CHAPTER III

THE WEDDERBURN=NMALCBV THEOREM

The material of this chapter is drawn from
reference [2]..
Throughout this chapter A denotes a finite—dimensional

associative algebra over a field K and M a left A=

module which is also assumedtobe finite dimension over K.

Definition 3,1 : Let A and B be two algebras. By an

algebfa homomorphism from A into B is meant a function

fiA—ﬁB such that
f(a+db) = £(a) + £(b), £(ab), = £(a) £(b), a,b €A,

Definition 3s2 ¢ A left A=module W is called an extension

of M if there exists an A-homomorphism:@of W onto M, The
kernel of @ is called the kernel of the extension,

Let N be the kernel of an exteasion @-z W—>M. Then

the extension is called a split extension if N is an
A-=direct summand'of W, that is,
W=N@® Mf
for some A:submodule Mt of W,
With this definition, we have the following d
resﬁlt.
Lémma 3.3 ¢ Let@: W-M be an extension of M with kernel
N. The extension is a split extemsion if and only Aif

there exists an A-homomorphism{l of M into W such that

0p- 1+



Proof : Pirst, suppose that W is a split e#tension of M,
then W = N & M' for some A;-submodule M* of W. Since@is
an A-homomorph;sm of W onto M; theﬁf@maps M* isomorphically
upon M, v
Therefore, there exists q): M—>M' such that @ia 1; for
each meM,@ (m) j_.s uniquely de.termined by the condition
that § (P(m)) = m,

To prove thatt}is an A-=homomorphism,. Since@is

o |
an isomorphism of M onto M, then for each m, n €M there

exist m} n? in M' such that
Gm®) =m,
@(n') = N

Therefore,
P (men) =P (P (mt) +P(nr))
=P (Pm* + an))

= m' + n!

qz(:n) +Q(n)

@(a@(m'))
‘P‘CP""‘“"”

= am'

.aIP(m);.

For a A, we have

4{) (am)



Therefore, 1}) is an A~homomorphism with the required property,
Converéély,,let 19 s M---) W be an A—homomorphism such

that ?1{) = 1. Let M LP(M), then % maps M isomorphically

upon M. For each a E W , there exists m’ & 4’ such that

é(a) . (ﬁ (m).

Hence 5
@(a—m ) o= O

Since N is the kernel of @, then a-m dis in N and M n H = {0}

Therefore,

M/ /= J@M

This completes the proof of the lemma.

% Q.E.D.

Remark : Let @ tW —>» M be an arbitrary extension with kernel N,

and let T = Hoﬁk (M,l!)'.‘ If .we definé operations in T by

(za)m = z(am),
and e b

(az)m = a(zm), m &M, a €A z€FT
Then T becomc:as -a'n "(a-:i(.A A).-bimodu.le. ' Let l&) be a K~homomorphism
of M into W such that: @t} A St t‘1e existence of II/ is clear

since there exist K-subspaces of W complementary t:o N, Define

3 HomK (A,T) by

f(a)m ?(am) - atjD (m), afghr mEM

The function f measures the extent to which 11} misses being an

A—homomorphism.

We 'can see that f(a)m is an element of N,
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because for all a € A and m &M we have
Cdam - Pdem - 2]
. (M (am_) —.?é i q,(m))
Since @m an A-homomorphism and @q) = 1, we obtain
@(f(a)m) = am-am = O,

To check that f is a K~homomorphism,

f(cX a)m = ‘lP(O(am) - (OLa)tP(m), L& K

: o((?(am) - d\atp(m)

A f(a)m, A € K

Furthermore, we have

(af(b) + £(a)b)m

af(b)m + f(a)bl'n'

3[1]2 (bm) = bq/(m)] +[q; (abm) - a(p(bm) ]
1{)(bm) - abq)(m +1P(abm) - aq{(bm)
q;(abm) - ab(P(m)

f(ab)m

That is, f(ab) = af(b) + £(a)b

This remarks lead to the following -definition.

Definition 3.3 : Let T be an arbitrary (A,A)—bimodiule.

A K-homomorphiétﬁ f A—-'b T is 'cal-leAd a g-enerali.zed defivation if

£(ab) = af(b) + £(a)b for all a,b in A.
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For any fixed t € T, if we define f : A —> T such that

f(a) = at - ta , a €A

Then, we can see that f is a generalized derivation because

af(b) + £(a)b a(bt-tb)+(at-ta)b

abt - ath + atb - tab

= abt -~ tab

f(ab)

This generalized derivation is called an inner generalized derivation.

The connection bétwéén t:heée videae an& wéxtensions of modules is
given by the following lemma.
Lemma 3.4 : .Let W be an A-module and (’é: W--3» M be an extension of

a left A-moduié M wrivth kétﬁél N, let Q $ M ;-)W Be a K~homomorphism

such that @l]! = 3 'fﬁe ekteﬁéic;n. @ . I-' - M is a split extension

iff the generalized deriv.améi'on f ':. A-—-; T = ﬁdmk(H,N) .gi.ven by
f(a)m = (.E (am) - atk(m) , a€A, m€M

. is an inner generalized derivation.

Proof : First, suppose that f is an inner generalized derivation.
Then 4 an element t € T such that
(1) fla) = ate- ta, a & A.

/
Let q{ be a K=homomorphism of M —s W such that

@’(m) .= " ‘q/ (m) + t (m), m € M.



Then (ﬁzp’(m) {? P @ + @ t (m)

Since t € T, then t(m) e N which is a kernel of@ @t-

and since él} 1, we have A
@Z:P (m) ."' m . m € M

cia ?(P 1

Moreover, for all a 6A we have
' q_; '(am) ty (am) + t (am).
Since o f(a)m 1:9 (am) - a{f(m), then
‘(P (am) = f(a)m + a‘(’P(m) + t(am)

std adtice T 1o an (4,0) SAalALEN, toam) % ( Eo)m.
Therefore, 1{, ‘(am) = £@n +a@ + ( ta)m.
Then from (1),

: ¢/ (am)

o e Sp(m) + (a t)m-( ta)m+( ta)m

(P(m) + (at - ta)m+( ta)m

- rf(m) + a t(m)
= lf(m).
Hence, LE is an A—homomorphism of M —p W,

Then by lemma 3.2, § t W —-, M is a split extensioﬁ ‘

Conversely, suppose that 3 an A-homomorphism 1?*: M-V

such that @1{1 - 1.

.Let t be defined by

(2) " t(m) - ?(m) -‘LI(m), n &M

12
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Then

B @ tm) = @@'&m) - @Lf(m),

= 0, m & M

That is @ t=0and t (m) is in N, Since q.'l*and (E are K-homomorphism,
t is a k—homomorphiéﬁi; Trhe‘réfioré t & T = Homx (M,N) .I Moreover,
for all a € A we have |

.f(a)tﬁ“ = @ (am) - aff(m), a&A, mnEM
bk T e get i R ; il .

t@n = | @en) - tlam) ] -2 (- em]
Since 1}'*:{.8 an A-homomorphism, (k‘(am) = aff*lm). Therefore

f(a)m = a q/*(m)- t (am)-a ?‘(m) + a t(m)

= (at - ta)m

That is f(a) = at - ta , and the lemma is proved

Q.E.D.

Now, we come to the case of extensions of algebras which is

similar to thé case“o‘f i:he exten.sions”of- modules,

Definition 3,5 : Let B be a finite-dimensional algebra, and @: B —A

a homomorphism of B om:‘o an ~algebra IA, with kernel N. Then B is
called an extér;sidn .o'f A with l;évrnel N,

The extens'ién”@ t B— A ié calleci a split extension 1f there

exists an algeb‘ra—homomol.phism (P .Of A""" B AéUCh that @% = 1.
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The proof of the following lemma is similar to the proof in the

module case,

Lemma 3.6 : Let @ : B—>» A be an extension of A with kernel N. The
extension is a split extensionif e;ﬁd ‘only if ‘there exists a subalgebra
Al of B such .tha'r;“ |

Al@ N (vector space direct sum).
Proof : 1If the extension is a split extension, then there exists an
algebra homomorphism 1,2 : A ~» B such that @(P- l. Let A = ?(A),
then @ maps‘ Al ﬁi;cimofphican); onfo Ai T'nérefore, for each b in B
: N dy &/
there exists a £ A such that

: . 3 o\
dw = da).

That is

@(b-a) = o.

i e, e - -

Since N is the kernel on, b-a’ is in W and A’ ﬂ N -{ }

Therefore,

7
BN (O @ N (vector space direct sum)
Conversely, let

¢ A=
B = A@®N (vector space direct sum)

Since @, is a homomorphism of B onto A with kernel N and A N ne= 0},
@ maps A’ isomorphically ont:o A. i
That is, for ‘each a in A, we may let ? (a) to be uniquely determined

in A such that

@@@ - e
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Then Q is an algebra homomorphism with the required property, and B
is a split ext:ension. : |
This completes the 'pro(re of the lemma,

Q-E.D.

Remark : As in the case of modules, we can associate with an extension
§ : B—> A a function from A to an (A, A)-bimodule.‘ 'Let (¥ be a
F~homomorphism of A —3% B such that §V:P = 1 and let N be the kernel
of Q, the equation 7 N .
(1) £(a,b) Q (ab) - (f(a) ?(b), a,b€ A
is a bilinear funct:lon such that Ta
@f(a b) = LP(ab) - @(f{(a) G))
Since @ is  algebra homomorphism of B —> A and @t{- 1, then

@f(a,b) w7 b wakbA ~ O a,b €A,

Therefore f : AX A —» N, The function f measures the extent to
which 1P fails to be an algebta homomorphism.

- - B A e

From (1), we: have
! () = £(ab,e) +  (ab) (o)

Using (1) again, we get

(2) (P ((ab)c) f(ab,c) +T(a)(Y(b)‘f(C) + £(a,b) J(c)

where as

¢ Gacee)

£(a, bc) +1¥ (a)lY(bc)

f(a bc) +1E(a)t¥(b)tk(c) +<y(a)f(b ¢c)

Subtracting (2) with this, we obtain

. a4 Ot
Lj U L o d
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£(ab,c) - £(a,be) + £(a,b) Ple) ~a) £(b,c) = 0O

In oxder to égfine f to be a function from A to an (A,A)-~bimodule
we have to mkeN into an (A,A)~bimodule in which the operétionsare
defined by “ Thee.
s (P(a) and
an = (@,  nEN, acAh
and the sufficient condition to make N into an (A,A)~bimodule is
that N° -{oy. : | |
For in this ca'se',' 2
(ma)b - n@b) = GEE)IP® - aiab)
= « nf(a,b)

Since f(a,b) is in N and NZ = {03,

(na)b - n(ab) = 0.,
Now, we come to the néxt défiﬁitibﬁ whiéh .is Amotivated by the module

case,

Definition 3,7 : Let A be an algebra over K and N an (A,A)-timodule.

A bilinear functi«';n .f' . A XA - Nis éalled“a factor set provided that
RS e e el

f(ab,c) - f(a,bc) + f(a,b)c -~ af(b,c) = 0 for all a, b, ¢ £ A.

The factor set f is called a split factor set if 3 a linear

transformation F : A - N such that for all a and b

" £(a,b) = aF(b) - F(ab) + F(a)b.
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Lemma 3,8 : Let fp: B—A be an extension whose kernel N
has the property that N? = {Ok, and let £ be the factor
set defined by
(1) £(a,b) = § (ab) (a) (b)
relative to a K-homomorphism*f: A—B such that @tpa 1.
Then £ is a split factor set if and only if the extension
is a split extension,
Proof ¢ Riret, suppdse that f is a split factor set, thean
there exists a.lineai transformation F: A—>N such that
for all a,b in A
(2) f(ayb) = aF(b) = F(ab) + F(a)b.
Define the linear map 4?': A—B by_ .
't}:)'(a) = 1{’ (a) + F(a).
Then,
PP(a) = ¢Pta) + QF(a)
Since F(a) is in N, then @F(a) =0, Thereforeéq/(a)
= a implies that ?4’)’: 1
Furthermore: for all a, b in A, we have
%‘(ab) = {P (ab) + F(ab)
Using (1), we get

g’ (ab)

Then by using (2)

tE'( ab)

£(a,b) + 1}3 (a)tg(b) + F(ab).

aF(b) = F(ab) + F(a)b +‘f(a)@(b) + F{ab)

aF(b) + F(a)b +tP(a)‘q)(b)
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Since F(a), F(b) € N

F(a)hb F(a) ? (b) and

aF(b)

1 (a) F(b)
and  F(a) F(b) 0. dex W ={o .

1 (2)F(b)+F(a) ({/(b)+ ) Q(b)w(a)f(b)
= [ 9 @+F@)] [ P ®+F®) ]
= @ o,

/
That is (J'is an algebra homomorpbism such that (Pt[l- 1.

/
Therefore, 1¥ (ab)

Thus, the extension is a split extension
Conversely, suppose that the extension is a split extension.
Then ] an algebra homomorphism (E' : A—> B such that @1{’- i.

Define a linear transformation F by

(3) F(a) = l?’(a) - @, a €A

@(P (a) - (Pﬂf (a)

Then, _ é F(a)

= 0 for all a in A.

0 and F(a) is in N for all a in A :

This implies that @F

F: A-~-3>» N,

Moreover, for all a, b in A we have from (1) that

fGa,b) = § (ab) -1¥(a)(¥(b)

Using (3), we get

£(a,p) = [ h/ab)-F(ab)] -[tp’(a)-r(ajL(P'(b)-F(b)]
= gan)-ra)-T Porr@fo+ Pla)F(b)-F(a) F(b)
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/
Since N2 = 0, F(a)F(b) = 0 and since 1? is an algebra homomorphism,

Vi) = ¢ J'm.
q

Therefore,
£(a,) = F) )+ a)ro)-Fiab).
By using (3) again

£(a,p) = F(a) [Fo)+ )| + {F(a)+1£(a)]F(b)-F(ab)

- F(a)Q(b)n.E(a)F(b)-F(ab).

Since the operations in N is defined by

na = n ‘ﬂﬁ-(a) and
an = @P (a)n,, we obtain
f(a,b) = F(a)b+aF(b)-F(ab).

That is f is a split factor set, and the lemma is proved

Q.E.D.

Theorem 3.9 : Let A be a separable algebra over a field K, then
every generalized derivation is inner and every factor set defined

on A is a split factor set.

Proof : Since A is separable, then by the definition of separable
albebra in chapter I, there exists a K-basis {al,...,an3 of A and

a set of elements {a’l,... aé% of A such that

n
/
(1) :E: ay ai = 1 and
i=1



(2) For all a in A

n
aja = 1}:_{ )\1‘1(a)aj where )\ij(a)é K

implies

n

aa; = Z aj/ )\ji(a)'

j=1

Let T be an (A,A)-bimodule, and let £ : A —>T be a generalized
L G
derivation of A, Let t = z: ay f(ai).

i=1
Since f(ai) is in T and T is an (A,A)-bimodule, we have that

t €£€7T. Them

n n
. / ’
at - ta = az a, fa)) '-[Z a, f(ai)] a
i=1 i=
s
/ ’
= aa, f(a,) - a, f(a,)a
= : i -{;-‘1 i i
Since f is a generalized derivation,
f(ab) = af(b) + £(a)b , a, b €A
Therefore, X
. n n n
/ ' i i
at-ta = D aa! f(a)- 2.a! £(a,a)+ ) a! a f(a).
= i i f=1 : 4 » 3 iZ=l - i -
Using (1), we get
n n
g / / y
(3) at-ta = E::—.ta:l f(ai)— Zai f(aia)+f(a).

i=1 i=1

20
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n n

Claim that Z__}a f(a a) = z aa f(a ).
i=] i=1
n
!
To prove this, let us consider Z a, f(a,a),
= i i
n
!
12; a; f(a a) - - ay f(z )\ (a)a)

Since f is a K~-homomorphism and Aij (a) is in K, we have

n ; n n
%}1 a £aa) = g ?_f @)
B0
= :L:‘i ag A 408 £a)).
Using (2),
n : n n
ZJI fa) = ?;1 aaf f(a) = :1;1-' sa] £(a)).
Therefore, in (3) we obtain
at-ta = f(a).

That is f is an inner generalized derivation.
Secondly, let h be a factor set such that h : A X A —> N where N
is an (A,A)-bimodule. Let F be defined by

n

F(a) = 121 h(a, a.’i)‘e.1 "

Since h(a,a;) is in N which is an (A,A)~bimodule, F(a) is in N for

all a in A.
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Therefore, F is a linear map of A into N. Then, we have

n n
aF(b)A-F(aB)-l-F(a)b - Z ah(b,a;)ai— g;i h(ab,a;_)ai{iZ’;h(a,ai)aib

i=1
Since h is a factor set,

h(ab,a’i)-—h(a,ba;)-i-h(a,b)ali—ah(b,ai) =0 for all a,b,a, in A.

i
Therefore,
n .
aF(b)-F(ab)+F(a)b = [ Zh(ab ai)a - Z h(a,b a/i)a1
i=1 i=1
n
+Z h(a, b)a a1] Z h(ab,a )a
i=] :
+Z h(a,a )a b
i=1
» n n "
/
= Z;l h(a,b)a’i ay -§1 h(a,bai)ai+ ‘{:‘lh(a,ai)aib.

Using (1), we get

aF(b)-F(ab)+F(a)b) = h(a,b)~ i h(a, bai)a + E h(a a )a b

i=1
n
'Consider Z h(a,a;)aib, we have
i=1
n _ n
7
2 h(a,ai)aib = Z h(a, ai) Z A (b)aj
i=1 i=1 i=1
% n

z Z j(b)h(a,ali)aj

j-l i=1
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= Z h(a, Z }\ (b)a )a

j=1 i=1

/
= jZ-:l h(a,baj)aj.

Therefore,
aF(b)~F(ab)+F(a)b = h(a,b)

That is h is a split factor set and this completes the proof of

the theorem.

Theorem 3.10 (Wedderburn-Malcev Theorem) :

Let B be a finite dimensional algebra with multiplication
identity 1 over a field K. with radical N such that the residue class
algebra A = B/N is separable. Then there exists a semi simple
subalgebra S of B such that B = S{#) N (vector space direct sum)

If §, and S2 are subalgebras such that B = Si @ N, 1 = 1,2, then
there exists an element n &N such that

5, = (1-n) §,(1-n)""

?_5_99_5 : First, we shall prove that at least one subalgebra S exists
by transfinite induction on the dimension of B, assuming that S
exists for all algebras of dimension less than the dimension of B.
If N2 = {Ol) » then from Theorem 3.9 ; every factor set defined on A
is a split factor set and from Lemma 3.8 ; the extension is a si)lit

extension. Therefore, by using Lemma 3.6 we obtain the result that
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there exists a subalgebra A1 of B such that B = Al @ N (vector

space direct sum) and this proves the theorem.

2t N° # {0% , then (B/N2 : ¥) €< (B : K). Now, we shall

prove that N/NZ is a nilpotent ideal of B/NZ . Since N is a radical

of B, N is a maximal nilpotent ideal of B, that is there exists

k S0 such that N“={o} N

k 2 2 2
(N/,.2) '{ Z: (a, M) (a, N)...(a, +N°)
N finite il 12 ik

a4 €N, § = 1,2,...k}

2
= 2 : &, AR GE, N
{ ) A /2E 1K

aij EN, §=1,...k E

Since Nk = {Os » 84849000 A= 0 for all 1 finite. Therefore

2

(N/NZ)k = N . It is clear that N/NZ is an ideal of B/NZ . Hence

N/2 is a nilpotent ideal of B/y2 . Claim that it is a maximal
nilpotent ideal of B/NZ . Suppose that J/NZ is a nilpotent ideal
of B/N2 such that

J/NZ 2 N/NZ

This implies that J D N. Since J/NZ is the nilpotent ideal of
B/N2 s We can prove in the same way as above that J is a nilpotent

ideal of B. But N is the maximal nilpotent ideal of B. Therefore

J = N, That is N/NZ is a radical of B/NZ and we have
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(B/y2) / W/ 2) = B/, = A
which is separable. We can conclude that N/NZ is the radical of
B/NZ » (B/g2) / (N/g2) 1is separable and the dimension of B/\2

is less than the dimension of B. Therefore, we can apply our

induction hypothesis that there exists a subalgebra 81/N2 of B/NZ

such that

(1) B/j2 = Bind @ N/ 2

Therefore,

o B = § * N, where 5§ M N= N |

Since N is nilpotent, we know that N #-Nz and this implies that

S1 # B. Moreover, from (1) we have

2

Sy = (B2 1 (N/Q2) B/, = A

which is separable.

Agein, we can apply the induction hypothesis to Sl’ yielding a
subalgebra S of Slisuch that
(3) S = S+N° where § ey’
Combining (2) and (3), we obtain

B = S+N , SO N =0

and the first part of the theorem is proved.



Now, for the second part of the theorem, suppose S1 and S

are subalgebras of B such that B = Si@ N, 1 =1,2. Then by

Lemma 3.6 J algebra homomorphisms Q and Q of A into B
1 2
such that @4}1 =1 and @@ 5 ® 1 , where @ is the natural
mapping of B:—>» A and Si = '\_:E i(A) i =1,2 . Because the
)[LP { ({71 = 1,2 are algebra homomorphisms, N becomes an (A;A)-
bimodule if we define
(4) " e = nl,(@ and
an = ‘q; 1(a)n

Then consider the function f : A —> B defined by

B = P @ -F,m

Since @'I.I)i-l s 1= 1.2

@f(a)

That is £(a) is in N for all a in A, and we have

£ay) = AP by =D

Since 1& . and 1P 2 are algebra homomorphisms

a=-a = 0 for all a in A

£@) = P §® - @ P ,0)

- @l(a)[@l(b) _1]/ 2(b)] +L2111(a)—qf2(a)]4_;2(b)

- P,@ @ + £ D0

2

26
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But f(a) is in N, by equation (4) we can write
f(ab) =  af(b) + £(a)b , a, b & A.

Therefore, f is a generalized derivation, and since A is separable,
f is an inner generalized derivation by Theorem 3.9. Thus there

exists n in N such that

f(a) = an - na
. = 1{l(a)n—n‘l:yz(a) = a &8
But f(a) = <Il 1(a) - 1]2 2(a). Therefore,

P, @0 = () P,a), a Ea.

Since N is the radical of Band n € N, n is a nilpotent element.
That is there exists k > 0 such that nk = 0. Therefore,

1~nk L 1

That is
(1-n) (ntn®t,, 40" = g
Hence (1-n) is invertible and
'(I) l(a) = (l-n)q)z(a)(l-n)-1 for all a & A.

That is

s = (1-n) s2(1.-n)“1 , n &
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