CHAPTER V

THE MNILPOTENT ALGEBRAS

In this chapter we classify the multiplications in
nilpoteat algebras of dimensions 1,2 and3., Then we prove
a theorem which tells when there exists an icomorphism
between. a nilpotent algebra: and the: qaotient-algébra of the

polynomial algebra KJx] by the radical (xn?

Theorem 5,1 : Let A be a nilpotent algebra of dimension 1

over a field K. Then A2={0}, or equivalently xy=0 for all

Xoyein Ag

Proof : Since A is a nilpoteat algebra over K, there
exists a k>0 such that AkaiO}. Next; we shall prove that

A%#A. To prove this, suppose that A2=A. Then we have
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That is A=Ak=%0} which contradicts the hypothesis that
dimension of A is 1. Thereforc A2C A which implies that

)

aimik®«0. This complctes the proof of the theorem,

Q.E.D.
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Theorem 5.2 ¢ Let A be a nilpotent algebra of dimension 2
over'a field K, If the multiplication in A is nontrivial,
then it is unique (up to isomorphism).
Proof He_can similgrly prove as in Theorem 541 that

2 is 1

AI)A?DA;Q.. DAk ={03. "Therefore the dimension of A
or O, If dimension A2 = 0, then this is the trivial case,
80 we may assume that dimension ,of A2 is 1 which implies

that A3 = {0&. Since dimension 2. 1, we may 1etbé2 $£ 0

be a basis of 42, For dimension of A is 2, we can have

el#o independent to e, such that e ,,e, is a basis of A.

For x = ase, +8,8,y ¥ = bie, +D,6,, {ai’bjsi,i = 1,2,3,
C K, we have '

+ a,b,e,e. + a,b,e,e, + a,b e2

oo AT e T 1 2°2%ge

2
Since e_e e2e1€ A -'{Ogand egeA4 = 1'0",

£ 2
2
(1) xy = a/b el
If e2 = 0, then xy = O for all x,y in A, Therefore

1

ei # O and we may let oBlale + Hence (1) becomes

1 2

Xy = a,b,e,, for all x,y in A

- B Dl
Therefore the nontrivial multiplication in A is unique
‘(up’ to isomorphism),
QeE.D.

Next, we consider the case where a nilpotent

algebra 4 over a field K has dimension 3, ' We can similarly prove
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2

(as we did in Theorem 5,1) that 4°A OASD....DAK={O}. Thus

we see¢ that dimension A2=2 or 1 or0O. Dimension A2=0 is the

trivial case, 80 we just consider the case where dimension

A2=1,or cim A2=2 s+ If dimension A2 is 2, then dimension

5 4 :
Asxa 1 or O and A ={O§. If dimension A2=1,then A3={0§-

Now, let us start by investigating the casc where
the dimension of A2 is 2 and A3=ﬁ)§. Therefore, we may

let e, and e, be a basid of Ag, and then let e, be linecarly

¢ 2 3

i . = S 1 =
independent with regspect to e1 and e2 uch that cl,ez,e3

forms basis of A, For x;y inA we can write

X = alel +-a292+a363,

y:be + b.e _sh.e

184/ ¥/ bgEa¥bie., {ai, bijCK, i,3=1,2,3,

Hence,

2
a1b1e1+a1b2e1e2+a1b3e1e3+a2b1e2e1

2 , 2
*aybge +a,bae eara b e 0, +agb e +agbaey

Xy

2
Since e 2 4 % 3
1,62,6162,8291€A _301; and eles,esel,ezez,eseaeh =10y,

we have
2
Xy = a3b3e3‘
2 5 X :
and consequently, dimension of A is 1 This contradicts

the hypothesis that dimension A2=2, so this case is impossible,

Next, we shall consider the other multiplication
cases of a nilpotent algebra of dimension 3. Let us begin

with a definition,

Definition 5.3 ¢ Let A be an algebra with multiplication o
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and B be an algebra with multiplication *, Then the

multiplications in A and B are igsomorphic iff there exists

a linear, 1-~1, function f of A onto B such that f(xoy)
= F(x)*f(y).
Let A be an algebra of dimension 3 over R,
S A ! t ot ot isti
Suppose that {ol,ez,eskaqd {el,e2,esg are two distinct
basec of 4 respectively, then claim that the linear

mapping f£: A®A such that

Y3
fI)\ f(el) = (km) ei.
m -1
f(e2) = (Kmjh ei+(~i)e5,
f(es) b C-&,‘

for k{C, m$O, n$C in R, is 1=1 and onto, To see that f is
1-1 and onto we need only show that the determinant of the

coefficicnts-on the sight.sfde.is. not zero, See proof in le.

(km)”3 0 0

m -
det £ = det Tl—(?n—)-‘;g ‘(‘% (8]
O 0 &

|
- Al =0
(km) ( X )
Ahich is not zero for k{O,m$0,n30, Therefore f is linear,

1=-1 and onto function on 4,

Next we shall show that the following linear
maps of A to itself are 1-1 and onto by showing that their
determinants are not O,

(1I) fle,) = ke

il
x
)

£le,) = kel

f(eg) = kgel, KiER and k#0, j=1,2,3,



f is 1=~1, onto, since o) k1 (0]
det [f ] = det |k, O O
0 0 Kk,
= =k kk = O
(1I1X1) £(e,) = k,ef+kyel,
f(ez) = kgeé,
£(eg) = el ' {ki = o)(uz, 1w 1,93,
f is 1-1, onto since kl k2 0
det [ £ ] =det | 0 k; O = k ky= O
0O 0 1
(Iv)  f(e,) = ke,
f(e2) = kzei,+ kzeé,
£(ey) = ef, k! = ojc;n, i=1,3,3,
f is 1~1 and onto, since kl O O
det [£ ] = det ik jllo = kky =0
HiV¢ 14
(V) £49,) = 2SVess
f(e2) = —ei+e5,
E(es) = e&,
f is 1-1, onto, since O RS
det [f ] = det :1 i O = 2 =0
0 0 1

43
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Theorem 5,4 ¢ Let A be a nilpotent algebra of dimension 3

over the field R, If dimension of Ag_is 2 and dimension of
Asa 1,A4=i0}, then the myltiplication in A is uniquely

determinncd up to isomorphism,

Proof From the hypothesis that dimension A = 3, dimension

A2=2, dimension A3=1 and A4=§O},'we may 1etie1,e2,e33be a

basis in A such thatiez,ezﬁis a basis of A2 and ez is a basis
~of A3¢ For each x,y in A we may write

X = a1e1+aze2+a363,'

y = bje +bge tbie iai, bj}cm,i,j=1,2,3.

-and thus we obtain

2 2
Xy = a1b131+alb2elez+g1b3e1e3+abb1e2e1+a2b2e2

€, +a,b e2

+a,b,e e, +a,b . e,e. +a,b,e Cotagbaen

23273 3131 323

Since eg,eles,esel E A4= lo}’e293’ €se, €A5={o§ s eg €—A6= iOSJ

Ay

we have

2
Xy .= a1b1e1+a1b2e1e2+nzblezel.

: 8. .2 : 2
Since eleA y We can write e, = k1e2+k2e3 for some k1)k2ETR
3

and since,Plpg,eQele AY we get e =Kk_ e, and e, e_ =k

19979 % 2€1%4%3 for
some ks,k4 in R. That is, the multiplication xy can be
expressed in the form:

xy = a,b (k1e2+k2e3)+a b,k.,e.+a,b k e i.e.

372 1787878 2°1°4°3!

(%) Xy = kla b,e +(k b,+k,a_b,+k

1018+ (kg2 by +kya bysk a b, ) e

3.

We begin the final step of the proof with an
observation about kl’kg’ka'k4‘ Since dimension of A2=2,
the case ka and the case kfgfﬁfo cannot occur, The proof
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now proceeds with 7 cases,

Case 1. In this firct case, we consider the

multiplication (#*)when k1¢0, k2$0 and k.= k4=0. in

3

particular,

xy = k_a_,b_e_ +k b'e k

B ek e o g R
Xy = albl(k1e2+&263).

1,al,b1,k2€EL Therefore,

This formulz holids for all x,y in A and siace k1e2+k2e3 is &
vector in A, we have dimension A2=1 which contradiet¢ts the

hypothesis., Therefore this first case is impossible,

Case 2. For thigs second case, we shall investigate

=k_=0, That is

the multiplication (%) when ki#o, k,#0 and ky=kq

(2.1) Xy = klalb192+k4a2b1e3 )

kyokgr8g985,0,C R
Our objective is to check whether A is associative

under the multiplication in this case. To dec this, let
A= C €, 4C, e, +C 8,

consider (xy)z and x(yz). We have,
(xy)z = (a]e1+e&62+af3)(b1e1+hf2+b5e3) (cje1+cze~2+c§3)

(2,1) asserts that

{ci'}ca, i=1,2,3 and then

(xy)z = [k1a1b192+k4a2b1esj (c1e1+c2e2+c3e3)-
= k4k1(alb1)0183
whereas, on the other hand

x(yz) =(a1e1+a2e2+a303)[(b1e1+b2e2+b3e3)(c1e1+c2e2

+c3e3)]
=(a1e1+a292+a3e3)(k1b1c102+k4b201e3)

=0
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Hence A is not associative under the multiplication
(241) in this case, or equivalently, the multiplication in
this case is impossible,
Case 3. Assuming k+0,k;#0, k2=k4u0'it'folléwstthat
xy = k_a b _c.+k_a_b,e

e ek b St s o ek
This case is similar to the second case in that the same
method of proof shows that 4 is not associative under this
multiplication, Therefore the multiplication in this case
is impossible,
Cose 4, We begin this case by expressing kf#cu

ké#O,ké#O and k2=0. The multiplication (*) becomes,

Xy = k1a1b162+(k a1b2+k4 5 1)e
Now let el, eé, e& be another basis of A such that
'3 '= =
el el, e, k1e2’ e3 k1k3 s then for
= atelyintet 1ot
X = alel+a2e2+ases,
y = biei+b5e5+b'e {si,bngIR, i,;j= 1,2,3 ,we get

Xy= ib'(e ) +a'b£e{bé+aébiegei

: .9 2
1 = = =
But we have, ﬁel) gl | k103+k293 e2,
. PEE el (]
By B IR PN 1%3% = %39
- k4
1ot = 3 = ? 3 W il t
e2e kleege1 kl.ie3 k3 63'
Therefore
P Thtat TH! 1Kt ?
Xy = a1b162+(a1b2+§4 a2b1)e3

PR ‘ tat Tl ol
To check the associative law we 1let z=c1e1+c2e2+c3e3,

¢, YCR, L=1,2,3, It follows that
i
(xy)z:=[(aiei+a5eé+a§e%)(biei+bée5+bée5)]',‘ :

i.' tat it
(clel+92e2+c3e3)
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- LB R 14 LY ' l 1 taot
[a1b1e2+(a1b2+k a2b1 ](c e +cpe +c3e3)
k

4(a b')c'es,

on the other ‘hand,

S: t 1ol 1ot 1ot to! tot
x(yz) (a e! 1*a 2e2+a3e3)[(b1e1+b2e2+b3e3)
) L} ] ) 1ot
(c e1+02e2+cse3)J
k
Y t et tatat L] 4b' 1
(ale1+a2e2+a3 )[blcle +(b|c2+—; 2c )es]
= a'blete!,
a1b1c1e3

To have (xy)z = x(yz), we must have

k, :
L2 o ipiat o OWhLet
k. #1P1%) = 91 0e50%

£

That is~Eﬂ-= 1. Therefore in this case the
3

multiplication of x,y in A can be expressed as

- atht!e! iHt T1hH! | B
Xy = a1b1e2+(a1b2+a2b1)e3.

Case 8. Set ki 0, k40, k #0, and ky=0. Then

the multiplication (%) becomes,

Xy .= k +(k.a,b_ +k a_ b )e

bye 1P1*%4%2°

Ry 2 2
The same method of the proof in the second case shows
that A is not associative under this multiplication.

Therefore, the multiplication in this case is impossible.,

Case 6. In this case we have that kf#O, kiko,
k3+0 andk =0, Then from (*) the multiplication xy is

xy = k e+ 9) ey

1 1 kﬂ 1 3 1
Similarly to case 2, we can prove that A is not
agssociative under this multiplication. Therefore, the

multiplication in this case is impossible,
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Case 7. For this final case, let k3D, kz#@,
ks#o and ké#o. Then the multiplicaticn (%) is

(7.1) xy = k 2+(k a,b,+k.,& b2+k4a2b1)e3.

171 P4 %% %48, 0, 4530,
To check associativity, we let zZ= c1e1+c2e2+c393,ic1k1=

1,2,3¢R., Then (7.1) 4implies that
(xy)z = I(a1e1+a2e2+a3e3)(b1e1+b2e2+b3e3)}

(c1e1+c2e2+c3e3)

{k181b1e2+(k2a1b1+k3a1b2+k4a2b1)es]

(°1e1*°292+°3e )

a,b/)e

AL 7 1/ 2\

whercas,

x(yZ) (a1e1+a2e2+a3e3)[(b1e1+b2e2+b3e3)

(cle1+cgez+cse3)]
- (a1e1+a2e2+a3e3)[k1b1c1e2+(k2bic1+k3blc2
+k4b2cl)e3]
= ksal(klblcl)e3
Since A is an associative algebra, we must have
(xy)z = x(yz).
That is

i i e e e e L i el {x;0az ’bif CRy 4=1,2,3,4.

Therefore, k =k4 (or else A is not associative). Hence,

3

the multiplication in this case becomes

(7.2) ' Xy = k1a1b192+(k2a1b1+k3a1b2+k3a2bl)ese
Furthermore, we claim that the multiplication in

this case is isomorphic to the multiplication in case 44

In case 4 we have
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THtpgt tHt TtHhtye!?
(4.1) X Oy = _alble2+(a1b2+a2b1)e3
- atlat 1ot 1ot
where X = glel+a2e2+a3e3,
b 1ot [P ] tot y: | q ;
y = blel+b2¢2+b3e3, %if’ bj }CR, i,3=1,2,3.

Let £: A—>A be a function defined by

. et
E(e,)= (t1k3) e&,
3 2
£(e,)= wb__. el
2 (k1k3)52 k1 3
|4
Eleg)= e}, kyy Koy keER,
for k1$0, k2=l=0, kz#o in R, Then (7.2) implies, that

£(xy) = f[klalb1e2+(k2&1b1+k3a1b2+k3a2b1)esj

b Remh il k - B D SR b T e SR

. k k
- 4 PR RRE ay '
= k_a,b Lklkgfﬁe2 3 ez | + (k,a,b +k_a_ b,+k.a bl)e3
&= 3 1 = a 1
(klks) alblez + k3 (ulb2+u2b1)e30
On the other hand, the multioclication (4.1) implies that

f(x)of(y) = f(a1e1+a2e2+ase3)f(b1e1+b2e2+b3e3)

k k ]

Y . 3 B i FE 2
% (k1k3) a;el + (k1k3W362 - k1 es al2+z13¢33d
k k : ]

V& (] v TR § il *

i o b et i 4 0 R R S
f 3

! K

I
- -3 ' Rt Y '
ﬁk1k3) 1% T (k)8 %2%2

k
+(- Ef a2+a3)e§.]

Ax iy w0 f——fi—~ b.e! 2
97 N TR Y

K
2
+{=3=b, + b e'-]
( . 3);3

=

- (kiksfka b.e! + kq (alb2+azb1) e

'.
g B 3



That is f(xoy) = f(x) f(y). This result, together with
the previoué argument about the map £ in case I
implies that these two multiplications are isomorthc.
Therefore, we have already proved that the
multiplication in a nilpotent algebra A of dimension 3
over a field R with dimension of A2=2, dimension A3=1.

. 3
and A4= C , is uniquely determined up to isomdpphism,

QOB.D.

Remark : Suppose A is a nilpotent algebra of dimension

3 with dimension A2=1 and A3={OS. Let{el,ez,ess and
: : 2
i ] 1 a o i
{el,e2,e3§ be bases in A such that eq and eg are in A" .
2.2

" Moreover, let f: A;+A.be an isomorphism. then f: A=A",
Therefore, f(es)eiAz. Consequently, we may weite
l) = mlei + mzeé + mseg,
Flegh\ 2 Pof VST = Pgo5
E(e}) = gef, {mi,pj ,q}CR,ii=1,2,3,
Now we begin our discussion of multiplications
in a 3=dimensional nilpofent algebra A over R with

dimension A2=1, by choosing a basis el,e2,e in A such

3
that e3(§A2. First,note that there is never any necd

to check associativity in this case since A3={Q%. For
each x,y in A we have

X= 0 €, 48,C,+0,Cq,

184+PaCo+b Cy {ai,bigc;ﬂ, i=1,2,3

It follows that the multiplication is

y= b

2 2
Xy= alb1e1+a1b281e2+a1b381e3+a2b162e1+32b2e2

2
+a2b3e2e3+a3ble3el+83b2e302+a3b3e3.

50
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J 3 2 4
Since eles,esel, €n€y s e3e2e S ={0§ and eséA ={O§, then

Since e?, e, e

Therefore,

(")

2 2
Xy = alble1 + a1b2e1e2+u2b1e2e1+a2b2e2.
e.e e2 '[2 we m write
e C ) e Dl oy
2

€,05= k2es,

e e,= k363’

e: = g4e3, for some k; €R, i=1,2,3.

Xy = (k1a1b1+ k2a1b2+ k352?1+ k4a2b2)e3

Our task is to classify the multiplications Xy by

studying k, ,k,,k.,k .

B Lo i

We observe.that the case where k1=k2= k3=k4=0

cannOt happen since the dimension of A2=1. Therefore,

we congsider the following cases.

Case 1. If k£¢o and k2=k =k4=0, then the

3

multiplication (* %) becomes

\

Xy = klalbles'

As in Theorem 5,4, we may choose a new basis e! = e

=e~2,e

1 1°%2

' =
gy L

Therefore,

for

Since

: 2 2
1tHt ] | tpatot tHY 1] 1 1 * 1]
Xy albl(el) +a1b2e1e2+a2b1e2e1+a2b2(e2) ’

P13 1] ] t ] ]
X = a1e1+a2e2+a3e3,
y = blefiblofiblor, {?i ,b;&(:R, i Wk, a8
2 2
* = = =c!
(el) ey k193 el
] ] oE: -
i T el ke
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1ot = Y
e2e1 = e2e1 = kscg_ (¢
2 2
M =1 = =
(e2) en k,es=0

_then

(1:s3)xy = a;bfeé.

Case 2. Let kdfo and k =k2=k =0, Then the

1 3

multiplication (%%) can be written as

azbges.

We assert that the multiplication in this case

(2.1) xoy = k,

is isomorphic - to the multiplication in case 1. Let
f be the linear map of A to itself defimed by
£f(e? =
( 1) ego
1 -
f(e2) el,

437
Then by the argument in page 42 case II we know that

f is 1-1 and onto. (Multiplication (2.1) implies that

= tatl o ntlolt inltle? 'll.l'
f(x)of(y) f(alel+a2e2+a3e3)of(bie1+b2e2+b3e3)

of 1 t 1 t (]
(age1+ale2+k4a3e3)o (b2e1+b1e2

1
- k4b3e3)

= kdaibiez,

whereass:, the multiplication (1.1) implies that
. Tthiat
f(xy) = f(albles)
o thte .
k,84P1%3
 B(xy) = f(x)of(y) and these two multiplications are
isomorphic.

Case 3. . In this case we assume K that kst,

k1=k2= k4=0. This, together with (%**), implies that
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Xy .= k3a2b1e3;

Like the other cases we choose g new basis ei = el, éi=e2,v
e&:kse3 and get the reshit,
(3.1) Xy = aébieé,
where - aiei+a5e5+aéeé ’
i 'p1e1+bée5+béeé, jlai ,b;}CR,i,j=1,2,3.

Notice that A is not a commutative algebra
over R under this multiplication, but A is commutative
mnder the multiplication (1.1) in case 1, Therefore,
the multiplication in this case is not isomorphic . to

the one in case 1 (and .. in case 2).

Case 4, Starting with the assumption that

ksro, k1=k3=k4=0, we can write (**) as

PS8 X0 a “ka/ b-e<,
(4e1) X = T3

This multiplication is isomorphic to the multiplication
(3s1) in case 3, To show this, let f: A—»A be the
linear map defined by

f(ei) = €55
1 =

f(e2) e

039 k2€R. |

We already proved that case II on page 42 is o 1=1,

f(eg) = k

onto map so f is a 1-1, onto map. Then the multiplication
(3.1) in case 3 implies that

£(xy) = £(aibled),

1H!

whereas, on the other hand, (4.1) implies that
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£{x) of (y) = f(aiei+a5e5+aéeé) 0.
L

1ot 1at L
f(b1e1+b2e2+b3e3l

= ¢ ' 1 ' * [
- (32e1+ale2+k2a363)o(b2e1+b1e2+k2b333)

- 1ht
k2a2b1e3 L

Thercfore, it is immediate that these two multiplications

.

are isomorphic,

Case 5. Assume that k1+o, k2+o and ky=k =0 in

3

this case. Then (%**) becomes

(5.1) : X0y = k1a1b193+ k2nlb2e3..

We claim that this multiplication is isomorphic
to the multiplication (3.1) in case 3. ~To prove this,
let f: A—>A be the 1linear map defined by

' '
f(el) = k el + €3,

= 1
E(ez) kzegf

= *
f(es) = eS,. kl,k2e Re

Then, the multiplication (5.,1) implies that

£(xoy) = £[(k,2 b + kya,b,) eg]

19101+ kpa;b5) eg,

and we use the multiplication (3.1) in case 3 page 53

=(k

to get

£(x)£(y)

f(ale1+a2e2+ase3)f(b1e1+b2e2+b3e3)
o ] -
Uk1u1+k2a2)e1+ale§+aseé]
| ] ]
Bk1b1+k2b2)el+b1e2+b3e3]

= '.
al(k1b1+k2b2)e3
a A
(k1a1b1+k231b2)eso
This with the property of £ in case I1I page 43 implies



that these twb multiplications are isomorphice.
Case 6+ Let k3#C, k40, k =K =0% Then from

(#%*) we have

(6.1) : Xoy = (k382b1+k482b2)630

This multiplication is isomerph#c . to the multiplicstion
in case 3., To prove this, let f: A-pA be a linear map
difined by

= e!
f(el) k3el’

f(e2) = k4ei+e',
f(gs) = e&, ks,k4E:R.
Then £ is a 1-1, onto map by the case IVhpage?43. This
with the multiplication (6.1) implies that
£(xoy) = £ [(k3a2b1+k4a2b2)e3]
= (kgagb +k a,by)es,

whereas, from the multiplication (3.1) of case 3 page

53, we have

£(x)f(y)

f(ale1+a2e2+a3e3)f(b1e1+b2e2+b3e3)

] t 1 L
[a2e1+(ksal+k4a2)e2+a3e3][bze1

L 1
+(k3b1+k4b2)e2+b3e3]

e ?
(k3a1+k4a2)b2e3

pH )
= (k381b2+k4a2b2)63'

That is f(xoy) = f(x)f(y), and consequently these two

multiplications are isomorphic,

Case 7. We begin this case with the assumption

that ki¢0, k3¢0 and k, =k, =C, then from (*%) we have,

2
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xoy = (k1a1b1+k3 9 1) €xe

We claim that this multiplication is isomorphic
to the multiplication in case 3, Let f: A—A be the
linear map defined by

f(e ) = ei+k eé é

f(e ) =k3 2

f(es) = e:,".

Then we have that £ is a liunear, 1-1, onto map by the
case III page 43. DMoreover
£(xoy) = £ [(k1a1b1+k3a2b1)e3]
= (k a b +k.a

5 115 % 2 1
whereas, the multiplication (3.1) of case 3 page 58 gives

)e

E(x)E(y) = £(a e +a, e2+a ez)E(b e +b,e +by es)

= [a +(k a +k3 2)e +agq 5]
[b el+(k, b 4Kksby)el+by ]

= (k1a1+k 2)b1 3

= (k181b1+k3 2 1

Therefore, these two multiplications are isomorphic,

)e

Case 8, In this case we take kQ#O, k4+o,

k1=k3=0 in (**), This assumption , together with (%),

impliies that.
(8.1) X0y = (k2a1b2+k4a2 2)e

As in the abofe cases, we can prove that this
multiplication is isomorphic to the muliplication (3.1)

in case 3, We let f: A->A be the liunear map defined by

el
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f(e ) = el+k e

14 2’

f(es) = 930
By (IV) page 43, f is a 1=1, onto map. We have from (8.1)

that

£(xoy) = £((kya bysk a,b 2)93]

= (k k[ﬂ b )e

a1by+k,a50,
and, by using (3.1) of case 3 page 53, we get

E(x)f(y) = £(a e +aze,+2505)E(b e, +bye 4bye %)

= [a +(kna +k4 2)eé+ase§]

[bgeis(kyb, vk by)es 3eé]
= L
(k 01+k4a2)b2e3

= (kya,byrk 2, b)) el
That ic f(xoy) = £(x)£f(7), these two multiplication are
isomorphic.

In the proof of the next cases, it will be

useful to have the Following definitions and lemma.

Definition 5,5 ¢ The center C of an algebra A is the set

C = ixéA}xy‘= yx = O VycAS.
By the left=-center CL of A ahd the right - ceater Cp of
A we mean
that

C,= txéA lxy = O,VyeA&
and

CR = {xEA lyx = OIVyeA% .
Lemma 5.6 : Let A and B be finite dimensional algebras
over a field R with multiplication o and *respectively.

Suppose that these two multiplications are isomorphic,.
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with respect to the fﬁnction f: A—2A, then £ takes the
center (left center, right ceanter) C (Ct’CR) of A
isomorphically: omnto the center (leftcenter, right

center) C' (C£ ,C'R) of B,

Proof DBy the definition of center, we have

C= ix&A ‘ xy=yx=0 , VyeAﬁ.
and

C'= ix'eBIx'y's y'x'=b, Vy'eB}.
Let x¢C, consider f(x), Since £ is zn isomorphism: of
A onto B, then for all y'g B we can find a unique y€ A
such that £ (y)=y'.
Therefore

E(x)*y' = E(x)*E(y)e

By using the definition of ieomorphism.of multiplications,
we have

£(x) * y

£(x) * £(y)
= f(xoy)

= £(0)

= 0

and

ol £ ] £(y) * £(x)

= f(yox)

£(0)
=0

L)

That is f(x) #* y*' = y' % £(x) = O for all y' in B, and
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hence f£(x)eC!'.

Now, let x'¢c C', therefore x' #* y' = y'! % x! = 0
for all y' in B. Since f is onto, we can find a unique
x€A such that f£f(x)=x', To prove that x€C, suppose
otherwise, i.e x ¢ C, then therc exists a y &€ A such that
xoy#.O or yox# O, S8Since f is an isomorphism _, the
kernel of f = iO}, implying that f(xoy)£ C if xoy# O.
Hence, f(x) * £(y)+ O for some y€ A, This implies that
x' = f(x) ¢ C' which is a contradiction (We can similarly
prove that f(x)¢C' for yox#0), Therefore, if f(x)&C
we must have x £€C, Using the fact that f is an
isomorphism of A onto B and the proof above we can
conclude that f takes C isomorphically on to C%,

We can use the same method as above to prove the

same result for the left and right centers of A and B,
Q.B.D.

Now we continue to the next cases.
Case 9. Keeping our earlier notation, we have
*H i ) = =
from (%**) with k2=/=0, k3+0, kl k, O that
X0y = (k2a1b2+k3a2b1)93, '
for x = g e +8,ey+aze5, ¥ = bie +b,e +bgey, {ai,bjjca,i,j-1,-2.3

Like the other previous cases, we may choose a

i L " "
new basis e1 el, ey ig’ eg= k2e3 such that
3
oo NN, Yoy "
xXoy (alb2+k a2b1)e3,
- HEs
LIPS L] "o Mo Mean Mot ; Nt
for x = ale1 + a2e2 + ases, y = ble1 + b2e2 S b3e N

{ann”, b'j"]Cuz,. i,j = 1,2,3
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ks
Let k" = kg then we have
a -
(9.1) xoy = (aIbg -+ k"agbz)eg, for some k™ C in g.
We claim that the multiplication (9.1) is not
isomorphic-to the multiplications in case 1 and case 3.

First, we shall prove that it is not isomorphic to

case 1, Since, we have, in case 1, that

= a'hlet
(1.1) Xy u1b193
for x = ale! +ale! + alel y= ble! + blel! + ble}

- B 3 2°2 g’ - St | 272 373’

' ;
{éi.' bj %C;R, 1,3 = 132,3. Therefore, the
center C of A under the multiplication (1.1) is generated

by e, and Cx9 that is /C = [eg,es]. Hence, the deimension

2
of C is 2. But the center C' of A under the multiplication

(9.1) is generated by e, and the dimension of C' is 1,

3
These imply that the center C cannot be isomarphic to
the center C' and hence, thesc two multiplications are
not isomorphic.

Secondly we shall prove that the multiplication
in case 3 is not isomorphic to the multiplication in

case 9, We begin by recalling that the multiplication

in case 3 is

= nthteg!
(3.1) Xy azble ¢
= ale! tet 1ot = bte! 1ot 1ot
for x ale1 + age,) + azegz, ¥ ble1 + b2e2 +b3e3,

{ai-, b; &CLR, i,j = 1,2,3, We can see that the left

center CL of A under the multiplication (3.1) is

o A
CL=[e1,e31 whereas the left center C! of A under the
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multiplication (9.1) is C£=[e3]. Therefore, the dimensions

of Ct and C£ are not equal, and consequently they cannot

be isomorphic, Thus the multiplication (3.1) is not

isomorphic to the multiplication (9.1).
Suppose that el,oé,e3 is another basis of A

such that we have the multiplication

(9.2) X*y = (a'b' + k'a'b')e' k'¢0 in R,

for x=a1ei+a2e2+ase£, y= bie'+b5e'+b3 3, {a{ ,b; i(:R, i,9=1,2,3.
We claim that the multiplication (9.,1) and (9 2) e

‘i",,. First we assume

that the multiplication (9.1) and (9.2) are isomorphic,

are isomorphic iff k' = K" or k' =

Therefore, we can find a linear, 1=1, onto function f:
A—>4 such that -

(9+3) £(x*y) = f(x)of(y).

This function f is in the form .

e{ e m2e5 +m3e3,

f(eé)= P,y + Dyel +pgel,

f(e )= qu’ for émi,pj,q§<im, i,j=1,2,3,q40 in R,

f(ei)= m

Since th formula (9.,3) holds for all x,yin A, Let x

=e!,y=e!, then (9¢2),(9.1) and (9.3) imply that

X :
(1) m, m (1+k") =0
If %' = ei, y = e2, then
(2) m Py + K"m,p = q.
If x = é, y = i, then
(3) maPy * k'm, p,= q.k .

If x = y = e} then

e!
€20 i
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(4) P Py (14k™) = 0.

Suppose that k" = =1, then from (2) we have
(5) mpy = Myp, =
and from (3) implics that

=" = e '1
(6) mypy, = M, = Q.k
Adding (5) and (6) together we get
q (1+k') = O

Since q40 (or else ker £40 which is a contradiction),
1+k?=0, That is k' = =1,

Suppose that k" =1, then 1+k";0. Therefore(1)
and (4) imply that m_=0 or m_,=C and plao or p2=0. if

i 2

= = ¢ n i X
m, 0 and m, 0, then f(el)=m3e3 and £ is not an

isomorphisme Therefore mlao or m2=0 and not both,

Suppose that m1=0, then mgo.
From (2) we have

" =

kmap, =0,

whereas (3) implies that

m2p1 - q’k"
Therefore,

k"qk' = Qe
Since q$0, then k'=-%h.

Similarly, if m2=0, then miO and we have from

(2) that
e W
whereas (3) implies that

k'm = q.k",

1P2



Therefore,
ktq = gk"

That is k' = k", Therefore, if (9.1) is isomorphic to
(9.2);, then k" = k" of k' = %";
Conversely, suppose that k' = k", We let f:

A—>A be the linear map defined by

f.‘(ei) = e;,

f(eé) = 85,
£(e}) = eg;

Then (9.1) implies that ‘W 5743

£(x)of(y) = £(ajel+agel

=3 2" \& 32 .30
= ta! | P PN ] ton tot
(alez+a2e2+ases)o(b1e2+b2eé+b3e3)
= tH Nl "
(a1b2+k a2b1)e M

whereas (9.2) implies that
=, thtaktntbtiel
£(x*y) = £[(atbgskragbryes |

= (aib’+k'a5bi)e§.

2
Therefore f(x*y) = f(x)of(y) for k'sk", and f is 1=1,
onto from case II page 42, Hence, the multiplications
(9.1) and (92.2) are isomorphic,

Suppose further that k' = i"; Let £: A—4 be

defined by
f(ei) = k'es,
f(eé) = ez,
f(eé) = eg, k'+0 in R.

Then (9.2) implies that,

= alb!
£(x*y) = £ {(aib5+k' 5bl)e&]

{a'e&)Of(bie'+b'e'+b'e'

63
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L} { ] ] 1t 1]
= (alb +k ale)es,

2
and on the other hand, (9.1) implies that
f(x)of(y) = f(aiei+aéeé+a& ')of (b'ei+béeé+b' ')
= (ajef+k! ies+ase")o(b'eI+k'bleg+b' ez)
= [xaibtekn(ktal)bs]en
= (ajbj+k'atbl)ey, since %= Eeo
That is £(x*y) = f(x)o £ y' for k'= &,. Case (II) page

42 implies that f is 1=~1 znd onto. Therefore these
multiplications are isomorphic, Thus the multiplications
(9.1) and (9.2) are isomorphic iff k'=k" or k'= %".

Case 10. Let k#’),k4+(),k2=k

3

becomes

(10,.1) x*y 5 (k1a1b1+k4 9 2)e

k
If 2¢0,theh we let h = =—L, That is hy0, we can
4 4
choose a new basis eiaeé =fﬁhe2 (take the positve
square root.), eé = kleS' and get
(10.2) X¥y = (a'bi - aéb')e',

- -gtoh ' et WiEYPINVEEPLE L ¢
for x alel+a2e2+a3 3z ¥ b1e1+b2e2+b3e3,
{a.}. , b3 iC.R, 1,3 = 1,8,3.
Consider the multiplication (9.1) of case 9

page 60. If k"=1 we have

(9.3) X0y = (a"bg + agb") 83’
= nan N n Nt = Nan nan Tttt
for x a1e1+a2e +agex, ¥ b1e1+b2e +b'e3,

{ay ,bg-iczz, i, 5 = 1,2,3,.
We claim that the multiplicatiosns (10.2) and (9.3)

are isomorphic, To prove this, let £f: A—>A be the-



65

linear map defined by

f(ei) = e;+02,
f(eé) = -eI+e2,

f(e&) = 2el¥,
then case V page 43 implies that f is 1i-1 and onto
mapping on A, The multiplication (10.2) implies that
c ) = FHt o abBYY ot
£ (x%y) f[(a by = ajbl) e3]
o LR
2(a b1 a? %

whereas, the multiplication (9.3) impliesithat

2)- el

£(x)of(y) = f(a'ei+aéeé+aée')of(b'ei béeé+b§e§

[(a’-u')e"+(a'+a')e"+2aéeg]o[ﬂbi-bé)e;
¢(bi+bliensabten |
[ﬁa'-aé)(b'+bé[+(ai+aé)(bi-béﬂ ey

2(a'b'-b'b')eg

O
that is f(x*y) = f(x)of(y), or equiwalently these
two multiplications are isomorphic.
k
Next, if-E;7O in case(10.1), then we may choose
4
a new basis e %D “1 é,(take the posdtive square root)
4
: e3= kle3 such thot (10.1) becomes
(10,3) X#y = (a'b'+aéb')e',
= e ' ] i ‘e
for x= aje; a262+a es, y= b1e1+b2e +b3 3,

iai b’ IECR' £ 3w 1,048,
This multiplication is not isomorphic to the
multiplication in case 1. 8ince the center C of 4
under the multiplication in case 1 is C=[g2,e3]and

dimension of C is 2, wherecs the center C' of A under
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the multiplication (10,3) is C' = [esl and dimension of
C!' is 1., Moreover, the algebra A is not commutative
under the multiplication (3.1) of case 3 page 53, but
A is commutative under the ﬁultiplication (10.3);
Therefore the multiplications (10.3) and (3.1) cannot
be isomorphic., DNext, we claim that the mulfiplication
(10.3) is not isomorphic to the multiplication (9+1) of

case 9, Recalling that the multiplication (9.1) is

(9.1) Xoy = (a2b5+k"a5b;)eg, k"40 in R,

~ = 0 Hon nan Haon = N Man ot

for x ajejrapen+azex, y blel+b2e2+b3e3,
{a{ , b [CRy /1,3 = 1,2,5,

Suppose to the contrary that these two multiplications
are isomorphic, then we can find a lianear, 1l=1, onto
map £: A->A such that
(10.4) f(xoy) = £(x) * £(y),
and f is in the form

f(e;) = m,elym elem, e},

kg i § R Sl B!
"
f(ez)

f(eg)

.5 1 1
p1e1+y262+p363 ’

L | vz .
€3 {mi, p'j1CR, iyj= 1,2,3, 9q#%0 in R,
Since, (19,4) holds for all x,y in A. Then, if x=e;,

y=e", (10.3),(9.1), (10.4) imply that

1’
2 .2
my+m, = o) ‘
But m, ymyis in R, therefore hI=0 and m,= G, Hence

£(e")=m_ el - f is ir 1 et is in A i
( 1) Ma€z, where ey is in A and ez is in 4" , and f is
not an isomorphism , This is a contradictisn, That is

the multiplications. (9.1) and(10.3) cannot be isomorphic.
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Case 11, In this case we assume that k2#0,

k0, k30, k =0, then the multiplication (%**) becomes

(11.1) x*y = (k a1b2 + k3a2b1 +k4a2 ) s
9 S o > ! = ! = =
If we choose o new basis ed k2 1, 02 €5 03 k %3 then
it is immediate that
3
Ry = ' — atblialbl)e?
Xty (a! 105 +k2 2b1 agbyleg,
= ' ] v b t et

for x alel+alelsalel, v = 1e +b2e2 3 €z

1.1 227373 K

2

(11.2) X*y) = ( jba+ktatbleatbl)es, For k'#0 in R,

2 72 TS
Suppoge k'=-1, then claim that this multiplication
is isomorphic to the multiplicatioa (9.1) of case 9 page
60 whenever k' = k", To brove this, let f£f: A—A be the

linesyr map defined by

f(ei) = GI,
1 ,
1 =
€le3) =(TsE7) °1 * B+
: f(e&) = eg, k'$0,-1 in R.

In (9.1) of case 9, we have
X0y = (a"b5+k"agb2)eg, k"0 in R.

- n'l " N nan - flon "N Haon
for x = ajej+agep+azen, y blel+b2e2+b3e3,

{a" b"l;CR, i, j,=1,2,3.
Therefore, with k'=k" we have

flx)of(y) = £(ajei+alel+al eglof(biet+biel+biet)

b Ahia- i 3

1 :

~ ¢ s ~ 1 o b 1" 1 ” P
[(al+(1 Kr) a2)01+a2e2+a3e3]o

Bb' (1ik')b2) e£+b'e"+b'e"]

1 " ; ._1.____. ] "
L(ai+(1+k')82)b5+k a (b1+(1+k,)b2)}e3

(aib5+k” ybitagbslex

i

2
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whercas, the multiplication (11.2) implies that

£(x*y) = f(aibé+k'aébi+aébé)e§

= (aibé+k'aébi+aébé)e".
That is f(x*y) = f(x)of(y) whenever k's=k" and k'$-1,
Consequently, the multiplication (11.2) with k's-1is
isomorphic to the multiplication in case 9,
Suppose k'==1, then (11.2) becomes

(11.3) x¥y = (aibé-aébi+aébé)e§.
We can easily see fhut the algebra A is not commutative
under the multiplication (11,3) while A is commutative
~under the multiplication in case 1 and case 10,
Therefore the multipliplication (11.,3) cannot be
isomorphic to the multiplication in case 1 and case
10, Moreover, the left center CL of A under the
and hence C, has

3 L
dimension 1., Therefore the ﬁultiplication (11.2)

multiplication (11.3) is e

cannot be isomorphic to multiplication (3.1)of case 3

3 and has

dimension 2, Furthermore, claim that the multiplication

under which the left center Ci is € 1@

(11.3) is not isomorphic to the multiplication in case
9. Recalling that the multiplication in case 9 is
(9.1) X0y = (azb§+k"a5bf)eg, k"£0 in R, for
X = a;ez+ageg+ageg, y = b;e£+b5e5+bgeg,
iag, b.'J!';C_R,i,j=1,2,3.
Suppose that these two multiplications are isoriorphic,
then there exists a linear map £f: A—A which is 1-1,

onto and

(11.4) f (xoy) =.f(x)Qf(y).
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This function f is in the form, .

1 1] 1 4 t
f(gl) = m1e1+m2e2+m393,'

)
£(e3) = pyej+pPyey+Pyeyy {mi,pi}' CRr

i=1'2’3 .
£(e§) = qe§, qf0 in R.

The formula (11.4) holds for all x,y in A. Therefore, if

x=e', y=e" (11,3),(9.1) and (11.,4) imply that

% 1
2
(1) mge 0
If xseg, y-e;, then
2
(2) p2 = 0, ‘ ;
From (1) and (2) we can see that m2=O and p2=0. Therefore
m, 0 Mo
det £ = Py ¢ Ps | = 0,
o 0O /g

that is £ is hot a 1-1, onto mapping which is a contradiction,
Hence the multiplicatioas (11.3) and (9.1) are not isomorphic.
Case 12. Let k0, k0, K30 and k,=0, then
(*%) can be written as ‘
1a1b1+k201b2+k352b1)e5.
Like the other cases, We choose a new basis eI:el,
k,/ '

| e "
5= K ez, e3 kle3 and get k
3

S raad it sy vy, M9
for x = a£é£+ageg+a§eg, y= b£e£+bgeg+b§eg,{.a;,P;%CR,i,j=%,2,3.
Let k" =-E§, then : »
(12,2) Xoy = (azb;+afb5+k"agb;)eg, k"#.Q in R

Claim that this multiplication is isomorphic to

(12.1) xoy = (k

the multiplication (11.1) in case 11 whenever k'='%;.
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Recalling that the multiplication (11.1) is

(11.1) © (x*y) = (alblik'aibleapbl)es, k'40 in R,

tot G s ikt s
for x = alel+a2e2+ase3, y b1-1+b2c$+b§e§.

{ag, b;jc:a, £.0w 4,88
Let £: A—>A be the linear map defined by
] _— i
f(el) = ea,
1 - ton -l t "
f(eg) k'e +(1 k )e2

f(e ) = el k%0 in R,

3’
The multiplication (12.2) with k"=-l; implies that

£(x)of(y) = f(a'e'+aﬂe*+a'

1 L] tat 1
1rajejrazes )of(b elsble +b”e )

3

w [kl 'e"+(a +(1-k')a')e'¢a Lk'b'e"+(b‘+(1-&');

bg)egenser | | &

a[(k'aé)(k'bé)+(k'ué)(bi+(1-k')b5)+k"(ai+(1-k'ja5)

(k53] o3

= (a 'b§+k'a5b‘+a'b')e
whereas the multiplication (11,1) implies that

£(x%y) = f[(a'b'+k' ajblrajbl)e ]

= (a'b'+k' 'b'+a2 2)e"
That is f(x*y) = f(x)of(y) and f is 1-1, onto from case IV
page 43.

Tgerefore the multiplication in case 12 is isomorphic to
the multiplications: in case 11,

Case 13. Suppose that k,30,k.30,k, 30,k =0,

then the multiplication (%**) can written as

*y =
X¥*y (k1a1b1+k3 9 I+k4a2bﬁ)e3
1 - 3 " ot ...l. |1 -
By choosing a new basis ef'=e,1e5= 3 € ey k €qyWe may thus

3

write
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k_k

14
®y = Al s AN B XU i 1) gt
X#*y (a1b1+a2b1+ k2 agba)es.
3
for x = aqeq+d5dg+a“e§, oy b?d;+U5@5+Ugé§i .
§ag, Ug&C:R, i4j=1,2,3., Let Kk'"= 5 s then we have
; : x ;
: - 3
(13,1) X*y = (a?bg+agb?+kma355)é§, for k"0 in R,

Recalling that the multiplication (9,1) in case

9 is (9.1) xoy = (a"bg+k"°5b")e y for k"40 in R and

X = a1e£+aseg+ageg, y = bzegqbge5+b§en, i i’bn% ie1,2,3 CRy

We claim that the multiplications (13.1) and (9.1) are

k"
“(12K")

first assume that these two multiplications are isomorphic,

isomorphic iff k"= 2, fﬁ*tl. Toprove this, we

then there exists a lineap map f;3 A—>A such that

f(x*y) = f(x)of(y) and £ is in the form

f(é{) = m1e2+m2e5+m3 3,
£(ey) = p,el+pelsn el i(m p;']1=1 2 3CR,
f(e‘g) = qes, q%0 ia R,

Therefore (13.1),(9.1) and f(x*y) f(x)of(y) imply that,

for x = eT ysel, we have

(1) m1m2+k"m2m1= Qe

Rop X .= e? Yo eg, we have
(2) mlp2+k"m2p1= 0.

For x = eg, y = e{,'we have
(3) plm2+k"p2m1= q.

For x = eg, y = 02; we have

(4) , Py Po+k"pyp, = kMg,

Since gq$0, equation (1) implies that k"g=1.



From (2) and (3) we have
(5) m, Dy (k"31) = qkn
Since q and k" are not zero, and k"$t 1, (5) implies

that ml = —-—-—g—zk.!'—"—o
P, (k"“=1)

Therefore, (1) implies that 9
Py (k"“=1)  p,(k"=1)

My o m1z£+k") = gk"(1+k") T k"

From (2) and (3) we have,

mypy (1=k"?) = q.
That is pl ‘= E;(h—"-z)
qk"

(1.,k"2) e pz(k"_l)

Substituting p,in (4) we have
. kg (1-k") py (k"=1)

K
92 = Pl(i+k"; - (1+k") . qk"

That is

k" = _km-( 1=k ) 2
-t

2

K g
(1-k")

and k“*O'zl.
- t
Conversely, suppoue that\kif: /= %' and
(1-km)?
k"#;O,il. Let £f: A—A be the linear map defined by
e"
2
L S | e . RSN
f(ea) e : (1+k")?
e! k"
(1'k") s (l_kng). 62’

f(eg) =

f(eg) = eg.

Then (13.1) implies that

£(x*y) = fL( a';b;:+a55b'{+k"'a'5b'-2')e*g]

= ULRSU a" " 1 L1 e Al
(< b1+ bb1+k'a2b2)es

2 272

Laﬂ' blﬂ + al“ bl" k s al" b'" e "
(1-k")

72
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whereas (9.1) implies that

E{x)of(y) = f(a"'e‘;'-+ﬂ:'a'e"2’+z)§e'§)ofl'('b‘"e‘z byey+byey)

[_(“1*(~12c7)—’e +((1, k") "'_—%"21':-2 )e'z'*a‘ge

(1=k"7)
" b bRk
s K&n (Igiﬁixe"+(?I:E%B-zzﬁzzaﬂeg+bgeg]

L(a I" )( bi bl|2lk" )
1 (1=k")N{1+k" ) (1-k"2)
U" al" l"k"
" ", 2 1 B Bz, Gy "
+k (b‘l (1= k!t))(‘lfkll) (1_1("2)}}3

k"
e 1l "N o LR ] ".
= PO o ? azbz)?z

\

That is f(x*y)=f(x)of(y) and since f is 1-1 zand onto
(see poge 43) we can have that the multiplication (13.1)
is isomorphic to (9.1).

. : -k"
Under the assumption: :above that k"= WA )

-k

we can see that for a given nunbher:. k" we can(%iﬁd)k"

to make (13,1) isomorphic to (9.1) only if K"£0.and km4é3

Therefore we have to consider (13.1) when k“‘)'%.
We claim that the multiplication (13.1) is

isomorphi¢ to the case 11, iff km=%. Recallihg first

that the multiplication in case 11 is

o THERY o allyt theyeot
(11.3) xXoy (a b2 agby +azb2)e .
= alto!t 1 taet L hY t

for x = a1e1+a2e +a} es, y = b1e1+b2e2+b3e3,

{a;_, b'& i=1,2,3 CR,

Suppose that the multiplications (13.1) and (11,3)are .

isomorphig then we cancfind o linear mappinpg-fr~A%>A such

that P(x*Fiuf{xyFf(y) for all x,y in A, - The mapping £ is in
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the form
f(dI) = mlei + méeé + mseé,s
f(eg) = plei ra pzeé + 930', imi,piﬁia 1,2,3CR,
f(e’g) - q el; q+0 in R,
Therefore, if x = é;, y = e?, the multiplication (11,3)
and (13.1) implies that
(1) ma= a,
I x = eg, y = c3, theu
(2) myPg= Myp + MgPy = Cc.
If x = eg, y .= e;, then
(3] MaPy = M2y ¥ MiPnw A
If x = e, y m e, then
(4) P2 = qk™

From (2) zand (3) we have that

{(5). : 2m29 = q»

2
i o SR
That is m2 2p2.

Represcenting Py ia (1) wa have
5
.. g
y 4p
2
and reperesenting Py that is in the equation (4), we ‘get
2
-4 q k"l oo q t
Therefore,
K - %—

Conversély, guppose that k™ = =, then let f: A¥9A be

TS

the Liscar map defined Dy

e(ew) = ef,
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f(e‘") = é(e'_’_e')
T sy Niged
f(e‘g) w0y
then (13.1) implies that

£(x*y) = £[(ayuyeagousknayon)ey |

e \ L (
(aybl+agby+ 7 apvf)er.

whereas, on the other hand (11.3) implies that

in aql 1 ot e i LIPSV 1 oite N A
f(ale1+a2e2+§ad3)of(b1e1+gae2+bse3)

é \{1 ] U1} ——2— ] "e ] —_g ]
[2 age+(af+5")eg +ageg joj5= e

At i
Lof-Z)ey + vyey |

£(x)of(y)

T am b gn po LLnikm b
= L2y opazr = (amag?) (2) e (omegd) (14 2) e
= (aybyeatbnszanbn) et

we thus sce that (13.1) with k" = % isomorphic to (11.3).

Therefore it is left to consider (13,1) when k" 3 1

4
) A 3 - A
a5 This case is not isomorphic to case 9 and case 11

>

by the above proofs., Under the multiplication (13.1)
with w";,% we can see that the algebra A is not commutative.
But the algebra A is commutative_under the multiplication.

in case 1 and case 10, Therefore the multiplication (13.1)

with k" 3 is not isomorphic to the multiplication in

4
case 1 and case 10. Next, we can observe that the left

CL of the algebra A under the multiplication in case 3

is generated by el and e and hence CLhas dimension 2,

whereas the left center Ci of A under the multiplication

(13.1) 4is generated by ex and has dimension 1. Thus

the multiplication (13.1) cannot be isomorphic to one
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of the case (3).

Furthermdpe. suppose that e is another

175 *©
basis of A such that

(13.2) X0y = (a’b'+a'b'+k'a!b' el, k'+0 in R
b G e It 2 4 .
for x = aiei+aéeé+aée§, y = biei+bée'+b' { i,b & i= 1,2,3 CR.

We claim that the multiplication (13.1) and (13,2) are
isomorphic iff k'=k", To prove this, we first suppose
that these two multiplications are isomorphic. Therefore,
there exists a linear mapping £: A—A defined by

f(e') = m e'+m em+m e

¥ ¥ 3°3°
E(e') = pieq+pzeg+p3em {ML,plﬁ i=1,2,3CR,
f(e ) “qesv q% 0 in R,

such that f(xoy) = £(x)*£(y).

Henéesr» for x = ai,

e
(1) m1+m2m1+k"m2= q.

For x = ei, y = eé, we have

(2) WD+ M DS Kk m,p

For x = eé, y=.ei, we have

y = ei, we have

2= 0.

d . =
(3) m P+ m1p2+k"m2p2 q.'

For x = eé, y = e2, we have

2 - i ¢
(4) p1+p1p2+k‘"p2 g q k .
Take plx(l) - mx(2), we get
1 = i
(5) K my(myp, =m py)=q Dy
Take (3) - (2), we get

Therefore, from (5) and {6), we have
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(7) k" m2 = plo

Teke mIX(4)-pf(3), we get iy
e 2 = ” 3 =
k"p,y(m py=myp, ) q(k"m =p_ )

This.. with (6) imply  that

n ] ..‘ .
(8) k"p, (k*m, =p, )
Take m2X(3)-p2x(1), we get
This, tohether with (&), gives
(9) m, = Py=m,.
Tzke, mzx(4)~p2x(2), we get
Py (myp =m p,) qk'm, ,
that is
: -kt :
(10) Py = =k mg .
If m,=0, then p4=0 from (7) and (10). Therefore (8)
and (9) imply that
k"l = k'.
If m2¥0, then (7) and (10) imply that
klﬁ = k'.
Conversely, if k" = k', let £: A—>A be a linear

map defincd by

01"

£(e}) 2
f(e') = eg
f(e') = eg,
Then (13, 1) impliec that
F(x)*E(y) = L(a e1+a2e2+a3e')*f(b e1+b'e +bseé
em+a2eg é"] [P em+b e"+bsé§]

= tHt "o "
(alb1+a2bl+k b2)e3
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bo b Yook '
= (a1b1+a2b1+k'u2b5)e",

whereas, (13.2) implies that

: ‘
£ (x0y) - f[(aibi+a2bi+k'aébé)e5]

= ] ' o ¢ 1 t "
(alb1+a2b1+k agb2)eéo

These, fogether with the property of £ in case page 43,
we have that (13.1) and (i3.2) are isomorphic.

Case 14, Suppose that k1¢0, k2+0, k4+0, and
k3= 0, then the multiplication (%**) becomes

xoy = (klalb1+k201b2+k4a2 3 2

using the same procedure as before, we may choose a new
k
1 ’

= __ £/, k. e
X 2 -
2

t ¥
xoy = (albi+a!b5+

b2)e

basigc e'=e and obtain

]
F Rl R 3

oy

k k4

[y

tht)ye!
AR e
='l¢""\='l?ll‘!|
for x (alel+“292+a383"y blei+b2e2tb3e3,

R e

Let Lg - = k', then
k2
4 = (a'blsatdp? Uotne
(14.1) Xoy ( 1b1+a1b2+k azbz)éé.

We claim that (14.1) is isomorphic to (13.1) in page
74, .whenever k' = k" for 211 k' in R. To show this,

let £: A— A be the linear map defined by

f(e"i') = Giv
£(el) = ei—eé,
f(eg) = eé,

Then (1%,1) of case 13 page 74 impiies that

* - A ot mn [ we ¢
£ (x*y) f[§a1b1+a2b1+k“agb2)e§]

ne N ne et UL [ BT ]
= (alb1+a2b1+k agbg)eg’
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whereas, (14.1) with k! = k"™ implies that

£(x)of(y) = £(ayey+afelrayey)of (bycy+bleh+byey)

n"": iot Vaqittpo ! il 1_ ‘e U ]
[(2y+agres agetsavet|o kbi+vé?el

~tires et |
'”Ba¥+ag)(bg+wg)+(a2+ag)(-ﬂg)+km

(=an) (=b3) |es
e et e e

Therefore we are done since f is 1-1 and onto (seepage 43)

imply that the cases 13 and 14 are isomorphic.

Case 15, PFinally we turn to the case where all
kl’ k2, ks, k4-are not zero, With this assumption and
(**) we obtain,

¥y =. a
xXH*y (klalb1+k2clb2+k3g2b1+k4a2b2)es.

> ch a i >t 1 v g ]
We choose new basis Crv €3v O3 such that 2 e 18,

= (k2el-k1e2), eé = g Then we can see that

(e')2=ei=k1e3 f kleé. )
= el(kzgl-kleé)=k2ei:k1e1e2=k2k1e3:k1k2e3= o,
cjei = (kyo =k eple, =kyoi=k e e =k k oymk kyoy
= kl(k2:k3)eé' ) B
(e?)®= (kzel-k1e2)2= kgei-k2k1e162~k1k2e2e1+kie
9 _

3.
2k163—k2k1k2e3-k1k2k3e3+k1k463'

= & 1
=k (k k =k ky)el,

2
2

k

and hence
B = thHt e (BN | e, o 151 1
(15.1)x*y Lklalb1+k1(k2”k3)a2b1+k1(k1k4 k2k3)a2b2}es,
fri RlatiBlatillal
y = blel+b2e2+b3es,
k2, k3’ k, are not zero,

atat tobtintat
for x = u1e1+a2e2+a3e3,

] 1 YRS l~ . ) :r\: L
1ai, bix i'=m 1,2,3 CR. cad'all k, ’

ave a as cne zero SO We are a a Pprevions co$e.
We hav t least e} ‘back to 3
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As & conclusion, the nilpotent algebra A over a
field R with dimension A = 3, dimension A2 = 1 and
A; ={0€, possesses an infinite number of mon - isomorphic
multiplications which can be divided into 6 classes.
< i =7 - = b
That lg, for each x ay€y4+ap@ tageqy ¥ b1e1+ 2e2+b3e3,_

{ai, bi%i = 1,2,3 CR, we have

(1) xy = a,b_e

£°1°37
(2) Xy = azblez,
(3) xy = (a1b2+ka2b1)e3, Tkl »1 in R,
(4) Xy = (alblfazbz)e3.
(5) Xy = (alb2ba2b1+a2b2)e3.

- T
(6) Xy (a1b1+azb1+kazb2)e3,kj)z-1n R,

Furthermore, we shall prove & theorem ~about the
isomorphism between a nilpotent algebra and a quotiént
algebra of a polynomial algebra by an ideal. We shall

begin our discussion with a definition.

Definition 5.7 * A nilpotent algedbra.A-ever a field K.is

czlled a free nilpotent algebra iff for each x,y in A
Xy = 0 =3 0¢k{(n such that xcA¥® dna yéAn_k

The converse condition is trivially true.

Theorem 5.8 : A free nilpotent algebra 4 over a ficld K
(Ansiog for some smallest positive integer n)i) with
dimension of A = n = 1, ic isomorphic to the quotient

algebra of a polynomial algebra by an ideal ie. A X

X, {x:%xnﬂ) ‘
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Proof. First, we claim that AZ>&2DAql,..?DAn = {OE.
Suppose instead that A" = e for some m{n, then we

can see that

Am+2 - Am+1 s Am+1 = Am
Am+3 = Am+2 L e Am+1 = Am
An " Am’

which implies that A" = {Og. But trig contradicts to
that n is the smallest positive integer such that

Fig ={OS; Therefore,

PEPS AR Lt

Since dimension A=n-1, then the above result yields

that dimension of [32 = n"2., dimension of A3 = n-3,..-.,

dimension of A™"1 .4,

Let x # O be in A*~A2, then xn‘¥€:A9‘;. Sappose that

-1 - ke , " .
x0T . O, then XX % =_0. This contradicts the

hypothesis that xy = O =)—] O <4k «n such that x eAk,

yg;Anfk. Hence, 1 + 0, let e = x, then e is a basis
of "1, Consider ™72, wio claim that ™2 is independent
of ™1, Suppose instead that e®2 = 2e™1 for some a

in K and a ¢# O, Then

P (e - ae?) = 0.

Since en-se An'~'3 and e = aeze,A ~ A2, then this contradicts

A flem '
the hypothesis, Therefore, e 2 i’ independent of

4
ne1 - Nes : ne=2
e « Hence, e 2,e-¢1, forms_a basis of A ~.

By repeating the same method as abocve we have

N1

that e, 62,,,,.,e is a basis of A,
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Next, we look at KX o For y K x%/
» o xn_l) : q[- (xn-l)
we can write

y= a.xX +a x2+oooq a ; Xn-l, {ﬂi(‘CK’ i =1'2’3’--~n

1 2 Nel

Now, let £: Ks [x}/ n;;.Abe a mapping such that
K /(X

x )
f(l). = 2 fork=1,2,..--n-1.

It is obvious that f is a linear, 1-1 and onto mapping.

Next, we will show that £ is a homomorpzism,. Let
yy2z €Ky Lx;/ i then
éx ) S L § 2 ne1
y = a1x+a2x +eose +an_1x y 2 = b1x+b2x +....+bn_1x
for iai, biLXC K, i = 1,2,e.0sn=1., Then
f(yz) = £ [ﬁalx+abx2+....+ I xn-l)
(b1x+b2x+....+bn_1xn-1)]
= f[_(albl)x2+(alb2+a2b1)x34
+(a1b5+a2b2+a3b1)x4+....
V= (aibn_2+a2bn;3+....+ an_gb )xn-l}

2 3
= alblf(x‘) . (a1b2+a2b1)f(x ) toooe

N1
+(a1bn_g+a2bn_3+....+an_2b1)f(x )

2 3
= alble +(u1b2+82b1)e +-0-+(&1bn~2+a2bn_3

n-l

+an_2b1)e ;
2ot ne1i -~ n=-1

= (ale+u2e +teeetn @ )(b1e+b2e +...+bn_1e )

= [a E(x)ragf (xP)weuna,_ £(x"1 ]

(b, £ (x)ebyf (x%) 4euawn _ (x|

= 2 n-1 2 nNne1
f(a1“+a2x +esetl x )f(b1x+b x +...+bn_1x )
= £(y)f(z).

Therefore, A is isomorphic to K, [x}/cxn_l)and the theorem

Nei 2

is proved.

QeBeD,
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