CHAPTER IV

EMBEDDING THEOREMS

Some theorems concerning the embedding of a semiring in a P.R.D. and a semiring in a semifield have been given already in Theorem 2.11, Proposition 2.13, Theorem 3.21, Proposition 3.23 and Corollary 3.24. We will develop some further embedding theorems in this chapter.

Theorem 4.1. If S is a semiring, then S can be embedded into a ring iff S has additive cancellation.

 \underline{Proof} : Assume that S can be embedded into a ring R. Let x, y, z \in S be such that x + y = x + z. Hence (-x + x) + y = (-x + x) + z and so y = z. Thus S has additive cancellation.

Conversely, assume that S has additive cancellation. Define a relation \approx on S x S by (a, b) \approx (c, d) iff a + d = b + c. Clearly \approx is reflexive and symmetric. Let (a, b), (c, d), (e, f) \in S x S be such that (a, b) \approx (c, d) and (c, d) \approx (e, f). Then a + d = b + c and c + f = d + e. Hence a + d + c + f = b + c + d + e, and so (d + c) + (a + f) = (d + c) + (b + e). Therefore a + f = b + e and (a, b) \approx (e, f), so \approx is transitive. Hence \approx is an equivalence relation on S.

Define + and \cdot on $\underline{S \times S}$ as follows: Let α , $\beta \in \underline{S \times S}$. Choose $(a, b) \in \alpha$ and $(c, d) \in \beta$. Then let $\alpha + \beta = [(a + c, b + d)]$ and $\alpha \in \beta = [(ac + bd, ad + bc)]$. To show + and \circ are well-defined, let

(a', b') $\in \infty$ and (c', d') $\in \beta$. Then we have a + b' = b + a' (1), and c + d' = d + c' (2). (1) + (2); a + b' + c + d' = b + a' + d + c. Hence (a + c) + (b' + d) =(b + d) + (a' + c'), so $(a + c, b + d) \approx (a' + c', b' + d')$ and + is well-defined. (1) d; bd + ad = ad + bd _____ (3). (1) c; ac + bc = bc + ac _____(4). b'(2); bd + bc' = bc + bd' (5). a' (2); ac + ad' = ad + ac' _____ (6). (3) + (4) + (5) + (6);(ac + bd + ad' + bc') + (ad + ac + bc + bd) = (ad + bc + ac' + bd) +(ad + ac + bc + bd). Hence (ac + bd) + (ad' + bc') = (ad + bc) + (ac' + bd), so (ac + bd, ad + bc) ≈ (ac + bd, ad + bc) and . is well-defined. Claim that $(S \times S, +, \cdot)$ is a ring. Clearly $\forall \alpha, \beta, \beta \in \frac{S \times S}{\approx}$ we have that $\alpha + \beta \in \frac{S \times S}{\approx}$, a+ p= p+a, (a+ p)+ = a+ (p+ 1), ap ∈ sxs, ap = pa and $\alpha(\beta \delta) = (\alpha \beta)\delta$. Choose (a, b) $\in \alpha$, (c, d) $\in \beta$ and (e, f) $\in \delta$. Then $4(\alpha + \beta) = [(e(a + c) + f(b + d), f(a + c) + e(b + d))]$ = [(ea + fb + ec + fd, fa + eb + fc + ed)] = ((ea + fb, eb + fa)) + ((ec + fd, ed + fc))= [(e, f)][(a, b)] + [(e, f)][(c, d)]

Let $x \in S$ and $\alpha \in \frac{S \times S}{\infty}$. Choose $(a, b) \in \alpha$. Then $\alpha + [(x, x)]$ $= [(a + x, b + x)] = [(a, b)] = \alpha \text{ and } \alpha + [(b, a)] = [(a + b, b + a)] =$ $[(x, x)]. \text{ Hence } [(x, x)] \forall x \in S \text{ is the additive identity and the additive inverse of } \alpha \text{ is } [(b, a)]. \text{ Therefore } \frac{S \times S}{\infty} \text{ is a ring.}$

= 10x + 8B.

Fix $x \in S$. Define $\theta : S \longrightarrow \frac{S \times S}{\aleph}$ by $\theta(a) = [(a + x, x)]$ $\forall a \in S$. Let $a_1, a_2 \in S$. Then $\theta(a_1 + a_2) = [((a_1 + a_2) + x, x)] = [(a_1 + a_2 + x, x)] + [(x, x)] = [(a_1 + x + a_2 + x, x + x)] = [(a_1 + x, x)] + [(a_2 + x, x)] = \theta(a_1) + \theta(a_2)$ and $\theta(a_1a_2) = [(a_1a_2 + x, x)] = [(a_1a_2 + x^2, x^2)] + [(a_1x, a_1x)] + [(a_2x, a_2x)] + [(x^2, x^2)] = [(a_1a_2 + x^2 + a_1x + a_2x + x^2, x^2 + a_1x + a_2x + x^2)] = [(a_1(a_2 + x) + x(a_2 + x) + x^2, x(a_1 + x) + x(a_2 + x))] = [((a_1 + x)(a_2 + x) + x^2, (a_1 + x)x + x(a_2 + x))] = [(a_1 + x, x)][(a_2 + x, x)]$ $= \theta(a_1)\theta(a_2)$. Hence θ is a homomorphism. Let $r_1, r_2 \in S$ be such that $\theta(r_1) = \theta(r_2)$. Then $[(r_1 + x, x)] = [(r_2 + x, x)]$, so $r_1 + x + x = r_2 + x + x$. Hence $r_1 = r_2$ and we have that θ is one-to-one. Therefore $r_2 = r_2 + x + x$. Hence $r_3 = r_2 + x + x$. Hence $r_4 = r_2 + x + x$. Hence $r_5 = r_5 + x + x$.

Remark 4.2. If S has an additive identity (0) or multiplicative identity (1), then we have a natural embedding $x \mapsto [(x, 0)]$ or $x \mapsto [(x + 1, 1)]$.

Proposition 4.3. If S is a semiring with additive cancellation, then $\frac{S \times S}{\approx}$ is the smallest ring containing S up to isomorphism.

Proof: Let R be a ring such that $S \subseteq R$. Define $\theta : \frac{R \times R}{\approx} \to R$ in the following way: Let $\alpha \in \frac{R \times R}{\approx}$. Choose $(a, b) \in \alpha$ and let $\theta(\alpha) = a - b$. To show θ is well-defined, let $(a, b) \in \alpha$. Then a + b' = b + a', so a - b = a' - b' and θ is well-defined.

Let α , $\beta \in \mathbb{R} \times \mathbb{R}$. Choose $(a, b) \in \alpha$, $(c, d) \in \beta$. Then $\theta(\alpha + \beta) = (a + c) - (b + d) = (a - b) + (c - d) = \theta(\alpha) + \theta(\beta) \text{ and } \theta(\alpha\beta) = (ac + bd) - (ad + bc) = (ac - bc) - (ad - bd) = (a - b)(c - d) = \theta(\alpha)\theta(\beta).$

Hence θ is a homomorphism. Clearly θ is one-to-one and onto. Therefore $\frac{R \times R}{R} \cong R$.

Define $\phi: \underline{S \times S} \longrightarrow \underline{R \times R}$ in the following way: Let $\alpha \in \underline{S \times S}$. Choose $(a, b) \in \alpha$ and let $\phi(\alpha) = [(a, b)]$ where [(a, b)] is the equivalence class of (a, b) in $R \times R$. Clearly ϕ is a monomorphism. Hence $\underline{S \times S}$ is isomorphic to a subring of $\underline{R \times R}$. Since $\underline{R \times R}$, we have that $\underline{S \times S}$ is isomorphic to a subring of $\underline{R \times R}$. Since $\underline{R \times R}$, we smallest ring containing \underline{S} up to isomorphism.

Proposition 4.4. If S is a finite semiring with additive cancellation, then S is a ring.

Proof: Let $x \in S$. Define $f_x : S \to S$ by f_x $(y) = y + x \ \forall y \in S$.

let $y_1, y_2 \in S$ be such that f_x $(y_1) = f_x$ (y_2) . Then $y_1 + x = y_2 + x$, so $y_1 = y_2$ and hence f_x is one-to-one. Since S is finite, f_x is onto. $\exists e \in S$ such that f_x (e) = x, so x = e + x = x + e. Let $z \in S$.

Then $\exists u \in S$ such that f_x (u) = z, so u + x = x + u = z. Therefore z + e = e + z = e + (x + u) = (e + x) + u = x + u = z, so e is the additive identity. Let $v \in S$. $\exists \neg v \in S$ such that f_y $(\neg v) = e$. Hence $\neg v + v = e$ and $\neg v$ is the additive inverse of v. Therefore we have that S is a ring. #

Remark 4.5. Proposition 4.4 is not true for infinite semirings since IN is an additively cancellative semiring which is not a ring.

<u>Proposition 4.6.</u> If S is a finite semiring of order > 1 with multiplicative zero having 0-multiplicative cancellation, then S is a semifield.

 $\underline{\text{Proof}}$: Let $x \in S - \{0\}$. Define $f_x : S - \{0\} \rightarrow S$ by $f_x (y) = xy$

 $\forall y \in S - \{0\}. \quad \text{If } \exists y \in S - \{0\} \text{ such that } f_X (y) = 0, \text{ then } xy = 0 = x0.$ Since $x \neq 0$, y = 0, a contradiction. Thus $f_X : S - \{0\} \rightarrow S - \{0\}$. The same proof given in Corollary 2.7, gives us that $(S - \{0\}, \cdot)$ is an abelian group and so S is a semifield.

Remark 4.7. Proposition 4.6 is not true for infinite semirings since $|\mathbb{N} \cup \{0\}|$ with the usual addition and multiplication has 0-multiplicative cancellation but is not a semifield.

<u>Proposition 4.8.</u> If S is a semiring with multiplicative zero (0) such that 0 is also the additive identity and S satisfies the property that $\forall x_1, x_2, y_1, y_2 (x_1y_1 + x_2y_2 = x_1y_2 + x_2y_1 \Rightarrow x_1 = x_2 \lor y_1 = y_2)$, then S has 0-multiplicative cancellation.

Proof: Let $x,y,z \in S$ be such that xy = xz. Hence xy + 0z = xz + 0y and so x = 0 or y = z.

We shall call the above property, property (*).

From Proposition 4.8, we know that property (*) together with the condition that the multiplicative zero and the additive identity coincide is a specialization of 0-multiplicative cancellation in a semiring with multiplicative zero (0).

Note that $|| \setminus \{0\}|$ with the usual multiplication and + defined by $x + y = \min.\{x,y\} \ \forall x,y \in || \setminus \{0\}|$ is 0-multiplicatively cancellative but does not have an additive identity and does not satisfy property (*) since 0.5 + 2.1 = 0.1 + 2.5 but $0 \neq 2$ and $5 \neq 1$.

Theorem 4.9. If S is a semiring, then S can be embedded into an integral domain iff S has additive cancellation and satisfies property (*).

Proof: Assume that S can be embedded into an integral domain R. Obviously S has additive cancellation. Let \mathbf{x}_1 , \mathbf{x}_2 , \mathbf{y}_1 , $\mathbf{y}_2 \in$ S be such that $\mathbf{x}_1\mathbf{y}_1 + \mathbf{x}_2\mathbf{y}_2 = \mathbf{x}_1\mathbf{y}_2 + \mathbf{x}_2\mathbf{y}_1$. Suppose $\mathbf{x}_1 \neq \mathbf{x}_2$ and $\mathbf{y}_1 \neq \mathbf{y}_2$. Hence $\mathbf{x}_1 - \mathbf{x}_2 \neq 0$ and $\mathbf{y}_1 - \mathbf{y}_2 \neq 0$. Since $\mathbf{x}_1\mathbf{y}_1 + \mathbf{x}_2\mathbf{y}_2 - \mathbf{x}_1\mathbf{y}_2 - \mathbf{x}_2\mathbf{y}_1 = 0$, $(\mathbf{y}_1 - \mathbf{y}_2)$ $(\mathbf{x}_1 - \mathbf{x}_2) = 0$. Thus $\mathbf{y}_1 - \mathbf{y}_2 = 0$ or $\mathbf{x}_1 - \mathbf{x}_2 = 0$ which implies that $\mathbf{y}_1 = \mathbf{y}_2$ or $\mathbf{x}_1 = \mathbf{x}_2$, a contradiction. Therefore $\mathbf{x}_1 = \mathbf{x}_2$ or $\mathbf{y}_1 = \mathbf{y}_2$.

Conversely, assume that S has additive cancellation and satisfies property (*). By theorem 4.1, S can be embedded into a ring $S \times S$ with [(x, x)] as its additive identity $\forall x \in S$. Let $x \in S$ and let $\alpha, \beta \in S \times S$ be such that $\alpha\beta = [(x, x)]$. Choose $(a, b) \in \alpha$ and $(c, d) \in \beta$. Then [(ac + bd, ad + bc)] = [(x, x)]. Hence (ac + bd) + x = (ad + bc) + x, so ac + bd = bc + ad. By (*), a = b or c = d which implies that $\alpha = [(x, x)]$ or $\beta = [(x, x)]$. Therefore $S \times S$ is an integral domain.

Theorem 4.10. If S is an additively cancellative semiring of order > 1 with multiplicative zero (0) such that 0 is also the additive identity and S satisfies property (*), then $S \times (S - \{0\})$, the smallest semifield containing S, also has additive cancellation and satisfies the property that $\forall \alpha, \beta \in S \times (S - \{0\})$ $(1 + \alpha\beta = \alpha + \beta) \Rightarrow \alpha = 1 \vee \beta = 1$.

Proof: From Proposition 4.8, S has 0-multiplicative cancellation. By Proposition 3.23, $\underline{S} \times (\underline{S} - \{0\})$ is the smallest semifield containing S. Let α , β , $\delta \in \underline{S} \times (\underline{S} - \{0\})$ be such that $\alpha + \beta = \alpha + \delta$. Choose $(a, b) \in \alpha$,

(c, d) $\in \beta$ and (e, f) $\in \emptyset$. Then $\{(ad + bc, bd)\} = \{(af + be, bf)\}$, so (ad + bc)bf = (af + be)bd. Since $b \neq 0$, (ad + bc)f = (af + be)d. Hence adf + bcf = adf + bde so bcf = bde and cf = de. Hence $\beta = \emptyset$ and so (s + bc) is additively cancellative.

Let α , $\beta \in \underline{S \times (S - \{0\})}$ be such that $1 + \alpha \beta = \alpha + \beta$. Choose $(a, b) \in \alpha$ and $(c, d) \in \beta$. Then [(bd + ac, bd)] = [(ad + bc, bd)], so (bd + ac) bd = (ad + bc) bd. Hence bd + ac = ad + bc and by property (*), a = b or c = d. Thus $\alpha = 1$ or $\beta = 1$.

We shall call the property in Theorem 4.10, property (**).

Theorem 4.11. If K is a semifield, then K can be embedded into a field iff K has additive cancellation and satisfies property (**).

Proof: Assume that K can be embedded into a field. Obviously K has additive cancellation. Let $x, y \in K$ be such that 1 + xy = x + y. Suppose $x \neq 1$ and $y \neq 1$, then $x - 1 \neq 0$ and $y - 1 \neq 0$. Since 1 + xy - x - y = 0, we get that (1 - x)(1 - y) = 0. Hence $(1 - x)^{-1}(1 - x)(1 - y) = (1 - x)^{-1}0 = 0$, so 1 - y = 0. Thus 1 = y which is a contradiction. Therefore x = 1 or y = 1 and K satisfies property (**).

Conversely, assume that K has additive cancellation and satisfies property (**). Since K is a semiring, by Theorem 4.1 $\frac{K \times K}{\kappa}$ is a ring with [(x, x)] as its additive identity $\forall x \in K$. Fix $\kappa \in K$. Let α , $\beta \in K$ $\frac{K \times K}{\kappa} - \{(x, x)\}$. Choose $(a, b) \in \alpha$ and $(c, d) \in \beta$.

Then $\alpha\beta = [(ac + bd, ad + bc)]$. Suppose $\alpha\beta = [(x, x)]$, then ac + bd + x = ad + bc + x. Hence ac + bd = ad + bc. Suppose that a = 0 or c = 0, say

Since b $\neq 0$, d = c. Thus $\beta = [(x, x)]$, a contradiction. Therefore $a \neq 0$ and $c \neq 0$, so $1 + c^{-1}da^{-1}b = c^{-1}d + a^{-1}b$. By property $(**), c^{-1}d = 1$ or $a^{-1}b = 1$, so c = d or a = b. Thus $\alpha = [(x, x)]$ or $\beta = [(x, x)]$, a contradiction. Therefore $\alpha \beta \neq [(x, x)]$ and we have that $\frac{K \times K}{\alpha}$ is an integral domain containing K. Since $\frac{K \times K}{\alpha}$ can be embedded into its quotient field, K also can be embedded into a field.

Remark 4.12. (i) $\mathbb{Q}^{\dagger} \cup \{0\}$ with the usual multiplication and + defined by $x + y = \max. \{x, y\} \ \forall x, y \ \mathbb{Q}^{\dagger} \cup \{0\}$ is the semifield that satisfies property (**) but is not additively cancellative.

(ii) The semifield of infinity type cannot embed into a field since additive cancellation is the necessary condition for embedding semifield into a field. Let K be a semifield of zero type. By theorem 3.25, the prime semifield of K is either isomorphic to $\mathbb{Q}^{\dagger} \cup \{0\}$ with the usual addition and multiplication or \mathbb{Z}_p where p is a prime number or is the semifield in table 3, page 25. Moreover, if the prime semifield of K is \mathbb{Z}_p for some prime number p, then K itself is a field. Consider the semifield in table 3, page 25. Since 0+1=1+1 but $0\neq 1$, this semifield is not additively cancellative. Therefore we conclude that a necessary condition that a semifield which is not a field is embeddable in a field is that its prime semifield is $\mathbb{Q}^{\dagger} \cup \{0\}$ with the usual addition and multiplication.

Proposition 4.13. If K is a semifield with additive cancellation satisfying property (**), then the quotient field F of $\frac{K \times K}{\approx}$ is the smallest field containing K up to isomorphism.

Proof: Let F be a field containing K. Since F is a field, as we already showed in the proof in Proposition 4.3, the map $\theta: \frac{F \times F}{\times} \to F'$ defined by θ ($\{(x, y)\}$) = x - y $\forall x$, y \in F gives us an isomorphism, i.e. $\frac{F \times F}{\times} = F'$. Let $\alpha \in \underbrace{K \times K}$. Choose $\{(a, b)\} \in \alpha$ and define $\phi: \underbrace{K \times K} \to \underbrace{F \times F} = F'$ by ϕ (α) = $\{(a, b)\}$ where $\{(a, b)\}$ is the equivalence class of $\{(a, b)\}$ in $F \times F$. We have that ϕ is a monomorphism. Hence up to isomorphism $\underbrace{K \times K} \subseteq \underbrace{F \times F} = F'$, and so up to isomorphism we have that $F \subseteq \underbrace{F \times F} = F'$. Therefore F is the smallest field containing K up to isomorphism.

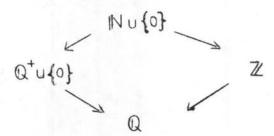
Proposition 4.14. A finite semifield S with additive cancellation is a field.

Proof : It follows from the proof in Proposition 4.4 that (S, +)
is an abelian group and so S is a field.
#

Let S be an additively cancellative semiring of order > 1 with multiplicative zero (0) such that 0 is also the additive identity and S satisfies property (*). By theorem 4.10, theorem 4.11 and Proposition 4.13, S can be embedded into F_1 the smallest field containing S. And also by Theorem 4.9 and Proposition 4.3, S can be embedded into an integral domain $S \times S$ which is the smallest ring containing S. Let F_2 be the quotient field of $S \times S$. We claim that F_2 is the smallest field containing

S. Let F_2' be a field such that $S \subseteq F_2'$. Since F_2' is a field, the map $\phi: F_2' \times F_2' \longrightarrow F_2'$ defined by $\phi: ([x, y)] = x - y$ is an isomorphism. Let $\alpha \in S \times S$. Choose $(a, b) \in \alpha$ and define $\phi: S \times S \longrightarrow F_2' \times F_2'$ by $\phi(\alpha) = [(a, b)]'$ where [(a, b)]' is the equivalence class of (a, b) in $F_2' \times F_2'$. We have that ϕ is a monomorphism and so up to isomorphism $S \times S$ is a subring of F_2' . Since F_2 is the smallest field containing $S \times S$, up to isomorphism $F_2 \subseteq F_2'$. Therefore F_2 is the smallest field containing $S \times S$ up to isomorphism. From this we get that $F_1 \cong F_2$ and we conclude that if S is a semiring with multiplicative zero (0) such that S is also the additive identity and S satisfies property (*), then we have two ways to embed S into a field and each way gives the same smallest field containing S up to isomorphism.

As a special case of this we can embed $\mathbb{N} \cup \{0\}$ with the usual addition and multiplication into the field of rational numbers \mathbb{Q} , in at least two different ways, as show in diagram :



We now consider the embedding theorem of a P.R.D. into a field.

Theorem 4.15. If D is a P.R.D., then D can be embedded into a field iff D is additively cancellative and satisfies property (**).

Proof: As the proof in Theorem 4.10, we get that if D can be

embedded into a field then D is additively cancellative and satisfies property (**).

Assume that D has additive cancellation and satisfies property (**). By Theorem 4.1, we have that $D \times D$ is a ring with [(x, x)] as its additive identity $\forall x \in D$. Fix $x \in D$. Let $\alpha, \beta \in D \times D - \{[(x, x)]\}$. Choose $(a, b) \in \alpha$ and $(c, d) \in \beta$. Then $\alpha\beta = [(ac + bd, ad + bc)]$. Suppose $\alpha\beta = [(x, x)]$, then ac + bd + x = ad + bc + x. Hence ac + bd = ad + bc and so $1 + c^{-1}da^{-1}d = c^{-1}d + a^{-1}b$. Therefore $c^{-1}d = 1$ or $a^{-1}b = 1$ so c = d or a = b. Thus $\alpha = [(x, x)]$ or $\beta = [(x, x)]$, a contradiction. Hence $\alpha\beta \neq [(x, x)]$ and so $D \times D$ is an integral domain which as is wellknown can be embedded into a field. Thus D can be embedded into a field.

Remark 4.16. (i) \mathbb{Q}^+ with the usual multiplication and + defined by $x + y = \min \{x, y\} \ \forall x, y \in \mathbb{Q}^+$ is a P.R.D. that satisfies property (**) but is not additively cancellative.

(ii) The quotient field of $\frac{D \times D}{\approx}$ in Theorem 4.15 is the smallest field containing D.

Let S be a semiring with additive and multiplicative cancellation satisfying property (*). By Theorem 2.11 and Proposition 2.13, $\underline{S} \times \underline{S}$ is the smallest P.R.D. containing S and we have that $\underline{S} \times \underline{S}$ is additively cancellative and satisfies property (**). By Theorem 4.15, $\overline{\mathbb{F}}_1$ the smallest field containing $\underline{S} \times \underline{S}$. Hence \underline{F}_1 is the smallest field containing S. By Theorem 4.9, $\underline{S} \times \underline{S}$ is the smallest integral domain containing S. Let \underline{F}_2 be the quotient field of $\underline{S} \times \underline{S}$. Since up to isomorphism $\underline{S} \subseteq \underline{F}_2$,

up to isomorphism $F_2 \subseteq F_1$. Since $\underline{S} \times \underline{S} \subseteq \underline{F}_2 \times \underline{F}_2 \cong F_2$, up to isomorphism $F_1 \subseteq F_2$. Thus $F_1 \cong F_2$. From this we get that if S is a semiring with additive and multiplicative cancellation satisfying (*), then we have two ways to embed S into a field and each way gives the same smallest field containing S up to isomorphism.

As a special case of this we can embed $\mathbb N$ with the usual addition and multiplication into the field of rational numbers $\mathbb Q$ in at least two different ways, as show in diagram :

