CHAPTER IV

EMBEDDING THEOREMS

Some theorems concerning the embedding of a semiring in a P.R.D.
and a semiring in a semifield have been given already in Theorem 2.11,
Proposition 2.13, Theorem 3.21, Proposition 3.23 and Corollary 3.24. We

will develop some further embedding theorems in this chapter.

Theorem 4.1. If S is a semiring, then S can be embedded into a ring iff

S has additive cancellation.

Proof : Assume that S can be embedded into a ring R. Let
X, ¥, 2 € S be such that x +y = x *+ 2. Hence (- x +x) +y=(-x+x) +2

and so y = z. Thus S has additive cancellation,

Conversely, assume that S has additive cancellation. Define a
relation ~ on S x S by (a, b) = (¢, d) iff a+d=Db +c. Clearly = is
reflexive and symmetric. Let (a, b), (c, d), (e, £) € S x S be such that
(a, b) = (¢, d) and (c, d) = (e, £). Then a +d=b+cand c+ f=d+e.
Hence a +d+c+f=b+c+d+e, and s0 (d+c)+(a+f)=(d+c)+
(b + e). Therefore a + f =b + e and (a, b) = (e, f), so = is transitive.
Hence = is an equivalence relation on S.

Define + and - on_.‘.‘-_:;_g as follows : Let o« , P ¢ i_g_ﬁ Choose

- (a, b) € o and (c, P . Thenlet x+ P =((a+c, b+d] and

x P = [(ac + bd, ad + bc)] . To show + and » are well-defined, let
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(2, B) € = and (<, &) ¢ P o Then we have

a+b=b+a (1), and ¢ + d’=d + ¢’ (2),

(1)+(2)‘a+b+c+dnb+a+d+c. Hence (a+c)+(b+d’)-

(b +4d) + (a + ), so (a+¢c, b+ d) ~ (a + ¢, b’ + d) and + is well-defined.

(1) d; bd + ad = ad + bd 3).
(1) c; ac 4+ be = be + ac (4).
b (2); bd + bc = be + bd’ (5).

a (2); dc + ad’ = ad + ac’ (6).

(3) + (4) + (5) + (6);
(ac + bd + ad’+ bc) + (ad + ac + be + bd) = (ad + be + ac + bd) +
(dd + dc + be + bd). Hence (ac + bd) + (ad + bc) = (ad + be) + (ac’ + bd),
so (ac + bd, ad + bc) = (a¢ + bd, ad + Bc) and « is well-defined.
Claim that (S___;:'_S., +,+ ) is a ring.
Clearly VV o , P 4 € g%ﬁwe have that o + P ¢ _s_?;_s,
w #P =Po, (w k)T =t (PAT), ap e SXS, <P TP
and %(P¥) = @P)t . Choose (a, b)Ex, (c, d)C pand (e, £)¢ t. Then
4(+P ) = [(e(a +¢) + f(b + d), f(a + c) + e(d + d))]
= [(ea + fb + ec + fd, fa+eb+fc+ed)]
= [(ea + fb, eb + fa)] + [(ec + fd, ed + fe)]
(e, B)) [(a, B)) + [(e, D] (e, D]

- Feto  + 'I‘P N

Let xG S and « ¢ S x 8. Choose (a, b) €Ect. Then o + [ (x, x))
= [(a+x, b +x)] = [(a. b)] = ol andd.-l-[(b, a)] =[(a+b, b+a)] =
[ x, x)]. Hence [ (x, x)] Vx ¢ S is the additive identity and the additive

inverse of « s [(b, a)]. Therefore S x S is a ring.
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Fix x € S. Define 0 : S — S x S by 06(a) = [(a + %, x)]
\/a G S. Let ays 2, ¢ S. Then B(a1 + az) w=[((a1 + az) + x, x)] =
[a; +2, +x, 0] + ((x, ®] = [(a; +x +a, +x, x+x)] =
[(al + X, x)] + [ (::1.2 + x, x)] = G(al) + 9(32) and B(alaz) = [(3132 + x, x)]
-[(3132 + xz, xz)] = [(aja, + xz, xz)] + | (a;%, alx)] + [(azx, azx)] +
[(xz, xz)] = [(3132 + xz B a;x + a,x + xz, x2 + a x + ayx + xz)] =
[(al(a2 + x) + x(a2 + x) + xz, x(a1 + x) + x(a2 -+ x))] =
[((a1 +x)(a, +x) + x2, (a; + x)x + x(a, + x))] = ((a; +x, x)] [ (a, + %, x))
= 6(31)9(32) . Hence 0 is a homomorphism. Let r,;, T, ¢ S be such that
9(2:1) = 0(1:2). Then [(r1 + %, x)'j = [(t2 + X, x)], so 1y + x+x =

and we have that 0 is one-to-omne. Therefore

rz 4+ x + x. Hence r1 = *r2
S can be embedded into S x S. i

&

Remark 4.2. If S has an additive identity (0) or multiplicative
identity (1), then we have a natural embedding x ——> [(x, 0)] or

x —> [(x + 1, D).

Proposition 4.3. If S is a semiring with additive cancellation, then S x §
=

is the smallest ring containing S up to isomorphism.

Proof : Let R be a ring such that SC R. Define O : R—f-,—R -— R
in the following way : Let « ¢ R__:;_R Choose (a, b) € = and 1e:
O(%) =a - b. To show O is well-defined, let (a, b) € =« . Then
a+b=b+ a’, so a-bhb = a - b and 0 is well-defined.
Let &« , P € E“:s_R' Choose (a, b) ¢ o , (e, d)€P . Then
O(x +p ) =(a+c) -~ +4d) =(a=b)+(c=-a) =0 (x)+0(p)and B (=p) =

(ac + bd) - (ad + be) = (ac - be) - (ad - bd) = (2 = b)(c - @) = 0(=)O(P).
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Hence 0 is a homomorphism. Clearly € is one-to-ane and onto. Therefore

R-gt R
” = Rl

Define ¢ : S x S . R x R in the following way : Let

-~

W € 8.x8 :c S. Choose (a, b)C o and let p(*) = [(a, b)] where [(a, b)]
is the equivalence class of (a, b) in R x R. Clearly ¢ is a monomorphism.
Hence S x S is isomorphic to a subring of R x R. Since R = R X R, we

have that S x S is isomorphic to a subring of R and so S x S is the
=8 ~

smallest ring containing S up to isomorphism. #

Proposition 4.4, If S is a finite semiring with additive cancellatiom,

then § is a ring.

Proof : Let x ¢ S. Defime f_: § —S I::y_f"x (y) =y +x Vye S.
let_yl, Yo € S be such that fx’ (Y-l) = fx (yz). Then ¥, +x =y, + X, s0
Y1 = Y2 and hence fx is one-to—cﬁe. Since S is finite, fx is onto.
J ec S such thsn:fx (e) =%, sox=e+x=x+e. Let z C S.
Then Ju ¢ S such that fx (u) =2z, s0ut+tx =X +u=2z. Therefore
z+e=e+z=c+(x+u)= (e +x) +u=x+u=3z, so e is the additive
identity. Let v €& S. -] =v¢ S such that f; (-v) = e. Hence -v+v=e

and -v is the additive inverse of v. Therefore we have that S is a ring. #

Remark 4,5, Proposition 4.4 is not true for infinite gsemirings since IN

is an additively cancellative semiring which is not a ring.

Proposition 4.6. If S is a finite semiring of order > 1 with multiplicative

zero having O-multiplicative cancellation, then S is a semifield.

Proof : Let xC S -{0}. Define fx : 8 —{0]——-—}5 by fx (y) = xy
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Vye S -{0}. If__:ly(-. S —{0} such that fx (y) = 0, then xy = 0 = x0.
Since x # 0, y = 0, a contradiction. Thus fx : S --{0}-—95 -{0}. The
same proof given in Corollary 2.7, gives us that (8 -'{0},*) is an abelian

group and so S is a semifield. 4

Remark 4.7, Proposition 4.6 is not true for infinite semirings since
|h]U'{0} with the usual addition and multiplication has O-multiplicative

cancellation but is not a semifield.

Proposition 4.8. If S is a semiring with multiplicative zero (0) such

that 0 is also the additive identity and S satisfies the property that
V’xl, Xy Yys Yy (xly1 + XYy = XY, + x2y1=$ X; =X,V v, = yz), then

§ has O-multiplicative cancellation.

Proof : Let X,y,z ¢ S be such that xy = xz. Hence xy + Oz =

xz + Oy and so x = 0 or y = 2. #
We shall call the above property, property (*).

From Proposition 4.8, we know that property (*) together with the
condition that the multiplicative zero and the additive identity coincide
is a specialization of O-multiplicative cancellation in a semiring with

multiplicative zero (0).

Note that/Nu{ 0} with the usual multiplication and + defined by
x+y= min.{}c,y} Vx,y € IN y {0} is O-multiplicatively cancellative
but does not have an additive identity and does not satisfy property (*)

since 0°5 + 2°*1 = 0¢1 + 25 but 0 # 2 and 5 # 1.
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Theorem 4.9, If S is a semiring, then S can be embedded into an integral

domain 1ff S has additive cancellation and satisfies property (*).

Proof : Assume that S can be embedded into an integral domain
R. Obviously S has additive cancellation. Let X5 X5 Ypo yze S be such
that x;y, + X,y, = X;, + X9 Suppose X, # X, and y, # Ype Hence
X =X, #0andy, -V, # 0. Since x;y; + X,¥y = XYy = X¥; = o0,
(Yl - Yz) (%, - xz) =0, Thusy, -y, = 0orx, ~x,= 0 which implies

that Yy = Yo OF Xy = X, & contradiction. Therefore X =X or y, = Yoo

Conversely, assume that S has additive cancellation and satisfies
property (*). By theorem 4.1, § can be embedded into a ring S_%_§ with
( (%, x)] as its additive identity Vxe S8, Let xC S and let &,P € §__:::__§
be such that «p = [(x, x)] . Choose (a, b)€ « and (c, d) EP . Then
[(ac + bd, ad + bc)] = [(x, x)] . Hence (ac + bd) + x = (ad + bc) + x, so
ac + bd = bc + ad. By (%), & =b or ¢ =d vhich implies that«= ((x, %))

or'{)-[-(x, x)] . Therefore § x S is an integral domain. #
(-3

Theorem 4.10. If S is an additively cancellative semiring of order > 1

with multiplicative zero (0) such that 0 is also the additive identity
and S satisfies property (%), then S x (S -—{_0}_), the smallest semifield

containing S, also has additive cancellation and satisfies the property

that \/o, PE S x (S -{0) Q+*p=a+tp Dx=1vp= 1.

Proof : From Proposition 4.8, S has O-multiplicative cancellation.

By Proposition 3.23, S x (S -{0}) is the smallest semifield containing S.

Leto:.,’P,-se S x (S-j(}_‘t) be such that u'v+’ls =ec¢ + §. Choose (a, b) € =,



43

(c, )€ P and (e, D et . Ther. {(ad + be, bd)] = [(af + be, bf)) , so
(ad + be)bf = (af + be)bd. Eince b # 0, (ad + be)f = (af + Le)d. Hence
adf + bef = adf + bde so bef = bde and cf = de. FHence p= 17 and so

S x (S~ { 0}) ig additively cancellative.

Let or.,’ll € S x (8 4{0}_1 be such that 1 +d’|b = o +P . Choose
(a, b) € o and (¢, DEP . Then [(ta + ac, bd)] = [(ad + be, bd)] , so
(bd + ac) bd = (ad + bc) bd. Herce bd + ac = ad + bec and by property (*) ,

a=borc=d. T’nusot*lor’t}-:l. : #

Ve shall call the preperty in Thecrem £.1Q, proverty (x%) .

Theorem 4.11. If ¥ is 2 scmifield, then ¥ can be embedded into a field

iff K has additive cancecllation and satisfies property (**).

Proof : Assume that K can be ambedded into a field, Cbviocusly

K has additive cancellaticn. Tet %Yy € % be such that 1 + xy = x + ¥.
Suppose x # 1 and vy # 1, then # = 1% 0 and'y - 1 # 0. Since 1 +Xxy = X =

y = 0, ve get that (1 -x) (1 -y)=0. Hence (1 - x)-l(l -2 -y) =

a - x)-lo =0, s01=-y=0, Thus 1 = y which is a contradiction. Therefore

x=1ory=1 and K satisfies property (*%),

Cenversely, assume that K has additive cancellation =2rd satisfies
property (**). Since K is a semiring, by Theorem 4.1 E__"é.ﬁ is a ring with
[(x, x)] as its additive identity Vx ¢ F. Fixx¢€ K. Let =, p €
K_é_& -{[(x, x)]}. Choose (a, b) C « and (¢, A)EP .

Then of = ((ac + bd, ad + bc)) . Suppose «p = (€N x)}, then ac + bd + x =

ad + be + x. Hence zc + bd = ad + bc. Suppose that a = 0 or ¢ = 0, say
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a=0, Then b # 0 and ac = ad = 0. Hence 0 +bd =0+ bc, so bd = be,
Since b # 0, d = c¢. Thus P = ((x, ®)], a contradiction. Therefore 2 # 0
and ¢ # 0, so 1 + ¢ laa~lp = i+ 2~lb. By property (**),c_ld =]

ors b= 1, soc=dora=hb, Thusd = ((x, X)) orp = [(x, x)], a
contradiction. Therefore op # [(x, x)) and we have that K X K is an
integral domain containing K. Since g_%_g can be embeddad 1nto its

quotient field, K also can be embedded into a field. it

+
Remark 4.12. (1) Qv {0} with the usual multiplication and + defined by
+ .
xX+y= max.~{x, y} Vx, ¥ Qv {Oj {s the semifield that satisfies

property (**) but is not additively cancellative.

(i1i) The semifield of infinity type canmnot embed intc a field
since additive cancellation is the necessary condition for embeddiny semifield
into a field. Let K be a semifield of zero type. By theorem 3.25, the
prime semifield of ¥ is either isomorphic to Q' {0} with the usual addition
and multiplication or Zn vhere p is a prime number or is the semifield
in table 3, page 25. Mo;eover, if the prime semifield of K is ZZP for some
prime number p, then K itself is a field. Consider the senifield in table 3y
page 25. Since 0 + 1 =1+ 1 but 0 # 1, this semifield is not additively
cancellative., Therefore we conclude that a necessary condition that a
semificld which is not a field is embeddatle in a field is that its prime

semifield is QU{0} with the usual addition and multiplication.
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Proposition 4.13. If K is a senifield with additive cancellation satisfying

property (**), then the aquotient field F of K X K is the smallest field

containing K up to isomorphism.

Proof : Let ¥ be a field containing K. Since F is a field, as

we already showed in the proof in Propositicn 4,3, the map ® : F X F—>F
[~
defined by © ( [(x, y)] ) =x~-Y Vx, v € F gives us an isomorphism,

i.e. F x F‘= F. Llet a« ¢ K x K. Choose (a, b)€ « and define

¢ : K z K~ F': Fby ¢ (+) = [(a . b)T'where [(a, b)f is the equivalence
class of (a, b).in F x F. We have that ¢ is a monomorphism. Hence up to
isomorphism 5__33{__1& c L?%——F; and §o0 up to isomornhism we have that

F c I"'___E_F'_"-‘ F. Therefore F is the smallest field containing K up to

isomorphism. #

Proposition 4.14. A finite semificld S with additive cancellation is

a field.

Proof : It follows from the proof in Propesition 4.4 that (S5, +)

is an abelian group and soc S is a field, #

Let S be an additively cancellative semiring of order > 1 with
multiplicative zero (0) such that 0 is also the alditive identity and S
satisfies property (*). By theorem 4,10, theorem 4.11 and Froposition 4.13,
S can be embedded into F, the smallest field containing S. And alsc by
Theorem 4.9 and Proposition 4.3, S can be embedded into an integral -

2
quotient field of S x 3, We claim that F2 is the smallest field cortaining
~

domain S x 8 which is the smallest ring containing S. Let ¥, be the
=



v

46

S. Let F; be a field such that S g‘F;. Since F; is a field, the map

$ E; x F,—> F, defined by ¢ ( [(x, y)] ) =x-yisan isomorphism.

2
Let « € S x S. Choose (a, b) € «.and define ¢ : S X S — E;_K_E; by
e o ~

¢ () = [(a, b)](where [(a, bjr is the equivalence class of (2, b) in

FZ % Fz. We have that ¢ ie a monomorrhism and so up to isororphism
S x § is a subring of F;. Since F2 is the smallest field containing
S x S, up to isomorphism FZC_: F;. Therefore }3‘2 is the smallest field

n

containing S up to isomorphism., From this we get that F1 = Fz and we
conclude that if S is a semiring with multiplicative zero (0) such that 0
ig also the additive identity and S satisfies nroperty (*), then we have
two ways to embed S into 2 field and each way gives the same srallest

field containing S up to isomorphism.

As a special case of this we can embedihiu-{o} with the usual
addition and multinlication into the ficld of rational numbers (l, in at

least two different waye, as show in diagram :

N u {0}
T~

Q'u{o} y

~ "

Q

We now consider the embedding theorem of & P.R.D. into a field.

Theorem 4.15. If D is a P.R.D., then D can be embedded intc a field

iff D is additively cancellative and satisfies property (*%).

Proof : As the proof in Theorem 4.10, we get that if D can be
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embedded into a field then D is additively cencellative and satisfies
property (*¥),

Assume that D has aiditive cancellation and satisfies property
(¥*%). By Theorem 4.1, we have that,gL%?p_is a ring with [(x, x)] as
its additive identity Vx ¢ D. Fix x € D. Let & P C 1_)__;(_2 - {[(x, :-:)]} "
Choose (a, b)IE o and (c, d)E P Then dp = [(ac 4+ bd, ad + bc)] :
Suppose dﬁ = [(x, x)], then ac + bd + x = ac + bc + ¥. Hence ac + bd =
ad + be and so 1 + e taa~la® et ¥ a~lp. Therafore ¢ lamor ath=1
soc=dor a=>b, Thus & = [ Cx, x)] or - ((x, x)], a contradiction.
Hence *p # [(x, x)] and s0 n_%én is an integral lomain which as is wellknown

can be embedded into a field. Thus p can be embedded into a field. #

4+
Remark 4.16. (1) (O with the wsual multinlication ard + defined by
? -
x+y= min.i.x, y} V=%, YE @) is & P.R.D. that gsatisfies propnerty (%)

but is not additively cancellative.

(1i) The quotient £ield of D x D in Theorem 4.15 is the

smallest field containing D,

Let S be a semiring with additive and multiplicative concellation
satisfying property (*). By Theoren 2.11 and Proposition 2.13, 5_%_5
is the smallest P.R.D. containing S and we have that §_%_§ is additively
cancellative and satisfies property (¥*). By Theorem 4.15, = Fl the
smallest field containing §*§r§' Hence Fl is the smallest field containing
S. By Theorem 4.9, &_EJL is the smallest integral domain containing €.

Let F2 be the quotient field of S x S. Since up to isomorphism § © FZ'
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up to isomorphism F, c Fy. Sirce 5 X S ¢ EQ_E_Ez = Fo, Up to isomcrphlism

N <y F2. Thus Fl 2 F_. TFrom this we get that if § is a gseriring with

1 2
additive and multiplicative cancellation satisfying (%), then we have
two ways to embed £ into a field ard aach way gives the same smallest

£ield containing S up to isomornhism.

As a special case of this we can embed [N witli the usual additicn
and multiplication into the field of rational numbers @ ir at least
two ¢ifferent ways, as show in diagram :

Q
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