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The experimental and theoretical investigations on heavily

doped semiconductors have marked a considerable progress in the recent
years, This is due to the fact that such materials are technologically
important and, at the same time they pose challenging problems with
implication reaching far beyond the field itself. The technological
applications of such heavily doped semiconductors go well outside the
tunnel diode.l These semiconductors are also used in 1aser% in
thermoelectric devices, in semiconductor catalysts, and sone active
components of solid-state systemsl. A second reason for the interest
is the significant Progress towards an understanding the disordered

materials. One extreme case of heavily doped semiconductors is that

of disorder alloys3.

A serious study of heavily doped semiconductors started
about 20 vyears ago4, it was stinulated by the invention of a number
of devices in which a; important role is played by electronic states that
are produced in the forbidden band under the influence of impurities.
The new property. of these impure crystals is discovered when the
techniques for Preparing pure semiconductor single crystal are

developed. While the gradual reduction of impurity concentration

is achieved it has become clear that the technology of semiconductor



devices requires not simply crystals of maximum purity but crystals
with impurities introduced deliberately in precisely known amounts,

. 5
which - are called "“doped semiconductors."

In this thesis | the densitv of states available to

electrons in heavily dopea semiconductors is studied

i 6
because many quantities such as, Fermi energy, energy gap7 can be

determined from this density of states. Electron in a. perfect,

imperfect crvstal, and heavily doped semiconductors will be considered

respectively,

1.1 Perfect crystals

The common characteristic of the perfect crystals is their

periodicity, which implies perfect ordering of the atoms in regard
to their position, composition and orientation (for non spherically

symmetric atoms) both on an atomic, or short, scale and on a

macroscopic, or long, scale. The potential seen by the single
conduction electron is the same at every point in the crystal and is
taken as periodic with the period of the crystal lattice.

function for a one dimensional model is shown in Fig. 1.1a

array of positive ionic "cores".

The potential
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Fig. 1l.1 The one-dimensional perfect crystal potential V(x)
as a function of position x.
(a) The true potential

(b) The Kronig and Penney square potential

Of course, the precise nature of V(x) is complex and the
solution of Schrodinger equation including such a function is complicated.
However, Kronig and PenneyB made certain simplification which makesthe
mathematics manageable, V(x) is approximated by the series of square
potential wells as shown in Fig 1l.1b. In regions for which x lies
between zero and a, the potential energy of the electron is assumed
to be zero, and in regions for which x lies between -b and zero the

»

potential energy is taken as VO. The value of the Kronig and Penney

model is that it enablesone to take two Shrédinger equations for the

different regions.
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3-“2’- + (Ei“-EEH; = 0 for Os<x < a (1.1.1)
dx h
and
e +(%ME-%N = o0 for -bs< x<0 (1.1.2)
dx h
For simplicity, let the width of barriers, b, go to zero

and their hight to infinity, in such a way that the strength of the
barrier remains constant, or in other word, the potential is
considered to be a periodic delta function. Bloch showed that the
solutions of (1.1.1) and (1.1.2) are then of the form9

P (x) = U(x}elax 2 o

]

27K/L (el

where K 1is any integer and U(x), called a Bloch function, is a function
periodic in x with the period (a + b) and L = G(a + b) where

G 1is a large integer. When the usual boundary conditions of Y(x) and

Y (x) A x are applied,it is found that (1.1.3) is only a solution

for particular value of electron energy E which satisfies the equation

P sin(Ba) /Ba + cos (Ba) - cos (aa) (1.1.4) »
2ab ' 4
where  1im Y22 . p | (2on®) -e)] ¥ ana B =[ (2mm?) g]



It is noted that the energy gpectrum of the electron consists

of centinuous bands at allowed level separatea by farbidden gaps,

Eg as
depicted in Fig. 1,2a.-
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Fig. 1.2 Energy band scheme of perfect crystal.
(a) Simplified band structure of perfect crystal
(b) Density of states p(2) as a function of

enexgy E for a perfect crystal.

When tlie electrons are added to the solid, the electrons fill

up the lowest energy bands first. The highest energy band that is »

completely filled is called the "valence" band and the unfilled

or partly filled band is called the "conduction" band. 1In this
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band the electrons can readily change momentum states in an applied
electric field and contribute to a net flow of electrons (electrical

conductivity) in a crystal.

The electronic energy bands provide the basis for electrical
classification of solid as mgtal'semiconductor and insulator. An
insulator is a solid which the valence band is full, the conduction
band is empty and the energy gap, Eg , between them is too large to
excite electrons across Eg. In metal, either the valence and the
conduction bands overlap, so that both are partially filled, or
else the highest band is only half-filled because the atoms, e.q.
Nabhave an odd number of electrons. In semiconductor, there are
only a few electrons in the conduction band or a few unfilled states
(holes) in valence band which makeg only limited conduction possible.

In the last case the size of Eg 1is the most important,

The density of states p(E) for the perfect crystal, in
the so-called parabolic band approximation, is the same as the
result for no spatial variational of potential energy (Sommerfeld

0
model)l - However, the free electron mass m, is replaced by the

*
effective mass m which givesg

. 3/2

2m 1/2

p (E) 2) E (1.1.5)
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with E the energy in electron volts. Equation (1.1.5) is shown



in Fig. 1.2 (b) for equal electron and hole effective mass and an

arbitrary band gap Eg.

1.2 Imperfect Crystals

When impurities are introduced into the periodic crystal, for
example into pure semiconductor, the perfect periodicity of the
potential will be destroyed. Each impurity atom gives rise to a new
isolated impurity level in the forbidden energy gap. The deliberate
addition of controlled guantities of these impurity elements is called
”doping“s. The doped semiconductors are classified into main categories,
according to the type of charge carrier which predominates, n-type

and p-type semiconductorsll.

When an impurity, such as an atom of phosphorus having five
valence electrons, is substituted for a silicon atom in a pure silicon
crystal, the single electron in excess of the four valence electrons
required for the covalent bonding of the silicon lattice, be comes
free and moves away from the host phosphorus atom. The phosphg rus
atom that is thus missing one electron necessary to make it neutral
and is fixed in position as a positive ion in the crystal is called

a "donor". since the current carrier is the negative excess electron,
»

the silicon is said to be an n-type semiconductor, and the phosphorus
is called an n-type impurity, which forms donor level below the

conduction band. A similar situation can be produced in the opposite

-



direction by introducing an atom of a Group IIT metal, such as boron

in silicon. The boron has three valence electrons and is therefore
deficient by one electron required to reconstruct the covalent bond

in the silicon lattice. To make up this deficiency, the boron atom

accepts one electron from the rest of the crystal, leaving a hole that
becomes free and moves away from the boron atom. The boron atom that

has thus gained one electron and is fixed in position as a negative ion

in the crystal is called an “acceptor". Since the current carrier

is the positive excess hole,the silicon is said to be a p-type
semiconductor, and the boron atom is called a p-type impurity which forms"

an acceptor level in the forbidden gap above the valence band.

For a low density of impurity atoms, the impurity ions are
separated far enough from each other such that there is no interaction
among the various inpurities. In such a situation, each ion can be
considered as a separate physical system. For these isolated donor and
acceptor systems under thermal-equilibrium condition, the donor and
acceptor levels are calculated by using the hydrogenic model. For an
isotropic material with dielectric constant €, the effect of host
atoms can be crudely explained in terms of effective mass?’ +2 m;
(for an electron) and m; (for a hole). By solving the Schrddinger
equation with hydrogenic Hamiltonian one obtainsthe donor and acceptor

»
states lying at energies, -

N * 4,22
Eq = me"/2n% . (1.2.1)



and

E = ml:e4/2h252 (1.2.2)

below the conduction and above the valence band edges respectively.

Hence, it is to be noted that, there will be a non-zero
density of states inside the gap with a peak expected around the
position of the bound state corresponding to a single impurity as
depicted in Fig l.3a

-2 ==avily Doped Sértimsgieces

In the low-doping systeml3, as mention in sec 1.2, the
isolated impurity ion has been described using the hydrogenic model
resulting in the introduction of a discrete energy level in the forbidden
eénergy gap. As the number of impurity ions increase, eventually the
hydrogen-like wavefunctions on adjacent ions overlap and interact
causing the broadening of the discrete level ( Fig 1.3b) . For a
doping concentration at which the discrete level is beginning to
broaden the center of the impurity band is expected to be the same as
the position of the discrete level.ps one increasesthe doping’the
Screening length is increased due to the carriers from the ionized

dopants. The whole band then shifts towards the adjacent main band
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entities become one with a parabolic main band plus a tail. This
R defined the "heavily doped", or, in other word, a semiconductor is
considered heavily doped when the impurity band associated with the

doped impurity merges with either the conduction or the valence

bandm"15 see Fig 1.3c.
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Fig. 1.3 The density of states p(E) as a function of

energy E

(a) Single impurity atom.

(b) Low impurity concentration localized impurity
level located at an energy level Ed below
the conduction band.

* (c) Heavily doped semiconductor-merged impurity

band showing the band tails and the shift of

the band edges Eo.
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Evidence for band tails in the forbidden band of heavily
doped semiconductors was provided by the number of experiments on
tunnelinglﬁ, optical'absorptionl7 and luminescencels. The
electronic properties of heavily doped semiconductor depends largely
on the tail in density of states. For this reason theories of
impured semiconductors focussed on determining density of states in
this tail. For one-dimensional, Lax and Phillips. and Frish and
Lloyd20 consider the impurity potentials as the é-functions.
Quantitative three-dimensional calculations have been performed by
Parmente%lusing Perturbation theory and assuming a screened Coulomb
model for impurities. More recently'iilolff22 has used a more rigorous
perturbation type approach. He treats electron-electron effects
ab-initio and justifies the screened Coulomb model for the impurities

in the high concentration limit. However, the perturbation techniques

lead to the tail that cut off sharply.

Kane23 has combined the potential energy fluctuations with
A 105 "'24 5 .

the Thomas-Fermi method or semi-classical method, to calculate
the density of states. In this method he assumes that the local
potential is sufficiently slowly varying that the local density of
states can be defined just as if the potential were constant. The
calculation of the over all density of states then reduces to the
calculation of the distribution function. It is noticed that the

potential energy fluctuations at high concentrations are Gaussian,

the tail found by Kane is Gaussian. Owing to the omission of the

4
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kinetic energy of localization in the Thomas-Fermi method, the
density of states obtained from Kane Theory lead to the overestimateg

value,

y(E/n) m'3/2t2n11/2 e e (1.3.1)

I

p(E)

X
n-l/zg (e-6) 2 exp(-c2) ar

where y(x)

The most complete calculation of density of states in the low
energy, deep tail region of the impurity-band remains the optimal
fluctuation results of Halperin and Lax theoryzs'zs. Their theory
is the quantum counterpart of the original semi-classical theory
of Kane. Quantum effects were included by adding the zero point
energy of the electron states (kinetic energy of localization) which
raises the electron state energies and reduced density of states at

small energy below the semiclassical value obtained by Kane.

More recently , Sa—yakanit27_2g has used the Feynman path

integral technique30 to achieve an analytical form of density of
states. The density of states evaluated by this method agree with

that evaluated by Halperin and Lax25 i.e,,

‘v

o (E) = [am®y/e? ] exp [ -B(E)/2¢ | (1.3.2)
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The functions A(E) and B(E) evaluated by path integral method

are expressed analytically in terms of parabolic cylinder function ,
Although , it is difficult to obtain the numerical values of this
function, but it is more convenient to calculate the density of
states by evaluating the parabolic-cylinder function than by numerical

solving Hartree-Fork equation as was done by Halperin and Laxzs.

The most simply method, which providesone with analytical and
easilf usable expressions for the density of states tails, and which
enables cne to derive the validity condition of the last two theories
very cleary, is obtained by guessing an appropriate trial wavefunction
of Schrodinger equation, By this method Eymard and Duraffourg3l used the
simple Hydrogen-like wave function and applied the variational principle
to adjust the parameter of the wave function in order to maximize the
density of states. They recieved an analytical density of states
with the simple form. Because their trial wave function is the simple

one hence their results areonly in a good agreement with the computed

Halperin and Lax results in the range-of small valyes of E'= E/E2
In this thesis, the density of states is evaluated analyt;ially
by using the two different potentials, the screened Coulomb potential
and the Gaussian potential, For the case of the screened Coulomb
potential, the new appropriate wave function is chosen which does not
>

only give the better results but is also as easily usable a calculation as

31
Eymard and Duraffourg method , For the case of Gaussian potential,

the ground state Gaussian wave function is used. The detail of these
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methods is shown in chapter TIII. Halperin and Lax Theory 25 and

27-29,32

Sa-yakanit Theory are presented in Chapter II. Discussions

and a detailed conpariéon of present methods with Eymard and Duraffourg
31 ; 25 . 29

method =, Halperin and Lax Theory y and Sa-yakanit Theory are

presented in chapter 1IV. The computer programs using to obtain the

numerical results for Eymard and Duraffourg method and present methods

are given in Appendix A, B and C respectively.
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