CHAPTER III

SEMIFIELDS

Definition 3,1. A nonempty set K is said to be a semifield if there afe

two binary operations, + (addition) and . (multiplication) defined on it
such that :

(1) (K, + ) is an abelian proup with zero;

(11) (K, +) is a commutative semigroup;

(1i1) x(y+z)=xy+xz Vx,y, z¢ K.

Ve will denote the multiplicative identity and multiplicative zero

of a semifield by 1 and 0 respectively.
It is clear that any field is a semifield.

Example 3.2. Let (G,- ) be an abelian group with zero (0).: Then we can

define a binary operation + on G so that G is a semifield, by defining

x+y=0 Vx, ye G. We call this semifield the trivial semifield.

Example 3.3. Let (G,* ) be an abelian group with zero. We can define a
binary operation + on G so that G is a non-trivial semifield by defining

x+y=01if x#dyandx+x=x Vx, vy € G.

Proof : We need to show that (G, +) satisfies the associative law

and (G, +, - ) satisfies distributive law,
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Let %X, Vv, z € G.

]
L
+

Case x =y = z. Then (x+ x) +x =X+ X=X and x + (x + %) X = X3

x(x + x) = x2 and xx + XX = xz.

Case x =y # z. Then (x +x) +z=x+2z= Dand x + (x +2z) =x+0=0;

x(x + z) = x0 = 0 and xx + xz = 0.

Case x = z#y. Then (x +y) +x=0+x=0and x+ (y+x)=x+0=0;
x(y + x) = x0 = 0 and xy + xx = 0.

Case x #yv =2. Then (x +y) +y =0+ y=0andx+ (y+y)=x+y=0;
x(y + y) = xy and xy + Xy = Xy.

Case x # y # z. Then (x +y)#z=0+2z=0and x+ (y+2)=x+0=0;

x(y + z) = x0 = 0 and xy + xz = 0.
Therefore G is a non-trivial semifield. Ve call this the

almost trivial semifield.

Example 3.4. Let D be a P.R.D. Let 0 be a symbol not representing any

element of D. Then DLJ{ 0} is clearly a semifield by extending the

operations of D to DIJ~{O} by X0 = 0x =0 and x + 0 =0+ x =X

V xe nu{e}.

Fxample 3.5. There is another way extending the operation of D to pu{o}
where D is a P.R.D. and 0 ¢ D so that DLJ{O} is a semifield. Just define

20'% D0 sad x +0 =0+ x = 0 Vxepufo)

+ +
Example 3.6. Qu { O} and R U {0} with the usual addition and multiplication °

are semifields.
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Remark 3.7. (i) Since ®+' with the usual addition and multiplication
is a P.R.D., follows from Example 3.5, we have {D+U {0} by extending +
and - by x +0=0+x=0and x0 =0x =0 Vxe Q7U {0}, 1s a semtfield
having 0 as its additive zero. |
(ii) {Lg 2) |a, c € d%o}.be@} satisfies all the axioms
of a semifield except that  is not commutative.
(iii) If K is a semifield then K x K is not a semifield

since (0, 1)(1, 0) = (0, 0).

Definition 3.8. Let K be a semifield, Then define
A={xeRlx+y=0 Vye K} and By ={x¢ K|x+0=0}.

Follow from previous examples we have that @
(1) A=KandBj,= K if K is as in Example 3.2 ;

(2) A={0} and B =K {f K is as in Exampla 3.3 ;

-

(3) A=¢ and By ={0) if K is as in Example 3.4

(4) A={0}and By =K if K is as in Example 3.5

-

If K is a field, then we have A = ¢ and By = {0} .

Theorem 3.9. Let K be a semifield. Then the following hold :
(1) 0+0=0
(2) EitherA-¢orA-{0} or A=K

(3) Either BO -{ 0}01' BO = K.

Proof : (1) Suppose 0+ 0 = x. Since 0(0 +0) =0x, 0+0=0.
(2) Suppose A # $. To show eitler A = {0} or A = K, we first
assume that A 1‘{0}, s0o J x € A such that x # 0. Let y€ K -{0}. Since

x+z=0 VzeK, yx_l(x-l-z)-(] Yzek Hencey-i-yx-lz-OVzeK.
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Since{yx-lz|ze K}-K,y+w=0 Vw e K. Thus y€ A. From (1),
0+0=0. If 3u€=K-{O}suchthat0+u=wforsomew€K-{O},
ihen u ¢ A, a contradiction. Hence \Yu€ K - {0}, 0 4+ u=0. Therefore
A =K.

(3) From (1), we have that 0€ Bjys SO BO # ¢. Assume that
By #{0}. Letx€ By -{0}. Letye K. Since x + 0 = 0, 1+ 0 = 0.
Hence y + 0 = yl + y0 = y(1 + 0) = y0 = 0 and so we have ¥ € Bg.

Therefore BO = K, #

Theorem 3.10. If K is a semifield then either 0 is the additive identity

or 0 is the additive zero.

Proof : From Theorem 3.9 (3), we have that either_B0 ={0]or B0 = K.

Case B, = K. Then \/x € K, 0+ x=0 and so 0 is the additive zero.

case B, ={0}. Then 0 +x#0 Wx ek -{0}. Let x€ K -{0}. Hence

| y €K -'{0} such that 0 + x = y and so 0 # xy_l =1, Since 0+ 1 =2

for some z € K -{:0}, 0+ 0+ xy—l =0+ 1=z, Hence 0+ xy-l = z, SO
z = 1 and we get that 0 + 1 = 1.
Let y € K. Then we have y(0 + 1) = y and so 0+y=y. Therefore

0 is the additive identity. #

Theorem 3.10 indicates that there are two types of semifields when
considering the multiplicative zero. We call a semifield with O as its

additive identity a semifield of zero type and a semifield with O as its

additive zero a semifield of infinity type. The reason for this terminology
is as follows :

1f 0 is the additive identity, then x + 0 = x V x. Hence 0 behaves
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like zero in Q*u {0} with the usual addition and multiplication, so we
call it of zero type. :
+
1f 0 is.the additive zero, then O behaves like o in @ U{ﬂ} 5

i,e, x &0 = w0 and x + = = o VYxe¢ @+U{w}, so we call it of infinity

type.

Therefore we have @ +U {0 }with the usual addition and multi-
plication is a semifield of zero type and Q+ U {0 } as in Remark 3.7 (1)

is a semifield of infinity type.

Proposition 3.11. Let K be a semifield of zero type. If Jase K -{0}
such that V' x, y€ K (x+a, =y +a8,=> x=7y), then \/ a € K we get that

Vi yERK(x+a=y+a=> x=y).

Proof : Let a ¢ K. Letx.yel(besuchthatx+a-y+a.
If a = 0 , then we have x = y, So we may assume that a # 0. Then
aoa-l(x +a) = aoa-l(y + a). Hence aoa-lx + ag = aoa'ly + a,. Therefore

aoa-lx = aoa_ly and S0 X = y. #

Proposition 3.12, Let K be a semifield of zero type. If Jdxek —{0}

such that x has an additive inverse, then every element in K has an

additive inverse and K is a field.

Proof : Let y¢ K, We want to show that y has an additive inverse.
1f y = 0, then we are done because 0+ 0=0. We assume that y # 0. Let
z be an additive inverse of x. Hence x + z = 0, so yx-l(x + z) = 0. Thus

y + yx_]'z = 0 and yx-lz is an additive inverse of y. #
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Theorem 3.13. A finite semifield of zero type of order. > 2 is a field.

Proof : Let K be a finite semifield of zero type guch that K has
order > 2.
Case 1. If JxeK- {0} such that x has an additive inverse then by
Proposition 3.12, every element in K has an additive inverse and so K is
a field.
Case 2. Assume that every element in K - {0] has no additive inverse.
Let x,y€ K -{0}. Then x +y #0, sox+yé¢ K-—{O}. Hence (K -{0}, +)
is a commutative semigroup and so K - {0}13 a finite P.R.D. of order > 1

which contradicts Theorem 2.5. Therefore this case cannot occur. #

Remark 3.14. (1) Theorem 3.13 is not true when K is an infinite semifield
since QU '{O}Of zero type is not a field.
(ii) Theorem 3.13 is not true when K is a semifield of zero

type of order 2. For example, let K = {0, 1} and let + and - be the following:

. ‘ 0 1 + l 0 1
0 0 0 : 0 0 1
1 0 1 1 1 1

Then we have that

0+(0+1)=0+1-1and(0+0)+1

0+1=1

n
—

0+ (1+0)=0+1 and (0+1)+0=1+0=1

0+ (1+1)=0+1

]
[

-

and(0+1)+1-1+1=1

14+ (0+ 0) 1+0-1and(1+0)+0=1+0-1

1+(0+1)=1+1-1and(1+0)+1-1+1-1

1+(1+0)-1+1-1and(1+1)+0-1+0-1

e



]
|

0(0 +
o(1 +
oL +
1(0 +
1(0 +
1(1 +
1(1 +

Therefore
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0) =
1) =
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1) =
0) =

1) =

(K, +) is a commutative semigroup, (K,
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01
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1
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01
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+ 01
+ 00
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+ 10

+ 11
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+0
+0
+1
+0

+1

1

1
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-

-

-

+) is an abelian

group with zero and distributive law holds in K, so K is a semifield of

zero type but it is not a field,

Corollary 3.15.

Remark 3.14 (ii) is infinite.

Proof :

semifield in Remark 3.14 (ii).

Then K has order > 2.

by Theorem 3.10 K is of zero type.

By Theorem 3.13 K is a field.

Any proper extension semifield of semifield in

Suppose J K a finite proper extension semifield of

Since 0+ 1 =1,

Since

0+ 1=1+1but 1 #0, Kis not additively cancellative which is a

contradiction.

As a consequence of Remark 3.14 (ii), we see that a semifield of

order 2 is an interesting special case of semifields.

We wish to study

more about semifields of this order and to do this we first find all the

possible commutative semigroup operations on {0, 1} that make -

into a semifield.
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Since 0 + 0 = 0, there are four possible commutative binary operations

+ on {0, 1} such that { 0, 1} is a semifield :

+ l 0o 1 + o 1 + 10 1 + 0 1
oo 1 olo o oo 1 olo o
IR B 1 {o © 1 |1 1 1 {0 1
Table 1. Table 2. Table 3. Table 4.

Note that Table 1 makes {0, 1} into a field, Table 2 makes {o, 1}
{nto the trivial semifield and Table 4 makes {0, 1}-into the almost trivial
semifield. And we have that the only finite semifield of zero type which
is not a field is the semifield of table 3.

Table 3 shows that it is possible that a semifield has an additive

zero which is not O.

Proposition 3.16. If K {s a semifield of order > 2 such that K has the

additive zero e then e = 0.

Proof : Suppose e # 0. Thenx +e = e V¥ x ¢ K, so e'lx +1=1
V xe K Since{e-lx} = K. 1 is also an additive zero. Hence e = 1
. . x e K ’ - -

Let x¢ K -{0, 1} . Thenx+1=1,s01l+ x-l = x_l. Since x-l +1=1,

x ! = 1. Thus x = 1, a contradiction. ¢

Table 4 shows that it is possible that a gsemifield has an additive

identity which is not 0.

Proposition 3.17. If K is a semifield of order > 2 such that K has an

additive identity e then e = 0.
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Proof : Suppose e # 0. Then x + e = X V x € K, so elx+1m e iy

= -1 -
W/ x ¢ K. Since {e x}x ¢ K K, we see that 1 is also an additive

tdentity and so 1 =e., Let x¢ K-{0, I} . Thenx+1=x, 801+ x !

Since 1 +1= x'l, <! = 1. Thus x =1, a contradiction. #

- 1.

Table 4 also shows that + and * are equal.

Proposition 3.18. If K is a semifield such that + and + are equal then K

has order 2.

Proof : Suppose K has order > 2. Let x¢ K -{'0, 1} . Since
x(1 +1) =x+x, x(lz) = xz. Hence x = x2 and x is an idenpotent in (K, ° ).
We have that O and 1 are the only idenpotents in (K, ») since (K, +) is a

group with zero, so x ¥ x> which is a contradiction. #

In Chapter II we proved a theorem concerning the smallest sub-P.R.D.
of a given P.R.D. Since the intersection of subsemifields of a semifield is
a subsemifield, we have that the smallest subsemifield of a semifield exists
and is the intersection of all of its subsemifields which will be called

the prime semifield. In this chapter we shall also determine the prime

semifield of a semifield up to isomorphism. Before studying this we first

prove some theorems concerning semirings.

Definition 3.19. If S is a semiring with multiplicative zero (0) and

satisfies property that V x, y, z€ § (xy = xz 3 x=0Vy=2z), then we

say that S is O-multiplicatively cancellative.
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Example 3.20. JN U { 0} with the usual addition and multiplication is an

example of a semiring with 0 as multiplicative zero having O-multiplicative -

cancellation.

Theorem 3.21. If S is a semiring with multiplicative zero (0), then S

can be embedded into a semifield iff S is 0-multiplicatively cancellative.

Proof : Assume that S§ is O0-multiplicatively cancellative.
Case 1. If S = {0}, then we can embed S into any semifield K by a
homomorphism ¢ : S —>K defined by ¢ (0) = O.
Case 2. Ase;ume that S # {0} _Define a relation ~ on S X (s -{0}) by
(x, y) ~ (x, ¥) & xy'= o/ N & ¥, & ve sx (s —{0}). Clearly
~ 1is reflexive and symmetric, Let (a, b), (c, @), (e, £) € Sx (s -{0})
be such that (a, b) ~ (c, d) and (c, d) ~ (e, f). Then ad = cb and gf = ed,
so adf = cbf and cfb = edb. Hence adf = edb. Since d # 0, af = eb.
Therefore (a, b) ~ (e, £), so~ 1s transitive and hence ~ is an equivalence
relation. ‘

Let « , pe s x (S -{0}). Define + and « on § X (S:{O})_in

the following way : Choose (a, b)e o and (c, DEP > and let
% +p = ((ad +bc, bd) ] and «P = ( (ac, bd) ] . Since b # 0 and d # O,

and S is O-multiplicatively cancellative, bd # 0 and so « + P,

d? ¢ Sx (S —{0}_1. As in the proof of Theorem 2.11, we have that +

and + are well-defined.

Claim that (s x (8 =£0}), +,¢) is a semifield.

Let a € S—{O]and let o ¢ S X (S -{0}). Choose (c, d) € % ,

then [(a, &)}« =((ac, ad)] = ((e, d)) == and [(O, a)] o« =

(¢0, ad)] = [(0, a) ] , SO ( (a, a)] is the multiplicative identity and
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[(0, a)J is the multiplicative zero, Vac S—{O}. Let
e S x (s -{0}) -{ (o, a)]'a(; S —{0}}. Choose (c, d) € T »

then [ (d, ¢) ) 1is the multiplicative inverse of p . Clearly the asso-

ciative law, commutative law and distributive law all hold in S X (S —{0}),
i~

so we have that S x (S —{0}) is a semifield.

Fix ac S -{07). Define g: S—> Sx (5 {0} ) by 0(s) = [ (sa, )]

V s s. Lets,s,€S. Then 0(s) +s)) = [ ((s; + 5))a, a)] =

(a0 + 5,8, @) (@ @) = (510" ¥ 55", a2)) = [(s;2, @) + (5,8, @) =
6(s)) + 0(s,) and 0(s;s,) = [(s,552, @) = ((sy8,2°, a?)) =

[ (5,2, a)) ((s,a, a)) = 0(s20(s,). Let 8y, 5)¢€ S be such that 0(s,) = 8(s,).
Then [(sla, a)] = [(sza, a) | and so slaz = szaz. Since a # 0, 8, = 8,.

Hence 0 is a monomorphism, so we can embed S into a2 semifield.

Conversly, assume that § can be embedded into a semifield K. Let
X, ¥, z € S be such that xy = x2. If x = 0, then we are done. Suppose that

x # 0, then x_lxy = x lxz. Hence y = 2. #

Remark 3.22., If S has a multiplicative identity 1, then -] a canonical

monomorphism from S into S X (S —{0}) defined by 0(s) = [(s, 1) ] Vse S.

Proposition 3.23. If S is = semiring with multiplicative zerc (0) having

O0-multiplicative cancellation of order > 1, then S x (S -{ 0}) is the

smallest semifield containing S up to isomorphism.

Proof : Let K be a semifield containing S.

Define O : K x (K -{ 0}) ——> K in the following way : Let

& € Kx(K-—{O}). Choose (a, b) ¢ o and let G(Ot)-ab-l. As we
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already showed in the proof of Proposition 2.13, we have that @ is

well-defined and © is an isomorphism.

Define ¢ : Sx(S—{Ob > Kx(K—{O:]’_lin the following

way : Let & ¢ S x (S -{Oh. Choose (a, b)¢ e« and let g %) =

/ s
[(a, b) | where [(a, b)] is the equivalence class of (a, b) in

Kx (K- {0} ). Clearly $ is a monomorphism. Hence S x (S -{0 h is

isomorphic to a subsemifield of K x (K -{ 0]). Since K¥ K x (K —'{Oh,
' ~

we get that S x (S —{ 0}) is isomorphic to a subsemifield of K and

"~

s x (S -{0}_1 is the smallest semifield containing S up to isomorphism. #

IN u {O}with the usual-addition and multiplication is an example
of a semiring with O as multiplicative zero having O-multiplicative
cancellation. We also see that 0 is also the additive identity for this
semiring.

If we extend + on N with the usual addition and multiplication
toNU{0)}byn+0=0+n=0and0n=n0=0 Va ¢ INu{ol,
then IN yu { 0 }is also a semiring with 0 as multiplicative and additive

zero having O-multiplicative cancellation.

Corollary 3.24. Let S be a semiring of order > 1 with multiplicative

zero (0) having O-multiplicative cencellation. Then the following hold :
(1) If 0 is the additive identity, then the smallest semifield
containing S also has 0 as the additive identity.
(2) 1f O is the additive zero then the smallest semifield

containing S also has 0 as the additive zero.
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Proof : From Proposition 3.23, we have that S x (S -{0}) up to

isomorphism is the smallest semifield containing S and 0 corresponds with
(0, &) Vacs-{0)insx(s -{o}).

Letags-{o} and « ¢ S X (S—{O}). Choose (c, d) e o .

If 0 is the additive identity for S, then [(O, a)] +% =

((ac, ad)] = [(c, d)] = & , Hence [(0, a)] is the additive identity

for S x (S —{0}) and we have (1).
~
If 0 is the additive zero for S, then [(0, a)] +« = f(O, ad))

= ((0, a)] . Hence ((0, a)] is the additive zerc for S x (S -{0})

and we have (2). #

Now we shall determine the prime semifield of a semifield up to

isomorphism.

Theorem 3.25. If K is a semifield of zero type, then the prime semifield

-+

of K is either isomorphic to Q v {_0} with the usual addition and
multiplication or Z/p where p is a prime number or the semifield in Table 3,
page 25 . Furthermore if the prime semifield of K is isomorphic to ZP for

some prim;z p, then K iz a field by Preoposition 3.12,

Proof : Let K be the prime semifield of K. Let n ¢ IN U {0}.

Then define nl = 1 + 1 + ... + 1 (n times) ifn#0and nl =0 if n=0,
so we have { nl c K.
' { }n ¢ IN U{'O}

case V myne¢ NU{0}if m#n, thenml # nl.

By Proposition 3.23, ( IN 1_0}) x IN 1s the smallest gsemifield

containing IN U {0} with the usual addition and multiplication.
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$ -
And we have that ( IN U{f-"}) x IN = (DU{D} with the usual addition
and multiplication.
pefine ¢ : IN U{O} —3s Kby §(n) =nl Vne ?Nu{o } Then

clearly we have that ¢ is a monomorphism. Hence ¢(IN v { 0}) = INv { 0},

so up to isomorphism (N U {0}) x ¢(IN) is the smallest subsemifield
of K containing ¢(IN U {0}). Since 0, 1 ¢ K, nl ¢ K VnelNu {0}
Hence ¢( IN v {0}) ¢ K, so we have that up to isomorphism

s(INU {oD x ¢(IN) c k. since (N {oh x ¢(IN) is a subsemifield

of K, up to isomorphism we have that K’; g(IN v {fo}) x d(IN ). Therefore
Kz Ny {ob x o(IN).
Let 8 : ( lNU{O}) x IN RN ¢( IN Y {0}) x ¢( IN) be defined

in the following way : Let & € (*NU{O}):( IN . Choose (m, n) € « and
let 6( ot ) = [(¢(m), ¢(n))]. It is clear that § is well~-defined and 1s an
(IN y {oh xIN =

@+u {O}With the usual addition and multiplication.

e

{somorphism. Thus K% ¢(UN U {oh x ¢¢(IN)

Case J m, n € N u {0}, n< n and ml = nl.

Let m_ = min.{m e Nvu {(}H JneMN n> msuch that ml = nl} and
let n, = min.{n e Nln> m, and m°1,= nl}.

(1) Suppose that m =1 and n_ = 2. Then 1 = 1 + 1. Since
0+ 1= 1, we have that {0, 1} as in Table 3, page 251s a subsemifield of
K. Hence K'E{O, 1} as in Table 3, page 25.

(2) Assume that m_ # 1 or n ¢ 2.

(2.1) Suppose that m_ # 1. Then there are two cases to

consider eit‘hei‘ m = 0 or m_> 1.

1f m = 0, then n_ can not be 1 since 0 # 1, so no> 1. Suppose
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sl 2, then 0 = 1 + 1. Since 0 + 1 = 1, we have that{O, l}gzz is a

subsemifield of K. So in this case we have that K¢ Zz. Suppose that

n> 2, then n_ - 1 >2and V mg IN y {0}, ml E{n1}0$n<g—:—l-—(a)
If mD> 1, thenno> 2, so 0, 13 2 and vV meﬂ\lu{(}}

ml ¢ {tll}oS nen- 1 (b)

(2.2) Suppose that n # 2. Again n_ can not be 0 or 1, so

n> 2. Hence n - 12 2and Vme INu{O}, ml ¢ {nl.}OQn{rToT_I_(c)
From (a), (b), (c), we see that in all these cases n_> 2 and
YV meciN U{O'}, ml G{“]‘Og iz 18 From now on we shall assume that
the cases (a), (b), (c) hold.
Let B ={n1l nl # 0, nelN }. Then 2 €|B|<0.
Let ¢ ={ (aD) @)™} | nl, ml€ B}. Again 2 <|C| <ooand O ¢ c.
: Claim that Cu {0} s a subsemifield of K.

We first show that if mll, m,l ¢ B, then (mlmz)l ¢ B, To prove

2
this, we let mll, m21 € B. Since mll # 0 and m21 # 0, (mll) (mzl) # 0.
Hence (m1m2)1 # 0.

Let (nln(mln“l, (n,1) (m, )™l ¢ c. Then

(nll)(mll)-l + (n,1) (m21)- = (a,1)(m D7 (m 1) (m, iyt 4 (n,1) (m 1~ (m 1) (mll)-l
((n 1)(1:11 1) + (n 1)(m 1)) ((m, o (m ™

((n;m 2)1 + (n 1)1)((1:1 1) (m 1))

((nym, + mn,) 1) ((mm,) 1)

If (am, + mn)1 = 0, then (n,1)(m, DL+ @D @D =0c¢ cu{o}.
(n m, +m, )1 # 0, then (n1l2 + mn 2)1 ¢ B and so we have that
(n11)(m11) + (n,1) (my1)" lo ¢c. since 0 +x=x Vxek, (CU {6

is a subsemigroup of (K, +).
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Let (nll)(mll)”l,(nzl) (mzl)_le C. Then
(a1 (my D™ X0, 1) (my ™ = (0,1 (@, (D7 D = (D) (a,1) ((m,1) (my 1)
- ((nlnz)l)((mlmz)l)-l. Stace n 1, nyl, m1, mlc B, (mm)l, (aym)le B
80 ((nlnzil)((mlmz)l)-le C. Since (mll) (nll)-le C and
((tllll)(t’t]_l)_]J((l‘lll)(mll)‘_l)-= 1, we have that V x € C, x—le C. Thus (C, )
is a subgroup of (K -{0}, + ). Therefore we have the claim and clearly
cu {0} is also of zero type.

since 2 <|C U { 0}| ¢ =, by Theorem 3.13 Cu {0} 1s a field.
We have that K'c CU {0} since K 'is the prime semifield of K. Since
0, 1€ K: nl & K Vne NV {0}. Hence BU{O}QK‘and so CU{O}Q K. Thus
K,- C U{O} and so K’“=‘ :_’Zp for some primé P-

Therefore 1f K is a semifield that has property (a) or (b) or (c),

then K = Zp for some prime p > 2 and K is a field. #

Theorem 3.26. If K is a semifield of infinity type, then the prime

semifield of K is either isomorphic to @+U {0} in Remark 3.7 (i) or the

trivial semifield of order 2 or the almost trivial semifield of order 2.

Proof : Let K be the prime semifield of K. Since 0 +x =0
VWV x¢ K, 0 € A where A={xe Klx+y=0 Vye¢ K}. Hence A # ¢. By
Theorem 3.9 (2), we have that either A -{0}0: A =K.
Case A = K. Then 1 + 1 = 0 and we have 0+1=0, Thus{o, 1}15 the

trivial semifield of order 2 and the trivial semifield on{O, 1} + K.

CaseA-{O}. Let nGiNU{O}. Then define nl = 1 + 1 + ... +1 (n times)

-

{f n# 0 and nl = 0 if n = 0. Hence we have that {nl}ﬂﬁll\lu {0 }9 K.



Subcase V m, n ¢ IN v{o} if m # n, then ml # nl.

Let B = { (nl) (ml)_l} Then by the isomorphism

5 m ngiN " &
0 : ) —> B given by B(Igh) = (ml) (nl)-l we have that B ¥ () with the
uysual addition and multiplication. Since 0+x=0 Vx¢eBUY {0},
L 4 -
we have that BU {0} =Q v {0} as in Remark 3.7 (1). Therefore
» r
By {0} is a subsemifield of K and so K¢ BU {0} since K is the prime
r Y
semifield of K. Since 0, 1 € K, nl e K VYVne IN u {0}. Hence
’ +
By {0}c K. Thus K =By {0} & @ u {0}as in Remark 3.7 (1).

Subcase Im, n€& N U {0} m ¢ n and ml = nl,

Letmo-min.{met[\lu{o}lanell\l n>msuchtkatml-n1}.-
and let n_ = min.{ne N! n>m and m1 = nl}.

(1) 1f m = 1 and Nl 2, then 1 + 1 = 1 and we have that
K'-{O, 1} with the almost trivial structure.

(2) Assume that m # 1. There are two cases to consider,
elither m, = 0 or m, > 1, Suppose m = 0, then n > 2 since 1 # 0.
b & n = 2, then K'-{O, l}wit‘n the trivial structure. Hence we left

te consider the case m = 0 and n > 2 (a)

Claim that V k 2> n_, k1 = 0.

We will prove this claim by using induction on k 2 . We
have that n_ 1 = 0. Let k¢ IN be such that k > n_ and assume that
Vj,nogj<k, j1 =0, Thus kl = (k - D1 +1=0+1=0,

Therefore by mathematieal induetion we have the claim,

2

2 3n_. Hencen2+1>, 3n and so
o o o o

Since no>, 3, n

ng - 2:'10 +1%n. By the claim we have that ((no.-- 1)1)((110 -1D1) =
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(ni - 2n + 1)1 = 0 which is a contradiction since (n - 1€ K -{0}
and (K -{0}, .) is a group. Therefore (a) cannot occur. Hence
m > 1 and so n_ > 2.

Let B -{ml}mG N Then 2 ¢|Bl< o and O ¢ B.

Let C -{(ml)(nl)'l}m, GEN Then 2 < |c]l< o0 and clearly C is a
P.R.D. which contradicts Theorem 2.5. Therefore the case mOP 1
also cannot occur.

(3) From (1) and (2) we then left to consider the case m, = 1
and 0 # 2. Hence n_ cannot be 1 since n_ # m, 80 N > 2

Claim that 3 n ¢ IN such that nl has no multiplicative
inverse.

Suppose this claim is not true, then Vne¢lN , nl has a
multiplicative inverse. Let B vz{l}u1 eN Then 2 £ |B| < ©0 and
Oé B. Let C= {(ml) (nl)-l}m’ neiN Again we have that
2 <|C| <0 and 0 ¢ C. Clearly C is a P.R.D. which contradicts
Theorem 2.5. Hence we have the claim and 3 1 € IN such that nl has
no multiplicative inverse. Hence nl = 0. Then o = 0 which is a
contradiction since m = 1, so this case cannot occur and we have

the theorem. #

+
Example 3.27. Q u {0} with the usual multiplication is a group

with zero 0. Let + be defined by x +y = max. { p A y} Vx, vy €
- B
@ u {0} Then (A U {0} {s a semifield of zero type and 0 + 1 =1+ 0,

1+1=1, so its prime semifield is isomorphic to Table 3, page 25.

TAOPAL
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If we define + on @+ Ui} byx+y = min.{x, y}
- § X, VY€ @,+ U {0}, then we have ®~+U {0} is a semifield of infinity
type and 1 +0=0+1=0, 1+ 1 =1, so its prime semifield is

isomorphic to the almost trivial semifield of order 2.

Remark 3.28, From Theorem 3.13 we know that a finite semifield of zero
type of order > 2 is a field. If we drop the condition that + is
commutative in the definition of a semifield, then we can have a finite
eemifield of zero type of order » 2 which is not a field since for any
abelian group G with zero and + defined by x + y = x if x, v # 0 and
x+0 =0+ x = x satisfies all the axioms of a semifield gxcept + is
not commutative,

Also, if we define + by x + y = x if x, y#0and x +0 =0 + x
= 0, then we have that ¢ is a semifield of infinity tvpe.

In fact, even if + is not commutative then the + defined above
distribute over . on hoth sides so we could get a non-commutative

semifield,
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