CHAPTER II

PRELIMINARIES

Let us begin this thesis by recalling several definitions.

Definition 14 A ring R is said to satisfy the descending chain
e t————— .

condition fot'ia;éiévif;-§1§eﬁ deséeﬁding ch#in ofAideals of R,
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there exists an integer n such that In = In+1 = In+2 = L.
This definition is equivalent to the next definition.

Definition 2 : The minimum condition (for ideals) is said to hold in

a ring R 1if every ndneﬁpfy seﬁ of»ideals'of R, partially ordered by

inclusion, has at least one minimal element.
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Definition 3.: An algebra A over a field K is a ring A with an identity

element which is at the same time a vector space over K. Moreover the

are required to sé£i§£§ the>axiom"
oK(ab) = (sta)b = oi(ab), o EK, a,b€A.
Observe that these definitions yield the following result.

Proposition 4 : Every algabra A finite dimensional over K is a ring

with minimum condition.



Proof : Ler k& K and b € A, then Definition 3 implies that

kb = k(l.b) = (kl)b,

and

-~

(1) K (k1)b = k(1b) = k(bl) = b(kl) .

These imply that the set of elements

ke fu e
is contained in the centéfm;f‘A. andAié a field isomorphic to K . Ve
shall always identify K and TK éndvregérd k as = embedded in A,
Then (1) shows~£hat"evefy”ieft, right, or two-sided ideal in the
ring A is alsémabk éubspacé of Eﬁé véctor spaéeAA. Since the
subspaces of é fihiée;dimenéional vector space satisfy the descending
chain conditioﬂ; if foiloﬁs thaf A is a“ring with minimum condition,

Q.E.D.

Definition 5 : Let R be a ring with identity. By a left module over R
(or a left Rdmaduie), wé meén a commutative group M (wfittenladditively)
together with én operation'of—multiplication which associates with each
r ¢€¢R and a & ﬁ a u‘niquek e.lenient.ra & M such that the following conditions
are satisfied : : ' ;

(1) '(f¥§)a . ra + sa

(2) (rs)a - = r(sa)
(3) r(5+b5 - ra + rb

(%) S

for all r, s e,ﬁ and a, B>(;M.. The pérallel notion of a right R-module

can be defined'symmetficaiiy;
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Definition 6 : An abelian group ! is an (R,R)=bimodule over the ring

R if M is both a left R-moduie and a right R-module, and if we have
(sm)r = s(mr)

for all r, s€é Rand m € M.

Defin_:ltion 7 ¢ A homomorphism of a ring R into a rin'g R is a
maﬁéing £:R—> R such that '
L ) = () (),
fGy) = EOEG), X, ¥y &R
Let M,N be commutative groups, written additively and let
Hom(},N) denote the ﬂset of a.ll homomorphisms of M into N, If we define

the sum of two hon;omorph:lsm f anci g by
(f+g)m = f(m) + g(m), m & M.

Then Hom(M,N) becomes a commutative group.

The additive gréﬁﬁ Hdm(M,M) becomes a ring with ap identity
element if we -‘def-:l:n‘e muitiplicatidn c;f Ahomomorphisms by composition,
namely o .

(fg) (m) = f(g(m)), - m &M
Now, let M and N be a vector spaces over a fieldk . Then

HoulK (M,N) denotes the sdbgrodp of 'Ilom(M,N) consisting of all mappings

f € Hom(M,N) such that
Eem) = f(m), =&k, m £V

The mappings in Hom !\(M’N) are called K-homomorphisms.



Definition 8 : An element x in a ring R is nilpotent if there exists

a positive ir:i‘,tege.r m sﬁch that X" = 0, An element x in R is idempotent
if xz = x # 0.‘ A lbef't, 'right- or two-sided ideal I of R is nilpotent

if there exists a positive intéger m such that I" = io‘j .

gesey Inof a ring R’

Definition 9 : Given a finite number of ideals'vIl, 1,

we define sum in the.n.at.utai wéy -

. I+lf,+._...+ In = a+a2+...+ a aié Iig

1 1

2

Then Il+ Lyteeot Iu is likewise an ideal of R and is the smallest ideal

of R which confairié evety. I 1;

Definition 10 : Let R be a ring with minimum condition. The left ideal

which is the sum 6f aii Inilpotent: ‘left idealé of R .is called the radical
of R and is den-dt;.e-d by rad B. Ve say .that- R is semisimple if rad. R = 0.
We have the following theorem of which the proof can be found in

reference (2] .

Theorem 11 : The sum of all nilpotent left ideals in a ring R with
minimum condition is a tﬁwo-sidéd hilpotent ideal N, The ideal N contains
every nilpotenﬁ riéhf 1cieal of R, and the factor ring RIN has no nilpotent

ideals except' 0.

Definition 12 : Let A be a finite-dimensional associative algebra over

a field K , Then A 1§ 'sa:i.‘;:‘l to be a separable algebra (over K) if A is

semisimple.



The proof of the following theorem can be found in [2].

Theorem 13 : Let A be a finite~dimensional associative algebra over
a field K . Thén A is "a éeparéble élgebra over K if and only if for
some K-basis 1&1,3.2,“.-..,» ang of A, there exist elements 2112, ---:8n

in A such that

A
&y Z Filie AR
o1 Bt
and
(2) for a € A,
aa Z ky (a)a : ky (a)E&K .,
M e 0 . 3
implying that
{ o
£
aa, = :Z;_; 3 ji(a)

Notation 14

RO[x} ax+a2x2+...+axn1’ak€R;n)O} C

Notation 15

For an algebra B over a field K we denote (B : K) to he

the dimension of B oirél; K.. .

Definition 16 : A ring R# 0 is called simple if R has no 2-sided

ideals other than' 0 Ian.d .R.

-Definition 17 : A ring R is called a division ring if its nonzero

elements form a group (not necessary commutative) with respect to

multiplication.
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