( �UL �DL) and a column (URDR). With this condensate, broken
and unbroken generators of G can be de�ned. Then the GW generators in (4.85)
can be easily �partitioned� into unbroken and broken parts of G (vector isospin

6We use di�erent notations from Peskin [70] who uses ( L;  cL).
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and axial isospin)

�� =

24g
2

0@ T�

T�

1A+
g0
2

0@ 2q + T 3

2q + T 3

1A35
+

24�g
2

0@ �T�
T�

1A+
g0
2

0@ �T 3

T 3

1A35 ; (4.87)

respectively. Observe that (4.86) can be recovered from a rotated one
(L � iL 

j
RR

y); for example, in the basis of (4.86),

�3

0@0 1
1 0

1A (4.88)

(which comes in the wrong, electrically charged, pairs �ULDR = �DLUR = �3)
by using a transformation of the weak gauge sector. This means there is no
alignment problem as we can always �choose� a vacuum condensate that leads
to phenomenological acceptable outcomes; namely, the one that is electrically
neutral. As all the vacua are equivalent under the electroweak symmetry SU(2)�
U(1), there is no chance for this group to evade breaking. So the three Goldstone
bosons from the broken axial isospin symmetry, though remain exactly massless
with the protection of the SU(2)L weak gauge symmetry, were all eaten up by
the weak gauge bosons. The masses of these gauge bosons can be evaluated and
are equal to those found in section 4.1.

More interesting cases are those having N > 1. Let us stick with N = 2,
by introducing another similar copy of the UD doublet with the same charge
assignments. Most of the arguments used here are fairly heuristic, which are
su�cient to provide us the rudiments of a model that will eventually become
the Little Higgs. As usual, the pattern of global symmetry breaking is SU(4)L�
SU(4)R ! SU(4)L+R. One of the direction of the condensate that leads to this
breaking has the usual diagonal form

�3

0BBBBBB@
1

1
1

1

1CCCCCCA ; (4.89)

based on a row ( �UL �DL �CL �SL) and a column (URDR CR SR). The broken and
unbroken generators of G can now be properly de�ned. Then let us write the
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�fermion multiplet� to be acted on by weak interaction as

	 = (UL; DL; CL; SL;UR; DR; CR; SR) : (4.90)

By using a 2� 2 matrix that acts on the space of the two doublets (the family
space) we see that the gauge couplings, written in terms of the 8 � 8 (matrix)
generators, are

L0 = g
X
a

�	�
0@ T� 
 1

0

1A	W�
� + g0 �	�

0@ q
q + T 3 
 1

1A	B� : (4.91)

The 1 in T�
1 acts on the space between the two doublets. In this case we see
the additional symmetry group S. Electroweak interaction leaves us with two
copies of the left-handed doublets (UL; DL) and (UR; DR), as well as two similar
up-type fermions UR; CR and two similar down-type fermions DR; SR. Since the
members of the three set come with equal U(1) charge assignments, we then
have the additional global symmetry,

S = SU(2)L � SU(2)R � SU(2)R ; (4.92)

where the SU(2)L+R remains unbroken when the spontaneous symmetry break-
ing of G = SU(4)L�SU(4)R due to the condensate occurs. The breaking of the
S section alone produces 2 � 3 = 6 neutral Goldstone bosons (since the global
symmetry S �links� members with similar charges). Consequently, out of 15
Goldstone bosons produced, 3 representing the generators T a 
 1 will be eaten
by the electroweak gauge �elds. The other 6 of them will survive massless to a
physical spectrum. The remaining 6 Goldstone bosons may receive masses by
interacting with the gauge bosons.

To work out the Goldstone bosons' masses, we seek for terms that are
not invariant under the alignment of vacuum in (??). We note, similar to (4.87),
that

�� =

24g
2

0@ T� 
 1
T� 
 1

1A+
g0
2

0@ 2q + T 3 
 1
2q + T 3 
 1

1A35
+

24�g
2

0@ �T� 
 1
T� 
 1

1A+
g0
2

0@ �T 3 
 1
T 3 
 1

1A35 ;
(4.93)

where the second term corresponds to the broken generator. An inspection of the
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form of the above generators reveals that the SU(2) couplings do not contribute
to the Goldstone boson's mass (notice the signs of the upper left and the lower
right blocks and see the Dashen's formula (4.62)). The relations in (4.48), saying
that only the mixing hJLJRi contribute to the �-dependent part of the potential,
also con�rm our inspection.

The unpleasant results of having Goldstone bosons in the physical
spectrum can be avoided by �xing the source of the problem; namely, the
symmetry that links between the family. One of the possible ways to do so is to
associate the di�erent U(1) charges of the electroweak gauge group as follows.
For 0@ULDL

1A
L

Y = � (4.94)

and for 0@CLSL
1A
L

Y = �� ; (4.95)

as well as

Y (UR) = � +
1
2

Y (DR) = �� 1
2

Y (CR) = �� +
1
2

Y (SR) = ��� 1
2

(4.96)

which completely prevent the existence of additional group S. The U(1)
exchanges are now expected to contribute to the vacuum energy. On the basis
(4.90) the U(1) interaction becomes

g0 �	�
240@ 0

T 3 
 1
1A+ �

0@ 1
 T 3

1
 T 3

1A35	B�

=
g0
2

�	�

0BBBBBBBBBBBBBBBBBB@

�
�
��

��
� + 1

�� 1
�� + 1

��� 1

1CCCCCCCCCCCCCCCCCCA
	B�

(4.97)
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With the usual �diagonal� vacuum condensate (4.89), we can determine the
unbroken and broken generators.

Next, we will quote the results found by Preskill [71] and Peskin [70]
that: in addition to the 7 diagonal (in the space of the two doublets) broken
generators consisting of

T a 
 1; 1
 T 3 and T a 
 T 3 ; (4.98)

there are 8 of the broken generators coming out in the forms that allow mixing
between quarks of di�erent families like �UC which appearing in the form0BBBBBB@

F
F �

�F
�F �

1CCCCCCA (4.99)

where F are 2 � 2 matrices having 1 or i in one of their elements (while other
elements are zero). For example, the �UC mixing comes from

F =

0@1 0
0 0

1A :

Any vacuum rotated by SU(4)L�SU(4)R transformations should be equivalent
when GW interactions are absent. However, with GW interactions turned on,
the set of degenerate vacua

L � iL 
j
RR

y = �3L

0BBBBBB@
1

1
1

1

1CCCCCCARy = �3LRy = �3� (4.100)

are not all equivalent but it was found that there are only two con�gurations of
the condensate that are the stationary points; namely the (4.89) and

�0 =

0BBBBBB@
1

1
1

1

1CCCCCCA : (4.101)
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This latter vacuum condensate is invariant under the di�erent SU(4) transfor-
mations. To see which one of them will be the minimum of the true vacuum we
have to �nd the mass of the pseudo-Goldstone bosons. A quick estimate clearly
yields,

m2 / g02�2M2 (4.102)

because turning o� g0 restores a larger symmetry. However, a full calculation by
Preskill [71] and Peskin [70] shows that there some of them, which are

m2
�US / g02�(� + 1)M2 ;

m2
�DC / g02�(�� 1)M2 ; (4.103)

that have the potential to be negative when j�j < 1. When it is so, we know
that the vacuum in (4.89) is not stable and the preferred one, with the in�uences
from the B� interaction, will be (4.101). To see this notice that when j�j > 1
the form of the generator (4.97) is �almost� SU(4)L+R symmetric (especially
when j�j >> 1). We have to preform a rotation on the U(1) GW generator
and partition the resulting generator into an unbroken and a broken part with
respect to the con�guration of the condensate. The rotated generators must
satisfy X

�
Tr
n
U��

X
U��

X

o
min ; or

X
�

Tr
n
U��

Y
U��

Y

o
max ; (4.104)

which is the case for the condensate (4.89) when j�j > 1. Hence we also expect
that the rotated current preserve as much as possible the SU(4)L+R in the
way that the trace Tr

n
U�Y

U�Y

o
be maximum. This can be accomplished by

a rotation on the lower-right block of the U(1) GW interaction matrix in (4.97)
into

U��
lower�rightU

y ! g0
2

0BBBBBB@
� + 1

�� + 1
�� 1

��� 1

1CCCCCCA (4.105)

(notices the two terms in the middle). Doing so is just equivalent to a switching
between DR and CR and therefore the form of the condensate (4.101). That
condensate leads to the pairings

h �ULURi = h �DLCRi = h �CLDRi = h �SLSRi 6= 0 (4.106)
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which have energy lower than (4.89) when � < 1. The existences of charged
condensates in (4.106) signify the breaking of U(1)em.

4.1.4 Another Pattern of Symmetry Breaking: Real Represen-

tation

Now we will explore another possible pattern of symmetry breaking that is
relevant to Little Higgs models. The group of interest corresponds to fermions
in real representation, r of the strong interaction group with the property that
the product of r with itself contains a singlet and hence the fermion condensate
appears in a symmetric form.

Before we go to the real representation, let us �rst recall the convention
where all quarks are left-handed (transform under N and N̄). Then for a Dirac
spinor  we have �  = "�� �N 

�
N̄ where �; � and "�� are two-component spinor

indices and the 2-index Levi-Civita (antisymmetric) tensor, respectively. The
important feature we require is that the condensate must be invariant under a
strong interaction gauge symmetry Gstrong (i.e., Gstrong is not broken) that binds
the condensate together. Then the form of the condensate also depends on
how the fermions transform under this Gstrong and is characterised by a Gstrong-
invariant tensor �rs. Denoting i; j; etc : : : as �avour indices, the operator to
form a condensate becomes7

h0j �i "�� �j j0i (4.107)

The r; s are the indices for the representation of the strong symmetry group and
�rs is a Gstrong invariant tensor.

For 2N multiplets8 of left-handed fermions with N in the complex
representation r while the other N in the conjugate representation r̄, we see
that the condensate is constructed from

	(r̄)�
i "��	(r)�i (4.108)

7If this form was used in the previous sections, we would have obtained the form

�� =
�
��L ����R

�
(with the extra minus) for the generators of the GW .

8Odd numbers are equally possible. The 2N notations are used, just for this moment, for
compatibility with the previous discussions.
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where the strong interaction indices have been suppressed. When the left-right
notation is recovered (4.108) becomes the usual form

h L Ri : (4.109)

Let us turn to the case of 2N multiplets of fermions transforming
under a real representation r, of Gstrong such that a symmetric product of
this real representation with itself contains a singlet (or we cannot construct
a condensate). Therefore we cannot distinguish between left and right handed
fermions. So, unlike the previous case, the condensate is now a fermion-fermion
type (not fermion-anti-fermion). What follows is that the �rs is also symmetric
due to the Fermi statistics between the indices of �(rs) and the "��	�

r	�
s . The

Gstrong-invariant form becomes

	(r)�i
r "��	(r)�i

s �(rs) : (4.110)

This leads to a �avour symmetry G = SU(2N). Then the maximal subgroup
of G leaving the symmetric tensor �ij invariant, being the vacuum expectation
value of (4.110), is H = O(2N).

4.2 Non-Linear Realisation of a Symmetry

In this section we will introduce the concept or the �realisation of a symmetry�,
which is di�erent from the representation of a group, and study some of its
formal properties. The considerations will be useful when we are dealing with
the problem where the �complete� high-energy theory is still unknown, or next-
to-impossible to calculate, and we have to work with the e�ective low-energy
ones. A good example of a model to be modi�ed in this aspect is the sigma
model concerning the pions. The hefty mass gap between the pions and all
other hadronic states in QCD suggests the possibility of describing the low-
energy hadronic physics in terms of the e�ective �eld theory where the only
kind of strongly interacting particles are the pion �elds (Goldstone bosons). In
fact, this is necessary since we do not know which particle to associate with
the �. We will follow up with what we have discussed on the linear realisation
of the chiral SU(2) symmetry in the section 2.2.2. There, we have seen that
the e�ective Lagrangian must share all the symmetry properties with that of
the high energy theory. However, it turned out that the linear version9 is not

9Recall that �linear� means the broken symmetry is realised via linear transformations.
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very desirable when we want to concentrate on light particles only (pions as the
Goldstone bosons). It did not provide any rationale to cast o� contributions
from higher order diagrams. This is where the non-linear realisation comes in.
It helps describe the low energy arena of the theory in terms of light particles
only while still preserves the symmetry of the high energy theory.

We will start with a brief discussion on some formal aspects of the
non-linear realisations in section 4.2.1, then followed by their application: the
non-linear sigma model [SU(N)]2=SU(N) in section 4.2.2. We will follow the
discussions by Scherer [72] and Weinberg [58]. Readers who seek for more formal,
and more general, treatments may want to look up the papers by Coleman et
al. in [30] and [31].

4.2.1 Formal Aspects

Let us consider an n-component vector called �(x) with �a(x)'s as its compo-
nents. This enables us to de�ne a vector spaceM,

M� n� : M4 ! Rn
o

(4.111)

where, as usual, �a : M4 ! R. Then we can de�ne an operation of a particular
group G � g on M by considering a map ' which associates (g;M) 2 G �M
with an element '(g;�) 2M . This operation requires that ' has an identity 1

'(1;�) = � ; 8� 2M (4.112)

and the mapping preserves the group structure (homomorphism)10

'(g1g2;�) = '
�
g1; '(g2;�)

�
(4.113)

for gi 2 G. If ' satis�es an �optional� condition '(g; ��) = �'(g;�), the
mapping is said to be linear and ' will form a representation of G. Then recall
that in a theory with spontaneous symmetry breaking from G to H, the ground
state under consideration is invariant under a subgroup H. So the con�guration
of �, say � = 0, can be associated a with the ground state. Therefore it is
required that '(h; 0) = 0, where h1h2 2 H if h1 2 H and h2 2 H. In addition
we obviously require h�1 2 H for h 2 H. Then it can be shown (see Scherer
[72]) that we can set up an isomorphism (a bijective homomorphism) between

10Some literatures prefer the notation '(g1 ?g2) = '(g1)�'(g2)) where ? and � are operations
on G and on M respectively.



121

the left-coset and the Goldstone bosons. This requires that when picking up
any element of a coset gH, its action on the �origin� � = 0 (our vacuum) is the
same as that done by g; i.e.,

'(gh; 0) = '(g; '(h; 0)) = '(g; 0) ; (4.114)

which means that di�erent vacuum states may be reached by a transformation
in the coset space. It is then obvious, in this sense, that the coset gH must
depend on spacetime. In addition, the action of g 2 G on � = '(~gh; 0) satis�es

'(g;�) = '(g~gh; 0) = �0 (4.115)

which means that the new left coset representing �0 can be reached by
multiplying the coset ~gH by g; i.e., by a G�transformation. What we need
is then an appropriate variables to parametrise the coset space (G=H). What
we have shown above then uniquely de�nes the transformation behaviour of �
(which is our Goldstone bosons).

4.2.2 Non-Linear Sigma Model SU(N)� SU(N)=SU(N)

In this section we will discuss an extension of the linear sigma model considered
in section 2.2.2. Our goal is to �nd a way to deal with the low energy physics in
terms of the Goldstone boson �elds that respects the SU(2)� SU(2) symmetry
and does not mix multiplets of the unbroken SU(2)V subgroup; namely the
triplet with the singlet, under general SU(2)�SU(2) transformations. We expect
that under the symmetry breaking scale, the sought for realisation allows the
� to be frozen out while only the pions (�) transform. This realisation of the
non-linear sigma model can also be served as a toy model for the Little Higgs.

4.2.2.1 Matrix Representation of the Goldstone Bosons

To illustrate the di�erences between the linear and non-linear sigma models we
will start with the matrix representation of the Goldstone boson (like what we
did in section 2.2.2). Consider a case where the symmetry is broken from G =
SU(N) � SU(N) = f(L;R)jL 2 SU(N); R 2 SU(N)g to its �vector� subgroup
H = f(V; V )jV 2 SU(N)g, where g = (L;R) denotes any element of the group.
The way g acts on an object to be considered should be clear from its notation.
Then the left coset of ~g = (~L; ~R) is ~gH = f(~LV; ~RV )jV 2 SU(N)g. Here it is
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helpful to introduce a matrix � = ~L ~Ry satisfying

~gH = (~LV; ~RV ) = (~L ~Ry ~RV; ~RV ) = (~L ~Ry; 1)( ~RV; ~RV ) = (~L ~Ry; 1)H ; (4.116)

where ( ~RV; ~RV ) 2 H, valid for the subgroup elemets, is used in the last step.
Moreover,

g~gH = (L~L ~Ry; R)H = (L~L ~RyRyR;R)H =
�
L(~L ~Ry)Ry; 1

�
(R;R)H (4.117)

tells us that � transforms as

� �! L�Ry : (4.118)

Here, the identi�cation of � with � (in the previous section) is also transparent.

In the case G = SU(N) � SU(N), we know that the vector space M,
introduced in the previous section, is de�ned by

M� n� : M4 ! Rn
o
: (4.119)

For example, when N = 2; 3 we have n = 3; 8 respectively. Now, let us de�ne
another vector space formed by a set HN of all traceless, Hermitian, N � N
matrices. The elements ofM are related to the elements of HN , called �̂, by

M2 �
n
�̂ : M4 ! HN

o
: (4.120)

We have seen the SU(2) example in the section on the linear sigma model:

�̂ =
3X
a=1

� a�a =

0@ �3 �1 � i�2

�1 + i�2 ��3

1A (4.121)

In this case, the realisation of SU(2)� SU(2) onM2 is still a linear one.

Next, let us turn to the case where the set we de�ned does not allow the
formation of a vector space. Many possibilities are available. The simplest, yet
useful, de�nition is the one that maps M4 to a set of SU(N) matrices instead of
the hermitian traceless ones (the HN). Obviously, the sum of SU(N) matrices
need not be of the SU(N) type. Therefore, we de�ne

M3 �
(
�̂ : M4 ! SU(N)j� = exp

(
i�̂
F�

)
; �̂ 2M2

)
: (4.122)
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Then we set up the group action onM3:

' : G�M3 �!M3 (4.123)

where ' [(L;R);�] � L�Ry 2M3. The successive transformations g1 = (L1; R1)
then g2 = (L2; R2) are given by

' [g1; '[g2;�]] = L1L2UR
y
2R
y
1 = ' [g1g2;�] ; (4.124)

which guarantee a realisation of G onM3. The advantage of (4.122) is that we
can easily expand the exponential in terms of momenta; hence allowing us to
concentrate on the low-energy phenomena only. If the energy is low enough,
only the Goldstone bosons can be produced as they are the lightest particles
out there. In addition, as all that will be used in constructing the Lagrangian
(for the � or the �̂) are symmetry arguments, the underlying dynamics does not
concern us and the power of group theory will ensure that a theory based on a
particular realisation of the symmetry is equivalent to any other realisations (see
[30, 31]). This means we can choose to work with any one we �nd convenient (if
we keep working at low-energy region).

Now, let us see how to use this formalism in the context of spontaneous
symmetry breaking. First, consider the ground state �0 = 1 which is invariant
under the vector transformation (V; V ); i.e., '[(V; V );�0] = �0, but is not so
under the axial one; namely, '[(A;Ay);�0] = AyAy 6= �0. This is in contrast
to what we have seen in the linear sigma model, where the �elds � and �a

transform linearly (c.f. (2.26-2.29)) under both transformations corresponding
to broken and unbroken subgroups. The situation is di�erent here. For the
unbroken subgroup (pure vector transformations) we can make use of V V y = 1
which leads to

V �V y = V
 

1 + i
�̂
F�
� �̂2

2F 2
�

+ : : :
!
V y = 1+i

V �̂V y

F�
�V �̂V

yV �̂V y

2F 2
�

+: : : : (4.125)

Since the transformed matrix is still traceless, (4.125) brings us back to a linear
representation onM2; i.e.,

�̂! V �̂V y 2M2 : (4.126)
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On the other hand, for the transformation in the broken subgroup (pure chiral
transformations), we have

Ay�Ay = Ay
 

1 + i
�̂
F�
� �̂2

2F 2
�

+ : : :
!
Ay = 1 + i

Ay�̂Ay

F�
� A

y�̂�̂Ay

2F 2
�

+ : : : : (4.127)

Since we do not have the relation AyAy = 1(wrong) to put into the slot between
the �̂�̂ in the last term, the transformation of the �̂ is highly non-linear. To see
that, let us write Ay � ei� = ei�a�a so that the above expression becomes

1 + i
�̂0
F�

= (1 + i� + : : :)
 

1 + i
�̂
F�

+ : : :
!

(1 + i� + : : :) : (4.128)

The non-linear realisation allows us to consider only the low-momentum
terms. We will keep working with the global SU(3)L � SU(3)R case. The form
of � is given in (A.38). First, a term without a derivative is proportional to a
constant

Tr�y� = constant : (4.129)

Those containing Tr� or Tr@���y also vanish:

Tr� =
�a

F�
Tr�a = 0

Tr
h
@��y�

i
=

1
F�

Tr
h
i(@��̂)�y�

i
= 0 ;

where we have used �y� = 1 in the second equation. In addition, the term
Tr
h
(@�@��y)�

i
can be transformed into Tr@��y@�� without the need to worry

about the total derivative term. Consequently, the kinetic term for � is given
by

F 2
�

4
Tr
�
@��y@��

�
=

F 2
�

4
Tr
 

i
�@��̂
F�

i
@��̂
F�

!
+ : : :

=
F 2
�

4
Tr
�
�a@��a�b@��b

�
+ : : : =

1
2
@��a@��a ; (4.130)

which is invariant for the case of global symmetry.

4.2.2.2 Real-vector Representation of the Goldstone Bosons

It might be more illustrative to consider the real representation of the Goldstone
bosons. This case should explain what we really meant by freezing the � �eld.
First, recall that SU(2) � SU(2) � SO(4). In the simplest case without the
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nucleons11, the Lagrangian is

L =
1
2
@��T@��� �2

2
�T�� �

4
(�T�)2 ; (4.131)

with �2 < 0 for the case under consideration. Note that � is a 4-component
vector

�T = (�1; �2; �3; �4) (4.132)

where φ is an isovector pseudoscalar �eld and �4 is an isoscalar scalar �eld.

At a particular point x, the isovector (Goldstone boson) �eld can be set
to zero by a suitable rede�nition of vacuum; i.e., writing the �eld as a chiral
rotation acting on the �T

0 = (0; 0; 0; �0). In other words,

�i(x) = Ri4(x)�0(x) ; (4.133)

where i = 1; : : : ; 4. The �0 is given by the positive root of �2
0 = �2

i because the
matrix R(x) is orthogonal

RTR = 1 : (4.134)

This condition also �xes one of the element in Ri4; i.e.,X
R2
i4 = 1 : (4.135)

So the Lagrangian (4.131) is simpli�ed to

L =
1
2
@��0@��0 � 1

2
�2

0@�Ri4@
�Ri4 � �2

2
�2

0 � �
4
�4

0 : (4.136)

The degrees of freedom described by �i are now transferred to the zero-vacuum
expectation value �eld �0 �

q��2=� and the parameters of the rotation matrix
Ri4. Since only 3 parameters are required from Ri4, one of the (in�nite)
possibilities is to chose them as Ra4 where a = 1; 2; 3. We set up a map

�a � �a
�4 + �0

(4.137)

together with
Ra4 � 2�a

1 + ζ2 =
�a
�0
: (4.138)

11A more complete treatment, especially on the SU(3) group can be found in Weinberg's book
[58].
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Here the R44 is automatically given by (4.135);

R44 =
1� ζ2

1 + ζ2 =
�4

�0
: (4.139)

Therefore,
L =

1
2
@��0@��0 � 2�2

0
@��a@��a
(1 + ζ2)2

� �2

2
�2

0 � �
4
�4

0 ; (4.140)

which is clear that the mass term for the � is absent. The minimum requirement
that there are massless particles is now satis�ed.

Now we can study the transformation of the Goldstone boson �. Using
the explicit forms of the generators given in (C.49) and (C.50), we �nd that
the � and �0 transform as an isovector and an isoscalar, respectively, under the
isospin (unbroken) transformation

ζ �! ζ + ε� ζ ; (4.141)
�0 �! �0 : (4.142)

It is clear that the Lagrangian (4.136) is invariant under this transformation. In
other words, unbroken isospin symmetry is realised linearly on the �elds ζ

and �0. Next, we will �nd out how the ζ transform under the broken symmetry.
First, recall that in terms of the original �eld, the broken (axial) symmetry is
linearly realised (as it should):

φ �! φ + ε5�0 ; (4.143)
�0 �! �ε5 � φ : (4.144)

Putting these into the (4.137), we �nd that the ζ and �0 transform under the
broken symmetry in a non-linear way

ζ �! ζ +
ε5

2
(1� ζ2) + ζ(ε5 � ζ) (4.145)

�0 �! �0 ; : (4.146)

Otherwise stated, the broken axial symmetry is realised non-linearly on the
�elds ζ and �0. If we de�ne the so-called covariant derivative of the pion �eld

D� =
@�ζ

1 + ζ2 ; (4.147)
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we �nd that it transforms as

D� �! D� + (ζ � ε5)�D� ; (4.148)

leaving the Lagrangian invariant. Though the D� transforms in a linear way
under the broken subgroup transformation, the ζ does not. (4.141-4.142)
together with (4.145-4.146) de�ne a non-linear realisation of the SU(2)�SU(2)
group. The striking feature of the non-linear realisation is that the triplet and
the singlet of the unbroken isospin subgroup do not mix, as shown in (4.146).
The singlet �0 do not even transform. In other words, this means that the �0

plays no role in maintaining the invariance of the Lagrangian under the isospin
and axial transformations. Consequently, the physical content of the theory can
be changed in a legitimate way: we can toss away the �0 degree of freedom by
arguing that it is very heavy, keeping its vacuum expectation value �nite. In
this way the physical properties of process involving the light pions as external
particles will not change. De�ning F = 2h�0i, we �nd that the low-energy
e�ective Lagrangian becomes

L =
F 2

2
D� �D� : (4.149)

If we de�ne the new pion �eld π � Fζ, we get the usual form of the so-called
�non-linear sigma model�

L =
1
2

@�π � @�π
(1 + π2=F 2)2 =

1
2
@�π � @�π � π2

F 2@
�π � @�π : (4.150)

Moreover, we can now talk about how the SU(2)L � SU(2)R is realised on the
pion �eld π, with a few modi�cations on (4.141) and (4.145) without the need
to mention about the singlet at all.

4.2.3 SU(N)=SO(N) Non-Linear Sigma Model

In this last example of a class of non-linear sigma models, we will consider the
SU(N)=SO(N) type. This pattern of symmetry breaking is due to fermions
transforming under real representation forming a condensate. First assume that
the space spanned by G=H is symmetric as mentioned in the appendix A.3. So
let us arrange the SU(N) generators in a form that is easy to work with. Then
recall that for any group element g 2 G we can write

g = eitaTa : (4.151)
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It is clear that T is Hermitian (since G is unitary) and traceless (det g = 1). Then
the symmetry properties of the complex matrix T show up when we decompose
T into two real matrices: T a = Aa + iBa. We have

AaT = Aa ; (4.152)

and
BaT = �Ba ; (4.153)

where the latter is antisymmetric. Consequently, we assign the Aa and iBa

to broken Xz and unbroken Y i generators, respectively. The results are just
as we have advertised; namely, the unbroken subgroup can be spanned by an
anti-symmetric matrices and hence being the SO(N).

Now let us be more speci�c and consider the case when N = 5, which is
relevant for all the models we consider in this thesis. There are many possibilities
of symmetric condensates12 transforming as a 15 of SU(5). One of them is

�00 = 15�5 : (4.154)

Still, the one that was commonly chosen in the Little Higgs model is ([21])

�0 =

0BBB@ 12�2

1
12�2

1CCCA =

0BBBBBBBBB@
1 0
0 1

1
1 0
0 1

1CCCCCCCCCA
: (4.155)

This (4.155) can be connected to the �00 = 1 by a rearrangement of the basis
from the original basis T 0a corresponding to �00 by an SU(5) U0 matrix via

T a = U0T 0aU
y
0 ; (4.156)

12In the SU(5)=SO(5) model by Georgi and his colleagues [14], [16], present during the mid
80's, they used di�erent sets of vacua from from (4.155).
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with �0 = U0U0
T. The explicit form U0 is not necessary but might help clearing

things up. Consider

U0 =
1
2

0BBBBBBBBB@
1 + i 0 0 1� i 0

0 1 + i 0 0 1� i
0 0 2 0 0

1� i 0 0 1 + i 0
0 1� i 0 0 1 + i

1CCCCCCCCCA
: (4.157)

We �nd that

U0UT
0 =

0BBBBBBBBB@
0 0 0 1 0
0 0 0 0 1
0 0 1 0 0
1 0 0 0 0
0 1 0 0 0

1CCCCCCCCCA
(4.158)

as advertised. In addition, we can verify that U y0U0 = 15�5. To make sure
that the SU(5) generators enjoy the transformation by (4.156), let us write
T a = U0�aU

y
0 where the SU(5) generators �a are given in section C.3.2. Then

[T a; T b] =
h
U0�aU

y
0 ; U0�bU

y
0

i
= U0[�a; �b]U

y
0

= ifabcT c (4.159)

indicates that the SU(5) Lie algebra is satis�ed. Up to this step, the explicit
forms of T a's are not necessary. Then to see how T a acts on the vacuum �0,
consider

T a�0 =
�
U0�aU

y
0

�
U0U0

T = U0�aU0
T = U0�aU0

= �(U0�aU0)T (4.160)

where in the last step we consider the (U0�aU0) as one piece of a matrix and the
plus and minus signs depend on whether the (U0�aU0) is symmetric or not. It is
clear that the symmetry property of the whole piece depends on the �a. So we
have found the condition for partitioning the SU(5) generators into symmetric
(Xz) and antisymmetric (Y i) parts. For the 14 symmetric generators we have

Xz�0 = +(U0�zU0)T = (U0�zU
y
0U0U0)

T

= +(Xz�0)T = �0XzT : (4.161)
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Then the antisymmetric generators, corresponding to the SO(5) unbroken
subgroup, satisfy the minus version of (4.160); i.e.,

Y i�0 = �(U0Y iU0)
T = ��0Y iT : (4.162)

There is also another way to arrive at the relations just found above. Ob-
serve that in the original basis the unbroken SO(5) (antisymmetric) generators
obey

Y 0i = �Y 0iT : (4.163)

We �nd

0 = U0Y 0iU0
T + U0Y 0i

TU0
T

= U0Y 0iU
y
0U0U0

T + U0U0
TU y0

T
Y 0iTU0

T

= Y i�0 + �0Y iT : (4.164)

We can also work out this relation by starting with the �0 right away.
By requiring that the vacuum be invariant under H-transformation; i.e.,
expfi�aY ag�0expfi�aY agT = �0 we �nd, by expanding this expression,

�0 =
�
1 + i�iY i

�
�0

�
1� i�iY iT

�
= �0 + i�i

�
Y i�0 + �0Y iT

�
+O(�2) (4.165)

which clearly leads to
Y i�0 + �0Y iT = 0 : (4.166)

The conditions (4.163) and (4.155) do not only guarantee that the subgroup of
interested is SO(5) but also provides a condition for �nding the Y i's. Then it
is transparent that broken generators satisfy the symmetric version

Xz�0 � �0XzT = 0 ; (4.167)

which follows from the condition in the �00 = 1 basis

X 0z = X 0zT ; (4.168)

with the transformation (4.156). Note that there are 10 antisymmetric genera-
tors Y i of SO(5) and 14 symmetric ones of Xz 2 SU(5)=SO(5). Knowing that
these generators are Hermitian and traceless, we can use the conditions on the
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vacuum expectation value to �nd their exact forms.

Then the Goldstone bosons are parametrised along the SU(5)=SO(5)
(broken) direction by symmetric generators as

�(x) = ei�z(x)Xz=F��0ei�z(x)XzT=F� : (4.169)

The relation (4.167) provides the way to move expfi�zXzgT through the �0 and
rewrite the � in the non-linear sigma model in a more useful form:

�(x) = e2i�z(x)Xz=F��0 : (4.170)

In this SU(5) model, we expect that the Goldstone boson matrix looks fairly
similar to that of the SU(3) model given in (A.38). In addition, we �know
in advance� that we are going to deal with electroweak interaction. So let us
decompose the representations of the pions under the electroweak gauge group
as follows:

10 � 30 � 21=2 � 31 : (4.171)

With some proper normalisations the Goldstone boson matrix is

�zXz =

0BBBBBBBBB@

!0

2 � �p
20 !+=

p
2 ��=

p
2 ��� ��p

2

!�=
p

2 �!0

2 � �p
20 (H0 � i�0)=2 ��p

2 �0

�+=
p

2 (H0 + i�0)=2
q

4=5� ��=
p

2 (H0 � i�0)=2
�++ �+p

2 �+=
p

2 !0

2 � �p
20 !�=

p
2

�+p
2 �0 (H0 + i�0)=2 !+=

p
2 �!0

2 � �p
20

1CCCCCCCCCA
:

(4.172)
We can organise the members into sub blocks that have de�nite electroweak
quantum numbers: a Hermitian traceless 2� 2 matrix


 =

0@ 1
2!

0 1p
2!

+

1p
2!
� �1

2!
0

1A = !a� a ; (4.173)

and a 2� 2 symmetric matrix

� =

0@ �++ 1p
2�

+

1p
2�

+ �0

1A ; (4.174)
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as well as a complex doublet

HT =

0@ �+p
2

H0+i�
2

1A : (4.175)

In the next chapter we shall see that the SU(2) triplet 
 will be associated with
SU(2)� SU(2)! SU(2) breaking. We write

�̂(x) =

0BBB@
 Hy �y

H 0 H�

� HT 
y

1CCCA+
�p
20

diag(1; 1;�4; 1; 1) ; (4.176)

where �̂ = �zXz. Then the Lagrangian is

L =
1
2
F 2
�

4
Tr
n
@��y@��

o
; (4.177)

which is constructed from non-trivial terms with lowest derivatives (momenta)
possible. The factor 1=2 is introduced give the right factor to the kinetic term
of the �would-be� Higgs due to the convention TrT aT b = �ab. This factor can
be absorbed at the cost of rescaling the F and the �elds inside the �. As usual
for the non-linear sigma model, explicit mass terms for the Goldstone bosons
are not allowed due to the non-linear realisation of the broken symmetry on the
Goldstone boson �elds. However, we know that gauge interactions break the
global symmetry at tree level. When the gauge interactions are introduced via
the covariant derivative such as

D�� = @�� + ig�W��
�
T�� + �T�T

�
; (4.178)

they tend to align the orientation of the original vacuum and results in the
Goldstone bosons acquiring masses from quantum e�ects. Their quadratic
divergent contributions can be evaluated from the (Coleman-Weinberg) e�ective
potential

Vg;CW � �2

(4�)2
F 2

4
Tr
h
(g�T�� + g��T�T)(g��yT � + g�T �T�y)

i
: (4.179)

4.2.4 ��SB = 4�F

One important thing that should not be left unmentioned when using the non-
linear sigma model (or most low-energy e�ective theories) is the suppression of
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the e�ects from terms of higher mass dimensions. In the context of e�ective
theory, dimensional operators are allowed as we are not going to touch the high-
energy region, regardless of the fact that they are non-renormalisable. So the
strategy we usually take is to collect all possible operators, constrained only
by symmetries of the theory, with some unknown coe�cients. They will be
suppressed by factors proportional to E

� where E is the energy scale of interest.
In this way these operators will become important as we go up in energy. The
coe�cient of the operators will determine which one becomes strong before
others.

The idea of this section is based on the justi�cation of validity of the chiral
perturbation expansion when quantum e�ects are taken into account. According
to the previous paragraph, we further claim that for the perturbation philosophy
to work, the correction terms must be smaller than the �more principal� terms.
It is, however, not always the case without speci�c conditions on the cut o� of
the theory as loop corrections with appropriate dimensions are always included.

Also note that in a theory like the linear sigma model (see section 2.2.2)
where m� ' �F�, we can have more than one mass scales. One is the scale F�
(the decay constant) where the symmetry breaks, the other is the cut-o�, or the
new physics scale, � � m�. For example, we know that there is a di�erence
of order 10 � 4� between the pion decay constant (F� � O(100MeV)) and the
cuto� of the chiral perturbation theory (�CutO� � O(1GeV)). For each loop, we
get the suppression factor

m2
�

16�2F 2
�
! �

16�2 : (4.180)

Then we see that the loop correction will become large when the above expression
is equal to one. If we insist on working with a perturbation theory, we then have
to work below the scale

�2 ' m2
�simeq(4�F�)2 � (1 GeV)2 (4.181)

where the � is not too large.

A similar conclusion can be drawn in the case of a system described by a
chiral Lagrangian. The detail discussions are given in; for example, the papers
by Manohar and Georgi [73], Luty [74], and Cohen et al. [75]. The main ideas
are quite similar to those given above. The 4-pion vertex �4 is extracted from
the usual non-gauged chiral Lagrangian 1

F 2 (Tr@�y@�). In this case, we have to
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�

�

�

�

Figure 4.2: � � � scattering in the lowest order in p.

take into account the one-loop contribution to the ��� scattering (four powers
of external momenta - and we can expect logarithmic divergence) shown in the
�gure 4.2 which comes with correction ofthe form

p4

F 4

Z d4k
(2�)4

1
k2 � p4

F 4
1

(4�)2 ln
�2

CutO�

�2 (4.182)

and compare them with the operators having higher mass dimensions (non-
renormalisable) like

F 2

�2
�SB

Tr
�
@�@�y@�@�y

�
(4.183)

which can also produce similar contribution (p4). We can also say that the
interaction like (4.183) is radiatively generated by higher-order corrections to
the tree level kinetic term.

The point is that once we change the renormalisation scale � by order (of
magnitude) 1, (4.182) will change by order

1
(4�)2

p4

F 4 (4.184)

with the extra factor (4�)2 which will eventually result in a new competition
(at di�erent subtraction scale; for example) between that loop and terms with
F 2=�2

�SB by an order of magnitude 1
(4�)2 . In other words, a condition like

F 2

�2
�SB

<<
1

(4�)2 (wrong) (4.185)

or
��SB >> 4�F (wrong) (4.186)
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which we might want to assume in order to suppress the e�ects of the higher-
dimension, non-renormalisable, operators such as that in (4.183) will not work
in general. This is because the typical size of the e�ects from these higher
dimensional operators is now of order 1=(4�)2; i.e.,

F 2

�2
�SB

& 1
(4�)2 : (4.187)

Therefore, it is better to assume

�CutO� � ��SB � 4�F (4.188)

which guarantees that the quantum corrections are of the same order of
magnitude as the renormalised interaction terms and that higher dimension
terms are always suppressed. At the scale � = 4�F , the non-renormalisable
interactions, once suppressed by the scale F in the Lagrangian, become strongly
coupled. New physics is required there.

4.3 Vacuum Misalignment Caused by SU(2)� U(1)
Breaking

This section illustrates an application of various ideas we have gathered so far;
especially those on vacuum alignment and the non-linear sigma model. The
model to be discussed here was proposed by Georgi and Kaplan during the mid
80s and was resurrected in 2001 with the name Little Higgs. We will follow
some part of a series of papers by Kaplan et al. [12, 13], [15], outlining some of
their important �ndings13.

In a few words, in this class of models the Higgs (scalar) is a pseudo-
Goldstone boson of a nonlinearly realised approximate global symmetry. Its
mass will be protected against large radiative corrections. It is exactly massless
if the symmetry is exact and the non-linear realisation trick tells us that they
can have only derivative interactions. So the primary goal of the model is
to incorporate a fundamental scalar, or whatever resembles the Higgs, into
a system having global symmetry dynamically broken. Thus we expect that
there are two sources of explicit symmetry breaking: one is the weak gauge

13Kaplan et al. even proposed an SU(5)=SO(5) in [14] and [16], which can be considered as
the �prototype� of the Littlest Higgs model presented in the next chapter. Nevertheless, we shall
focus on the SU(3) � SU(3)=SU(3) model where calculations are simpler. The SU(5)=SO(5)
will be studied in detail in the next chapter.
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symmetry that is assumed to leave electroweak symmetry unbroken, the other
is the breaking of electroweak by other explicit perturbations. The �rst stage
of symmetry breaking is assumed to happen at a moderately high scale by
fermions, interacting via another kind of strong interaction forming condensates.
We shall call the parameter characterising this scale F or F� analogous to the
pion decay constant. We shall call this interaction ultracolour (UC, for short)
and call those fermions ultrafermions. Unlike what happens in technicolour
theories, the ultrafermion condensate is aligned so that SU(2)�U(1) symmetry
of the standard electroweak survives at this stage of symmetry breaking. In the
language of 4.1.2, this means that there must be a room inside the unbroken
subgroup for the SU(2)L � U(1)Y to live in. Our additional task is to �nd a
pattern of symmetry breaking that allows the existence of a Goldstone boson
transforming in the same way as the Higgs doublet.

The task of the electroweak symmetry breaking at lower scale (MW )
can be accomplished by introducing a perturbation that �turns� the ultracolour
condensate's alignment away from its original SU(2)�U(1) preserving direction.
A tiny deviation will result in a smaller scale of the electroweak symmetry
breaking. The second stage of symmetry breaking is done by introducing a
fundamental scalar which Yukawa interacts with both ultrafermions and the
standard model fermions. This scalar will develop a vacuum expectation value
when the ultrafermion condensate is rotated by the perturbation. The Higgs is a
bound state between this fundamental scalar and a composite scalar (Goldstone
boson).

Having a fundamental scalar in the theory provides at least one bene�t:
masses of the fermions can be generated via their Yukawa coupling with the
(vacuum expectation value of the) scalar �eld. However, we see right away
that this will spring up the hierarchy problem (and the need for �ne-tuning)
as the fundamental scalar has no symmetry to protect its mass from driving
itself up to the highest mass scale of the theory. However, we shall keep dealing
with the theory with the current knowledge that a special mechanism in Little
Higgs model will eventually solve (or prevent) the problem. Another frustrating
outcome we may have to face is that if the �UC = 4�F , the global (approximate)
symmetry breaking scale, is demanded to be too high the di�erences between
this composite Higgs and the Higgs from the conventional standard model may
not be easy to realise.

Now, let us begin with the spontaneous symmetry breaking at �UC, by
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a condensate of ultrafermions. These fermions are in a complex representation
with

	 =

0BBB@UDS
1CCCA (4.189)

where we clearly have a SU(3)L�SU(3)R in the �avour space. Then we assume
the form of the condensate

h0j � iL jRj0i = �3
UC�ij

0 ; (4.190)

instead of (4.64), where �ij
0 is a unitary matrix. To deal with the pseudo-

Goldstone degrees of freedom, we use the non-linear realisation where the
bilinear (not the condensate) is,

� iL 
j
R = �3

UC�ij + : : : (4.191)

where h�i = �0. As usual, we have an octet of Goldstone bosons �a(x) which
are introduced as �elds parametrising the G=H space:

�(x) = ei�a(x)Ta=F��0ei�a(x)Ta=F� (4.192)

where �0 is a (�rotatable�) vacuum con�guration. At this stage, it might be
helpful to recall the appendix A.2.1 that in this SU(3) representation we have
the �ultrameson� octet0BBB@�

0=
p

2 + �=
p

6 �+ K+

�� ��0=
p

2 + �=
p

6 K0

Ks� �K0 �2�=
p

6

1CCCA : (4.193)

The key player here is the K0 which eventually plays the role of the Higgs �eld.

Notice that the electroweak symmetry SU(2)�U(1) is not broken by the
condensate of the form

�0 = ei�T 8 (4.194)

where T 8 � �8=2 is the usual SU(3) generator. This is clear as the T 8 behaves as
an identity in the SU(2) subspace and [T 8; T 3] = 0. If all the explicit symmetry
breaking interactions are absent, the vacuum (4:194) is always obtainable by
a SU(3) � SU(3) transformation. What we want to know is whether the true
vacuum is still characterised by this condensate �0 even after the electroweak
interaction is turned on. If so the electroweak symmetry remains unbroken
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(when global symmetry is broken spontaneously).

The next step is to consider the explicit symmetry breaking terms;
namely, the SU(2) � U(1) interaction, the Yukawa couplings between a funda-
mental scalar and fermions or ultrafermions which preserve SU(2)�U(1), and the
SU(2)�U(1) invariant ultrafermion mass terms (which break the chiral �avour
symmetry). Starting with the electroweak interaction, the free Lagrangian is

Le� � F 2
�

4
Tr
�
D��D��y

�
(4.195)

where D� is the usual covariant derivative

D�� = @��� igaAa�
�
Qa� + �Qay

�
= @��� igLAaL�Q

a
L� + igRAaR��Qa

R (4.196)

acting on (N; N̄), under which the � transforms. The counterterms responsible
for gauge bosons exchange, to O(Q2) are required. Since the gauged (Qa

L; Qa
R)

transform as (Adj;1) and (1;Adj) respectively, it is found that the invariant
object, to O(Q2) is

Tr
�
Qa
L�Qa

R�y
�
: (4.197)

The form of this e�ective potential can be thought of as an analogy
from the GW = U(1) case (electromagnetism) with global symmetry breaking
SU(2)L�SU(2)R=SU(2)V . We will follow exactly the strategy leading to (4.48)
and (4.53). Denoting q as a doublet (say of u; d quarks), the U(1) current is
rotated by the G rotation as

J�W = ��qL�T 3qL + �qR�T 3qR + (G singlet)

! J�W (L;R) = ��qL�L
yT 3LqL + �qR�R

yT 3RqR + (G singlet) :(4.198)

The potential from this U(1) interaction

VW � e2
Z

d4xD��
0 h0jT (J�W (x)J�W (0))j0i (4.199)

then becomes

VW � e2Tr(T 3LyRT 3RyL)
Z

d4xD��
0 h0jT (J�3L(x)J�3R(0))j0i

= e2�WTr(T 3�T 3�) (4.200)
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where �W is assumed to be positive and �W � O(�4) (see Dimopoulos and
Preskill [76]).

Consequently, the e�ective Lagrangian becomes

Le� =
F 2
�

4
Tr
�
D��D��y

�
+ (�1)4Tr

�
Qa�Qa�y

�
+ : : : ; (4.201)

where the Qa = Qa
L = Qa

R are the usual SU(2)�U(1) written in terms of SU(3)
generators

Qa =
n
gT 1; gT 2; gT 3; g0T 8=

p
3
o
: (4.202)

Next, we construct the e�ective potential in order to consider the vacuum
alignment when the SU(2) � U(1) interaction is turned on. It was found
by Kaplan and Georgi [12] that the vacuum is characterised �0 = expfi�T 8g
which means it leaves SU(2)�U(1) in the unbroken subgroup (these generators
commute). This is more or less like the case where the vacuum prefers
the electrically neutral con�guration (�uLuR like) when the electromagnetic
interaction is introduced as an explicit perturbation. In the present case, it
�chooses� to behave as a SU(2)� U(1) singlet.

To see what happens with the ultrakaons let us consider

� = exp

8>>><>>>: 2i
F�

0BBB@0 0 0
0 0 K0=2
0 K0=2 0

1CCCA
9>>>=>>>; =

0BBB@1 0 0
0 c(K0) is(K0)
0 is(K0) c(K0)

1CCCA (4.203)

where c(K0) = cos(K0=F�) and s(K0) = sin(K0=F�). Then we can put this into
the potential (4.201) and shall see that the K0 get mass of order O(g2(�1)2) �
O(g2�2).

It is now time to introduce a fundamental scalar (Higgs) to the theory.
We expect that it will develop a vacuum expectation value at lower energy scale
h�i = v << �. Since this scalar communicates with the ultra-K0 and the
ultrafermions as well as the usual fermions via Yukawa coupling, we will use the
doublet structure

� =

0@�+

�0

1A =

0@�4 + i�5

�6 + i�7

1A : (4.204)
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The real �elds are numbered from 4 to 7 as they will be coupled with the
T 4; : : : ; T 7 generators; i.e.,

LYukawa =
7X

�=4

�
h�	RT�	L + y� �	LT�	R

�
�� (4.205)

Now observe that the chiral transformations (which also rotates the ultrafermion
condensate)

	L ! ei�T 8	L (4.206)
	R ! e�i�T 8	R (4.207)

have an e�ect on �	RT�	L for � = 4; : : : ; 7 as

�	RT�	L ! e�i�=
p

12 �	RT�	L : (4.208)

This shows how the Yukawa coupling depends on the orientation �

LYukawa(�) =
7X

�=4

�
ye�i� �	RT�	L + y�ei� �	LT�	R

�
�� (4.209)

The introduction of the Yukawa coupling further �tilts� the vacuum. With
new explicit symmetry breaking perturbation introduced, we expect that the
condensate will further re-align itself. Since,the ultrafermions have very large
mass compared to the �ultrapion� scale F or the strong dynamics scale �,
it is then expected that they will not show themselves up in the low-energy
e�ective Lagrangian. In the � version (i.e., low energy e�ective Lagrangian),
the Lagrangian (4.209) can be rewritten as

LYukawa�(�) = (�2)3
7X

�=4

�
ye�i�Tr fT��g��

�
: (4.210)

As we have added a new low-energy e�ective interaction (the Yukawa),
we also have to consider all possible interactions with the same mass dimensions



141

(analogous to (4.200) and (4.201)). The resulting e�ective Lagrangian is

LYukawa =
F 2

4
Tr
n
D��D��y

o
+

1
2

7X
�=4

D���D���

�1
2
m2
�

7X
�=4

���� � �
4

7X
�=4

(����)2 + (�1)4Tr
n
Qa�Qa�y

o
+(�2)3

7X
�=4

�
ye�i�Tr fT��g��

�
+ (�3)4

7X
�=4

�
ye�i�Tr fT��g�2

+(�4)4
7X

�=4

���ye�i�Tr fT��g���2 + (�5)4
7X

�=4

�
y2e�2i�Tr fT��T��g�

+h:c: : (4.211)

Notice that the mass parameters �1; : : : ;�5 need not be equal since each
operators can have its own scale which is determined by strong interactions
(just like the �W in (4.200) that depends on the spectral integral).

Now we will not follow the detail of their calculations but will quote the
results right away. The strategy is to start with the vacuum (condensate) that
preserves SU(2) � U(1) (1 is possible) and see if we can get pseudo Goldstone
bosons with positive masses at the end. It was found that the parameter which
decides whether to break or not to break the SU(2) � U(1) is the (�5)4 which
can be positive or negative. When (�5)4 < 0 the � � K mixing will results in
(see Kaplan et al. series of papers [15] [12]) the mass squared matrix 14

M2
�K �

0@M2
� y�2

y�2 (g2 + y2)�2

1A : (4.212)

The situation at hand is interesting because if it happens that

M2
� <

y2

g2 �2 �M2
ct (4.213)

then the determinant of the matrix M2
�K will be negative (recall the arguments

leading to (4.103)). If that is the case, it was found that

h�6i =
M2

�

�

 
1� M2

�

M2
ct

!
(4.214)

where h�6i is expected to be of O(100 GeV). Also the vacuum is rotated to

h0j � iL jRj0i = �3
UC�

ij + i"6(T 6)ij ; (4.215)
14We will come back to a case similar to this in the Littlest Higgs model in 5.2.5.4.
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where

"6 � M2
�h�6i
y�3 : (4.216)

Still we will not get the right order of magnitude of the Higgs mass unless we
�ne tune the mass parameter

M2
� � O(

y2�2

g2 ) << �2 : (4.217)

To sum up, we have outlined the strategy to realise the Higgs as a pseudo-
Goldstone boson from the global approximate symmetry. Though its mass can
be made as low as the electroweak scale, the lack of symmetry protecting it
from the radiative correction will generally drives the mass to the �2 scale again
unless parameters are adjusted to extremely �ne detail.

In addition to the naturalness problem, electroweak precision tests do not
favour this kind of model. The source of the problem is due to the fact that this
Georgi-Kaplan model is constructed from the chiral Lagrangian which is bound
by the cuto� � = 4�F which is the scale where the Goldstone bosons couple
strongly. The requirement that this non-linear sigma model has something to
do with electroweak physics is F � 100 � 200 GeV. Then we immediately end
up at the cuto� � � 1�2 TeV. This is not surprising at all and can be expected
right from the start since there is no symmetry protecting the pseudo Goldstone
boson from receiving mass at one-loop. In the next chapter we will see that
in the Little Higgs theories, there is a symmetry forbiding the Goldstone from
being massive even at one-loop.



CHAPTER V

LITTLE HIGGS MODELS

So far we have seen how the little hierarchy problem arises from the
framework of the standard model (c.f. section 3.4.2.2) and remains in some
theory that tries to go beyond (c.f. B.5). It is considered as a problem once
we have convinced ourselves from both theoretical arguments and experimental
facts that the Higgs should be light (c.f. 3.2) while the mass scale of the new
physics should be large. Also we have studied various interesting tricks or even
models that were proposed during the last three decades (c.f. 3.1, 4.1, 4.2, 4.3
) that provide us ways to avoid parts of the problems. Still, none of them gave
satisfactory results. In this chapter, we shall study how the Little Higgs model
deals with those problems.

We begin in section 5.1 by re-summarising the little hierarchy problem
which is one of the primary tasks for Little Higgs models to solve. Then we
will sketch the essential element of the Little Higgs mechanism; namely the
collective symmetry breaking. After that we will study the most economical
model known as the Littlest Higgs1 in section 5.2. Finally, in section 5.3, we
present some interesting features of the Little Higgs model in the phenomenology
side. Conclusions to the Little Higgs will be given in 5.4.

5.1 Introduction to the Little Higgs

5.1.1 Desired Features of the Little Higgs

We have seen in the sections 3.3 and 3.4 that electroweak precision tests call for
light Higgs and new physics beyond 5 � 7 TeV. On the other hand, we have
seen that the cut-o� � of loop integrals (which also indicates new physics) is
required to be lower than � 2 TeV in order to stabilise electroweak symmetry
breaking, making the Higgs naturally light. This little hierarchy problem put
stringent constraints on any new physics not only to the Little Higgs, thanks to
the advance in the precision tests during the last decade. So the idea is to �nd
a way to push the cuto� of the theory to the safe region, say � 10 TeV while
keeping the Higgs naturally light.

1For the outline of the Littlest Higgs, see page 149.
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In the section 4.3 on the Georgi-Kaplan model we have seen that the
Higgs can be realised as a pseudo-Goldstone boson of a nonlinearly realised
approximate global symmetry (see also the section 4.1.2). There, this �would-
be� Higgs is produced as a Goldstone boson of global symmetry breaking at
high-energy scale F = �=(4�). Then explicit symmetry breaking interactions
(gauge and Yukawa) made them massive so that none of them survive massless to
the physical spectrum. Still, naively breaking the symmetry (explicitly) usually
results in the Goldstone bosons masses sensitive to the cut-o� �, to one loop,
like

m2
GB � �2

(4�)2 : (5.1)

Recall that, the requirement that the masses of the gauge �elds should be of
order g2F 2 � g2v2 already forces F � 100 � 200 GeV and restricts the cut-o�
of the Georgi-Kaplan model to be � = 4�F � 1 � 2 TeV. As a consequence,
everything we have been trying to avoid remains there, both the �ne-tuning and
the too low lower bound of the new physics (which is not favoured by precision
electroweak tests).

The philosophy of the Little Higgs models is to construct a model that
has a mechanism to avoid the mass generation of the Goldstone boson at one-
loop. A modi�ed version of the Georgi-Kaplan is then very tempting. Then the
Goldstone boson will be forced to receive mass (squared) of two-loop order

m2
GB �

 
1

(4�)2

!2

�2 =
F 2

(4�)2 (5.2)

which is further suppressed by a factor 1=16�2. If we can �nd a way to do so,
the mass of the Higgs will come out naturally light for large value of �, say
� � 10 TeV or more. The other by-product is that we can have the scale F
as high as 1 TeV or so. The immediate bene�t of doing so is that in the Little
Higgs models the plethora of Goldstone bosons and gauge bosons due to large
group needed to accomplish the Little Higgs mechanism (see next section) will
be pushed up to the energy scale where no direct detection has reached. This
feature is in agreement with what we have argued, in section 3.4.2.3, on the
cancellation mechanisms (of quadratic divergent diagrams) between particles of
the standard model and the extra heavy particles. Depending on the speci�c
model, the footprints of these particles on electroweak observables may or
maynot signi�cantly alter the results of the precision electroweak tests.
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The job of focusing on the low-energy degrees of freedom is taken care
by a non-linear sigma model. The bene�t of using a low-energy e�ective �eld
theory strategy is that many possibilities are available for us to take, if the low-
energy end agrees with the standard model. This is why there are many versions
of Georgi-Kaplan models or the Little Higgs models being mass produced.
Nevertheless, economical models having one Higgs doublet are preferable. For
phenomenological purpose at energies far below the cut-o� scale (� = 4�F ), the
origin of the global symmetry breaking should not concern us. We just have
to keep working at a scale below this particular cut-o� otherwise all higher-
order non-perturbative terms become important (and may not be calculable).
Nevertheless, we have to keep in mind that we should not work at a scale way
too far below the cut-o� or take F ! 1 (which is completely unreasonable, in
fact) as that would mean we lose the power of the non-linear sigma model. If
that is the case, the Higgs from the Little Higgs will be identical to the Higgs
from the standard model. So the model will cease to be useful since we cannot
tell the Higgs apart and the standard model use less ingredient to explain the
same phenomena. We therefore expect some deviations (foe example, by (two-
loop) order O( v2

F 2 )) from the properties of the Higgs predicted by the standard
model for �nite F .

There are basically two di�erent types of the Little Higgs models if we
classify them by the structure of the gauge groups that are broken. One is a class
of models where a number of gauge groups are broken down to the standard
model group, using one linear sigma model. They are referred to as Product
Group Models. The Littlest Higgs model, by Arkani-Hamed et al. [21], that
will be focused on in this thesis falls into this category. The other types of the
Little Higgs is those where a single larger gauge group are broken down to
the standard model one by a number of sigma models. These latter kinds are
known as the Simple Group Models. The Simplest Little Higgs by Schmaltz
[35] is one of these models.

5.1.2 The Little Higgs Mechanism: Collective Symmetry Break-

ing

To prevent the one-loop correction to the mass of the Higgs another crucial
feature of Little Higgs; namely, the collective symmetry breaking is introduced.
We will concentrate on the mechanism designed for using with the product group
models which includes the model that we will study in detail: the Littlest Higgs
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model. The mechanism can be summarised in words (in the paper by Katz
et al. [77]) as �no single term in the Lagrangian breaks all the symmetry
which is protecting the Higgs mass�. In other words, the mass of the Higgs is
protected by introducing another �partially broken� global symmetries. One of
these global symmetries, alone, must be capable of acting non-linearly2 on the
Higgs doublet in the form

H �! H + " (5.3)

and hence preventing the mass term M2jHj2 from being generated by the ra-
diative corrections. Then explicit breaking interactions are carefully introduced
such that each of these coupling, alone, will not break all those global symmetries
that protect the Higgs mass. As a result, it is possible to push the quadratic
divergence away from one-loop to higher loops, if several explicit symmetry
breaking interactions are turned on at the same time.

To make the story a bit less abstract, we consider the gauge sector of the
model. The simplest case comes from a model having two independent global
symmetry groups G1; G2 2 G; i.e., [G1; G2] = 0, and gauge each3 subgroup GW (i)

of these Gi. When a subgroup is gauged, we have the situation similar to those
studied in sections on dynamical symmetry breaking and vacuum alignment
(see subsections of 4.1). We see that gauging one subgroup, say GW (1), will
leave another global group (G2) survive, and vice versa. The global symmetry
is carefully arranged so that each is enough to protect the mass of the Higgs
(pseudo Goldstone boson). Denoting gi as a gauge coupling of GW (i) we �nd the
quadratic divergent mass of the Higgs

m2
GB � g2

1

(4�)2
g2

2

(4�)2 �2 (5.4)

Other Goldstone bosons are not protected by global symmetry and will receive
masses sensitive quadratically to the cut-o� scale. Therefore, these particles
will be �pushed� up to high-energy region of the theory, leaving the Higgs
doublet alone in the low-energy spectrum of the non-linear sigma model. Similar
situation is happening with the gauge symmetry breaking which is triggered
by the global symmetry breaking. Some gauge �elds will receive masses of a

2Remember that broken symmetry can be realised non-linearly.
3This is why the model belongs to the class of �product group�. More than one gauge

symmetry groups are broken to get the diagonal subgroup corresponding to the electroweak
group.
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few TeV, while there will be massless gauge �elds associated with the survivor
(unbroken) subgroup to play the role of electroweak gauge �elds. Electroweak
spontaneous symmetry breaking is then generated by a Coleman-Weinberg
mechanism (see chapter III) and Little Higgs mechanism has a good explanation
to keep this scale low and have the Higgs naturally light.

There is another way to view the situation mentioned above from the
bottom up. The quadratic divergent diagrams of the Higgs mass due to the
standard model particles are always there. Then heavy particles are introduced
so as to cancel those diagrams. Unlike the supersymmetry trick where the
cancellations occur between particles with di�erent spin statistics (particles
and their superpartners) where the �equality of the couplings� is taken care by
supersymmetry, in the Little Higgs models the cancellations take place between
particles and their �heavier partners� but with the same spin statistics, and the
same quantum numbers. Cancellations in this manner require the �persistent�
relations between the gauge couplings and are taken care by some careful
placement of the gauge generators onto a particular representation4. This job is
directly related to the collective symmetry breaking mechanism.

There are also severe quadratic divergent diagrams generated by the top
quark. It too requires cancellations. A heavy top-like fermion is required, with
a de�nite coupling with the Higgs, to cancel the divergences. The remaining
quadratic divergent diagram caused by the self-coupling of the standard model
Higgs is also cancelled by the introduction of the heavy partner. We shall see
how the cancellations happen in a speci�c model as we go on.

To sum up, quadratic divergence diagrams from bosons are cancelled
by similar diagrams of other bosons. Similarly, fermions cancel fermions.
Therefore the particle spectrum, though quite rich, may not be as rich as that
of the supersymmetry5. This may not be a philosophically beautiful outcome
but may be easier on the phenomenology side. According to the �ne tuning
arguments, at TeV scales it is expected to �nd some heavy pseudo-Goldstone
bosons, extra gauge bosons, and �some� extra fermions. In fact, the latter
were termed �some� because the �ne-tuning argument requires only the top-like
partner exists, among the fermioninc partners, due to the fact that severeness

4Recall the cancellations of unwanted diagrams from those involved charged-changing current
correspond to W� and those involved the neutral currents (Z) which are not achievable without
the SU(2) symmetry relating the coupling constants.

5Of course, this is not always the case. But it is likely to happen in this way if we compare
�minimal� models from each theory.
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quadratic divergences from fermion are mostly due to the standard model top
quark.

In this thesis we shall concentrate on the minimal model known as the
Littlest Higgs and shall see how phenomena described above happen.

5.2 The “Littlest Higgs”

In the Littlest model, we shall assume that for some reason, a global symmetry
SU(N) is broken down to SO(N) which contains the standard model group
SU(2)L � U(1)Y . The origin of the breaking was not speci�ed in the model but
we might think of a possible mechanism initiated by some kinds of fermions
transforming under a real representation of a strong interaction-like group (e.g.,
the ultracolour). Since we are requiring that the Higgs be realised as a pseudo-
Goldstone boson, we must �nd a speci�c group so that some of the Goldstone
boson transform under SU(2) � U(1) like the standard model Higgs doublet.
The smallest rank 4 group SU(4) is not quali�ed because there are no rooms for
the Higgs doublet.

So the simplest group to be used is the SU(5) which is the one used in
the original Littlest Higgs model proposed by Arkani-Hamed et al. [21]. The
breaking of SU(5)=SO(5) happens at a scale F by a vacuum expectation value
of 1� 2 GeV with the cuto� � = 4�F . The other requirement that there must
be a room for SU(2) � U(1) of the standard model in the unbroken subgroup
SO(5) is also satis�ed by the structure of the group.

First, we will consider the implementation of the salient trick of the
Little Higgs; i.e., the collective symmetry breaking. We introduce two copies
of SU(2) � U(1) gauge groups. In other words, we gauge two subgroup of
G, G1 = SU(2)1 � U(1)1 and G2 = SU(2)2 � U(1)2. At the scale �S, the
same condensate that breaks the SU(5) also break the product gauge groups
[SU(2) � U(1)]2 down to the standard model electroweak group. The trick of
collective symmetry breaking is accomplished with the requirement that each
Gi commutes with a di�erent (global) subgroup Xi of G which, alone, is enough
to protect the Goldstone boson from being massive. The group structure is
G � G1 � X1 + G2 � X2. Only when both gauge interactions are turned on
will the Goldstone boson be massive. This implies the masses of the Goldstones
are proportional to g1g2�2=(4�)4 where the gi's are the gauge couplings. We see
right away the extra 1

(4�)2 � 1
160 factor suppressing this quadratic divergence.
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As we have mentioned before, the electroweak symmetry is broken in the
second step due to the gauge and Yukawa interactions (which break the global
symmetry explicitly). The Coleman-Weinberg mechanism (see 3.1) is used to
explain the electroweak symmetry breaking.

This section on the Littlest Higgs is rather long and is organised as follows:
First, in the section 5.2.1 we begin by setting up the chiral Lagrangian of the
model and work out the gauge sector resulting from the �rst stage of the global
symmetry breaking. After that we will study the application of the collective
symmetry breaking from the top-down approach in section 5.2.2, and from the
bottom-up (where we can see how the loops cancel) in section 5.2.3. Then, in
section 5.2.4, we turn to the quark sector of the model where the extra top quarks
are introduced. At that time we will have particles in their gauge eigenstates
corresponding to the �rst stage of gauge symmetry breaking. Then, in 5.2.5,
we will consider the second stage; namely, the electroweak symmetry breaking,
where we will study the Coleman-Weinberg mechanism. After electroweak
symmetry breaks, we need to change the basis of the particles in the theory
to that of the ��nal� eigenstate. This will be done in section 5.2.6.

5.2.1 The Sigma Model and Gauge Sector

Once we assumed that the global symmetry breaks, we can start the study with
a non-linear sigma model the was introduced in section 4.2.3. We will begin
with the Lagrangian (4.177)

L =
F 2

8
Tr
n
@��y@��

o
; (5.5)

where the � and the �pion� �elds are de�ned in (A.41).

Then we introduce gauge interactions so that the global symmetry is
broken explicitly. According to the collective symmetry breaking mechanism, 2
subgroups are gauged, which, in the littlest Higgs model is [SU(2)�U(1)]2. To
leave rooms for global symmetries to protect the pseudo-Goldstone bosons (the
Higgs) mass, these gauge generators must be placed at the right location of the
SU(5) matrices. Very soon, it will be obvious that the SU(2)�U(1) subgroups
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can be gauged as follows:

Qa
1 =

0@ � a

03�3

1A ; Y1 = diag(�3;�3; 2; 2; 2)=10 ;

Qa
2 =

0@ 03�3

�� a�
1A ; Y2 = diag(�2;�2;�2; 3; 3)=10 ; (5.6)

which clearly leave room for a global SU(3) in each subspace. Also notice the
appearance of the minus sign in Q2. Gauging the subgroup means we use the
gauge covariant derivative

D�� = @��� i
2X
j=1

h
gjW a

j�(Qa
j� + �Qa

j
T) + g0jBj�(Yj� + �Y T

j )
i
: (5.7)

As usual, we will use the following shorthands for the gauge �elds6

Wi� = W a
i�Q

a
i ; Bi� = Bi�Yi: (5.8)

Consequently, the Lagrangian for describing low energy dynamics is

L =
F 2

8
Tr
n
D��yD��

o
: (5.9)

Having the Lagrangian (5.9) on hand, we can work out the mass term
for the gauge �elds (after the � receives a vacuum expectation value). Terms
relevant to our consideration are

Tr
X
j;k

h
gjW a

j�(Qa
j�0 + �0Qa

j
T)
i h
gjW b

k�(Qb
k�0 + �0Qb

k
T)
i

(5.10)

for SU(2) and

Tr
X
j;k

h
g0jBj�(Yj�0 + �0Y T

j )
i h
g0kBk�(Yk�0 + �0Y T

k )
i

(5.11)

for U(1) contributions. What remains are brute force. The resulting Lagrangian
is

L =
F 2

8

h
g2

1W
a
1�W

a�
1 � 2g1g2W a

1�W
a�
2 + g2

2W
a
2�W

a�
2

i
+

1
5
F 2

8

h
g2

1B1�B�
1 � 2g1g2B1�B�

2 + g2
2B2�B�

2

i
: (5.12)

6The �hat� notation like Ŵi� = W a
i�Qai , introduced in the section B on grand uni�cation

theory, will not be used in this section to reduce eyestrain.
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Notice the appearances of the numerical factors preceding both terms. They
come from expressions like

Tr f�0QiQj�0g (5.13)

and
Tr f�0YiYj�0g (5.14)

together with some generators being transposed. These terms depends on how
we gauge the subgroups with respect to the vacuum. In our choices, the non-zero
terms are

Tr
n
�0Qa

iQ
b
j�0

o
= Tr

n
�0Qa

i
TQb

j
T�0

o
=

1
2
�ij�ab

Tr
n
�0Qa

i�0Qb
j
T
o

= Tr
n
�0Qa

i
T�0Qb

j

o
= �1

2
�ab ; i 6= j

Tr f�0YiYi�0g =
3
10

Tr f�0Yi�0Yig = �1
5

Tr f�0YiYj�0g = +
1
5
; i 6= j

Tr f�0Yi�0Yjg = � 3
10
; i 6= j

(5.15)

where we have used Tr� a� b = 2�ab.

Now we observe that the condensate �0 breaks the gauge symmetry
[SU(2)�U(1)]2 down to the diagonal subgroup SU(2)�U(1) corresponding to
the generator Qa

1 +Qa
2 and Y 1 +Y 2 satisfying the symmetric condition (4.166) of

the generators. Since we are expecting a breaking of one of the SU(2)�U(1)'s,
we can use the �gauge freedom� in the transformation

� = ei��Q1ei�Y1ei�Q2ei�Y2ei��X=F�0ei��XT=F ei��Q1
T

ei�Y1
T

ei�Q2
T

ei�Y2
T (5.16)
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to remove some of the Goldstone bosons; namely, the triplet 
 and the singlet
�. So the remaining Goldstones are7

� �X =

0BBB@ Hy �y

H H�

� HT

1CCCA : (5.17)

This means we can �nd a mixing angle (angles, in fact) to rotate the degrees of
freedom into the massive and massless gauge �elds in a way fairly similar8 to
what we have done in (2.90). Let us call these massive gauge �elds W 0 and B0
and the massless ones W and B. The original mass matrices de�ned from (5.12)
are

M2
W1W2

=
F 2

4

0@ g2
1 �g1g2

�g1g2 g2
2

1A (5.18)

M2
B1B2

=
1
5
F 2

4

0@ g021 �g01g02
�g01g02 g022

1A : (5.19)

which clearly tell us that we will have massive and massless �elds (recall the
Weinberg angle in (2.92)) in the mass eigenstates. The new diagonal mass
matrices with respect to

L =
1
2
M2

WW
a
�W

a� +
1
2
M2

W 0W
0a
� W

0a� +
1
2
M2

BB
a
�B

a
w +

1
2
M2

B0B
0a
� B

0a
w (5.20)

are obtained by the massive �elds

W 0� = � cos W �
1 + sin W �

2

B0� = � cos 0B�
1 + sin 0B�

2 : (5.21)

where

sin =
g2q

g2
1 + g2

2

sin 0 = g02q
g021 + g022

: (5.22)

7Caution: Please note that since we are running out of symbols, in this section we use
symbols that are somewhat di�erent from those used in chapter II and B. There we used H for
the Higgs doublet and h for the physical Higgs (the real, neutral, one). Now we use H for the
Goldstone bosons that will be eventually be �parts� of the Higgs and � for the triplet.

8One thing to notice about the mixing angles is that unlike the Weinberg angle, they do
not correspond to the mixing between the SU(2) and U(1) gauge �elds. They characterise the
mixing of �elds of the same type.
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Then the masses of these �elds are

MW 0 =
F
2

q
g2

1 + g2
2 =

gF
sin 2 

MB0 =
F

2
p

5

q
g021 + g022 =

g0Fp
5 sin 2 0

: (5.23)

where g = g1g2=
q
g2

1 + g2
2 and g0 = g01g

0
2=
q
g021 + g022 are the SU(2)L and U(1)Y

couplings in the standard model, respectively. Consequently, the remaining
massless gauge �elds at this stage of symmetry breaking are �elds orthogonal to
(5.21):

W � = sin W �
1 + cos W �

2

B� = sin 0B�
1 + cos 0B�

2 ; (5.24)

with

MW = 0

MB = 0 ; (5.25)

which will be identi�ed with the gauge �elds of the electroweak interaction.
The gauge �elds in (5.23), (5.23), (5.24) and (5.24) are living in their mass
eigenstates just in the region between the global symmetry breaking scale � and
the electroweak symmetry scale, say v. The electroweak symmetry breaking will
generate vacuum expectation values for some of the Goldstone bosons and hence
further introduce mixings between them.

5.2.2 Collective Symmetry Breaking in the Littlest Higgs Model

Having the pictures of the Goldstone bosons matrix, and the structure of the
gauge coupling in mind, we can turn to the important feature of the model - the
collective symmetry breaking in the gauge sector, mentioned in the introduction.
The idea that the gauge symmetry is broken down to its diagonal subgroup
SU(2)�U(1) suggests that we can concentrate on the relevant degrees of freedom
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of the Goldstone boson matrix

�zXz =

0BBBBBBBBB@

��=
p

2 ��� ��p
2

�0�=2 ��p
2 �0�

�+=
p

2 �0�=2 ��=
p

2 �0=2
�++ �+p

2 �+=
p

2
�+p

2 �0 �0=2 ;

1CCCCCCCCCA
(5.26)

where the missing elements (the triplet, and the singlet) can be feed to the
gauge �elds. With this matrix, we can see how the global symmetries �protect�
the mass of the Higgs doublet by acting non-linearly on it so the mass terms
like M2H

yH are forbidden due to a �shift� symmetry (see the section 4.2). By
observing the form of the generators in (5.14) we see that the both Qa

1 and Y1

commute with the SU(3) generators embedded in the lower-right block of the
SU(5) matrices. Similarly, there is also SU(3) 2 SU(5) generators in the upper-
left block commuting with the Qa

2 and Y2. These SU(3) global symmetry, left
survived by some subset of the broken generators, manifest when one species
of the gauge interactions are turned o�. First consider the Higgs (a Goldstone
boson at the moment) alone

� �X �

0BBBBBBBBB@

h�

h0�

h+ h0 h� h0�

h+

h0

1CCCCCCCCCA
;(5.27)

where we have changed the normalisations for convenience. Observe that in each
block the Higgs �elds can be written in terms of the SU(3) generators as, taking
h� = h+�,0BBB@ 0 0 h+�

0 0 h0�

h+ h0 0

1CCCA = Re(h+)�4 + Im(h+)�5 + Re(h0)�6 + Im(h0)�7 (5.28)

and, similarly,0BBB@ 0 h+� h0�

h+ 0 0
h� 0 0

1CCCA = Re(h+)�1 + Im(h+)�2 + Re(h0)�4 + Im(h0)�5 (5.29)
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In this way, we can turn o� the gauge couplings one by one and see how the
residue global SU(3) generators act on the Higgs doublet. First, let us switch o�
the GW (1) gauge �elds. Next, recall that the Gellman-matrices �a of the SU(3)
are embedded in the SU(5) generators as

~�a =

0@�a 0
0 02�2

1A ; (5.30)

which we have named it the SU(3)2 in the introduction section. Expanding the
exponentials of �, we �nd the series with respect to powers of F

� = �0 +
2i
F

(� �X)�0 � 2
F 2 (� �X)2�0 + � � � (5.31)

we then �nd the action of the global SU(3)1 � SU(5) on the �

�0 = e2i�0�X=F�0 = ei��~�e2i��X=F�0ei��~�T

�
0@1+ i�a

0@�a 0
0 02�2

1A1A
(

�0 +
2i
F

(� �X)�0

)0@1+ i�a
0@�aT 0

0 02�2

1A1A
= �0 + i�0�a

0@�aT 0
0 02�2

1A+ i�a
0@�a 0

0 02�2

1A�0 +
2i
F

� �X�0

(5.32)

Since terms proportional to �1; �2; �3 and �8 do not harm the Higgs doublet,
let us, for simplicity, take only the �4; : : : ; �7 to be non-zero,. Using the Higgs
doublet de�ned in (5.27), we �nd

�0 +
2i
F

�0 �X�0 � �0 +

0BBBBBBBBB@
0 0 ��45 0 0
0 0 ��67 0 0
���45 ���67 0 �45 �67

0 0 ��45 0 0
0 0 ��67 0 0

1CCCCCCCCCA
+

2i
F

� �X�0 (5.33)

where

�45 = �4 + i�5; �67 = �6 + i�7 : (5.34)
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We did not work out the last term, F� � X�0, in (5.33) because these terms
will not contribute to the Higgs' mass. Alone, the transformations induced non-
linearly on the Higgs �elds

h+ ! h+ � F��45 + : : :

h0 ! h0 � F��67 + : : : (5.35)

are enough to guarantee their masslessness. In a similar manner, the lower-right
global SU(3) also protects the Higgs by acting non-linearly on the doublet.

Let us return to (5.32) and keep all the �'s in the transformation and
as well as recover the � triplet so that we can �nd a more general form of
the transformation. The global SU(3)1 (lower-right) symmetry with parameters
� � F� acts on H and � as

GW (1) :
� Hi �! Hi + �i + : : :

�ij �! �ij � i(�iHj + �jHi) + : : :
(5.36)

and similarly for the SU(3)2 (upper-left) with parameter � we have

GW (1) :
� Hi �! Hi + �i + : : :

�ij �! �ij + i(�iHj + �jHi) + : : :
(5.37)

where i; j run over component indices of each �eld. The appearances of the H
comes from the small 12�2 from �0.

5.2.3 Bottom-up Approach of the Collective Symmetry Break-

ing

We have seen how the cancellation goes in the context of collective symmetry
breaking which can be considered as the top-down approach. Now we will use
the bottom-up strategy instead and workout the terms in the Lagrangian that
can lead to quadratic divergences of the Higgs mass. This can be done by
expanding terms contributing to HyH. In the realm of the standard model we
have seen the quadratic divergences due to electroweak gauge �elds. So we will
make sure that in the case of Little Higgs the contributions from the gauge �eld
corresponding to each GW (i) alone is harmless and their collective e�ect will not
generate vertices leading to quadratic divergences when 1-loop e�ects are taken
into account.

The strategy in this section is simple: we collect terms from the
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Lagrangian (5.9) that are proportional to AASyS where A stands for W a
i or

Bi and S stands for scalar �elds. The remaining tasks are straightforward The
Lagrangian to begin with is

L =
F 2

8
Tr

8<:
24@��� i

2X
j=1

h
gjW a

j�(Qa
j� + �Qa

j
T) + g0jBj�(Yj� + �Y T

j )
i35y

�
24@��� i

2X
j=1

h
gjW a

j�(Qa
j� + �Qa

j
T) + g0jBj�(Yj� + �Y T

j )
i359=; :
(5.38)

First let us consider the contributions from WWHyH diagrams. They come
from

L��W1;2 =
F 2

8
Tr
� h�ig1(W1�� + �WT

1�)� ig2(W2�� + �WT
2�)
iy

h�ig1(W �
1 � + �W �T

1 )� ig2(W �
2 � + �W �T

2 )
i �

=
F 2

8
Tr
� h

ig1(�
yW1� +W �

1��y) + ig2(�
yW2� +W �

2��y)
i

h�ig1(W �
1 � + �W �T

1 )� ig2(W �
2 � + �W �T

2 )
i �

=
F 2

8
Tr
�
g2

1(�yW1� +W �
1��y)(W �

1 � + �W �
1

T)

+g2
2(�yW2� +W �

2��y)(W �
2 � + �W �

2
T)
�

+ Lg1g2 (5.39)

Notice that we have separated out the terms involving g1g2 into Lg1g2. These
mixing terms obviously vanish when one of the couplings is turned o�. Then

L��W1;2 =
F 2

8
g2

1Tr
�

�yW1��W �
1

T + �yW1��W ��
1

�
+
F 2

8
g2

2Tr
�

�yW2��W �
2

T + �yW2��W ��
2

�
+Lg1g2 + TrfWWg terms

=
F 2

8
g2

1Tr
�

�yQa
1�Qb

1
T + �yQa

1�Qb
1
T
�
W a

1�W
b�
1

+
F 2

8
g2

2Tr
�

�yQa
2�Qb

2
T + �yQa

2�Qb
2
T
�
W a

2�W
b�
2

+Lg1g2 + TrfWWg terms

=
F 2

4
g2

1Tr
�

�yQa
1�Qb

1
T
�
W a

1�W
b�
1 +

F 2

4
g2

2Tr
�

�yQa
2�Qb

2
T
�
W a

2�W
b�
2

+Lg1g2 + TrfWWg terms

(5.40)



158

Terms like TrWW are truncated here because they are not relevant to the
WW�� loops. Now we are left with two similar expressions in (5.40). At
this step we can explicitly work out contributions from each set of gauge �elds
(corresponding to Q1 and Q2) separately. Then we can check whether turning
on one of them introduces the quadratic divergence diagrams to the Higgs mass.
Consider the g1 terms. Expanding the � (we will put the W a

1�W
b�
1 and other

factors back later) and collect terms containing 2 �'s

L��W1W1 / Tr

8<:�0

"
1 +

2i
F

(� �X)� 2
F 2 (� �X)2

#
Qa

1"
1� 2i

F
(� �X)� 2

F 2 (� �X)2
#

�0Qb
1
T

9=;
! Tr

8<:Qa
1

�
� 2
F 2 (� �X)2

�
�0Qb

1
T�0 +

�
� 2
F 2 (� �X)2

�
Qa

1�0Qb
1
T�0

+
2i
F

(� �X)Qa
1
(�2i)
F

(� �X)�0Qb
1
T�0

9=;+ others (5.41)

where �others� means interactions containing more or less than two �'s. Then

L��W1W1 = � 2
F 2 Tr

�
(� �X)2�0Qb

1
T�0Qa

1

�
� 2
F 2 Tr

�
(� �X)2Qa

1�0Qb
1
T�0

�
+

4
F 2 Tr

�
(� �X)Qa

1(� �X)�0Qb
1
T�0

�
+ others (5.42)

=
4
F 2 Tr

�0BBB@
0 0 0
0 0 H �a

2 �y � b
T

2

0 0 � �a
2 �y � b

T

2

1CCCA�+ others

=
1
F 2 Tr

n
�� a�y� bT

o
+ others (5.43)

The �rst two terms in (5.42) are zero due to the vanishing product Qa�0QbT�0.
Gathering similar terms corresponding to the Q2 we �nd

L��W1W2 =
g2

1

4
Tr
n
�� a�y� bT

o
W a

1�W
b�
1 +

g2
2

4
Tr
n
�� a�y� bT

o
W a

2�W
b�
2 ; (5.44)

which shows that the terms that are potentially contributing to quadratic
divergent diagrams like WiWiTrHyH are absent. The Higgs mass term does
not receive 1-loop contributions from either W 1 or W 2 interaction (via Q1; Q2).
It is even better to see large one-loop correction to the �'s mass appearing since
this implies that they prefer to be as massive as the largest mass scale of the
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theory and we do not have to worry about them so soon. This �'s mass also
re�ects the fact that the mass of � is not protected by the extra global symmetry
SU(3).

Now we have to come back to the terms in Lg1g2 in (5.40) that was omitted
from the above consideration. They will tell us whether the �collective� e�ect of
turning both gauge interactions on adds severe quadratic divergence diagrams
to the Higgs mass. The cancellations between the light W and heavy �elds W 0;
i.e., between the gauge bosons in their mass eigenstates9, should manifest due
to the presence of the mixing. To show such cancellations, we have made the
following substitutions (to the W;W 0 eigenstates)

W a�
1 = �cW 0a� + sW a�

W a�
2 = sW 0a� + cW a� ;

(5.45)

as well as

g =
g2g1q
g2

1 + g2
2

= g2 cos = g2c = g1 sin = g1s (5.46)

and put them into Lg1g2 in (5.40). First we write the Lg1g2, neglecting the �y�
terms in the trace:

Lg1g2 =
F 2

8
Tr
� h

ig1(�
yW1� +W �

1��y) + ig2(�
yW2� +W �

2��y)
i
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1 � + �W �T

1 )� ig2(W �
2 � + �W �T

2 )
i �

=
g1g2F 2

8
W a

1W
b
2 Tr

�
�yQa

1�Qb
2
T +Qa

1
T�yQb

2�
�

+
g1g2F 2

8
W a

1W
b
2 Tr

�
�yQa

2�Qb
1
T +Qa

2
T�yQb

1�
�

(5.47)
9In the Littlest Higgs, and other models of Little Higgs in general, there are more than one

stage of gauge symmetry breaking. So there will be more than one mass eigenstates of the gauge
�elds (two in our case).
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(5.48)

Note that

(� �X)2 =

0BBB@H
yH + �y� �yHT HyH�

H�� HHy +H�HT H�y

HTH �Hy ��y +HTH�

1CCCA : (5.49)

So
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leads to
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�

(� �X)2�0Qb
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T�0Qa
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�
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o
: (5.51)
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Therefore,
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: (5.52)

Calculations of the remaining terms in (5.48) can proceed in very similar manners
so we are not going to show them here. Collecting the results, together with the
g0gW 0W version of (5.44):
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we arrive at

L��W 0W =
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�Tr
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� W
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n
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o �
; (5.54)

which shows the collective symmetry breaking at work. While the terms
corresponding to TrHyH in (5.54) do not cancel in the Lagrangian, the one-
loop diagrams constructed from them cancel precisely since they both have
the couplings g2, but with opposite signs. Also notice the factor cot 2 =
(cot � tan )=2 = (c2 � s2)=2sc in the WW 0HH coupling which is a unique
feature of the Little Higgs model.

Once we have done the SU(2) case, what we have to do in order to work
out the U(1) contributions is only making some modi�cations to the results
found above. The relevant parts of the U(1) interaction deduced from (5.38) are
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similar to those found in (5.40). So we paste them here

L��B =
F 2

4
g021 Tr

�
�yY1�Y1

�
B1�B�

1 +
F 2

4
g022 Tr

�
�yY2�Y2

�
B2�B�

2

+Lg01g02 + TrfBBg terms :

(5.55)

Again we have separated the mixing terms within Lg01g02 and neglected terms
without Goldstone bosons interactions. What remain are the explicit calcula-
tions. The pure g01 terms contribute

L��B1B1 / � 2
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� 2
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+ others : (5.56)

Notice that now there is no reasons that the �rst two terms should vanish (due
to the diagonal structure of the Y1). We �nd
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(5.57)

where 1 indicates a 2� 2 unit matrix. So our job is to make sure the HH terms
from the second line in (5.56) cancel these terms. We �nd
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Then (5.56) turns to
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o
: (5.59)
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It is clear that the contributions from the B2 �eld should be the same way. We
have to stress again that these cancellations for each type are not �uke (i.e.,
valid only in some particular gauge choice) but are the results of some de�nite
of way of gauging the subgroup of the theory.

To see cancellations between the B and B0 �elds, we proceed in a way
similar to that used in the case of W �elds. After some straightforward, though
tedious, calculations we eventually arrive at

L��BB0 = g02
"
B�B� � (c02 � s02)

s0c0 B�B0�
#

Tr
�1
4
HyH + �y�
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�g02
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4
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�
� (c02 � s02)2

4s02c02 B0�B0�Tr
h
�y�

i#
; (5.60)

which also shows the cancellations when one-loop diagrams are taken into
account. Notice that we have used

g0 = g021 g022q
g021 + g022

: (5.61)

This equation, together with, (5.46) can be rewritten as

1
g2

1
+

1
g2

2
=

1
g2

1
g021

+
1
g022

=
1
g02 : (5.62)

These relations (or their original form) will be helpful as their right-hand side
are measurable within the standard model.

H H

B

g0 H H

B0

�g0

Figure 5.1: Cancellations between the U(1) gauge �elds
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5.2.4 Fermions Cancel Fermions

So far we have seen how the trick of collective symmetry works in the scalar
and gauge sector of the theory. In this section, we shall turn to the fermion
sector of the theory where the most severe quadratic divergence contribution
from standard model top quark lies in. We will write the top-bottom weak
doublet and the right-handed weak singlet10 as

q3 =

0@t3
b3

1A and u0c3 (5.63)

It is expected that the structure of the fermion-Goldstone boson (Yukawa)
interaction will be fairly complicated (unfamiliar indeed) thanks to the non-
linear realisation of the Higgs. So we should list some of the features that we
anticipate before we move on. The very �rst one of such is that there should be
two additional heavy quark �elds. Top-like they must be, or their contributions
will not mean anything to the diagrams from the standard model top. We shall
call them T and T 0c. Let us associate them the quantum numbers (3;1)Yi and
(3̄;1)�Yi. In this way they transform as vectors in SU(2) (with correct U(1)
charge) and their mass term

yFT cT 0c (5.64)

will not spoil the standard model's electroweak symmetry. (We will reserve the
symbol T c for later use.) Therefore, they are legitimately massive with mass
O(TeV). In addition, since they were �born to be� the standard model top
�cancellers� we do not need similar particles for the up and charm family due to
the �ne-tuning arguments.

Recall that Yukawa interaction breaks a global symmetry explicitly. We
basically have more than one options to make sure that the Higgs remains
massless, with mechanism invoked in similar manners with collective symmetry
in the gauge sector. We can add a Yukawa coupling with the fermion such that
the extra SU(3) global symmetry is recovered when the Yukawa interaction is
turned o� (zero Yukawa coupling). In other words, turning o� one of the two
couplings should result in di�erent extra global symmetry in the same sense as
what we have done in the gauge section. In addition, we can also demand that

10For the reason that we shall see, this u0c3 is not necessarily the top. Also note that now we
use the small qi for the quark doublet instead of Qi to ad void ambiguities.
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the standard model fermions be charged under only one of the gauge groups,
say the SU(2)1. Having zero SU(2)2 charges means that turning the SU(1)1

o� will completely remove interactions between Goldstone bosons and fermions.
To keep the heavy fermions T and T 0c being weak singlets; i.e., singlets under
Qa

1 +Qa
2, we have to let them stay at the dead centre with respect to the SU(5)

matrices. Then let us collect the heavy fermions together with the standard
model quarks in an SU(3) �royal� triplet

� =

0BBB@b3

t3
T

1CCCA =

0@� 2q3

T

1A (5.65)

and let this triplet Yukawa interacts with the Goldstone bosons and the �right-
handed� T c in an SU(3) symmetric way. It is not obvious (at least for the author)
but is still easy to verify that at tree level, the 3-Yukawa coupling (rather than
4-Yukawa one) like thu0c3 can be generated by the Lagrangian ([21]):

1
2
y1F"ijk"xy�i�jx�kyu

0c
3 (5.66)

where the antisymmetric tensors "ijk and "xy, together with i; j; k = 1; 2; 3 and
x; y = 4; 5, are introduced to ensure the desired pairings betweens the SU(3)
triplet, the singlet fermions, and Goldstone bosons; i.e.,

y1(t3 b3)Htc3 : (5.67)

To digest the expression (5.66) a bit, let us �rst notice that the �jx denotes the
3�2 upper right block of �. To lowest (non-trivial) order, the 2�2 upper-right
block of � is just an identity matrix 12�2. Then the antisymmetric coupling
between the two � will single out only one (rather than 2 from 2 �'s) Goldstone
boson �eld out of the product "ijk�j4�k5.

With (5.66), the interactions between fermions and Goldstone bosons can
be extracted to desired order. Let us write out the �jx (or �ky), extracted from
the relevant components of 2i(� �X)�0=F (the upper-right corner), to the �rst
order:

�jx =

0BBB@ 1 0
0 1

i
p

2
F h

+ i
p

2
F h

0

1CCCA : (5.68)
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The contributions from the next order do not look very clean

�jx;2ndorder / � 4
F 2

0BBB@
h+h� + �+��

2 + ����++ h0h� + �0��p
2 + �+���p

2

h+h0� + �+�0�p
2 + ���++p

2 h0h0� + �0�0� + �+��
2

h0��+p
2 + h��++ h��+p

2 + h0��0

1CCCA : (5.69)

All together, the Lagrangian for Yukawa interactions becomes

Lt =
1
2
y1F"ijk"xy�i�jx�kyu

0c
3 + y2FT cT 0c (5.70)

which is, after some expansions,

Lt = y2fTT 0c

+iy1

(
�b3

"p
2h+ +

i
F

(
p

2h��++ + h0��+)
#
u0c3

�t3
"p

2h0 +
i
F

(h��+ +
p

2h0��0)
#
u0c3

+T
"
�iF +

i
F

(h+h� + h0h0� + 2�++��� + 2�+�� + 2�0�0�)
#
u0c3
)

+h:c: (5.71)

Let us inspect this expression more closely. First observe that y1 respects the
global SU(3)2 (in the upper-left block)11 and breaks the other.. Next, we see
the couplings between u0c3 and both t3 and T . This means that the u0c3 cannot
just be the usual standard model top quark (right-handed), otherwise we would
have to remove T and face with quadratic divergences from the top because the
T would not couple with the top.

Interaction vertices can be extracted from the Lagrangian (5.71). In
addition to the usual 3-Yukawa coupling ffh (f stands for fermions and h stands
for scalars), there are the ffhh interactions from the second order expansions
with a suppression factor 1=F . The ff interaction is also present. By inspecting
the 2nd line in (5.71), we get the �rst order ffH coupling

� iy1
p

2t3u0c3 (5.72)

and for the last line we get another �rst order coupling

y1FTu0c3 (5.73)
11Recall that we partition the group as G � SU(2)1 � SU(3)1 + SU(2)2 � SU(3)2.
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and the second order one:

� y1

F
Th0h0�u0c3 : (5.74)

Notice the crucial extra minus sign in the second equation. These four-point
interactions can be curled up into a loop like that shown in �g. 5.2.

h h

tu0c3

iy1F

�iy1
F

Figure 5.2: Fermion loop from the 2nd order interaction.

There are two loops from the interaction like (5.74). Though we cannot
identify the fermions we have on hand with physical particles, we can construct
fermion loops and watch the cancellations occur. These loops are shown in

h

u0c3

T
h

�i
p

2y1 �i
p

2y1

h h

Tu0c3

iy1F

� iy1
F h h

u0c3T

iy1F

�iy1
F

Figure 5.3: Cancellations contributed from the extra �top�

In addition, the mass of T comes from interacting with both the u0c3 and
the T 0c. These mixings suggest that we introduce

T c � 1q
y2

1 + y2
2

(y1u0c3 + y2T 0c)

uc3 � 1q
y2

1 + y2
2

(�y1T 0c + y2u0c3 ) : (5.75)

Their inversions are

T 0c � 1q
y2

1 + y2
2

(�y1uc3 + y2T c)

u0c3 � 1q
y2

1 + y2
2

(y1T c + y2uc3) ; (5.76)
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which, after a few algebras changes (5.71) to

Lt = F
q
y2

1 + y2
2TT c

+
p

2iy2
1q

y2
1 + y2

2

h
b3h+T c + t3h0T c

i� p2iy1y2q
y2

1 + y2
2

h
b3h+uc3 + t3h0uc3

i
+

y2
1q

y2
1 + y2

2

1
F

"
b3(
p

2h��++ + h0��+)T c + t3(h��+ +
p

2h0��0)T c

�T (h+h� + h0h0� + 2�++��� + 2�+�� + 2�0�0�)T c
#

+
y1y2q
y2

1 + y2
2

1
F

"
b3(
p

2h��++ + h0��+)uc3 + t3(h��+ +
p

2h0��0)uc3

�T (h+h� + h0h0� + 2�++��� + 2�+�� + 2�0�0�)uc3
#

+ h:c: (5.77)

and we can now interpret the F
q
y2

1 + y2
2TT c as a mass term for the heavy

fermion; i.e.,

F
q
y2

1 + y2
2 = mT ; (5.78)

which clearly prefers an F � O(TeV) scale. It is also helpful to de�ne new
Yukawa couplings

yt =
p

2y1y2q
y2

1 + y2
2

(5.79)

and

yT =
p

2y2
1q

y2
1 + y2

2

; (5.80)

so that we can rewrite (5.77) in the new basis

Lt = mTTT c

�yT ~q3HT c � yt~q3Huc3

+yT
�i
F

[~q3�H�T c] + yt
�i
F

[~q3�H�uc3]� 1
F
p

2
HyHT [yTT c + ytuc3]

�
p

2
F

(yTTT c + ytTuc3)(�
++��� + �+�� + �0�0�) + h:c: ; (5.81)
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where the t3, b3 and uc3 are manifestly massless (at tree level). Therefore we can
identify them with the standard model quarks; i.e.,

t3 $ tL ; b3 $ bL ; uc3 $ tR : (5.82)

In addition, in these new basis, we can rewrite the mass of the heavy quarks as

mT =
y2
t + y2

T

yT
F ; (5.83)

which should serve as a useful test of the model once the heavy top is found
since F can be measured from other processes involving gauge interactions, etc.

The fermion-Higgs vertices are readily read o� from (5.81). They are
shown in �g. 5.4. Then the relevant loops to the quadratic divergences due to

h
t

t
h

T

t

h

T

Figure 5.4: Heavy fermion vertices

fermions are shown in �g. 5.5 (with arrows removed).

h

t

t
h h

t

T
h

h h

TT

Figure 5.5: Cancellations contributed from the extra �top� in mass eigenbasis.

To see how the cancellation goes in this case, we will evaluate the
contributions from the loops in �g. 5.5. It is clear that they are proportional to

t� t loop / �y2
t

Z d4k
(2�)4

1
k2

t� T loop / �y2
T

Z d4k
(2�)4

1
k2 �m2

T

T� T loop / +
yT
F

Z d4k
(2�)4

mT

k2 �m2
T
: (5.84)
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Altogether, they give, to leading diverging terms

�y2
t

Z d4k
(2�)4

1
k2 � y2

T

Z d4k
(2�)4

1
k2 �m2

T
+
yT
F

Z d4k
(2�)4

mT

k2 �m2
T

= �yTmT

F

Z d4k
(2�)4

1
k2 +

yT
F

Z d4k
(2�)4

mT

k2 �m2
T
; (5.85)

where we have used the relation (5.83). Clearly the dangerous parts cancelled.
The remaining terms (mT dependence) that we neglected above leads to the
logarithmic correction to the Higgs mass

�m2
h = �3

y2
1y2

2F 2

8�2 ln
�2

m2
T

(5.86)

or, in terms of the physical �elds,

�m2
h = �3

y2
tm2

T

8�2 ln
�2

m2
T
: (5.87)

If the heavy top is too heavy, the �ne-tuning problem will resurface (similar to
the �stop� in minimal supersymmetric standard model).

We also need interaction terms for other fermions as they interact with
the standard model Higgs. Fine-tuning argument does not require the existences
of the heavy partners (other than those for the top quark) and the Lagrangian
is in the form

L =
1
2
�dF"ijk"xy�i��jx��kydc + h:c: : (5.88)

where now �3 = 0. For example, recall the partially upside down triplet (with
one member missing)

�1i =

0BBB@d1

u1

0

1CCCA ; �2i =

0BBB@s1

c1

0

1CCCA : (5.89)

For the expression (5.66) to be neutral, we must provide suitable U(1)1�
U(1)2 charges de�nitions of the fermions. The constraint between the two U(1)'s
is

Y1 + Y2 = YSM (5.90)

which is not very restrictive and is clear to leave one parameter un�xed. The
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free parameters can be �xed if we demand that the theory is anomaly free. Still,
doing so is not a very good idea as we are considering the model as an e�ective
�eld theory - more fermions to �x or to introduce anomaly problem may exist
already at the high-energy end of the theory. So it is best to leave things the
way they were. The U(1) (hypercharges) assignments of the fermions are listed
in the table

Q u0c dc L ec ~t ~t0c
Y1 � 3

10 � Yu Yu 3
5 + Yu 3

10 � Ye Ye 1
5 � Yu �1

5 + Yu
Y2

7
15 + Yu �2

3 � Yu � 4
15 � Yu �4

5 + Ye 1� Ye 7
15 + Yu � 7

15 � Yu
Table 5.1: Hypercharge assignments of fermions. Two free parameters Yu, Ye

can be removed using the anomaly free condition. The table is
taken from Han et al. [3].

5.2.5 Electroweak Symmetry Breaking

The �rst task of the Littlest Higgs model is accomplished. What we have on
hands are bunches of particles; those with masses of order F and those massless
particles which are the ingredients of the usual standard model. Still, the model
will not be useful unless we can reproduce electroweak symmetry breaking. So
we will evaluate the potential of the Goldstone bosons generated radiatively from
loop corrections and workout the new mass eigenstates of the Goldstone bosons
and the gauge �elds.

5.2.5.1 Coleman-Weinberg Potential

Recall that our Higgs was born as a pseudo-Goldstone boson. So its potential
is basically zero at tree-level. Explicit symmetry breaking terms (the gauge
coupling, for example) bring some e�ective interactions like the mass term
and the additional coupling (between 4 Higgs and 2 gauge �elds) via quantum
e�ects. Electroweak symmetry breaking is then triggered by the radiatively
generated Mexican-hat type potential (negative and positive coe�cients of
HyH and (HyH)2 respectively). The Coleman-Weinberg mechanism is a good
candidate for explaining this. There are basically two types of the radiative
corrections from the Coleman-Weinberg mechanism to be described here. One
is logarithmic and the other is quadratic. The logarithmic part is easy since we
have sketched major parts of the calculations in various sections, especially in
section 3.1.4. Moreover, as is well-known, the logarithmic part is not very severe
(comparing to the quadratic divergent part). They will become important (i.e.,
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comparable) when the two-loop quadratic divergent calculations are considered
though. However, the 2-loop calculations are out of the scope of this thesis.

5.2.5.2 Coleman-Weinberg Potential: Logarithmic

Now we will begin with the radiative correction from the interactions between
the Higgs and gauge bosons. Recall (3.55), the logarithmically modi�ed potential
from the gauge bosons

V log
g;CW =

3
64�2 TrM4

g (�) ln
M2

g (�)
�2 (5.91)

The M2
g is the mass matrix of the �elds in the presence of the background �

(think of �c in section 3.1.1) which can be found by expanding the covariant
derivative in the Lagrangian (5.5). The result is (recall that the mass term is
proportional to the second derivative of a potential)

�m2
h;g =

3
64�2

 
3g2M2

W 0 ln
�2

M2
W 0

+ g02M2
B0 ln

�2

M2
B0

!
: (5.92)

Still the logarithmic corrections from the gauge �elds are not very severe
comparing to the e�ects from the top quark. This is mainly due to large Yukawa
coupling of the top. Taking another formula from the section 3.1.4, the top loop
contribution is

V log
t;CW = � 3

16�2 Tr
�
Mt(�)M y

t (�)
�2

ln
Mt(�)M y

t (�)
�2 : (5.93)

which (recall the loop calculation in the previous section) evidently results in

�m2
h;t = �3y2

tm2
T

8�2 ln
�2

m2
T

(5.94)

where negative contribution to the mass can be traced back to the fermion loop.
It is this contribution from the top that triggers electroweak symmetry breaking.
Notice that the scalar (mainly the triplet) also contributes logarithmic correction
but is, again, overwhelm by the top e�ects. Such the e�ect can be written as

�m2
h;s =

�
16�2M

2
� ln

�2

M2
�
: (5.95)



173

5.2.5.3 Coleman-Weinberg Potential: Quadratic

Now we will move to the potential due to the quadratically divergent loops with
gauge �elds running in. The one-loop contribution from gauge �elds can be
written as (recall (3.32) and the section 4.3)

V quad
g;CW =

�2

(4�)2 TrM2
g (�) ; (5.96)

where (4�)2 is a generic one-loop factor. Let us concentrate on the SU(2)
interaction. The TrM2

g (�) can be evaluated from the kinetic term

TrM2
g (�) = F 2X

i
g2
iTr [(Qa

i�)�Qa
i�] (5.97)

We can also think of the (5.96) as the results of the vertex

g2
iF 2

8
Tr
h
(Qa

i� + �Qa
i
T)dg(Qa

i� + �Qa
i
T)
i
W a�
i W a

i�

=
g2
iF 2

8
Tr
h
�yQa

i�Q
a
i
T + �Qa�

i �yQa
i

i
W a�
i W a

i�

=
g2
iF 2

4
Tr [(Qa

i�)�Qa
i�]W a�

i W a
i� ; (5.98)

where we have used �T = ��. Then the quadratic divergent contribution from
W running in the loop yields the factor �2=(4�)2; i.e.,

g2
iF 2

4
Tr [(Qa

i�)�Qa
i�]

�2

(4�)2 : (5.99)

Consequently the e�ective potential

V quad
g;CW � ag

2
iF 4

8
Tr [(Qa

i�)�Qa
i�] ; (5.100)

where we have used � = 4�F and a UV -dependent coe�cient a=2 � O(1) (which
contains the (4�)2 ) has been introduced. The U(1) contribution shows up in a
very similar manner so that we �nally get

V quad
g;CW = a

F 2

8

n
g2
iTr [(Qa

i�)�Qa
i�] + g02i Tr [(Yi�)�Yi�]

o
= a

F 2

8

n
g2

1Tr [(Qa
1�)�Qa

1�] + g021 Tr [(Y1�)�Y1�]
o

+a
F 2

8

n
g2

2Tr [(Qa
2�)�Qa

2�] + g022 Tr [(Y2�)�Y2�]
o
: (5.101)
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In order to extract some useful information from (5.101) we expand the � and
keep terms involving more than one Goldstone bosons in V quad

g;CW . Each gauge
interaction (i.e., those labelled 1 and 2) will allow di�erent form of the H and
� appearing in, depending on the transformation properties under the global
symmetry SU(3)i it manifests (see (5.36) and (5.37)). In other words, the
operators involved must be SU(3)i preserving interactions. The result is ([21],
[3])

V quad
g;CW =

a
2

(g2
1 + g021 )F 2

������ij � i
2F

(HiHj +HjHi)
�����2

+
a
2

(g2
2 + g022 )F 2

������ij +
i

2F
(HiHj +HjHi)

�����2 + : : :

=
a
2

(g2
1 + g021 )F 2

"
��ij�ij � i

2F
��ijHiHj � i

2F
��ijHjHi

+
i

2F
H�iH�j�ij +

i
2F

H�jH�i �ij

+
1

4F 2 (H�iH�j +H�jH�i )(HiHj +HjHi)
�

+
a
2

(g2
2 + g022 )F 2

"
��ij�ij +

i
2F

��ijHiHj +
i

2F
��ijHjHi

� i
2F

H�iH�j�ij � i
2F

H�jH�i �ij

+
1

4F 2 (H�iH�j +H�jH�i )(HiHj +HjHi)
�

+ : : : (5.102)

where Hi; �ij denote the �eld components. Then we see right away that gauge
loops contribute to the triplet masses

M� ' a
q
g2

1 + g021 F � O(TeV) : (5.103)

Notice that we have not taken into account the contributions from the top quark.

The case where we have the heavy fermion running in the loop is quite
similar. Recall that the Yukawa interaction between fermions and Goldstone
bosons in (5.70) preserves the upper-left global symmetry; i.e., the SU(3)2. So
the Coleman-Weinberg potential is, with the fermion loop factor �1,

V quad
t;CW = �a0

2
y2

1F
2

������ij +
i

2F
(HiHj +HjHi)

�����2 + : : : : (5.104)
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This potential is constructed from the Lagrangian (see Arkani-Hamed et al.
[21])

Vt;CW = �a01
4
�2

1F
4�iw"wx�jx"ijk"kmn��my"yz��nz : (5.105)

Notice how the triplet � receives contributions from the Yukawa interaction.

To get the couplings, we will cast the Lagrangians on hand in the general
form

VCW = �2F 2Tr
�
�y�

�
+ i�3F

�
H��HT �H��Hy�

��2HHy + �4(HH
y)2

= V quad
g;CW + V quad

t;CW � �2HHy : (5.106)

Notice that we cannot do much with the �2HHy term in the Coleman-Weinberg
potential. Collective symmetry breaking trick pushes the mass of H to two-loop
which is of order

�2(quad)
2�loop � �2

(16�2)2 � (4�F )2

(16�2)2 =
F 2

16�2 : (5.107)

This term competes with the logarithmic contribution from one-loop; i.e.,

�2(log)
1�loop =

F 2 ln(�2=F 2)
16�2 (5.108)

The situation is beyond the power of the Coleman-Weinberg technique at one-
loop. Therefore we have to take �2 as a free parameter and the condition that
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electroweak symmetry breaks is �2 > 0. We then have, from (5.102),

VCW = ��2HHy

+
a
2

(g2
1 + g021 )F 2

"
Tr�y� +
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2F

�
h�yHT �H��Hy�+

1
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#
+
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2 + g022 )F 2

"
Tr�y�� i

2F
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h�yHT �H��Hy�+

1
4F 2 (HHy)2

#
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4F 2 (HHy)2
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+ : : :

= ��2HHy +
"
a
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(
g2

s2c2 +
g02
s02c02

)
+ 8a0y2

1

#
F 2Tr�y�
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"
�a

4

(
g2 (c2 � s2)

s2c2 + g02 (c02 � s02)
s02c02

)
+ 4a0y2

1

#
�F �H�yHT �H��Hy�

+
1
4

"
a
2

(
g2

s2c2 +
g02
s02c02

)
+ 8a0y2

1

#
(HHy)2 ; (5.109)

which enables us to extract the couplings

�2 =
a
2

"
g2

s2c2 +
g02
s02c02

#
+ 8a0�2

1;

�3 = �a
4

"
g2 (c2 � s2)

s2c2 + g02 (c02 � s02)
s02c02

#
+ 4a0y2

1;

�4 =
a
8

"
g2

s2c2 +
g02
s02c02

#
+ 2a0y2

1 : (5.110)

So, the quadratically divergent Coleman-Weinberg potential is expressed in
terms of these couplings as

VCW = ��2HHy + �4(HH
y)2

+�2F 2Tr�y� + i�3F
�
H�yHT �H��Hy� : (5.111)

To workout the true minimum, let us introduce the real elements of the
�elds as follows:

HT =

0@h1 + ih2

h3 + ih4

1A
� =

0@ �1 + i�2
1p
2(�3 + i�4)

1p
2(�3 + i�4) �5 + i�6

1A (5.112)
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so that we have

Tr�y� = �i�i (5.113)

and

H�yHT = (h2
1 + 2ih1h2 � h2

2)(�1 � i�2) +
p

2(h1 + ih2)(h3 + ih4)(�3 � i�4)

+(h2
3 + 2ih3h4 � h2

4)(�5 � i�6) : (5.114)

as well as

H��H� = (H�yHT)� : (5.115)

Consequently, there are only real numbers left in the potential

VCW = ��2
�
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1 + h2
2 + h2

3 + h2
4

�
+ �4

�
h4

1 + h4
2 + h4

3 + h4
4
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�2F 2

�
�2

1 + �2
2 + �2

3 + �2
4 + �2

5 + �2
6

�
+2�4

�
h2

1h
2
2 + h2

1h
2
3 + h2

1h
2
4 + h2

2h
2
3 + h2

2h
2
4 + h2

3h
2
4

�
+2�3F

�
� 2�1h1h2 + �2h2

1 �
p

2�3h3h2 � �2h2
2 � �3h4h1

+
p

2�4h3h1 �p2�4h4h2 � 2�5h3h4 + �6h2
3 � �6h2

4

�
:(5.116)

If we are expecting that electroweak symmetry breaks when �2 > 0, the
potential (5.116) must be extremum when the vacuum points in the �neutral�
direction; i.e., the SU(2)� U(1)! U(1)em direction,

hHTi =

0@ 0
vp
2

1A (5.117)

and12

ih�i =

0@0 0
0 v0

1A : (5.118)

which are equivalent to

hh3i =
vp
2
; h�6i = �v0 (5.119)

12The factor i is introduced for later convenience.
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and

hhii = 0 ; i 6= 3 (5.120)
h�ji = 0 ; j 6= 6 : (5.121)

The validity of these conditions can be directly veri�ed by taking the considering
the �rst derivative of VCW in (5.116) and imposing the vacuum conditions; i.e.,

@VCW
@hi

����
0

= 0 ;
@VCW
@�i

����
0

= 0 : (5.122)

As a quick check, we will have a look at terms relating to �6 and h3. The ��6�
term is easy

@VCW
@�6

= 2�2F 2�6 + 2�3F (h2
3 � h2

4) (5.123)

while the �h3� terms are a bit more involved

@VCW
@h1

= 2
p

2�3F�4h3 + 4�4h1h2
3 + others (5.124)

@VCW
@h2

= �2
p

2�3F�3h3 + 4�4h2h2
3 + others (5.125)

@VCW
@h3

= �2�2h3 + 4�3F�6h3 + 4�4h3(h2
1 + h2

2 + h2
3 + h2

4)

+others (5.126)
@VCW
@h4

= �4�3F (�5h3 + �6h4) + 4�4h3
3h4 + others (5.127)

where �others� denotes terms that do not even contain the h3 or �6. In fact
the �rst three terms in (5.117) vanish altogether by the conditions (5.120) and
(5.121). The survivors of these conditions are

@VCW
@�6

�����
0

= 2�2F 2h�6i+ 2�3F hh3i2
@VCW
@h4

�����
0

= 4�3F h�6ihh3i � 2�2hh3i+ 4�4hh3i3 : (5.128)

So the conditions (5.119) are satis�ed when

v2 =
�2

�4 � �2
3=�2

; (5.129)
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and

v0 = �3

�2

v2

2F
: (5.130)

Notice that the relation (5.129) tells us that the free parameter �2 should be
of order � (100 GeV)2 as we are expecting that M2

h � 2�2 = 2v2(�4 � �2
3=�2).

The considerations posted around the equation (5.109), stating that �2 � F 2

16�2 ,
therefore suggest the hierarchy

v2 � F 2

16�2 � �2

(16�2)2 : (5.131)

Notice that this results are obtainable from dimensional analysis. Since the
factor F 2

16�2 and v2 � �2 have their origins from the collective symmetry
arguments, the separation between the two scales characterised by v2 and �2

can be said to be �natural�. In other words, the scale v � 100 GeV� 200 GeV is
naturally produced, without the requirement of �ne-tunings, for � in the range

� � 10 TeV � 30 TeV : (5.132)

Now we can trade the 3 couplings (�'s) with the parameters �2; v, and v0

�2 =
4�2v2

v4 � 16F 2v02 (5.133)

�3 =
8Fv0�2

v4 � 16F 2v02 (5.134)

�4 =
�2

4
=

�2v2

v4 � 16F 2v02 (5.135)

5.2.5.4 Gauge and Mass Eigenstates of the Goldstone Bosons

Once there is the second stage of symmetry breaking (electroweak), we must
deal with the new mass eigenstates of the gauge �elds. Before doing that, we
also have to �nd the relations between the gauge and mass eigenstates of the
Goldstone bosons in order to collect the physical particles (remember that 3
Goldstone bosons will be eaten by W� and Z).

There are 10 real �elds representing the Goldstone bosons; namely the
hi's and �j's. So we are expecting a 10�10 mass matrices with �i and hi mixed
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inside:

M2
ab =

1
2
@2VCW
@a�@b�

������
0

(5.136)

where

�a =
(

ha ; a = 1; : : : ; 4
�a ; a = 5; : : : ; 10

: (5.137)

Obviously this M2 is a symmetric. We will partition the matrix M2 as follows:

M2 =

0@M2
UL(4�4) M2

UR(4�6)

M2
LL(6�4) M2

LR(6�6)

1A (5.138)

which is still not-diagonal. We have found that the a 4 � 4 upper-left (UL)
block13 is

M2
UL =0BBBBBB@
��2 + v2�4 0 0 0

0 ��2 + v2�4 0 0
0 0 ��2 + 3v2�4 � 2F�3v0 0
0 0 0 ��2 + v2�4 + 2F�3v0

1CCCCCCA
(5.139)

while the 6� 6 lower-right (LR) block is

M2
LR =0BBBBBBBBBBBB@

F 2�2 0 0 0 0 0
0 F 2�2 0 0 0 0
0 0 F 2�2 0 0 0
0 0 0 F 2�2 0 0
0 0 0 0 F 2�2 0
0 0 0 0 0 F 2�2

1CCCCCCCCCCCCA
: (5.140)

13The full 10� 10 matrix is given in (C.69) page 257.
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Still, there is the o�-diagonal block. We present the 4 � 6 upper-right (UR)
block (the lower-left is just a mirror image as M2 is symmetric)

M2
UR =0BBBBBB@
0 0 0 Fv�3 0 0
0 0 �Fv�3 0 0 0
0 0 0 0 0

p
2Fv�3

0 0 0 0 �p2Fv�3 0

1CCCCCCA : (5.141)

It is not straightforward to diagonalise the M2 in this form. However, since
there are very few o�-diagonal elements, we can �re-shu�e� them to get a more
desirable matrix. For example, consider the element �3 = h3 and �4 = h4. We
see that we can construct a 2� 2 block matrix by switching between �4 and �10;
i.e., setting ~�4 = �10 = �6 , ~�10 = �4 = h4 and ~�3 = �3 = h3. We obtain the
h3 � �6 mixing matrix

~M2
(h3�6) =

0@ ��2 + 3v2�4 � 2F�3v0
p

2Fv�3p
2Fv�3 F 2�2

1A
=

�2

v4 � 16F 2v02

0@ �v4 + 16F 2v02 + 3v4 � 16F 2v02 8
p

2F 2vv0

8
p

2F 2vv0 4F 2v2

1A
=

2�2

v4 � 16F 2v02

0@ v4 4
p

2F 2vv0

4
p

2F 2vv0 2F 2v2

1A :

(5.142)

where we have used (5.133), (5.134) and (5.135). By recalling (5.130) we further
approximate v0 = v2=2F . Then we get

~M1 � 2�2

~M2 � 4�2F 2
�
v2 + v4

2F 2

�
v4 � 16F 2v02 : (5.143)

Since the mixing that we are dealing with at the moment is that between h3

and �6 and we know that the position of h3 in the doublet (i.e., its quantum
number) is just that of the Higgs in the standard model, we can then safely say
that

M2
~h � 2�2 (5.144)

M2
� � 2M2

~hF
2
�
v2 + v4

2F 2

�
v4 � 16F 2v02 : (5.145)
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Notice that we have introduced the notation ~h for the physical Higgs; i.e., in its
mass eigenstate after electroweak symmetry is broken.

Next, we will have a look at other blocks. A quick glance that there are
8 o�-diagonal elements of the matrix M2 (c.f. (C.69)) tells us that there will
be one 2 � 2 diagonal matrix left after the reshu�e of the basis. That matrix,
corresponding to the �eld �1 and �2 (�5 and �6), is

M2
�1�2

= M2
�++ =

0@F 2�2 0
0 F 2�2

1A
=

0B@ 2M2
~h
F 2

v4�16F 2v02 0

0
2M2

~h
F 2

v4�16F 2v02

1CA : (5.146)

In the new basis, we will use

~�++ = �=i : (5.147)

The remaining eigenvalues of the M2 are fairly non-trivial (still, brute
force is always possible). Hence, we will use some heuristic arguments to �guess�
what should they be, rather than diagonalise them explicitly.

At this stage we have paired up 4 rows and columns corresponding to
�4 � �10 and �5 � �6, we then have 6 pairs to go. However, notice that as there
are 3 diagonal elements F 2�2 = 2M2

~hF
2 left unpaired, the remaining 2�2 blocks

will be of the form 0@ F 2�2 �Fv�3

�Fv�3 X

1A (5.148)

where � is a numerical factor (say,
p

2) and X is one of the following elements

��2 + v2 (5.149)
��2 + v2�4 + 2F�3v0 (5.150)
F 2�2 (5.151)

Also notice that we cannot let the h1 and h2 stay at the same positions in
the matrix M2 because of their o�-diagonal elements. Therefore, in the new
basis, there is no 2 � 2 sub-matrix having ��2 + v2 in both of the diagonal
elements. Similar argument also applies to the case of having F 2�2 in both
diagonal elements. Consequently all the remaining mixings will be of the h� �
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type. One of them is

~M2
1 =

0@ F 2�2 �1Fv�3

�1Fv�3 ��2 + v2�4 + 2F�3v0

1A (5.152)

and the remaining two are

~M2
2 =

0@ F 2�2 �2Fv�3

�2Fv�3 ��2 + v2

1A : (5.153)

By using (5.133), (5.134), and (5.135), it is easy14 to see that one of the
eigenvalues of either ~M2

1 or ~M2
2 will be zero while the other are proportional

to

4�2F 2
�
v2 + �0v02

�
v4 � 16F 2v02 ; (5.154)

where �0 is a numerical factor (depending on the members of the matrices).
Finally, we can set up another convention that further simpli�es things: we
arrange the matrix so that the mixings above occur between �elds in the real
and imaginary part in the same manner that h3 and �6 does (recall h3 + ih4 and
�5 + i�6). This trick will help us arrange the mixing angles more easily.

So far we have considered the mixings of the hi and �i in the ��nal�
mass eigenstates de�ned by the electroweak symmetry breaking. We see that
masses of the members of the Higgs doublets in these mass eigenstates are zero
except for the one that corresponds to the physical Higgs of the standard model.
Such the three massless members are the Goldstone bosons that survive massless
throughout both stages of symmetry breaking. They are exact Goldstone bosons.
Of course, they will not make it to the physical spectrum as they will be �eaten�
by the electroweak gauge �elds. In addition, the triplet Goldstone bosons � are
now massive as expected. At tree level, the mass eigenstates of � are degenerate
where (c.f. (5.112)),

M2
� � �2F 2 � 2M2

~hF
2v2

v4 � 16F 2v02 : (5.155)

This immediately points out the conditions

v4 > 16F 2v02 ; (5.156)

14Remember that the eigenvalues of the matrix
�
a b
b c

�
are 1

2 (a+ c)� 1
2

p
(a� c)2 + 4b2.
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or

v02

v2 <
v2

16F 2 ; (5.157)

which tell us how much the contributions from the triplet � get suppressed. It
also tells us that the vacuum expectation value v0 of the triplet is fairly smaller
than that of the Higgs doublet; for example, v0 � 5� 20 GeV.

5.2.6 After Electroweak Symmetry Breaking

Once the electroweak symmetry is broken, both the Goldstone bosons and the
gauge bosons will have their new mass eigenstates. They can be obtained
by diagonalising their corresponding mass matrices and evaluating the mixing
angles in the similar fashion to those shown in the previous section.

5.2.6.1 Final Mass Eigenstates of the Goldstone Bosons

In this section we will follow up what we have left in the previous section on the
mass eigenstates of the Goldstone bosons. Let us denote the mixing between h3

and �6 as15 0@h3

�6

1A =
1p
2

0@c0 �s0

s0 c0

1A0@ ~h
~�0

1A (5.158)

where c0 and s0 correspond to the mixing angles, and ~h is the Higgs of the
standard model. Still we need to �nd how the other two components mix;
namely, the h4 and �5 in terms of the �to be eaten� Goldstone bosons ~G0 and
the neutral pseudoscalar ~�P . We write0@h4

�5

1A =
1p
2

0@cP �sP
sP cP

1A0@ ~G0

~�P

1A (5.159)

which results in new real and imaginary parts, in terms of the mass eigenstates,

h0 =
1p
2

�
c0~h� s0 ~�0

�
+ i

1p
2

�
cp ~G0 � sP ~�P + v

�
(5.160)

�0 =
1p
2

�
sp ~G0 + cP ~�P

�
+ i

1p
2

�
s0~h+ c0 ~�0 +

p
2v0
�
: (5.161)

15We follow notations of sines and cosines used in Han et al. [3].
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Then the next step is to write out the mixing angles16. Using the formulas in
the footnote below and the matrix elements; for example, from (5.142), we can
get the rough approximations

c2
0 � 1� 8

v02
v2

s2
0 � 8

v02
v2 (5.165)

or c0 = 1 � 4v02v2 and s0 = 2
p

2v0v . Then, the other mixing angles can be found
in a very similar manners. They are

c2
P � 1� 8

v02
v2

s2
P � 8

v02
v2 : (5.166)

Next, we de�ne the �nal mass eigenstates of the charged �elds

h+ = c+ ~G+ � s+ ~�+ (5.167)
i�+ =

�
s+ ~G+ + c+ ~�+

�
: (5.168)

as well as

i�++ = ~�++ : (5.169)
16Recall that if m1 and m2 are the eigenvalues of a matrix M , then there is a matrix U that

diagonalises the matrix M according to

UMUT =
�

cos � � sin �
sin � cos �

��
a b
b c

��
cos � sin �
� sin � cos �

�
=
�
m1 0
0 m2

�
=

1
2

�
a+ c�p(a� c)2 + 4b2 0

0 a+ c+
p

(a� c)2 + 4b2

�
: (5.162)

Then we can solve for the mixing angles (cos �; sin �) as functions of a; b; c as

cos2 � =
h
(a� c) +

p
(a� c)2 + 4b2

i
=2
p

(a� c)2 + 4b2 � 1� b2=(a� c)2 ; (5.163)

and sin2 � � b2=(a� c)2. Besides, we have

tan 2� =
2b
a� c : (5.164)



186

Then we get the mixing angles

c2
+ � 1� 4

v02
v2

s2
+ � 4

v02
v2 : (5.170)

5.2.6.2 Final Mass Eigenstates of the Gauge Fields

Once we have speci�ed the vacuum expectation value of the Goldstone bosons
�elds, we can evaluate the mass of the gauge �elds from kinetic terms (in
the covariant derivative). Since the calculations in this section are rather
tedious (though straightforward), we will not reproduces the results found in
the literature by Han et al. [3], for example. Instead, we will try, more or
less, to use heuristic arguments that can guide us to the results and also try to
analyse them.

Now the Goldstone boson matrix is

� �X���
EW

=

0BBBBBBBBB@
0 0 0 0 0
0 0 v

2 0 v0

0 v
2 0 0 v

2

0 0 0 0 0
0 v0

2
v
2 0 0

1CCCCCCCCCA
(5.171)

Then

�EW � e
i2��X

���
EW

=F
�0 = �0 +

1
F

0BBBBBBBBB@
0 0 0 0 0
0 2iv0 iv 0 0
0 iv 0 0 iv
0 0 0 0 0
0 0 iv 0 2iv0

1CCCCCCCCCA

� 1
F 2

0BBBBBBBBB@

0 0 0 0 0
0 v2 2vv0 0 4

�
v2

4 + v02
�

0 2vv0 2v2 0 2vv0

0 0 0 0 0
0 4

�
v2

4 + v02
�

2vv0 0 v2

1CCCCCCCCCA
:

(5.172)
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So

�EW =

0BBBBBBBBBB@

0 0 0 1 0

0 � v2

F 2 + 2iv0
F

iv
F � 2vv0

F 2 0 1� (v2+4v02)
F 2

0 iv
F � 2vv0

F 2 1� 2v2

F 2 0 iv
F � 2vv0

F 2

1 0 0 0 0

0 1� (v2+4v02)
F 2

iv
F � 2vv0

F 2 0 � v2

F 2 + 2iv0
F

1CCCCCCCCCCA
+O(

1
F 3 ) (5.173)

This matrix will be put into the usual kinetic term

L�EW =
F 2

8
Tr
n
D��yD��

o ���
�EW

(5.174)

To the lowest order (include only �0), we obviously recover the mass matrices
that were obtained in section 5.2.1. Thus, it will be helpful if the calculation
is performed based on the mass eigenstates so we can easily see the corrections
from electroweak symmetry breaking.

Since the calculations will be painstaking (as we shall see, the author will
take results from other sources), we will try some heuristic arguments based on
our considerations done in the previous chapter. First, recall that to �rst non-
zero order (the O(g2v2)), there will be interactions between the Higgs and the
Goldstone bosons while the other pseudo-Goldstone bosons are massive and do
not interact with the gauge bosons 17. Thus, it can be expected that the form of
all the corrections (to the gauge bosons mass matrices) to the �rst order O(v2)
will be proportional to

�
4
g2v2 or

�
4
g02v2 ; etc::: (5.175)

where �, standing for various forms of all possible coe�cients, can be a function
of the mixing angles (c; c0; s; s0). The factor 1=4 can always be obtained with
proper de�nitions of the vacuum expectation value v and v0. In addition, the
factors g; g0 should go along in a consistent manners with the corresponding
gauge �elds (gg0v2WB0, for example).

17Still, we have seen that electroweak symmetry breaking introduced mixings between the two
types of the pseudo-Goldstone bosons. The e�ects of mixings and hence the dependencies on v0
will show up in higher orders.
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Then our heuristic arguments tell us that the mass terms �should� look
like

L�EW

���O(g2v2)

?� 1
2

�
M2

W 0 � 1
4
g2v2

�
W 0a
� W

0a� +
1
2

�
M2

B0 � 1
4
g02v2

�
B0�B0�

+
1
2

�1
4
g2v2

�
W a
�W

a� +
1
2

�1
4
g02v2

�
B�B�

+
1
2

 
�1

4
g2v2

!
W a
�W

0a� +
1
2

 
�2

4
g02v2

!
B�B0mu

+
1
2

�1
4
gg0v2

� h
�3W 3

�B
� + �4W 03

� B
0� + �5W 03

� B
� + �6W 3

�B
0�i ;

(5.176)

where �i stands for a function of the mixing angles (from the �rst stage of
symmetry breaking). Also note the di�errent de�nitions of masses of the charged
and the neutral gauge �elds.

The higher order e�ects will introduce the splitting between the masses
of neutral and charged gauge �elds. This is not beyond our expectation since
there are mixings between the Goldstone bosons (the H and the �) which were
eventually eaten by the gauge �elds (see the section 4.1 on dynamical symmetry
breaking and vacuum alignment). Here, we will show how to multiply matrices
and collect various terms here, and instead will refer to the result found by Han
et al. in [3]. The mass terms in the unmixed basis are

L�EW =
1
2
W 0a
� W

0a�
�
M2

W 0 � 1
4
g2v2

�
+

1
2
B0�B0�

�
M2

B0 � 1
4
g02v2

�
+W+

� W
��
"

1
4
g2v2

 
1� v2

6F 2 + 4
v02
v2

!#
+

1
2
W 3
�W

3�
"

1
4
g2v2

 
1� v2

6F 2 + 8
v02
v2

!#
+

1
2
B�B�

"
1
4
g02v2

 
1� v2

6F 2 + 8
v02
v2

!#
+W 3

�B
�
"

1
4
gg0v2

 
1� v2

6F 2 + 8
v02
v2

!#
�W a

�W
0a�
"

1
4
g2v2 (c2 � s2)

2sc

#
�B�B0�

"
1
4
g02v2 (c02 � s02)

2s0c0

#
�W 03

� B
�
"

1
4
gg0v2 (c2 � s2)

2sc

#
�W 3

�B
0�
"

1
4
gg0v2 (c02 � s02)

2s0c0

#
+W 03

� B
0�
"
�1

8
gg0v2

 
cs0
sc0 +

sc0
cs0

!#
: (5.177)
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We should keep in mind the condition (5.157) that though v02
v2 < v2

16F 2 , the O(v02v2 )
e�ects are not negligible, and so do O( v4

F 2 ) terms. These e�ects will show up in
the masses of the light gauge bosons (in their new mass eigenstates).

Now let us consider the charged W;W 0 bosons. Denoting, m2
W = 1

4g
2v2,

we have the 4� 4 mass matrix0@�m2
W +M2

W 0 �m2
W (c2�s2)

2cs

�m2
W (c2�s2)

2cs m2
W

�
1� v2

6F 2 + 4v02
v2

�1A
 12�2 (5.178)

where we have used the basis (W 0+; W+; W 0 �; W�). Then observe that the o�-
diagonal terms are considerably smaller than theM2

W 0. So we can easily evaluate
the eigenvalues. Let us denote the eigenvalues of this matrix as MW�H and MW�L ,
for heavy and light gauge bosons respectively. We then �nd,

M2
W�H

= M2
W 0 �m2

W +
m4
W (c2 � s2)2=4c2s2

m2
W

��1
2 + v2

6F 2 � 4v02
v2

�
+M2

W 0

= M2
W 0 �m2

W +O(
m4
W

M2
W 0

) (5.179)

and

M2
W�L

= m2
W

"
1� v2

F 2

�1
6

+
1
4

(c2 � s2)2
�

+ 4
v02
v2

#
: (5.180)

Note that both mass terms come with di�erent orders of magnitude. We have
neglected the O( m

4
W

M2
W 0

) � O( v4

F 2 ) as it is small comparing with the mass of M2
W 0 in

the �rst term, while we keep terms up to O( v4

F 2 ) in the eigenvalue (mass) of the
light gauge �eld. At this point, it should become clear that had we neglected the
O( v4

F 2 ) terms in (5.177), we would have faced with the �too simple� mass term
of the light gauge bosons

MWL = mW (wrong) (5.181)

which is inconsistent with the mass of the heavy gauge boson; one shows mixings,
the other does not. Consequently, it is easy to verify (direct substitutions) that
the �nal charged gauge �elds mass eigenstates WH ;WL are given by

W�
H = W 0� � v2

2F 2sc(c
2 � s2)W�

W�
L =

v2

2F 2sc(c
2 � s2)W 0� +W� (5.182)
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Now, let us turn to the mixings of the neutral gauge bosons. The situation
is rather involved as, according to (5.177), the mass matrix is not reducible to
the 2�2 block matrix (direct product with 12�2). Let us denotemZ = gv=2cW =
mW=cW = g0v=2sW where cW is (the cosine of) the Weinberg angle

cW =
gp

g2 + g02 (5.183)

sW =
g0p

g2 + g02 : (5.184)

Again, let us note the frequently used relations

g02
g2 m

2
W = s2

Wm
2
Z : (5.185)

The 4 � 4 mass matrix found is listed in (C.4). With a quick glance at (C.4)
we see right away that one of the eigenvalues should be zero (located in the
lower-right 2� 2 block).

We require that electroweak symmetry breaks down to U(1)em. Thus, one
zero eigenvalue of the mass matrix (C.4) is expected. Notice that the appearance
of the zero mass gauge �eld (the photon) is fairly non-trivial especially if we try
to diagonalise the 4� 4 mass matrix (C.4) directly. Still, it might be helpful if
we write the 2� 2 lower-right block of the mass matrix (C.4) as

M2
LR =

0@ m2
WK �sWmWmZK

�sWmWmZK s2
Wm2

ZK

1A (5.186)

where

K �
 

1� v2

6F 2 + 8
v02
v2

!
: (5.187)

Notice that we cannot just push this 2 � 2 block M2
LR out since there are o�-

diagonal terms in the 4�4 matrix. However, it can be seen that the o�-diagonal
2�2 matrices of (C.4) have one zero eigenvalue and is by itself diagonalisable. So
our heuristic argument suggests that we can somehow rearrange (transform) the
basis such that we can separate one of the element, say the one corresponding
to lower-right most (s2

Wm2
ZK), from the �rst two components, so that this

component mixes with only the members of the lower-right 2 � 2 matrix.
Therefore, the zero eigenvalue in (5.186), if there is any, is an exact zero. The
other one (i.e., the physical Z), which must be non-zero by construction, must
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have some terms that are mixed with the other elements from the heavy gauge
�elds masses. Clearly this matrix M2

LR has eigenvalues,

0 and (m2
W + s2

Wm
2
Z)K ; (5.188)

and therefore tells us that there is a �nal mass eigenstate that represents the
photon.

With the above reasonings, we can begin with the mass eigenstate of the
photon

A�L = sWW
3� + cWB

� : (5.189)

The other mass eigenstate of the light gauge �eld (the Z) must be orthogonal to
(5.189) as well as the other two eigenstates of the heavy �elds. Thus, it is best
to separate out terms that mix with the AL from others. So we follow Han et
al. [3] and introduce the notation (that is consistent with the eigenvalues)

Z�L = cWW
3� � sWB� + xW 0Z

v2

F 2W
03� + xB0Z

v2

F 2B
0� (5.190)

where the xW 0Z
v2

F 2 and xB0Z v2

F 2 will play the role of the mixing �angles�, which
also explicitly tell us that the mixing between light and heavy gauge �eld are
suppressed by a factor v2

F 2 . With these mass eigenstates, we can further look for
the form of those of the heavy �elds. Denoting, the heavy �elds as ZH and AH ,
and demanding that they are orthogonal to each other and to the light gauge
�elds, we write

Z�H = W 03 � xH v
2

F 2B
0� � xW 0Z

v2

F 2 (cWW 3� � sWB�) (5.191)

A�H = B0� + xH
v2

F 2W
03� � xB0Z v2

F 2 (cWW 3� � sWB�) ; (5.192)

where xH characterises how the heavy �elds (W 3 and B) mix. It is found that

xW 0Z = � 1
2cW

sc(c2 � s2)

xB0Z = � 5
2sW

s0c0(c02 � s02) : (5.193)
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Then, for the light �elds, the eigenvalues are

M2
ZL = m2

Z

"
1� v2

F 2

�1
6

+
1
4

(c2 � s2)2 +
5
4

(c02 � s02)2
�

+ 8
v02
v2

#
(5.194)

MAL = 0 : (5.195)

Next, eigenvalue for the heavy neutral Z �eld is found to be

M2
ZH = M2

W 0 �m2
W �m2

Zs
2
W

5
2
gg0
s0c0

sc(c2s02 + s2c02)
(5g2s02c02 � g02s2c2)

: (5.196)

So we de�ne

xH =
5
2
gg0 scs

0c0(c2s02 + s2c02)
(5g2s02c02 � g02s2c2)

: (5.197)

Then (5.196) becomes

M2
ZH = M2

W 0 �m2
W �m2

Zs
2
W
xH
s02c02

= M2
W 0 �m2

W

 
1 +

s2
W

c2
W

xH
s02c02

!
: (5.198)

The other eigenvalue of the heavy �eld is

M2
AH =

1
5
M2

B0 �m2
Zs

2
W +m2

W
xH
s2c2

=
1
5
M2

B0 �m2
Zs

2
W

 
1� c2

W

s2
W

xH
s2c2

!
: (5.199)

5.2.6.3 Final Mass Eigenstates of the Top Quarks

Recall that the top quarks (the top and its partners) interact via the interaction
term in (5.70). After electroweak symmetry breaks, the pseudo Goldstones are
in their new mass eigenstates, the top quarks mass eigenstates will further mix.
So let us write the mass term in the Lagrangian as

Lt = �mttLtcR �MTTLT cR : (5.200)

However, we know that the mass matrix of the fermions in the gauge eigenstates
basis is, in general, neither symmetric nor hermitian (but theMfM

y
f is hermitian

and positive). But once we assume that the original mass matrix is rewritable as
a product of a unitary matrix and a hermitian matrix, it is possible to perform
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a biunitary transformation

SyMfT = Mdiagonal (5.201)

where both S and T are unitary18. This means left-handed and right-handed
fermions have di�erent relations between the mass eigenstates and the gauge
eigenstates. With (5.201), the mass term in the Lagrangian (for fermions  , in
general) is diagonalised as follows:

� 0LSS
yMfTT

y R = � LMdiagonal R (5.202)

where  0L = S L and  0R = T R.

Still, this is not the whole story. We know that other fermions in the
theory also have similar mixings between gauge and mass eigenstates (recall the
CKM matrix). Then by requiring them to interact with the pseudo Goldstone
bosons in the same way as the tops, we need to make some further adjustments
with parameters (like the couplings) or else the hierarchy of the fermions will
come out wrong. This will introduce more complexities (and ambiguities) into
the model. Nevertheless, recall that fermions in the �rst two generations do not
bring up severe quadratic divergences like the top quark does. Then the Yukawa
couplings of fermions in those generations do not need to be protected by the
global symmetries that are encoded in the interaction (5.70). Thus, one of the
ways to simpli�es the consideration is to assume that the fermions interact with
the Goldstone bosons via other types of operator19; for example,

�QLH(X)r(Y )suc (5.203)

where X and Y are some components of the � that receives vacuum expectation
value of order F and r; s are integers. If we do so, the by-product we get is
the extra freedom for choosing the U(1) charges of fermions in the �rst two
generations because there is no global symmetries to �x them as those in the
top quark case.

With various possibilities for the quark couplings described above, it is
best to simplify things by concentrating on the top quark alone. We denote the
top quark and its partner in the gauge eigenstates by TL; TR and tL; tR and write

18For more information on the biunitary transformation, see, for example, Cheng and Li [50].
19See Csáki et al. [78] for the modi�cations of the interactions of the Yukawa couplings and

the U(1) charges of the �rst two generations.
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the mixings as

tL = cLt3 � sL~t (5.204)
TL = sLt3 + cL~t (5.205)

and

tR = cRu
0c
3 � sR~t0c (5.206)

TR = sRu
0c
3 + cR~t0c (5.207)

where the left-handed and right-handed �elds are rotated with di�erent param-
eters sL and sR. Notice that we use u0c3 instead of u03 since we have to start
over and expand � (with the electroweak expectation values) from the Yukawa
interaction Lagrangian. Also observe that now we will use TR (not T cR). Then
the top quark mass matrix is

Mt =

0@y1F (sin v
F )=
p

2 y1F (1 + cos v
F )=2

0 y2F

1A ; (5.208)

giving

MtM
y
t =

0@y2
1F 2(�s2=2 + (1 + �c)2=4) y2

1F 2�s(1 + �c)=(2
p

2)
y2

1F 2�s(1 + �c)=(2
p

2) y2
2F 2

1A (5.209)

which is clearly Hermitian. Notice that we have used �s = sin(v=F ) and �c =
cos(v=F ). Then the mixing angles are

sL '
 

y2
1

y2
1 + y2

2

!
v
F

(5.210)

for the left-handed quarks, and

sR ' �s
"
1� �c2

 
1
2
�
 

y2
1

y2
1 + y2

2

!!
v2

F 2

#
: (5.211)
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for the right-handed ones. The mass of of the tops in their new eigenstates are20

mtL ' ytvp
2

"
1 + �

v2

F 2
y2

1

y2
1 + y2

2

#
(5.212)

MTL '
q
y2

1 + y2
2F

"
1� � v2

F 2
y2

1

y2
1 + y2

2

#
(5.213)

where � is a numerical value of O(1). Notice that the left-handed quarks will
not mix unless the electroweak symmetry breaks, unlike the right-handed ones
which always do. Actually, we are already aware of this fact from the mixing
formula (5.75) which tells us the the right-handed (top-like) singlet appearing
in the Lagrangian (5.70) does mix with the right-handed heavy quark.

5.3 A Survey on the Phenomenology and Issues of

the Little Higgs

So far we have studied various aspects of the model building of the Littlest Higgs.
Currently, in 2007, we are at the time where the next generation accelerators like
the LHC (CERN) is scheduled to begin its operation within the near future. We
have seen that there are some free parameters and some new particles needed to
be introduced in the model and hence opening possibilities for the experiments as
there are more processes to choose. Thus, the Little Higgs should be interesting
in the sense of experiments. In addition, since the model have a fairly large
number of parameters comparing with the standard model, we generally expect
to see some footprints or some theoretical constraints that allow us to distinguish
the Little Higgs model from others (or the model is not useful at all as it needs
more ingredients to predict similar things). In this section we will describe
some of the interesting phenomenological results we can get from the model.
The relevant articles that provide insightful information on the Little Higgs
phenomenology include those by Han et al. [3, 33] and Perelstein et al. [79]. It
is highly recommended that the interested readers consult these nice articles.

5.3.1 Unitarity and the Cut-Off

First we begin with our claim on the cut-o� of the theory that the cut-
o� scale, which indicates strongly interacting systems or new physics (with
spontaneous symmetry breaking, for example), is pushed up to the two-loop

20We use the subscript L for the quarks in their �nal eigenstates because we run out of some
proper indices.
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order at O(10 TeV). Recall that this is due to the factor � ' 4�F which is
obtained from naive dimensional analysis. However, we also have seen that
in the electroweak theory, unitary calls for new physics at 2 TeV rather than
4�v ' 3TeV as expected. The situation is quite similar in the Littlest Higgs
and there are now more pseudo Goldstone bosons to produce various forms of
unitarity violating diagrams (also recall that the gauge bosons scattering can also
be described by using Goldston bosons at high energies). The detail analysis on
a general Little Higgs models performed by Chang and He [80] shows that the
unitarity bound �U comes as soon as 3 � 4TeV if we set F � 1 TeV. Actually,
this low unitarity bound is more satisfactory as it means that the high-energy
limit of the theory and the new physics (recall the technicolour model) can be
reached soon. Unfortunately, we shall see in the next section that the Littlest
Higgs is very tightly constrained by the precision electroweak tests and it is not
likely that F be that low.

5.3.2 Bound on the F from Precision Electroweak Tests

Let us begin with some unsatisfactory fact. Consider the heavy gauge bosons
that are partners of those in the standard model. Recalling, (5.180) and (5.194)
for the masses of the light gauge �elds, we see that their ratio is

MW 2
L

c2
WM2

ZL
'

"
1 +

v2

F 2
5
4

(c02 � s02)2 � 4
v02
v2

#
; (5.214)

which is more than obvious that we have lost the custodial symmetry (see section
2.3.5). Unfortunately, this fact alone is enough to put the theory into a very tiny
corner of the parameter space and will eventually rules out the Littlest Higgs
(not the whole class of models). Nevertheless, this should not be beyond our
expectation at all, not only from the appearances of the mass terms, but also
from the fact that there is no room left for the global SU(2) symmetry to act as
the custodial symmetry. The collective symmetry breaking results in gauging
all the possible two SU(2) subspace when the matrix under consideration is
SU(5). Therefore there are no global symmetry left to prevent the � from
being altered. In addition, since the source of the custodial symmetry breaking
lies in the order O( v2

F 2 ) (or O(v02v2 )), we look for the culprit at the same order.
By recalling the (2.160) we see that the possible source of the problem is the
e�ective �non-doublet� from of the Higgs. Thus, we will focus on the triplet �.
By expanding the � to the second order letting the �elds receive electroweak
vacuum values, that the neutral component of the triplet contain the HHy (and
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hence the electroweak vacuum expectation value), acting like the Higgs triplet.
This custodial symmetry SU(2)) can be used as an essential tool to test if the
Little Higgs can evade the precision electroweak tests.

The modi�cation (5.214) also tells us that either the second and the third
terms miraculously cancel, we need v0 << v and c0 � s0. Notice that we cannot
take the mixing angles to be too small because that would mean strong couplings
of the gauge interactions (for example, recall c0 = g0=g02). The lowest values are
usually taken to be c0 & 0:1. Csáki et al. have done the �ttings related to
precision electroweak tests of the Littlest Higgs in [6], and we will present some
of their results. They evaluate the bound of the �decay constant� F as a function
of c0 (or c) within various values of21 a. The example of the �t is shown in �gure
5.6. They usedMH = 115 GeV which was found to yield the lowest bound and is
consistent with the current excluded Higgs mass. In short, what they basically
found is

F & 4 TeV (95% C:L:): (5.215)

On the one hand, the larger-than-expected lower bound of the F pushes
the cuto� of the theory (i.e., the scale of the new physics) up to 3� 4 � 12 TeV
or to 4� � 4 � 50TeV which is plausible from the precision electroweak tests
point of view. On the other hand, the high value of F means that the mass of
the top partner is raised up, to MT & 5 � 6 TeV, and hence the return of the
naturalness problem. If it is the case, there would be the need of �ne-tuning to
1� 2% level in order to get the Higgs light. In addition, let us recall that even
though the quadratic divergent diagram cancels, the top quark, as well as other
particles, contribute to the Higgs mass squared the logarithmic terms. For the
top-quark we have (recall (5.94))

�m2
h;t = �3y2

tm2
T

8�2 ln
�2

m2
T

(5.216)

which is fairly harmful if the massmT of the heavy top is too high. The situation
is now worse than the previous case. The primary goal to solve the naturalness
problem is gone.

21The convention of the a in the Coleman-Weinberg potential may be di�erent form paper to
paper. In this thesis, we use 1=2 of the a in Csáki et al. [6].
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Figure 5.6: The region of parameters excluded (below the curves) at 95% C.L.
where c varies from 0:1 (shown in solid line) to 0:99 (dot-dashes
line). The shaded region is totally excluded. (Taken from [6].)

5.3.3 Particles in the Littlest Higgs Model

The particle spectrum of the Littlest Higgs model, as an economical model,
is interesting as the new particles, which were introduced to cancel the severe
quadratic divergences, can be probed within the reach of the next generation
accelerators (for example, the LHC or the ILC). We will point out some features
of the Littlest Higgs model that can be used to distinguish it from others; namely
the heavy top and the extra pseudo Goldstone bosons (the triplet �).

5.3.3.1 Heavy Tops

The heavy top plays very important role in cancelling the quadratic divregent
contributions from the top of the standard model. Besides, due to the �ne-
tuning arguments, the heavy top must show itself up before � 2 TeV. Recalling
(5.213), we �nd

MTL �
q
y2

1 + y2
2F .

p
2F (5.217)

However, taking the value F suggested by the previous section, the bound rises
beyond the limit of acceptable �ne-tuning. Anyway, this is rather interesting
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as it will still be within the probing range of the LHC if we take F � 1 TeV.
Beyond that, recall that there is the equation (5.83)

mT =
y2
t + y2

T

yT
F ; (5.218)

which serves as the unique feature of the Little Higgs obeyed by every Little
Higgs model (See Perelstein et al. [79]). The quadratic divergences cancellation
mechanism will not work without this relation. All the four parameters are either
known or can be measured (probably indirectly) if the heavy top is found. This
heavy top can be produced either alone (via W gauge �eld and the other quark
in the family) or in pair (via pair-production) at the LHC.

The fact that the heavy top lives in the same multiplet with t and b of the
standard model helps a little. By little we mean we have to mess with hadronic
process and the results generally come with wide uncertainties (comparing to
processes in the lepton colliders). Since the heavy top mass is of TeV order, the
uncertainties may be as high as hundreds GeV's ([79]). The decay width of the
TH is dominated by the decay products th, tZ and bW+ where others come with
v2=F 2 suppression factor. In the same paper, Perelstein et al. found

�(T ! th) ' mTy2
T

64�
' �(T ! tZ) ' �(T ! bW+)

2
; (5.219)

where the T ! bW+ covers half of the fraction. This implies the (approximate)
total decay width of the T

�T ' y2
T

16�
mT : (5.220)

Suppose we take mT ' 2 TeV and yt � yT (which is legitimate) the width
becomes �T � 50 GeV which is rather small but still distinctive.

5.3.3.2 The Light Higgs and the Heavy Scalars

Since the goal of the Little Higgs model is to provide some explanations for
having a light scalar (i.e., the Higgs), then once the Higgs is discovered, it may
or may not be easy to distinguish the Littest Higgs from other models. For
example, naively we have to take the range of the Higgs mass predicted by
other models like supersymmetry into account. Then we have to check whether
the (discovered) Higgs mass falls into the common range of the mass shared
between Little Higgs and others or not. If it does, then it is di�cult and we
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need to perform further investigations to distinguish between them or we have
to look elsewhere. In addition, notice that the correction to the mass of the
Higgs comes with the factor O(v2=F 2) which is of a few percent order. This also
adds di�culties for distinguishing between the Higgs from the Little Higgs and
the standard model.

The existence of extra scalars is a unique feature of the Little Higgs
models. Furthermore, we can even use the scalars to distinguish one Little
Higgs from another. The larger the global symmetry group is the more the
scalars to be found at some TeV scales. Nevertheless, the naturalness argument
tells us that the extra scalar can be rather heavy since the quadratic divergent
diagram from the standard model Higgs quartic coupling is not very severe. By
recalling that 10% �ne-tunings calls for M� . 5 � 10 TeV, we then see that a
direct production of the heavy Higgs may not be easy to carry out. Still there
is nothing saying explicitly that the � cannot be as light as 1 � 2 TeV so the
possibility of direct production cannot be left out.

In the littlest Higgs model we have a triplet consisting of one neutral and
two charged (the + and the ++). The interesting process concerning the triplet
is the W+

LW
+
L scattering where the the triplet can contribute �++ $W+W+.

5.3.3.3 Heavy Gauge Bosons

Heavy gauge bosons are common features of physics beyond the standard model
due to large gauge group structure and symmetry breaking. Still the TeV size of
these gauge �elds make them available for the next generation accelerators and
there are some features that can let us distinguish from others. They will allow
the measurements of some important parameters of the model; for example, the
�decay constant� F and the additional parameters from the gauge sector like
tan = s

c = g2
g1 or tan 0 = s0

c0 = g02
g01
. In addition, if we take only the SU(2)-like

gauge �elds into account, we are then left with only 2 important free parameters;
namely, F and tan . This means we need few experiments to deal with these
parameters. For example, from (5.23) and (5.23) we have, to leading order,

MWH = MZH ' 0:65F
sin 2 

MAH = ' 0:16F
sin 2 0 : (5.221)
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Then we �nd a problem, a very crude approximation on (5.23) reveals that

MAH . Fp
10

(5.222)

which can be somewhere below a TeV, depending on the value F . The mass of
this �heavy� gauge boson ranges from � 400 GeV to � 1 TeV. This is not friendly
with the precision electroweak tests at all. Light gauge �elds of hundreds GeV
scale, if exist, should show up as contributions to electroweak observables.

5.4 Conclusions on the Little Higgs model

So far we have studied the Littlest Higgs which is the most economical model
in its class that is proposed to resolve the naturalness problem while remains
perturbative up to about 10 TeV and hence being �friendly� with electroweak
precision measurements. We have seen how the mass of the Higgs is protected at
tree-level by non-linear realisation of the global symmetry and at one-loop from
quadratic divergences by the collective symmetry breaking. In addition, masses
of other particles are generated via explicit symmetry breaking of the global
symmetry in a way that is consistent with the collective symmetry breaking.
The cancellations between quadratic divergent diagrams were evaluated in detail
from the point of view of both the non-linear realisation of the symmetry
(on the transformations of the Higgs) and the loop-corrections from various
particles. Various mass eigenstates of the physical particles, both before and
after electroweak symmetry breaks, were evaluated to some detail. In the last
section we presented some important phenomenological features of the Littlest
Higgs model.

Unfortunately, the minimal model showed some signs of inconsistencies
with both the �ne-tuning and precision electroweak measurements. The amount
of �ne-tunings are worse than advertised and the contributions from the partners
to the standard model particles are not very well controlled. These problems,
however, did not rule out the whole classes of the Little Higgs models. Though
the Littlest Higgs by itself has some problems, it can be used as a prototype and
can be easily modi�ed to more sophisticated model. There were many Little
Higgs models developed along the path provided by the Littlest Higgs with the
aim of resolving the speci�c problem in mind. The extensions are usually done
by extending the global symmetry group, or using more groups so that there are
more rooms for additional symmetries to be used. The Littles Higgs with the
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custodial SU(2) symmetry by Chang and Wacker [81, 82] fall in the this kind
of examples. Another example is the Littlest Higgs with T-Parity by Cheng
and Low [24, 23, 83] where there is an additional mechanism preventing the
electroweak observables from receiving tree-level contributions from the heavy
particles which are usually the source of the problems with precision electroweak
measurements.

The Littlest Higgs, along with many of the Little Higgs models, come
without any explanations on its ultraviolet (UV) completion; roughly speaking,
without mentioning how the global symmetry breaks. One of the interesting
ideas on the UV completion was inspired by the theory concerning ultracolour
interactions presented in section 4.1 and 4.3 where ultrafermions transform under
the real representation of a SO(7) and the Little Higgs becomes a composite
particle. That model is proposed with the name composite Littlest Higgs by
Katz et al. [77].

Many, if not most, particles predicted by the Little Higgs models are
expected to be within the reach of the next generation accelerators especially
the LHC and the ILC. With some state-of-the-art design on the experiments,
various properties of the physics to be as an extention of the standard models
can be studied. Physicists are very con�dent that the standard model is not the
end of the story and something interestng must be discovered soon in the LHC.
The Higgs is very likely to be found. With the upcoming experiments, we will
know whether it is Little Higgs, supersymmetry, or something else that has its
role in particle physics.



CHAPTER VI

CONCLUSIONS

In this review-type thesis, we have introduced the Little Higgs models (especially
the Littlest Higgs) in a natural way by gathering essential ingredients step by
step; �lling the gap left out by most of the review papers of the Little Higgs.

We began by bringing up the relevant ingredients of electroweak sector
of the standard models and studied the e�ects of loop-corrections to the mass of
the Higgs with additional helps from the Coleman-Weinberg mechanism. This
lead to the theoretical bound on the mass of the Higgs. In addition, to convince
the readers that the Higgs should be light, we have presented supportive �ndings
from the precision electroweak measurements. In this way, we have transparently
introduced the problems of naturalness and �ne-tuning concerning the Higgs
(and other elementary scalars) and �nally the Little Hierarchy problem of the
standard model. In the appendix we also brie�y presented the ideas of uni�cation
of the gauge couplings which convinces us that the standard model should be
thought of as an e�ective �eld theory of some fundamental theory lying below the
Planck scale. Some aspects of the SU(5) grand uni�cation theory are introduced
so that we have picked up how to deal with representations of particles, running
of the couplings, and the Big Hierarchy problem.

Once we have formulated the Little Hierarchy problem, we presented some
interesting extensions or alternatives of various mechanisms of the standard
model. Dynamical symmetry breaking mechanism was investigated in some
detail where we have learned how to implement the BEH mechanism without
elementary scalars. Besides, the section on dynamical symmetry breaking has
provided us a nice way to understand the problem of vacuum alignment and how
the Goldstone boson becomes massive due to the introduction of explicit global
symmetry breaking interactions. Then we studied the method for concentrating
on the low-energy degrees of freedom (the Goldstone bosons) of a theory via
the non-linear realisations of a symmetry together with the non-linear sigma
model. We �nished the introductory parts by brie�y outlining the pre-Little
Higgs model; i.e., the Georgi-Kaplan models.

In the chapter on the Little Higgs, we showed how the general Little Higgs
models solved the little hierarchy problem. We have focused our detail study
on the Littlest Higgs; including the collective symmetry breaking mechanism
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and the cancellations of the quadratic divergent diagrams, and gauge and mass
eigenstates of various particles. Some possible phenomenological properties, or
hopes, for distinguishing the Little Higgs models from others were discussed.
The section dedicated to serve as a conclusion on the Little Higgs models is
presented at the end of chapter V.

Though this article does not serve as a self-contained introduction to the
Little Higgs as there are several topics that we have left from our discussions (as
mentioned in the section 1.2.2) for the reason that their comprehensive analyses
take space and time, it is still hoped that various aspects presented in this thesis
are su�cient, or at least satisfactory, to give the readers some �feelings� of the
non-supersymmetric physics that can be thought of as an extension of standard
model.
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APPENDIX A

SUPPLEMENTARY MATERIALS

In this appendix we present some important and interesting topics that do not
�t anywhere in the thesis. In section A.1 we very brie�y discuss some basic
ideas of symmetry that are relevant to our studies in this thesis. Basic concepts
of representations of a group is summarised in section A.2. Then in A.3, we
turn to discuss why the space of G=H, which is referred to in spontaneous
symmetry breaking phenomena, is symmetric. Finally in section A.4, we present
an alternative, easier, method to evaluate the e�ective potential.

A.1 A Few Words on Symmetry

The form of transformations of the �elds �i(x) ; (i = 1; : : : ; N) in the Lagrangian
that is usually relevant to most physical phenomena is the (linear) unitary one;
i.e.,

� �! �+ i�aT a� : (A.1)

T a (a = 1; : : : ;m) is called the generator of the transformation and can be
written in the form of N �N matrices (acting on the index i). What de�nes the
generators is the commutation relation

[T a; T b] = ifabcT c (A.2)

where fabc is the Lie-algebra structure constant. The U(1) generators are de�ned
by a set of generators that commute with everything else. The remaining
members having non-zero commutators among themselves are called simple
subalgebra. The latter can also be adjusted to satisfy the relation

facdf bcd = k�ab (A.3)

which remains valid in any representation. A particular value of k will lead to
the desired form of the kinetic term. The �rst priority is given to the kinetic
term because it is one having the largest possible symmetry. Given a speci�c
type of the �eld (scalar, fermionic, etc. . . ) we can deduce the symmetry of
the Lagrangian by requiring that the kinetic term be invariant under a linear
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transformation like (A.1)1. Then, the mass term can break the symmetry into
its subgroup if the mass (squared) matrix does not commute with the generator
of the group. The interaction terms will further restrict the symmetry down to
a smaller subgroup.

The logic introduced above also applies to the case of N Dirac �elds  i
grouped into an N component vector 	. Nevertheless, the situation is slightly
di�erent here. At �rst it looks as if the largest symmetry of the kinetic term

i	=@	 (A.4)

is SU(2)�U(1). However, by recalling that the left- and right-handed fermionic
�eld can be constructed from the Dirac �eld 	, we see that the kinetic term
(A.4) becomes

i	L=@	L + i	R=@	R (A.5)

which means that the chiral �elds 	L and 	R are allowed to transform di�erently
under the SU(2) � U(1) transformations. Still, this is not all we can do. By
making use of the charge conjugated �eld

	c = C	� (A.6)

where C2 = 1, Cy = C, C��C = ��, we can rewrite the charged conjugated
right-handed �eld as a left-handed charged conjugated �eld with the opposite
U(1) �charge� (not necessary the electromagnetic one); i.e.,

(	R)c = (	c)L : (A.7)

Since all the �elds are now left-handed, they can be grouped together in

� =

0@ 	L

(	c)L

1A (A.8)

and hence the kinetic term (A.5) becomes

i�=@� ; (A.9)

which clearly possess SU(2N) � U(1) symmetry. Since fermions and anti-
fermions are allowed to mix in (A.9), the SU(2N) � U(1) de�ned above is not

1A set of N massless real scalar �eld may provide a good example. The reality of the �eld
and the invariant of the kinetic term under (A.1) automatically implies that the symmetry is
SO(N).
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legitimate in most cases in the standard model (where we need to distinguish
between particles and anti-particles, especially when they have charges).

A.2 Representations of a Group

This section summarises some basic facts on the representation of a group.

Before we get to the formal results, let us recall a loose meaning of
the representation. The idea of representation becomes useful when we have
some ideas of the group for the problem in mind. The choice of the group is a
phenomenological question. Suppose that we are dealing with force described
by a group of N � N unitary matrices having determinant 1; i.e., the SU(N).
Then we say that a particle experiencing this force transforms under some
representations of SU(N). In other words, its state is described by a vector
in some vector spaces where the elements of SU(N) acts as unitary operators.
Obviously, the simplest vector space can be constructed from a N column
vector, resulting in the fundamental representation. This also brings up the
�conjugate� representation where the N�N unitary matrices act on a row vector
from the right. The conjugate representation may or may not be �equivalent� to
the fundamental representation. In addition, we can also �sandwich� a traceless
hermitian matrix between two SU(N) elements in a speci�c way, which results
in the adjoint representation.

In gauge theories, we have to deal with at least two kinds of symmetries;
namely, the gauge symmetry and the �avour symmetry. The �rst being a local
type while the second is of a global one (and not necessarily continuous, in fact),
referring to a symmetry of the theory that are not (yet) gauged2. Still they are
more or less related. The action of a �avour symmetry generator must resulting
in mapping the gauge �elds into themselves. So the gauge �elds before and after
mapping must belong to the same irreducible representation of the gauge group.
This means that generators of a �avour symmetry must commute with all the
gauge generators; i.e., they act on di�erent spaces and hence we can associate
di�erent indices for both. A quantum number for a speci�c �avour generator
for some of the representations of the gauge group is now possible because the
�avour generators behave like a constant with respect to the gauge generators.
Consequently, suppressing these indices and putting all fermions into the left-
handed version, the kinetic term is a sum of all the kinetic terms from di�erent

2There is no reason that the global �avour symmetry be the same as the global symmetry
correspond to the gauge symmetry.
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(irreducible) representations: X
R

�	RL =D	RL : (A.10)

Each 	RL behaves as a vector in a �avour space. Then the rotation group
corresponding to the dimension dR of the �avour space is the SU(dR).

Now let us move on to the formal properties. A representation (denoted
by R here) of a group with the structure fabc is speci�ed by a set of traceless
Hermitian matrices T aR having dimension dR�dR. T aR will be quali�ed for being
a representation only if they satisfy

[T aR; T bR] = ifabcT cR (A.11)

which are de�ned by the original generators T a of the group de�ned by the
fundamental representation. Two representations are said to be equivalent
(physical properties described by them are indistinguishable) if the exists a
transformation governed by a �xed unitary matrix

X�1T aRX = T aR0 (A.12)

for all a. If this transformation reduces T aR to the block diagonal form

X�1T aRX =

0BBBBBB@
tar1

tar2

tarn

1CCCCCCA ; (A.13)

the representation is said to be reducible and we write

R = r1 � r2 � � � � � rn : (A.14)

Otherwise, the representation is irreducible. In the latter case, we can de�ne
the quartic Casimir invariant C(R) by

(T aRT aR)ij = C(R)�ij : (A.15)

This follows from [T aT a; T b] = 0. Moreover, for any representation, the
generators can always be adjusted so that

Tr(T aRT bR) = T (R)�ab (A.16)
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where T (R) is called the index of the representation. Taking the trace of the
representation indices i; j we �nd

Tr (T aRT aR)ij = C(R)dR : (A.17)

Summing over the generators (a; b) in (A.16) eventually results in

C(R)dR = T (R)dG : (A.18)

Observe that (A.11) also implies

[T a�R ; T b�R ] = �ifabcT c�R (A.19)

or
[�T a�R ;�T b�R ] = ifabc(�T c�R ) (A.20)

which means �T a�R also obeys the commutation relation(A.11). If T aR and �T a�R
are equivalent the representation R is said to be real. If there exists a matrix V
such that

� T a�R = V �1T aRV (A.21)

with V 6= I for all a then it is pseudo-real. For example, V = �2 for
the fundamental representation of SU(2). When both conditions fail, the
representation is said to be complex. The complex conjugation representation
R is de�ned by T aR = �T a�R .

Now, notice that (A.11) and (A.16) tell us that

fabc =
�i
T (R)

Tr
n
[T aR; T bR]T cR

o
(A.22)

which means fabc is completely anti-symmetric (the trace on the right-hand
side is cyclic). This also shows that the structure constant fabc is an invariant
symbol of the group. Now, we can de�ne the adjoint representation by

(T aA)bc = �ifabc (A.23)

which automatically implies that (T aA)bc is Hermitian. The T aA satis�es the
commutation relation (A.11). By construction, the dimension of the adjoint
representation is equal to the representation of the group. This leads to

T (A) = C(A) : (A.24)
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When the anti-commutator is used instead of the commutator in (A.22), the
anomaly coe�cient of the representation A(R) can be de�ned:

A(R)dabc =
1
2

Tr
n
[T aR; T bR]T cR

o
: (A.25)

Notice that now dabc is totally symmetric. Then (T aR) j
i = �(T aR)j i yields the

important relation
A(R) = �A(R) : (A.26)

This plays an important role when we want to �nd the representations of a group
that are anomaly-free. A(R) automatically vanishes in the real or pseudo-real
representations.

When the real representation and its complex conjugate one are not
equivalent, it is helpful to use up and down indices - up for the fundamental
representation and down for its conjugate:

�iy = (�y)i � �i : (A.27)

Then the elements of generator T aR are written as (T aR)i j. This means for the
conjugate representation: (T aR) j

i = �(T aR)j i. Then it is easy to see that �i�i is
an invariant symbol. The other important invariant symbol is the �ji . We �nd

�ij �! (1 + i�aT aR)i k(1 + i�aT aR) l
j �

k
l = �ij +O(�2) ; (A.28)

which means that a singlet (or trivial) representation is always there in R
R;
i.e.,

R
R = 1� � � � : (A.29)

Since the generator matrix T aR, carrying an additional index from the adjoint
representation (a), is also an invariant symbol, we can write

R
R
 A = 1� � � � : (A.30)

With the helps of (A.29) and the fact that A = A, this leads to the fact that the
product R
R always contain the adjoint representation:

R
R = 1� A� � � � : (A.31)
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When R is the fundamental representation N or the SU(N), (A.31) reduces to

N 
N = 1� A : (A.32)

For example, 3̄
 3 = 1 + 8 .

Next we will look at some of the important applications of the repre-
sentations. First we know that weak interaction teats left-handed and right-
handed fermions di�erently. But trying to introducing a right-handed as a
charge conjugate of the left-handed one leads to a behaviour under a gauge
transformation like

 cR �!  cR + i"�(�T��) cR (A.33)

if

 L �!  L + i"�T� L : (A.34)

So we may or may not get the equivalent transformation rule for the right-handed
�elds depending on what kind of representations of the gauge symmetry group
these fermions transform under. If the representation is real, the generators T�
are all imaginary and antisymmetric. Hence left and right-handed fermions in a
real representation transform the same way.

A.2.1 The Meson Octet

Now we will consider the construction of the meson octet. Let us begin with the
quark triplet which transforms under a fundamental representation of SU(3)

 =

0BBB@ud
s

1CCCA ; (A.35)

as well as its conjugate
 =

�
�u; �d; �s

�
: (A.36)
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Since the matrix  � contain both singlet and octet parts, we will consider

 � � 1
3
13�3Tr � 

=

0BBB@(2u�u� d �d� s�s)=3 u �d u�s
d�u (�u�u+ 2d �d� s�s)=3 d�s
s�u s �d (�u�u� d �d+ 2s�s)=3

1CCCA
(A.37)

In this quark basis, we can identify the states with the physical particles. They
can be written as

 � � 1
3
13�3Tr � / � �X

=

0BBB@�
0=
p

2 + �=
p

6 �+ K+

�� ��0=
p

2 + �=
p

6 K0

K� �K0 �2�=
p

6

1CCCA
(A.38)

where �0 / (u�u � d �d)=
p

2 and � / (u�u � d �d � 2s�s)=
p

6. Their transformation
properties will be made clear if we collapse them into pieces

� �X /
0BBB@

�0p
2 �+

�� � �0p
2

1CCCA+

0BBB@ K+

K0

K� �K0

1CCCA+

0BBB@
�p
6

�p
6

�2 �p
6

1CCCA ;

(A.39)

or write them in terms of the Gell-Mann matrices, given in C.3.1,

� �X / 3X
a=1

�a�a +
7X
a=4

Ka�a + ��8 : (A.40)

Notice that the kaons transform as a complex doublet under the SU(2) subgroup
(the doublet structure shows up right away after we �hide� the s quark
dependence). They will plays the role of the standard model Higgs doublet
in many sections of this thesis.
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For reference, we also write down the �pion� matrix for the SU(5)=SO(5)
case

� �X =
1p
2

0BBBBBBBBB@

� !0p
2 � �p

10 �!+ H+ �i
p

2�++ �ip2�+

�!� !0p
2 � �p

10 H0 �i�+ �i�0 + �0
P

H� H0� q
8=5� H+ H0

i
p

2��� i�� H� � !0p
2 � �p

10 �!�
i�� i�0 + �0

P H0� �!+ !0p
2 � �p

10

1CCCCCCCCCA
:

(A.41)

A.3 The Space G=H is Symmetric

In this section, we will study the behaviour of unbroken (Y i) and broken
(Xz)generators, for a symmetry breaking G ! H in a more general way, and
show that the space G=H spanned by Xz is symmetric. This happens in most
of the cases when we deal with spontaneous symmetry breaking and worth some
discussions.

Starting with a particular vacuum, we can always partition the G-
generators T a into the broken and unbroken ones, depending on how they act
on the speci�c vacuum. A proper normalisation scheme can be given to these
generators. By assumption, the unbroken generators Y i have the following Lie
algebra

[Y i; Y j] = if ijkY k : (A.42)

Since we know that Y i's and Xz's are orthogonal; Tr(Y iXz) = 0, the condition

Tr
n
Y i[Y j; Xz]

o
= Tr

n
[Y i; Y j]Xz]

o � Tr(Y X) = 0 (A.43)

implies that the commutator between the two kinds of generators are

[Y i; Xz] = if izxXx : (A.44)

The problem is that without further condition, we do not have any
constraint for the commutators of the broken generators (they do not necessary
form a group). So we must write

[Xx; Xz] = ifxziY i + fxzwXw : (A.45)
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To go on, we �assume� that the broken and unbroken generators behave under
a parity operation P as follows:

P(X) = �X P(T ) ; (A.46)

which seem to be phenomenologically acceptable. So the �algebra� of the broken
generators becomes

[Xw; Xz] = ifwziY i (A.47)

so that in this sense, the (coset) space de�ned by Xz is symmetric.

A.4 The Return of the Tadpoles

In this appendix we present another interesting technique to evaluate the
e�ective potential. Instead of expanding of the e�ective action in the way we
have done in (3.21), we will expand it about another arbitrary point (now non-
zero, but not necessary the minimum of the potential), namely �c = !, i.e.,

�[�c] =
X
n

1
n!

Z
d4x1 : : :d4xn�(n)

��!(x1; : : : ; xn)[�c(x1)� !] : : : [�c(xn)� !] ;

(A.48)
so that the �(n)

��!'s are now the proper vertex functions for a new theory which the
�elds �c's are replaced by �0 � �c � ! . Using the same reasoning as those used
in arriving at (3.24), we see that the e�ective potential (for the new �shifted�
theory) becomes

Ve�(�c) = � 1X
n=1

1
n!

~�(n)
��!(0; : : : ; 0)[�c(x)� !]n : (A.49)

Notice that the theory is shifted in the sense that the Lagrangian now contains
the new �eld �0 which gives rise to new vertices depending on !. According to
(A.49) we see that

dVe�

d!

�����
�c=!

= �(1)
��! (A.50)

where �(1)
��! is i times the tadpole diagram of the shifted theory. Therefore, the

e�ective potential can be recovered by evaluating the tadpole diagram in the
shifted theory, integrate with respect to !, and �nally replace ! with �c . This
starts to look good as we now need a diagram (the tadpole for the �c) instead
of an in�nite number of diagrams as we did in previous sections.
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To see how this works, let us consider a system of massless scalar �eld
with potential V (�c) = �

4!�
4
c , which becomes, for the shifted theory,

V (�c) =
�
4!
�4
c � �

3!
w�3

c +
�
4
!2�2

c � �
3!
w3�c +

�
4!
w4 : (A.51)

We can extract the ��� vertex as �i�!, and the e�ective ��dependent mass
(squared) for �c as �!2=3 . So the tadpole diagram in Fig.(A.1) contributes

� i
2

Z d4k
(2�)4

�!
k2 + �!2=2

(A.52)

where the factor 1=2 is the symmetry factor. After integrating with respect to

Figure A.1: A scalar tadpole diagram.

w, multiplying by i, and replace ! with �c as prescribed above, we �nd

1
2

Z d4k
(2�)4 ln

h
k2 + ��2

c=2
i

(A.53)

which yields the same result, apart from some irrelevant constants and the
dropped ~, as those obtain in (3.32) which used the diagrammatic method.

Let us see the application to the loop diagram having gauge �elds running
inside. We consider the gauge-scalar interaction term

1
2
e2�2A�A� (A.54)

so that the �shifted� theory contains

1
2
e2�2A�A� +

1
2
e2!2A�A� � e2!�A�A� : (A.55)

Thus the gauge-gauge-scalar and the mass terms for the shifted theory are
�ie2!g�� and e2!2, respectively. The tadpole contribution from the gauge �eld
is shown in Fig.(A.2). Now we have the tadpole diagram multiplied by i
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Figure A.2: A gauge boson tadpole diagram.

Z d4k
(2�)4e

2!g��
g�� � k�k�=k2

k2 + e2!2 =
Z d4k

(2�)4
3e2!

k2 + e2!2 (A.56)

which yields, after integrating with respect to ! and setting ! = �c,

Vg =
3
2

Z d4k
(2�)4 ln(k2 + e2�2

c) ; (A.57)

hence
Ve�(�c) =

3e4(M)
64�2 �4

c ln
�2
c

M2 � 25
6
: (A.58)

Notice that the factor 25=6 can be removed (absorbed to somewhere else, to be
more precise), for future convenience, by choosing a new subtraction point M ;
i.e.,

Ve�(�c) =
3e4(M)

64�2 �4
c ln

�2
c

M2 : (A.59)



APPENDIX B

THE SU(5) GRAND UNIFICATION THEORY

Most of the topics that are dealt with in this appendix are related to the uni�ed
gauge theory. However, our main goal here is only to gather the basic structures
of the theory including particle multiplets, gauge interactions, and symmetry
breaking. Then we can study the Big Hierarchy Problem at the end.

This appendix is organised as follows. We begin in section B.1 by
investigating the structure of the group SU(5) so that we can pick up the
appropriate representations for describing particles in the standard model. Then
in section B.2 we introduce the gauge structure to the theory and construct a
gauge invariant Lagrangian. After that we can set up the scene of spontaneous
symmetry breaking in section B.3, where the appropriate scale of the SU(5)
breakings will be investigated using simple renormalisation group equations in
section B.4. Finally we can talk about the hierarchy problem in section B.5.

We start with a hope in mind that all the known (gauge) interactions of
the standard model; namely, the electroweak and strong interactions, described
collectively by the product group SU(3)C � SU(2)L � U(1)Y , can be somehow
uni�ed into a gauge theory that relies on a larger symmetry group, called G.
This G must contain the standard model group as a subgroup. In addition G is
preferably a simple one. Then it is hoped that the larger gauge group may help
to deal with some problems that the standard model cannot provide answers;
for example, the non-integral electric charge of quarks (and their relations to
leptons charges which must be �assumed� in the context of the standard model)
and the existence of many �copies� of quark and lepton families.

These di�culties may be resolved by introducing a larger gauge group of
the uni�ed theory which allows the possibilities of having quarks and leptons
in the same representation. The minimum requirement for doing so is that the
group of interest must be simple or at least has a simple group containing the
standard model group as a subgroup. In addition, to accommodate the charge
quantisation problem, we look for a gauge theory depicted by a simple Lie group
which have a particle multiplet that allows the correct relations of charges of
particles in that multiplet. This implies that the group we seek for must allow
complex representations, or it will not have a room for the representation of
SU(3)�SU(2)�U(1) (which is complex). Moreover, we know that the standard
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model group is of rank four since it contains four commuting generators. Thus
the group G must, at least, have that rank. These arguments rule out many
possibilities, leaving the smallest group having rank four which is the SU(5).

B.1 The Group Structures and the Particle Contents

Now let us consider the structure of SU(5). It is clear that here we have two
�ve dimensional representations. This tells us that it is not possible to put
all the standard model particles into the fundamental representations, which is
one of the shortcomings of the SU(5). The group has 52 � 1 = 24 generators
where four of them are diagonal and traceless. The forms of the generators are
not unique and they can be recombined (using linear combinations) to give the
desired forms depending on the groups that we want to embed in the SU(5).
Nevertheless, the de�nition of generators must get along with experimental facts.
We know that weak interaction is colourblind (and the SU(3) strong interaction
does not �know� the existence of the electroweak). This requires that the SU(3)
generators have zero eigenvalues for the leptons components and the SU(2) �
U(1) generators behave as unit matrices (or zeroes) with respect to the SU(3)
generators. Thus, we assign the �rst three indices of the SU(5) to the SU(3)
and the last to indices to the SU(2). Then we call the 24 generators �i, and put
the �rst eight for the SU(3) and the last three for the SU(2). The generators for
the SU(3) � SU(5); i.e., the �1 � � ��8 can take the usual forms (the Gell-Mann's
matrices); for example, the diagonal ones are

�3 �

0BBBBBBBBB@
1 0 0
0 �1 0
0 0 0

1CCCCCCCCCA
; �8 �

0BBBBBBBBB@

1p
3 0 0

0 1p
3 0

0 0 �2p
3

1CCCCCCCCCA
: (B.1)

All the SU(2) � SU(5) generators contain the Pauli matrices; i.e.,

�20+i �

0BBBBBBBBB@
0

0
0

�i

1CCCCCCCCCA
: (B.2)
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We see that this particular partitioning of the fundamental representation of the
SU(5); namely1

5! (3;1; C1)� (1;2; C2) ; (B.3)

induces the speci�c elements of the U(1) generator which must be both a unit
matrix with respect to the SU(3) and SU(2), and traceless. This means that

(3;1;�1=3)� (1;2; 1=2) ;

is allowed (up to an overall U(1) factor) while

(3;1; 1=3)� (1;2; 1=2) ;

is not. So we choose

�24 =

s
3
5

0BBBBBBBBB@
�2

3

�2
3

�2
3

1
1

1CCCCCCCCCA
: (B.4)

Notice that all the generators of the SU(5) used here are constructed so as to
satisfy

Tr�a�b = 2�ab (B.5)

which is necessary to reproduce the correct (conventional) factor in the kinetic
term. For future reference, let us use the tensor notation, the general repre-
sentation of SU(5),  i1���ipj1���jq , consisting of the fundamental  i and the conjugate
fundamental representations ��j = ( j)� transforms as

 i1���ipj1���jq =
�
U i1
k1 � � �U ip

kp

� �
U l1
j1 � � �U lq

jq

�
 k1���kp
l1���lq (B.6)

where matrix U contains the generators �a de�ned above; i.e.,

U i
j = exp

(
�i�a

[�a]ij
2

)
: (B.7)

Now let us see if the arrangements of the representation that we have just
done �t with the particle content of the standard model. From the standard

1We use the notation (A;B; C), where A ;B, and C stand for the representations of SU(3),
SU(2), and U(1) respectively.
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model, the 15 fermions for each family live in

(3;2; 1=3)L ; (3;1; 4=3)R ; (3;1;�2=3)R ; (1;2;�1)L ; (1;1;�2)R ; (B.8)

or if we regard everybody as left-handed:

(3;2; 1=3)L ; (3̄;1;�4=3)L ; (3̄;1; 2=3)L ; (1;2;�1)L ; (1;1; 2)L ; (B.9)

where the right-handed �elds are replaced by the left-handed ones via charge
conjugation

( R)c = ( c)L �  cL: (B.10)

It is important to emphasise that the concept of chirality and electric charges
will make sense only after the electroweak symmetry is broken. We only use
them as bookkeeping devices for the moment. Note that the charge-conjugated
�elds must be de�ned in the same ways as that of the Higgs (see (2.134)); i.e.,

(LeL)c =

0@ 0 1
�1 0

1A0@�ce
ec

1A
R

=

0@ ec

��ce
1A
R

; (B.11)

which is required to get the appropriate T3 values for the SU(2) doublet,
otherwise it would be the ec that possesses T 3 = �1

2 . So we see that a slight
modi�cation of the generator �24 to

Y �
s

5
3
�24 =

0BBBBBBBBB@
�2

3

�2
3

�2
3

1
1

1CCCCCCCCCA
; (B.12)

leads to the electric charge

Q = �23 +
Y
2

=

0BBBBBBBBB@
�1

3

�1
3

�1
3

1
0

1CCCCCCCCCA
; (B.13)

where �23 is the usual SU(2) isospin (in SU(5)). Evidently, the charge Q
here commutes with our SU(3) generators. It is then clear that the 5 (the



229

fundamental representation)

5 = (3;1;�2=3)� (1;2; 1) (B.14)

contains the right-handed down-type quarks and the right-handed antiparticles
of leptons. Then the conjugated representation

5̄ = (3̄;1; 2=3)� (1;2;�1) (B.15)

contains the standard model particles (i.e., dR, e�, and �e). As a convention
we use separate indices in tensor notations, �; �; : : : for SU(3) and r; s; : : : for
SU(2) as follows:

5 :  i = f �;  rg ; (B.16)

where, as is obvious, i = 1; : : : ; 5, � = 1; 2; 3, and r = 4; 5. In other words, we
have

5 : ( R)c =

0BBBBBBBBB@
d1

d2

d3

ec

��ce

1CCCCCCCCCA
R

; or 5̄ :  L =

0BBBBBBBBB@
dc1
dc2
dc3
e�

��e

1CCCCCCCCCA
L

: (B.17)

where the subscript of the quark �eld d denotes colour. It is important to keep
in mind that by putting quarks and leptons altogether in a multiplet, we have
to accept that they are indistinguishable at very high energy scales where the
SU(5) symmetry is valid. However, we know that the masses of quarks and
leptons are far from being similar. Then it is obvious that we must �nd a way
to properly describe the breaking of the SU(5) into the standard model group,
SU(3) � SU(2) � U(1). In the tensor notation we �nd that the operator Q
de�ned in (B.13) has eigenvalues

Q[5](��i) = �Q[5]
j �ij (B.18)

where i here refers to the components of the SU(5) spinor and the eigenvalues
of Q. Consequently, (B.17) and the vanishing trace of (B.13) partially answer
the question of the charge quantisation in the standard model.

To �nd room for the remaining 10 particles, it is obvious that the next
representation we should try is the direct product of the fundamental ones. Since
the dimensions of the symmetric and antisymmetric parts of the 5� 5 (which
can be written as 5� 5 matrix) are 15 and 10 respectively, the (5� 5)A is then
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our target. By recalling that

3� 3 = 6S + 3̄A ; and 2� 2 = 3S + 1A ; (B.19)

we �nd

10A = (3̄;1;�4=3) + (3;2; 1=3)A + (1;1; 2) ; (B.20)
15S = (6̄;1;�4=3) + (3;2; 1=3)S + (1;3; 2) ; (B.21)

The 10 �ts well with the remaining particles. The next task is then to locate
the right place for each particle in the 10. First, the antisymmetric tensor for
the 10 can be constructed from the 5; i.e., the  i, as follow

 ij =  i j �  j i : (B.22)

So
10 :  ij =

n
 ��;  �r 45

o
: (B.23)

It is follows that the charge operators from each representation add up like usual
U(1) (diagonal) generators; namely,

Q[10]( kl) = Qk +Ql � Qkl ; (B.24)

and hence leading to the symmetric operator

Q[10] =

0BBBBBBBBBBBB@

�2
3 �2

3
2
3 �1

3

�2
3 �2

3
2
3 �1

3

�2
3 �2

3
2
3 �1

3

2
3

2
3

2
3 1

�1
3 �1

3 �1
3 1

1CCCCCCCCCCCCA
: (B.25)

Similarly,

Y [10] =

0BBBBBBBBBBBB@

�4
3 �4

3
1
3

1
3

�4
3 �4

3
1
3

1
3

�4
3 �4

3
1
3

1
3

1
3

1
3

1
3 2

1
3

1
3

1
3 2

1CCCCCCCCCCCCA
; (B.26)

which clearly show how to throw the remaining 10 particles into them. Those
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particles are (3;2; 1=3) ; (3̄;1;�4=3), and (1;1; 2). Still, the sign of the �elds
inside the  [10] are not �xed at this stage, but can be done so when we consider
the mass eigenstates. Following Langacker [84], we use

 �� =
1p
2
"��uc;L ; (B.27)

and write

10 : 	[10] =
1p
2

0BBBBBBBBB@
0 uc3 �uc2 �u1 �d1

�uc3 0 uc1 �u2 �d2

uc2 �uc1 0 �u3 �d3

u1 u2 u3 0 �ec
d1 d2 d3 ec 0

1CCCCCCCCCA
L

: (B.28)

We can also write the 10

10 : 	[10] =
1p
2

0BBBBBBBBB@
0 u3 �u2 �uc1 �dc1
�u3 0 u1 �uc2 �dc2
u2 �u1 0 �uc3 �dc3
uc1 uc2 uc3 0 �e�
dc1 dc2 dc3 e� 0

1CCCCCCCCCA
R

; (B.29)

which, playing the similar role as the 5, describes anti-particles. We �nally have
the multiplets for all the particles in the �rst family of the standard model. The
similar constructions can be done for the other two families. Notice that there
is no room left for the right-handed neutrino in the 5̄+10 representations. The
simplest possibility to have massive neutrinos is to introduce the �R as a singlet
of SU(5). However, we will not consider the case of massive neutrinos here.

According to the appearance of the multiplets we have on hand, it is
clear that there is (or, at least, should be) one quark family corresponding to
each lepton family. Moreover, the appearance of quarks and the corresponding
antiquarks in the same multiplet means that it is possible that a particle like
a proton decays. This is one of the prominent prediction of the theory (which,
however, eventually ruled out the model).

B.2 The SU(5) Gauge Sector

The group SU(5) has 24 gauge �elds which live in the adjoint representation of
the group that is the non-singlet part (the 24) of 5� 5 = 24 + 1. Let us de�ne



232

the matrix �eld as
Â� �

a=24X
a=1

�a

2
Aa� (B.30)

where Aa� are the SU(5) gauge �elds and denote (A�)ij � (Â�)ij. For example,
in the SU(3) case we have A1

3 = (A4 � A5)=
p

2. Then due to the way the
SU(5) representations are partitioned, we know that the SU(5) gauge �elds
must contain the standard model ones; namely the (8;1) for SU(3), and the
(1;3) for SU(2)� U(1). This can be easily veri�ed by using 3̄� 3 = 8 + 1 and
(B.19),

5� 5 =
h
(3;1; 2=3) + (1;2;�1)

i
+ [(3;1;�2=3) + (1;2; 1)]

= (8;1; 0) + (3;2; 5=6) + (3;2;�5=6) + (1;3; 0) + 2(1;1; 0) ;(B.31)

which leads to the decomposition of the gauge bosons

24 = (8;1; 0) + (1;3; 0) + (1;1; 0) + (3;2; 5=6) + (3;2;�5=6) ; (B.32)

or
Â� �

n
(Ga

�)�� ; (W
a
� )rs ; B� ; (A

a
�)�r ; (A

a
�)r�

o
; (B.33)

with the �elds ordered according to (B.32). Here we are still using the
representation indices � and r in the same way as in the previous section.
Observe that the last 12 gauge �elds carry both �avour and colour and form
coloured isospin doublets as expected. Literatures usually call the �elds (A�)4

� =
X�
� and (A�)5

� = Y �
� which are collected in

(3;2)!
0@X�

1 X�
2 X�

3

Y �
1 Y �

2 Y �
3

1A (B.34)

and their �antiparticles�

(3;2)!
0BBB@X

c�
1 Y c�

1

Xc�
2 Y c�

2

Xc�
3 Y c�

3

1CCCA (B.35)

where the subscripts label colours. The U(1) gauge �eld (A24
� ) couples with

�24 in (B.4) not the Y in (B.12) while the SU(3) and SU(2) gauge �elds are
constructed from the generators of their corresponding subgroups in the usual
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way. Consequently, we have

Â� =
1p
2

0BBBBBBBBB@
1p
2
P8
a=1Ga

��a
Xc

1� Y c
1�

Xc
2� Y c

2�

Xc
3� Y c

3�

X1� X2� X3�

Y1� Y2� Y3�

W 3
�p
2 W+

�

W�
� �W 3

�p
2

1CCCCCCCCCA

+
A24
�

2

s
3
5

0BBBBBBBBB@
�2

3

�2
3

�2
3

1
1

1CCCCCCCCCA
(B.36)

where the Z and the photon are constructed from the equations resemble (2.90)
and (2.91)

Z� = �A24
� sin �W + A23

� cos �W (B.37)
A� = A24

� cos �W + A23
� sin �W : (B.38)

where W 3 = A23, etc.

Now, let us promote the transformation (B.7) into a local version taken
care by

U(x) = e�ig5�a(x)�a=2 : (B.39)

Then we can write the covariant derivative for the SU(5), in a general form, as

D� = @� � ig5Aa�
�a

2
; (B.40)

and for its SU(3)� SU(2)� U(1) subgroup

D� = @� � igs
��

2
G�
� � ig

� r

2
W r
� � ig0Y

2
B� ; (B.41)

where gs denotes the QCD coupling. When acting on the fundamental
representation of SU(5), the covariant derivative (B.40) takes the usual form;
i.e.,

(D[5]
�  )i =

"
�ij@� � i

g5p
2

(A�)ij

#
 j ; (B.42)

or simply
D[5]
� 	[5] = @�	[5] � ig5Â�	[5] : (B.43)
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Similarly, we have
(D[5]

� �)i =
"
�ji @� + i

g5p
2

(A�)ji

#
�i (B.44)

for the conjugate of the fundamental representation. The structure of the
covariant derivative depends on the representation it is acting on. So this is why
we introduced the superscript [5] for D�. However, as it is usually clear from
the context what the �target� of the covariant derivative is, we will omit that
superscript from now on. These de�nitions of the covariant derivative control
how the gauge �elds transform; i.e.,

Â� �! UÂ�U�1 � i
g5
U@�U�1 ; (B.45)

so as to ensure that D� transforms in the same way as the fundamental
representation. Consequently, the �kinetic term� for the  [5] becomes

L[5] = i�	[5] =D	[5] : (B.46)

The part for the 10 is a just bit more involved. Referring to (B.22), we see that
the 	[10] transforms as

 ij �! U i
kU

j
l

�
 k l �  l k� = U i

k 
kl(UT)lj (B.47)

or 	[10] ! U	[10]UT. This implies, using (B.7), that

@�	[10] ! U
�
@�	[10]

�
UT + (@�U) 	[10]UT + U	[10]

�
@�UT

�
= 	[10]

�
@�	[10]

�
UT

�ig5U
"
@��a

�a

2
	[10] + 	[10]@��a

�Ta

2

#
UT ; (B.48)

and suggesting the covariant derivative for the 10; namely,

D�	[10] = @�	[10] � ig5

"
Aa�
�a

2
	[10] + 	[10]Aa�

�Ta

2

#
= @�	[10] � ig5

h
Â�	[10] + 	[10]Â�

i
; (B.49)

or
(D� )ij = @� ij � i

g5

2

h
(A�)ik 

kj + (A�)jk ik
i
; (B.50)

which ensures that the transformation

D�	[10] �! U(x)D�	[10]UT(x) ; (B.51)
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is always satis�ed. So the Lagrangian for the 10 is

L[10] = iTr
�
	[10] =D	[10]

�
: (B.52)

Consequently, we arrive at the Lagrangian for the kinetic part of the fermions
(and their interactions with gauge �elds)

Lkin = i	[5] =D	[5] + iTr
�
	[10] =D	[10]

�
= i( cR)i( =D cR)i + i( L)ij( =D L)ij

= ( cR)i
�
i�ij=@ +

g5

2
( =A)ij

�
( cR)j

+( cL)ij
�
i�ik=@( cL)kj +

g5

2

n
( =A)ik( 

c
L)kj + ( =A)jk( cL)ik

o�
= ( cR)i

�
i�ij=@ +

g5

2
( =A)ij

�
( cR)j + ( cL)ij

�
i�ik=@ + 2

g5

2
( =A)ik

�
( cL)kj ;(B.53)

which, upon extracting some terms out; for example,

g5

2
( cR)�( =A)�s ( cR)s =

g5

2

3X
i=1

dRi =X
c
ie

+
R � g5

2

3X
i=1

dRi =Y
c
i�
c
R (B.54)

convinces us that in this SU(5) theory, a proton decay (to leptons) is possible
with the X� and Y � as mediators.

B.3 The Breaking of SU(5) Part I

The SU(5) is clearly not the exact symmetry of nature. In this section we
will see how the SU(5) symmetry is spontaneously broken into the "3� 2� 1"
symmetry of the standard model where some gauge �elds become massive via
the BEH (Higgs) mechanism. Since nobody has seen a quark turns itself into a
leptons or vice versa, then it has to be assumed that the SU(5) gauge mediators,
if exist at all, must be very heavy so that they cannot only escaped the current
detectors but also gives reasonable predictions (decay rates, for instance) that
agree with experiments. Another constraint to the symmetry breaking is that
the SU(3)C and U(1)em must survive as we believe that they are exact.

We see that to get from SU(5) to the SU(3)�U(1) theory, the symmetry
must be broken via two stages and hence two �Higgs� particles are required.
One of them is the standard model Higgs that taking care of the lower energy
breaking stage SU(3)�SU(2)�U(1)! SU(3)C�U(1)em. The other corresponds
to the breaking of the SU(5). So this heavy Higgs must have very large vacuum
expectation value so as to guarantee that 12 of the SU(5) gauge bosons are heavy.
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This is required since we have not yet seen them, as well as their e�ects. Let the
vacuum expectation value of this heavy scalar �eld be of order MGUT , then the
masses of the heavy gauge bosons MX will be of this order. Hereafter, we will
invert the argument by saying that the energy scale of the symmetry breaking of
SU(5) will be of order MX . Let us call this latter scalar �eld �. In addition, it
is required that when this � develops a non-zero vacuum expectation value, the
potential must still be invariant under the sub group H = SU(3)�SU(2)�U(1).
Therefore, the � must contain a singlet when its representation is decomposed
with respect to H.

One of the candidates for the GUT breaking Higgs, which is also found to
be the simplest one, is obviously the adjoint representation (which is the same
as that of the SU(5) gauge bosons)

24 : �̂ =
X �a

2
�a : (B.55)

(note that it is a traceless hermitian matrix). The renormalisable scalar potential
that does not depend on its overall sign (a convention; i.e., �! �� symmetry)
can be written as

V (�̂) = ��2

2
Tr�̂2 +

a
4

h
Tr�̂2

i2
+
b
2

Tr�̂4 ; (B.56)

where
Tr�̂2 = �j

i�i
j ; Tr�̂4 = �j

i�k
j�

l
k�

i
l : (B.57)

For the electroweak symmetry breaking, the lighter Higgs can be a quintet �
(the fundamental representation)

5 = (3;1;�1
3

) + (1;2;
1
2

) : �a = (��; H); (B.58)

where the H is the usual standard model (GWS) Higgs doublet (remember
that � = 1; 2; 3). The potential for the � is assumed to be the symmetric one
(�! ��)

V (�) = ��2
�

2
(�y�) +

��

4
(�y�)2 (B.59)

to prevent �3 interactions. Notice that the interaction between �̂ andH; namely,

V�� = �(Tr�̂2)�y� + �(�y�̂2�) (B.60)
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are also possible. The most general potential is therefore

V (�̂;�) = ��2

2
Tr�̂2 +

a
4

h
Tr�̂2

i2
+
b
2

Tr�̂4 � �2
�

2
(�y�) +

��

4
(�y�)2

+�(Tr�̂2)�y� + �(�y�̂2�) ; (B.61)

As there is a desert between the two symmetry breaking scales, the e�ects of the
�̂, which we assume to be light, on the �̂ should be negligible. In addition, as
we have said earlier, the �̂ must live in some subgroup of the survival subgroups
from the �rst step of symmetry breaking. This sets a constraint on the form of
�.

At this stage we will treat the two stages of symmetry breaking separately.
Let us concentrate on the SU(5) breaking part, with �2

� > 0. Though the
SU(3)� SU(2)� U(1) is embedded in SU(5), it is not the only possible choice
when SSB occurs. The parameter that �decides� the which subgroup to break
to is the b in (B.56). The rough idea of the in�uence from the parameter b on
the group SU(N) is as follows. The �̂, being a traceless Hermitian matrix, can
be diagonalised by an SU(N) transformation to a matrix having elements that
are real numbers. So the potential (B.56) can be written as

V (�)! ��2
�

2
X

�2
i +

a
4

�X
�2
i

�2
+
b
2
X

�4
i � �X�i (B.62)

where � is the Lagrange multiplier introduced to ensure that the matrix is
traceless. Upon minimising of the potential, we get a set of cubic equations
and hence there are three di�erent roots (with constraints). Put di�erently,

SU(N) �! SU(N1)� SU(N2)� SU(N �N1 �N2) : (B.63)

It is found that (see Langacker [84]) for b > 0,

SU(N) �! SU(N1)� SU(N �N1)� U(1) (B.64)

together with N1 = N=2 or N1 = (N + 1)=2 for N even or odd respectively.
When b < 0 the symmetry breaking pattern is

SU(N) �! SU(N � 1)� U(1) : (B.65)

Now let us come back to the SU(5) and concentrate on the case b > 0.
The vacuum expectation value that is invariant under the SU(3)�SU(2)�U(1)
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is2
h0j�̂j0i = diag

�
v; v; v;�3

2
v;�3

2
v
�
: (B.66)

In addition, this vacuum expectation value also constraints the value of a which
is a > �7b=15 (otherwise the potential would not be bounded from below). We
can write the potential in terms of this h0j�̂j0i and minimise it with respect to
the parameter v. This leads to the condition v2 = 2�2

�
15a+7b which we will rewrite

as
�2

� =
15a
2
v2 +

7b
2
v2 (B.67)

for future references. Moreover, group theory also tells us that the gauge �elds
X's and Y 's will be massive as the generators associated with them do not
commute with (B.66). These mass terms can be obtained from the gauge
invariant kinetic terms.

To construct a kinetic term of the Higgs �̂, recall that �elds in an
adjoint representation will have components transforming as vectors. Then the
usual form of the gauge the covariant derivative of a scalar �eld �̂ in a vector
representation �a, de�ned by �̂ = �a �a

2

D��a = @��a � ig5A[adj]
� �a ; (B.68)

where A[adj]
� = T aAa�, can be traced back to that for a �eld in the adjoint

representation; namely,

D��̂ = @��̂� ig5[Â�; �̂] : (B.69)

The appearance of the minus sign, instead of the plus sign (in other words, a
commutator instead of an anti-commutator) as used for the 10 is due to the fact
that the adjoint representation is constructed from 5 � 5 � 24 while the 10 is
from 5� 5 � 10 .

Now we can evaluate the mass terms of the gauge �elds which are given
by the term in a Lagrangian that is quite similar to (2.72); i.e.,

1
2

Tr
n
D�h�̂iyD�h�̂io =

g2
5

2
Tr
n
([Â�; h�̂i])2

o
(B.70)

With the choice of the vacuum given by (B.66), it is then clear from the
commutator appearing in (B.70) that the standard model gauge bosons remain

2As usual, this vacuum expectation value can always be reached using an SU(5) transforma-
tion.



239

massless in this stage of SSB. Since the �eld � appears in the potential (B.56)
via Tr�̂n, other possible choices, reachable via the unitary transformation
h�̂i ! Uh�̂iU�1 are equally possible and maybe convenient in some cases.

To work out the masses of the gauge �eld, we �rst note that

h�̂i = �3v
2
Y ; (B.71)

which results in

g2
5

2
Tr
n
([Â�; h�̂i])2

o
=

1
2

9v2g2
5

4
Aa�A

a�Tr
n
([�a; Y ])2

o
: (B.72)

Those A�ik surviving the commutators are ones corresponding to A��r (the X and
the Y bosons) together with factors �5

3 . Therefore,

9v2g2
5

8
(2)

25
9

�
X i�yX i

� + Y i�yY i
�

�
=

25v2g2
5

4

�
X i�yX i

� + Y i�yY i
�

�
; (B.73)

where i denotes colours (the factor 2 comes from the trace), which leads to the
mass terms

M2
X = M2

Y =
25v2g2

5

4
: (B.74)

Now let us turn to the next stage of the symmetry breaking. Observe
that the potential (B.59) has a non-zero vacuum expectation value (squared)

v2
0 = �y0�0 =

2�2
�

��
; (B.75)

which we will rewrite in terms of the mass of � as

�2
� =

��

2
v2

0 (B.76)

Recall that in the fundamental representation, we can arrange

� =

0BBBBBBBBB@
�(1)

�(2)

�(3)

h+

h0

1CCCCCCCCCA
: (B.77)

Still this does not completely �x the form of the �0 as the vacuum can point
in any direction of the 5. Nevertheless, the assumption that the SU(3)C being
exact forces the �0 to be in the 4 or 5 direction. Moreover, since we know that
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the SU(2)� U(1) will eventually break down to the U(1)em, we then plant the
non-vanishing expectation value to the neutral component

�0 = �(5)
0 =

0BBBBBBBBB@
0
0
0
0

v0=
p

2

1CCCCCCCCCA
: (B.78)

Then the spontaneous symmetry breaking should proceed in the way fairly
similar to the case in electroweak symmetry breaking. However, it might be
obvious that the process is not that simple. We are dealing with 2 fundamental
scalars in the theory and trying to claim that their vacuum expectation values
are so di�erent so as to suppress the e�ect of the heavy particles at low energy
scale (MW ). As we have seen in section 3.4.2, there is no mechanism to keep a
scalar particle naturally light. Then, it is more �natural� for the masses of these
scalars to have the same order of magnitude, namely M� � M� � MX . The
thought of grand uni�cation, however, forces us to take the standard model as
a low energy e�ective theory and we are left with no choices but to force the
masses of the two scalars to be so di�erent. Failure to do so may result too large
contributions to the vacuum expectation value of �̂ from the light scalar � via
the cross couplings in (B.60). The need to force the two scalars, namely the 24

and 5, inevitably leads to the gauge hierarchy problem or the Big hierarchy
problem.

The hierarchy problem mentioned above is not the only problem we
have. As the multiplet of the light Higgs is extended to the 5, it can initiate
the transition between quarks and leptons via Yukawa couplings. Hence this
provides another way for a proton to decay. Consequently, it is not only the �̂,
but also the triplet �(i) for i = 1; 2; 3, that receives mass of theMX scale. In fact,
it is the cross couplings (B.60) that take care of this job. A particular structure
of the matrix �̂ will provide MX scale masses to the triplet while leaving the
standard model Higgs light.

We will pause the treatment of the spontaneous symmetry of the SU(5)
for a moment and discuss brie�y on the grand uni�cation scale so that we can
have a feeling of how severe the (big) hierarchy problem is.
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B.4 Where Does This Happen?

Our �guess� that there exists a large uni�ed gauge group like SU(5) simply means
that the couplings of the standard model must meet each other at a particular
energy scale. Such a scale should be fairly large due to the slow running of the
couplings. In this section we try to be more qualitative and see what this energy
level is and what consequences it leads to. There are basically two ways to look at
the situation: one is from dimensional grounds with some rough approximations
to see what we can expect from the experimental side, the other is to use the
renormalisation group analysis to estimate the uni�cation scale.

First, let us consider the somewhat naive dimensional analysis. The
process we will consider is the proton decay (which is predicted from the theory).
Still, the result will be fairly reliable if we �rst make an assumption that
the uni�cation scale be much larger from the weak scale, which should be so
that we have not seen any footprints of the GUT physics or the X and Y
bosons. This helps further simplify the rough estimation in general, because the
initial and �nal particles are hadrons and the intermediate interactions involve
a number of particles; for example, the fundamental fermions and the heavy
gauge bosons. The argument is similar to what happened in the transition from
Fermi's theory to Glashow-Weinberg-Salam's theory; but taken the opposite way
around. In other words, we take the standard model as a low energy e�ective
theory of a grand uni�cation theory, which we do not understand yet. This
allows us to approximate the transformation from quarks to leptons via the X
boson as Fermi's point interaction; i.e., the local version of the interaction at
low energies should be capable of �replacing� the non-local interactions, using
only the building blocks of the standard model. Thus we just introduce the
dimension-6 operator like � g5

MX

�2
�u�u�e�d (B.79)

with many indices suppressed. Still, this allows us to use the typical decay width
analogous to that of the Fermi's model (e.g., the muon decay):

� /
� g5

MX

�4
m5
p (B.80)

where mp is the mass of a proton. Then the lifetime can be calculated from
� = ��1. Since, it is well-known that a proton does not decay or at least lives for
a very long time, its lifetime �p should be greater than 1031 years. Consequently,
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we get the typical uni�cation scale

MX � 1014 � 1015GeV ; (B.81)

which is still moderately lower than the Planck scale (so we do not have to
worry much about gravity). However, it brings us a �desert� of about 12 orders
of magnitude between the weak and the grand uni�cation scale.

Before we discuss about the running of the couplings, let us �rst identify
the SU(5) gauge coupling with the coupling of the electroweak subgroup
SU(2)�(1). Consider the relevant interaction terms deduced from the covariant
derivative D� in (B.40) we �nd that the U(1)Y coupling g0 for the electroweak
theory is related to the g5 by

g0 =
s

3
5
g5 : (B.82)

This identi�cation is crucial in order to look for the uni�cation scale otherwise
the running of the U(1)em coupling will not meet others. To see this let us
recall that in a non-Abelian group like SU(5), we can �x the normalisation
of the generators of the group by an equation similar to (B.5). However, we
do not have such the Lie algebraic relation to �x the normalisation of the U(1)
generator (and we have put by hand further assumptions such as the unit charges
of protons or electrons). At this point we immediately �nd a by-product. The
Weinberg angle is predicted at the uni�cation scale to be

sin2 �W =
g02

g2
2 + g02 =

3
8
; (B.83)

where the �scale-down� relation requires the renormalisation group analysis
which also depends on the value of the uni�cation energy scale.

Let us call the gauge couplings as

�i =
g2
i

4�
(B.84)

where i = 1; 2; 3 denoting the gauge group U(1); SU(2), and SU(3) respectively.
The way these couplings run is a�ected by the particles content and their
representations which is mathematically determined by the renormalisation
group equations

d�i
d ln�2 = ��i�2

i +O(�3
i ) : (B.85)
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The �i is the usual coe�cient in the beta function:

�i = � 1
4�

2411
3
C2(Gi)� 2

3
X
f
T (Rf)� 1

3
X
s
T (Rs)

35 (B.86)

where C(Gi) is the eigenvalue of the quartic Casimir operator and T (R) is
the index for each representation; nf denoting the number of fermions in each
representation. Note that for the SU(N) group we have T (N) = 1

2 and T (A) = N
for the fundamental and the adjoint representations, respectively. For further
information, we also note that TSO(N)(N) = 2 and TSO(N)(A) = 2N � 4 for the
fundamental and the adjoint representations of SO(N) respectively.

From now on, we will always assume that there are three families (ng = 3).
The estimation has to be done with care as it means will neglect every possibility
of �nding new particles before the MX scale which a�ects the renormalisation
group equations. This includes the heavy gauge bosons and the heavy scalar
altogether. In other words, we have to assume that at these heavy particles
beyond the MX scale can be �integrated out� which implies that our estimation
remains valid only if we consider �2 << M2

X . Consequently, we �nd that
for strong interaction group SU(3)C , where quarks live in the fundamental
representation

�3 = � 1
4�

�11
3
� 3� 2

3
2� ng � 1

2

�
= � 9

4�
(B.87)

where we have used ng = 3 in the last step. Similarly, the � for the SU(2)L is

�2 = � 1
4�

�11
3
� 2� 2

3
� 1

2
� 4� ng � 1

2
� 1

3
� 1

2

�
= � 4

3�
(B.88)

where we have neglected the contribution from the Higgs in the last step. Notice
the extra factor 1

2 , which is there to assure that we count only the left-handed
fermions. Finally, for the U(1)Y we recall, from (A.16), that T (Rf) = 2Tr(Y 2).
So T (Rf) = 20

3 per family

�1 = � 1
4�

�
�2

3
� 1

2
� 20

3
ng � 1

6

�
=

5
3�

(B.89)

Consequently, the solution to (B.85), to one-loop, is

1
�i(�2)

=
1

�i(M2
X)

+
�i
4�

ln
 
�2

M2
X

!
: (B.90)

By requiring that all the couplings are equal at the uni�cation scale (�3 = �2 =
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5
3�1 = �5) we can arrange the �5(MX) and MX in terms of the known values at
MZ (electroweak) scale as follows:

1
�3(M2

Z)
=

1
�5(M2

X)
+
�3

4�
ln
 
M2

Z

M2
X

!
sin2 �W (M2

Z)
�(M2

Z)
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1
�5(M2

X)
+
�2

4�
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M2

Z

M2
X

!
cos2 �W (M2

Z)
5
3�(M2

Z)
=

1
�5(M2

X)
+
�1

4�
ln
 
M2

Z

M2
X

!
(B.91)

where we have used g1 = e= cos �W and g2 = e= sin �W . These equations are
readily solvable, we �nd

1
�5(M2

X)
=

1
�1 + �2 � 8

3�3

 
� �3

�(M2
Z)

+
�1 + �2

�3(M2
Z)

!
(B.92)

as well as
ln
 
M2

Z

M2
X

!
=

4�
�1 + �2 � 8

3�3

 
1

�(M2
Z)
� 8=3
�3(M2

Z)

!
: (B.93)

Taking the approximate values from [63]; namely, �(M2
Z) = 1=128, �3(M2

Z) =
1=8:48, and sin2 �W (M2

Z) = 0:231, together with (B.87-B.89), we �nd that

�5(M2
X) = 1=41:5 and MX � 1015GeV ; (B.94)

which agrees, to some degrees, with our �guess� value ofMX for the proton decay.
Though this agreement convinces us that our assumption that nothing shows
up between the electroweak and the uni�cation may be sensible, it brings us an
obvious problem: why the two scales are so di�erent? To see the di�culties the
hierarchy problem brings to us, we go back to the Higgs sector of the SU(5).

B.5 The Breaking of SU(5) Part II: The Big Hierar-

chy Problem

Let us return to the cross coupling between �̂ and �. Since we know that there
is a desert between the two symmetry breaking scales, the extra SU(2)-breaking
term added to the vacuum expectation value of the heavy scalar �eld �̂ should
be small. As usual, we can parametrise the SU(2)-breaking part by a diagonal
matrix proportional to � 3 = �23 (recall Cartan subalgebra). So (see Buras et al.
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[85])

h0j�̂j0i = diag
�
v; v; v;�3

2
v;�3

2
v
�
� "�23

2
v

= diag
�
v; v; v; (�3

2
� "

2
)v; (�3

2
+
"
2

)v
�
: (B.95)

Since the SU(3)�SU(2)�U(1) symmetry is restored by taking �0 = 0 we should
have, to lowest non-zero order,

" / �0
�v0

v

�2 � O(10�24) ; (B.96)

where K is some constant that should somehow proportional to a�1; b�1 an so
on, in order to keep the SU(2) breaking e�ect of �̂ small comparing to that of �
(i.e., "v << v0). The potential V (�̂0;�0) becomes a complicated function of the
vacuum con�guration related variables v2; v2

0; " and �2
�; �2

�; �; �; a; b. Now we
can minimise it with respect to the parameters v; v0; ". The explicit form of the
potential as well as the calculations will be tedious but straightforward. So we
will not working them out here. The results are (again, see Buras et al. [85]),

�2
� =

15a
2
v2 +

7b
2
v2 + �v2

0 +
9
30
�v2

0 (B.97)

�2
� =

��

2
v2

0 + 15�v2 +
7
2
�v2 � 3"�v2 (B.98)

which are the slight modi�cations of (B.67) and (B.76) respectively. In addition

" � 9�
20b

�v0

v

�2
; (B.99)

guarantees that the e�ects of SU(2)�U(1) breaking at theMX scale is negligible.
However, the unnaturally smallness of v0=v clearly lead to the problem in (B.98).
We know that the cancellations, which keep v2

0 small, between the terms on the
right-hand side of

��

2
v2

0 = �2
� � v2

�
15�+

�7
2
� 3"

�
�
�

(B.100)

will never happen in a natural way as they require �ne-tunings of the parameters
to one part in 1024.

Before we leave this section, Let us have a look at a sketch of the
uni�cation of couplings as shown in Fig. B.1 taken from Dienes [7]. As the
plot was made in the time where people have enough data from experiments, we



246an then hek whether the three ouplings really meet at a point. Note that thethikness of the lines show unertainties from experiments, and that the indiesof the ouplings �i denote the orresponding group, as well as that �1 alreadyinluded the fator 5=3.

Figure B.1: The sketh shows how ouplings of the standard model almostunify ([7℄).As we shall see from the �gure, the ouplings do not not meet (in ontrastto what people used to think in the 70's). By the way, this is not a bad news.If we insist on having uni�ed interation, a theory (e.g., SO(10) uni�ation,supersymmetry, et.) to be a andidate to explain or support it must providesmore partiles to �bend� the running of the ouplings to the desired uni�ationpoint. In fat, it opens possibilities for many types of partile physis beyondthe standard model as �the desert is not that boring�.



APPENDIX C

MATHEMATICAL FORMULAE

In this appendix we present some important mathematical formulae that are
frequently referred to (maybe implicitly). In addition, in section C.3, we present
several generators the groups that we used in the thesis.

C.1 Dirac  Matrices

Formulae in this appendix are taken from the book by Quigg [39].
Useful identities

[�� ; �] � ��� � ��� = 2(�g�� � �g��) (C.1)
��� = �2� (C.2)

���� = 4g�� (C.3)
����� = �2��� (C.4)

������ = 2(���� � ���� ) (C.5)

5 � i0123 =
i
4!
"�������� (C.6)

5� =
i
3!
"������� (C.7)

Frequently used identities:

(1� 5)2 = 2(1� 5) (C.8)

�(1� 5) = 2
1 + 5

2
�

1� 5

2
(C.9)
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Trace technology:

Tr[�] = 0 (C.10)
Tr[odd no: of 0s] = 0 (C.11)

Tr[�� ] = 4g�� (C.12)
Tr[=a=b] = 4a � b (C.13)

Tr[����] = 4[g��g�� � g��g�� + g��g��] (C.14)
Tr[5] = 0 (C.15)

Tr[5�] = 0 (C.16)
Tr[5�� ] = 0 (C.17)

Tr[5���] = 0 (C.18)
Tr[5����] = 4i"���� (C.19)

In addition we present the formulae for the " tensor:

� "����"���� = ��� (����
�
� � ��� ���)� ���(��� �

�
� � ��� ��� )

+��� (��� �
�
� � ������ ) (C.20)

�"����"���� = 2(����
�
� � ��� ���) (C.21)

�"���"��� = 6��� (C.22)

C.2 Feynman Parametrisation

The formula Z dx
[ax+ b(1� x)2]2

=
x

b[(a� b)x+ b]
(C.23)

yields

1
ab

=
Z 1

0

dx
[ax+ b(1� x)2]2

: (C.24)

Then the general formula is obtained by successive di�erentiations:

1
a1a2 : : : an

= �(n)
Z 1

0
dx1

Z 1�x1

0
dx2 : : :

Z 1�x1�:::xn�1

0
dxn�1

1
[ax1 + a2x2 + : : :+ an(1� x1 � : : :� xn�1)]n

:(C.25)
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Most of the integrals concerning us can be deduced from the Wicked rotated
version:

Ir;m =
Z d4k

(2�)d
k2r

[k2 � C + i"]m
i(�i)r�m

Z d4kE
(2�)d

k2r
E

[k2
E + C]m

(C.26)

where C is positive. Note thatZ
ddkE =

Z
djkjjkjd�1d
d�1 =

2� d
2

�(d2)

Z
djkjjkjd�1 ; (C.27)

where jkj = q
k0
Ek0

E + k � k. The integral Ir;m can be evaluated

Ir;m = i
(�1)r�m

(4�)2

�4�
C

�"=2
C2+r�m�(2 + r � "

2
�(2� "

2)
�(m� r � 2 + "

2
�(m)

: (C.28)

The following integral is usually encountered

I0;2 =
i

(4�)2

�4�
C

�"=2 2�(1 + "
2

"

=
i

16�2 [�" � lnC +O(")] (C.29)

where

�" =
2
"
�  + ln 4� (C.30)

and  is the Euler-Mascheroni constant. The other one is the �tadpole�:

I0;1 =
i

16�2C(1 + �" � lnC) : (C.31)

Consider the integral involving spacetime indices

I�1����p
n =

Z ddk
(2�)d

k�1 � � � k�p
[k2 + 2k � P �M2 + i"]n

: (C.32)

We have

I�1 = 0 (C.33)

I��1 =
i

16�2
1
8
C2

1g
��(3 + 2�" � 2 lnC1) (C.34)

I�2 =
i

16�2 (��" + lnC2)P �
(2) (C.35)

I��2 =
i

16�2
1
2

h
Cg��(1 + �" � lnC2) + 2(�" ��")P �

(2)P
�
(2)

i
; (C.36)
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where

P �
(1) = 0 (C.37)
C1 = m2 (C.38)
P �

(2) = xr�1 (C.39)
C2 = x2r2

1 + (1� x)m2
0 + xm2

1 � xr2
1 ; (C.40)

with ri and mi de�ned as the momenta running in the loop (related to external
momenta) and its corresponding �mass� in the sense ofZ d2k

(2�)d
k�1 � � � k�p
D0 � � �Dn�1

(C.41)

where

Di = (k + ri)2 �m2
i + i" (C.42)

and

r0 =
nX
1
pi = 0 (C.43)

rj =
jX
1
pi ; j = 1; : : : ; n� 1 : (C.44)
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C.3 Various Symmetry Generators

C.3.0.1 Pauli Matrices

� 1 =

0@0 1
1 0

1A ; � 2 =

0@0 �i
i 0

1A ; � 3 =

0@1 0
0 �1

1A (C.45)

C.3.0.2 Triplet Representation of Isospin

T 1 =
1p
2

0BBB@0 1 0
1 0 1
0 1 0

1CCCA ; T 2 =
ip
2

0BBB@0 �1 0
1 0 �1
o 1 0

1CCCA (C.46)

T 3 =

0BBB@1
0
�1

1CCCA (C.47)

C.3.0.3 SU(2) Real Representation

T 1 =

0BBBBBB@
i

�i
i

�i

1CCCCCCA ; T 2 =

0BBBBBB@
�i
�i

i
i

1CCCCCCA

T 3 =

0BBBBBB@
i

�i
�i

i

1CCCCCCA (C.48)
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C.3.0.4 SU(2)� SU(2) � SO(4) Real Representation

T 1
V =

0BBBBBB@ �i
i

1CCCCCCA T 2
V =

0BBBBBB@
i

�i

1CCCCCCA

T 3
V =

0BBBBBB@
�i

i

1CCCCCCA (C.49)

T aA =

0BBBBBB@
i

�i

1CCCCCCA ; T 2
A =

0BBBBBB@ i

�i

1CCCCCCA

T 3
A =

0BBBBBB@ i
�i

1CCCCCCA (C.50)
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C.3.1 Gell-Mann Matrices

Observe that the patterns of the matrices are extremely easy to remember. We
have the Pauli matrices embeded in the upper-left block:

�1 =

0BBB@0 1 0
1 0 0
0 0 0

1CCCA �2 =

0BBB@0 �i 0
i 0 0
0 0 0

1CCCA (C.51)

�3 =

0BBB@1 0 0
0 �1 0
0 0 0

1CCCA (C.52)

as well as some elements �similar� to the Pauli matrices spread elsewhere:

�4 =

0BBB@0 0 1
0 0 0
1 0 0

1CCCA �5 =

0BBB@0 0 �i
0 0 0
i 0 0

1CCCA (C.53)

�6 =

0BBB@0 0 0
0 0 1
0 1 0

1CCCA �7 =

0BBB@0 0 0
0 0 �i
0 i 0

1CCCA (C.54)

�8 =
1p
3

0BBB@1 0 0
0 1 0
0 0 �2

1CCCA (C.55)

C.3.2 SU(5) Generators

We can use exactly the same philosophy to �memorise� the SU(5) generators1
We will use T a = �a

2 where TrT aT b = 1
2�
ab. We shall use the same symbols with

the Gell-Mann matrices since the di�erent should be clear from the context. We
only try to distinguish between them when it is necessary. The �rst 8 generators

1Observe that there are 14 symmetric �real� generators and 10 antisymmetric �complex�
generators.
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are just the Gell-Mann matrices embedded in 5� 5 matrices.

�1 =

0BBBBBBBBB@
0 1 0 0 0
1 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

1CCCCCCCCCA
�2 =

0BBBBBBBBB@
0 �i 0 0 0
i 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

1CCCCCCCCCA
(C.56)

�3 =

0BBBBBBBBB@
1 0 0 0 0
0 �1 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

1CCCCCCCCCA
�4 =

0BBBBBBBBB@
0 0 1 0 0
0 0 0 0 0
1 0 0 0 0
0 0 0 0 0
0 0 0 0 0

1CCCCCCCCCA
(C.57)

�5 =

0BBBBBBBBB@
0 0 �i 0 0
0 0 0 0 0
i 0 0 0 0
0 0 0 0 0
0 0 0 0 0

1CCCCCCCCCA
�6 =

0BBBBBBBBB@
0 0 0 0 0
0 0 1 0 0
0 1 0 0 0
0 0 0 0 0
0 0 0 0 0

1CCCCCCCCCA
(C.58)

�7 =

0BBBBBBBBB@
0 0 0 0 0
0 0 �i 0 0
0 i 0 0 0
0 0 0 0 0
0 0 0 0 0

1CCCCCCCCCA
�8 =

1p
3

0BBBBBBBBB@
1 0 0 0 0
0 1 0 0 0
0 0 �2 0 0
0 0 0 0 0
0 0 0 0 0

1CCCCCCCCCA
(C.59)

The 2� 2 lower-right block contains the Pauli matrices

�21 =

0BBBBBBBBB@
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 1
0 0 0 1 0

1CCCCCCCCCA
�22 =

0BBBBBBBBB@
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 �i
0 0 0 i 0

1CCCCCCCCCA
(C.60)

�23 =

0BBBBBBBBB@
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 1 0
0 0 0 0 �1

1CCCCCCCCCA
(C.61)
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Then we will the remaining blocks with 1; 1 or i;�i:

�9 =

0BBBBBBBBB@
0 0 0 1 0
0 0 0 0 0
0 0 0 0 0
1 0 0 0 0
0 0 0 0 0

1CCCCCCCCCA
�10 =

0BBBBBBBBB@
0 0 0 �i 0
0 0 0 0 0
0 0 0 0 0
i 0 0 0 0
0 0 0 0 0

1CCCCCCCCCA
(C.62)

�11 =

0BBBBBBBBB@
0 0 0 0 0
0 0 0 1 0
0 0 0 0 0
0 1 0 0 0
0 0 0 0 0

1CCCCCCCCCA
�12 =

0BBBBBBBBB@
0 0 0 0 0
0 0 0 �i 0
0 0 0 0 0
0 i 0 0 0
0 0 0 0 0

1CCCCCCCCCA
(C.63)

�13 =

0BBBBBBBBB@
0 0 0 0 0
0 0 0 0 0
0 0 0 1 0
0 0 1 0 0
0 0 0 0 0

1CCCCCCCCCA
�14 =

0BBBBBBBBB@
0 0 0 0 0
0 0 0 0 0
0 0 0 �i 0
0 0 i 0 0
0 0 0 0 0

1CCCCCCCCCA
(C.64)

�15 =

0BBBBBBBBB@
0 0 0 0 1
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
1 0 0 0 0

1CCCCCCCCCA
�16 =

0BBBBBBBBB@
0 0 0 0 �i
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
i 0 0 0 0

1CCCCCCCCCA
(C.65)

�17 =

0BBBBBBBBB@
0 0 0 0 0
0 0 0 0 1
0 0 0 0 0
0 0 0 0 0
0 1 0 0 0

1CCCCCCCCCA
�18 =

0BBBBBBBBB@
0 0 0 0 0
0 0 0 0 �i
0 0 0 0 0
0 0 0 0 0
0 i 0 0 0

1CCCCCCCCCA
(C.66)

�19 =

0BBBBBBBBB@
0 0 0 0 0
0 0 0 0 0
0 0 0 0 1
0 0 0 0 0
0 0 1 0 0

1CCCCCCCCCA
�20 =

0BBBBBBBBB@
0 0 0 0 0
0 0 0 0 0
0 0 0 0 �i
0 0 0 0 0
0 0 i 0 0

1CCCCCCCCCA
(C.67)
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The last diagonal generator is

�24 =
1p
15

0BBBBBBBBB@
�2 0 0 0 0
0 �2 0 0 0
0 0 �2 0 0
0 0 0 3 0
0 0 0 0 3

1CCCCCCCCCA
: (C.68)

C.4 The Mass Eigenstate Matrices

The non-diagonalised non-transformed matrixM2 from (5.136) of the Goldstone
bosons, and the other M2 of the neutral gauge �elds (5.177) are
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M2 =266666666666666666666664

��2 + v2�4 0 0 0 0 0 0 Fv�3 0 0
0 ��2 + v2�4 0 0 0 0 �Fv�3 0 0 0
0 0 ��2 + 3v2�4 � 2F�3v0 0 0 0 0 0 0

p
2Fv�3

0 0 0 ��2 + v2�4 + 2F�3v0 0 0 0 0 �p2Fv�3 0
0 0 0 0 F 2�2 0 0 0 0 0
0 0 0 0 0 F 2�2 0 0 0 0
0 �Fv�3 0 0 0 0 F 2�2 0 0 0

Fv�3 0 0 0 0 0 0 F 2�2 0 0
0 0 0 �p2Fv�3 0 0 0 0 F 2�2 0
0 0

p
2Fv�3 0 0 0 0 0 0 F 2�2

377777777777777777777775
(C.69)

M2
WW 0BB0 =

0BBBBBB@
�m2

W +M2
W 0 �1

8gg
0v2
�
sc0
cs0 + cs0

sc0
� �1

8g
2v2cs

�
c2 � s2� �1

8gg
0v2cs

�
c2 � s2�

�1
8gg
0v2
�
sc0
cs0 + cs0

sc0
� �m2

Zs2
W +M2

B0 �1
8gg
0v2cs

�
c2 � s2� �1

8g
02v2cs

�
c2 � s2�

�1
8g

2v2cs
�
c2 � s2� �1

8gg
0v2cs

�
c2 � s2� m2

W

�
1� v2

6F 2 + 8v02
v2

� �1
4gg
0v2
�
1� v2

6F 2 + 8v02
v2

�
�1

8g
0v2cs

�
c2 � s2� �1

8g
02v2cs

�
c2 � s2� �1

4gg
0v2
�
1� v2

6F 2 + 8v02
v2

�
m2
Zs2

W

�
1� v2

6F 2 + 8v02
v2

�
1CCCCCCA (C.70)

train
Typewritten Text
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