CHAPTER III

SEMIFIELDS

<u>Definition 3.1.</u> A nonempty set K is said to be a <u>semifield</u> if there are two binary operations, + (addition) and · (multiplication) defined on it such that:

- (i) (K,) is an abelian group with zero;
- (ii) (K, +) is a commutative semigroup;
- (iii) $x(y + z) = xy + xz \quad \forall x, y, z \in K$.

We will denote the multiplicative identity and multiplicative zero of a semifield by 1 and 0 respectively.

It is clear that any field is a semifield.

Example 3.2. Let (G, \cdot) be an abelian group with zero (0). Then we can define a binary operation + on G so that G is a semifield, by defining $x + y = 0 \quad \forall x, y \in G$. We call this semifield the trivial semifield.

Example 3.3. Let (G, \cdot) be an abelian group with zero. We can define a binary operation + on G so that G is a non-trivial semifield by defining x + y = 0 if $x \neq y$ and x + x = x $\forall x, y \in G$.

 \underline{Proof} : We need to show that (G, +) satisfies the associative law and (G, +, \cdot) satisfies distributive law.

Let x, y, $z \in G$.

- Case x = y = z. Then (x + x) + x = x + x = x and x + (x + x) = x + x = x; $x(x + x) = x^2$ and $xx + xx = x^2$.
- Case $x = y \neq z$. Then (x + x) + z = x + z = 0 and x + (x + z) = x + 0 = 0; x(x + z) = x0 = 0 and xx + xz = 0.
- Case $x = z \neq y$. Then (x + y) + x = 0 + x = 0 and x + (y + x) = x + 0 = 0; x(y + x) = x0 = 0 and xy + xx = 0.
- Case $x \neq y = z$. Then (x + y) + y = 0 + y = 0 and x + (y + y) = x + y = 0; x(y + y) = xy and xy + xy = xy.
- Case $x \neq y \neq z$. Then (x + y) + z = 0 + z = 0 and x + (y + z) = x + 0 = 0; x(y + z) = x0 = 0 and xy + xz = 0.

Therefore G is a non-trivial semifield. We call this the almost trivial semifield.

- Example 3.4. Let D be a P.R.D. Let 0 be a symbol not representing any element of D. Then $D \cup \{0\}$ is clearly a semifield by extending the operations of D to $D \cup \{0\}$ by x0 = 0x = 0 and x + 0 = 0 + x = x $\forall x \in D \cup \{0\}$.
- Example 3.5. There is another way extending the operation of D to $D \cup \{0\}$ where D is a P.R.D. and $0 \notin D$ so that $D \cup \{0\}$ is a semifield. Just define x0 = 0x = 0 and $x + 0 = 0 + x = 0 \quad \forall x \in D \cup \{0\}$.
- Example 3.6. $\mathbb{Q} \cup \{0\}$ and $\mathbb{R} \cup \{0\}$ with the usual addition and multiplication are semifields.

Remark 3.7. (i) Since \mathbb{Q}^+ with the usual addition and multiplication is a P.R.D., follows from Example 3.5, we have $\mathbb{Q}^+ \cup \{0\}$ by extending + and \cdot by x + 0 = 0 + x = 0 and $x0 = 0x = 0 \quad \forall x \in \mathbb{Q}^+ \cup \{0\}$, is a semifield having 0 as its additive zero.

(ii) $\left\{ \begin{pmatrix} a & b \\ 0 & c \end{pmatrix} \mid a, c \in \mathbb{Q}^{\downarrow}\{0\}, b \in \mathbb{Q} \right\}$ satisfies all the axioms of a semifield except that \cdot is not commutative.

(iii) If K is a semifield then K x K is not a semifield since (0, 1)(1, 0) = (0, 0).

Definition 3.8. Let K be a semifield. Then define $A = \{x \in K \mid x + y = 0 \ \forall y \in K\} \text{ and } B_0 = \{x \in K \mid x + 0 = 0\}.$

Follow from previous examples we have that :

- (1) A = K and $B_0 = K$ if K is as in Example 3.2;
- (2) $A = \{0\}$ and $B_0 = K$ if K is as in Example 3.3;
- (3) $A = \phi$ and $B_0 = \{0\}$ if K is as in Example 3.4;
- (4) $A = \{0\}$ and $B_0 = K$ if K is as in Example 3.5;

If K is a field, then we have $A = \phi$ and $B_0 = \{0\}$.

Theorem 3.9. Let K be a semifield. Then the following hold:

- $(1) \quad 0 + 0 = 0$
- (2) Either $A = \phi$ or $A = \{0\}$ or A = K;
- (3) Either $B_0 = \{ 0 \}$ or $B_0 = K$.

Proof: (1) Suppose 0 + 0 = x. Since 0(0 + 0) = 0x, 0 + 0 = 0.

(2) Suppose $A \neq \emptyset$. To show either $A = \{0\}$ or A = K, we first assume that $A \neq \{0\}$, so $\exists x \in A$ such that $x \neq 0$. Let $y \in K - \{0\}$. Since $x + z = 0 \quad \forall z \in K$, $yx^{-1}(x + z) = 0 \quad \forall z \in K$. Hence $y + yx^{-1}z = 0 \quad \forall z \in K$.

Since $\{yx^{-1}z \mid z \in K\} = K$, $y + w = 0 \quad \forall w \in K$. Thus $y \in A$. From (1), 0 + 0 = 0. If $\exists u \in K - \{0\}$ such that 0 + u = w for some $w \in K - \{0\}$, then $u \notin A$, a contradiction. Hence $\forall u \in K - \{0\}$, 0 + u = 0. Therefore A = K.

(3) From (1), we have that $0 \in B_0$, so $B_0 \neq \emptyset$. Assume that $B_0 \neq \{0\}$. Let $x \in B_0 - \{0\}$. Let $y \in K$. Since x + 0 = 0, 1 + 0 = 0. Hence y + 0 = y1 + y0 = y(1 + 0) = y0 = 0 and so we have $y \in B_0$. Therefore $B_0 = K$.

Theorem 3.10. If K is a semifield then either 0 is the additive identity or 0 is the additive zero.

Proof: From Theorem 3.9 (3), we have that either $B_0 = \{0\}$ or $B_0 = K$.

Case $B_0 = K$. Then $\forall x \in K$, 0 + x = 0 and so 0 is the additive zero.

Case $B_0 = \{0\}$. Then $0 + x \neq 0$ $\forall x \in K - \{0\}$. Let $x \in K - \{0\}$. Hence $\exists y \in K - \{0\}$ such that 0 + x = y and so $0 + xy^{-1} = 1$. Since 0 + 1 = z for some $z \in K - \{0\}$, $0 + 0 + xy^{-1} = 0 + 1 = z$. Hence $0 + xy^{-1} = z$, so z = 1 and we get that 0 + 1 = 1.

Let $y \in K$. Then we have y(0 + 1) = y and so 0 + y = y. Therefore 0 is the additive identity.

Theorem 3.10 indicates that there are two types of semifields when considering the multiplicative zero. We call a semifield with 0 as its additive identity a <u>semifield of zero type</u> and a semifield with 0 as its additive zero a <u>semifield of infinity type</u>. The reason for this terminology is as follows:

If 0 is the additive identity, then $x + 0 = x \forall x$. Hence 0 behaves

like zero in $\mathbb{Q}^+ \cup \{0\}$ with the usual addition and multiplication, so we call it of zero type.

If 0 is the additive zero, then 0 behaves like ∞ in $\mathbb{Q}^+ \cup \{\infty\}$, i.e. $x \infty = \infty$ and $x + \infty = \infty \ \forall x \in \mathbb{Q}^+ \cup \{\infty\}$, so we call it of infinity type.

Therefore we have $\mathbb{Q}^+ \cup \{0\}$ with the usual addition and multiplication is a semifield of zero type and $\mathbb{Q}^+ \cup \{0\}$ as in Remark 3.7 (i) is a semifield of infinity type.

<u>Proposition 3.11.</u> Let K be a semifield of zero type. If $\exists a_0 \in K - \{0\}$ such that $\forall x, y \in K (x + a_0 = y + a_0 \Rightarrow x = y)$, then $\forall a \in K$ we get that $\forall x, y \in K (x + a = y + a \Rightarrow x = y)$.

Proof: Let $a \in K$. Let $x, y \in K$ be such that x + a = y + a.

If a = 0, then we have x = y. So we may assume that $a \neq 0$. Then $a_0a^{-1}(x + a) = a_0a^{-1}(y + a). \text{ Hence } a_0a^{-1}x + a_0 = a_0a^{-1}y + a_0. \text{ Therefore } a_0a^{-1}x = a_0a^{-1}y \text{ and so } x = y.$

<u>Proposition 3.12.</u> Let K be a semifield of zero type. If $\exists x \in K - \{0\}$ such that x has an additive inverse, then every element in K has an additive inverse and K is a field.

Proof: Let $y \in K$. We want to show that y has an additive inverse. If y = 0, then we are done because 0 + 0 = 0. We assume that $y \neq 0$. Let z be an additive inverse of x. Hence x + z = 0, so $yx^{-1}(x + z) = 0$. Thus $y + yx^{-1}z = 0$ and $yx^{-1}z$ is an additive inverse of y.

Theorem 3.13. A finite semifield of zero type of order > 2 is a field.

Proof : Let K be a finite semifield of zero type such that K has
order > 2.

Case 1. If $\exists x \in K - \{0\}$ such that x has an additive inverse then by Proposition 3.12, every element in K has an additive inverse and so K is a field.

Case 2. Assume that every element in $K - \{0\}$ has no additive inverse. Let $x, y \in K - \{0\}$. Then $x + y \neq 0$, so $x + y \in K - \{0\}$. Hence $(K - \{0\}, +)$ is a commutative semigroup and so $K - \{0\}$ is a finite P.R.D. of order > 1 which contradicts Theorem 2.5. Therefore this case cannot occur.

Remark 3.14. (i) Theorem 3.13 is not true when K is an infinite semifield since $\mathbb{Q}^+ \cup \{0\}$ of zero type is not a field.

(ii) Theorem 3.13 is not true when K is a semifield of zero type of order 2. For example, let $K = \{0, 1\}$ and let + and \cdot be the following:

Then we have that :

$$0 + (0 + 1) = 0 + 1 = 1$$
 and $(0 + 0) + 1 = 0 + 1 = 1$;
 $0 + (1 + 0) = 0 + 1 = 1$ and $(0 + 1) + 0 = 1 + 0 = 1$;
 $0 + (1 + 1) = 0 + 1 = 1$ and $(0 + 1) + 1 = 1 + 1 = 1$;
 $1 + (0 + 0) = 1 + 0 = 1$ and $(1 + 0) + 0 = 1 + 0 = 1$;
 $1 + (0 + 1) = 1 + 1 = 1$ and $(1 + 0) + 1 = 1 + 1 = 1$;
 $1 + (1 + 0) = 1 + 1 = 1$ and $(1 + 1) + 0 = 1 + 0 = 1$;

$$0(0+1) = 01 = 0$$
 and $00+01 = 0+0=0$;
 $0(1+0) = 01 = 0$ and $01+00 = 0+0=0$;
 $0(1+1) = 01 = 0$ and $01+01 = 0+0=0$;
 $1(0+0) = 10 = 0$ and $10+10 = 0+0=0$;
 $1(0+1) = 1^2 = 1$ and $10+11 = 0+1=1$;
 $1(1+0) = 1^2 = 1$ and $11+10 = 1+0=1$;
 $1(1+1) = 1^2 = 1$ and $11+11 = 1+1=1$.

Therefore (K, +) is a commutative semigroup, (K, ·) is an abelian group with zero and distributive law holds in K, so K is a semifield of zero type but it is not a field.

Corollary 3.15. Any proper extension semifield of semifield in Remark 3.14 (ii) is infinite.

<u>Proof</u>: Suppose \exists K a finite proper extension semifield of semifield in Remark 3.14 (ii). Then K has order > 2. Since 0 + 1 = 1, by Theorem 3.10 K is of zero type. By Theorem 3.13 K is a field. Since 0 + 1 = 1 + 1 but $1 \neq 0$, K is not additively cancellative which is a contradiction.

As a consequence of Remark 3.14 (ii), we see that a semifield of order 2 is an interesting special case of semifields. We wish to study more about semifields of this order and to do this we first find all the possible commutative semigroup operations on $\{0, 1\}$ that make \cdot 0 1 0 0 1 0 1

into a semifield.

Since 0 + 0 = 0, there are four possible commutative binary operations + on $\{0, 1\}$ such that $\{0, 1\}$ is a semifield:

Note that Table 1 makes $\{0, 1\}$ into a field, Table 2 makes $\{0, 1\}$ into the trivial semifield and Table 4 makes $\{0, 1\}$ into the almost trivial semifield. And we have that the only finite semifield of zero type which is not a field is the semifield of table 3.

Table 3 shows that it is possible that a semifield has an additive zero which is not 0.

Proposition 3.16. If K is a semifield of order > 2 such that K has the additive zero e then e = 0.

 $\frac{\text{Proof}}{\text{roof}}: \text{ Suppose } e \neq 0. \text{ Then } x+e=e \quad \forall \ x \in K, \text{ so } e^{-1}x+1=1$ $\forall \ x \in K. \text{ Since } \left\{e^{-1}x\right\}_{x \in K} = K, \text{ 1 is also an additive zero. Hence } e=1.$ Let $x \in K - \left\{0, 1\right\}$. Then x+1=1, so $1+x^{-1}=x^{-1}$. Since $x^{-1}+1=1$, $x^{-1}=1$. Thus x=1, a contradiction.

Table 4 shows that it is possible that a semifield has an additive identity which is not 0.

Proposition 3.17. If K is a semifield of order > 2 such that K has an additive identity e then e = 0.

<u>Proof</u>: Suppose $e \neq 0$. Then $x + e = x \quad \forall x \in K$, so $e^{-1}x + 1 = e^{-1}x$ $\forall x \in K$. Since $\left\{e^{-1}x\right\}_{x \in K} = K$, we see that 1 is also an additive identity and so 1 = e. Let $x \in K - \{0, 1\}$. Then x + 1 = x, so $1 + x^{-1} = 1$. Since $x^{-1} + 1 = x^{-1}$, $x^{-1} = 1$. Thus x = 1, a contradiction.

Table 4 also shows that + and . are equal.

Proposition 3.18. If K is a semifield such that + and · are equal then K has order 2.

<u>Proof</u>: Suppose K has order > 2. Let $x \in K - \{0, 1\}$. Since x(1+1) = x + x, $x(1^2) = x^2$. Hence $x = x^2$ and x is an idenpotent in (K, \circ) . We have that 0 and 1 are the only idenpotents in (K, \circ) since (K, \circ) is a group with zero, so $x \neq x^2$ which is a contradiction.

In Chapter II we proved a theorem concerning the smallest sub-P.R.D. of a given P.R.D. Since the intersection of subsemifields of a semifield is a subsemifield, we have that the smallest subsemifield of a semifield exists and is the intersection of all of its subsemifields which will be called the prime semifield. In this chapter we shall also determine the prime semifield of a semifield up to isomorphism. Before studying this we first prove some theorems concerning semirings.

<u>Definition 3.19</u>. If S is a semiring with multiplicative zero (0) and satisfies property that $\forall x, y, z \in S (xy = xz \Rightarrow x = 0 \lor y = z)$, then we say that S is <u>0-multiplicatively cancellative</u>.

Example 3.20. $\mathbb{N} \cup \{0\}$ with the usual addition and multiplication is an example of a semiring with 0 as multiplicative zero having 0-multiplicative cancellation.

Theorem 3.21. If S is a semiring with multiplicative zero (0), then S can be embedded into a semifield iff S is 0-multiplicatively cancellative.

Let α , $\beta \in \underline{S \times (S - \{0\})}$. Define + and \cdot on $\underline{S \times (S - \{0\})}$ in the following way: Choose $(a, b) \in \alpha$ and $(c, d) \in \beta$, and let $\alpha + \beta = \{(ad + bc, bd)\}$ and $\alpha \beta = \{(ac, bd)\}$. Since $b \neq 0$ and $d \neq 0$, and S is 0-multiplicatively cancellative, $bd \neq 0$ and so $\alpha + \beta$, $\alpha \beta \in \underline{S \times (S - \{0\})}$. As in the proof of Theorem 2.11, we have that + and \cdot are well-defined.

Claim that $(S \times (S - \{0\}), +, \cdot)$ is a semifield.

Let $a \in S - \{0\}$ and let $\alpha \in \underline{S \times (S - \{0\})}$. Choose $(c, d) \in \alpha$, then $\{(a, a)\} = \{(ac, ad)\} = \{(c, d)\} = \alpha$ and $\{(0, a)\} = \{(0, a)\}$, so $\{(a, a)\}$ is the multiplicative identity and

Fix $a \in S - \{0\}$. Define $\theta : S \rightarrow \underline{S \times (S - \{0\})}$ by $\theta(s) = \{(s_a, a)\}$ $\forall s \in S$. Let $s_1, s_2 \in S$. Then $\theta(s_1 + s_2) = \{((s_1 + s_2)a, a)\} = \{(s_1a + s_2a, a)\}((a, a)\} = \{(s_1a^2 + s_2a^2, a^2)\} = \{(s_1a, a)\} + \{(s_2a, a)\} = \{(s_1) + \theta(s_2)\}$ and $\theta(s_1s_2) = \{(s_1s_2a, a)\} = \{(s_1s_2a^2, a^2)\} = \{(s_1a, a)\}((s_2a, a)\} = \{(s_1a, a)\}((s_2a, a)\} = \{(s_1a, a)\}((s_2a, a)\} = \{(s_1a, a)\}$

Conversly, assume that S can be embedded into a semifield K. Let $x, y, z \in S$ be such that xy = xz. If x = 0, then we are done. Suppose that $x \neq 0$, then $x^{-1}xy = x^{-1}xz$. Hence y = z.

Remark 3.22. If S has a multiplicative identity 1, then \exists a canonical monomorphism from S into $\underline{S \times (S - \{0\})}$ defined by $\theta(s) = \{(s, 1)\} \forall s \in S$.

<u>Proposition 3.23</u>. If S is a semiring with multiplicative zero (0) having 0-multiplicative cancellation of order > 1, then $\frac{S \times (S - \{0\})}{\sim}$ is the smallest semifield containing S up to isomorphism.

Proof: Let K be a semifield containing S.

Define $\theta : \underline{K \times (K - \{0\})} \longrightarrow K$ in the following way: Let $\alpha \in \underline{K \times (K - \{0\})}$. Choose $(a, b) \in \alpha$ and let $\theta(\alpha) = ab^{-1}$. As we

already showed in the proof of Proposition 2.13, we have that θ is well-defined and θ is an isomorphism.

Define ϕ : $\underline{S \times (S - \{0\})}$ \longrightarrow $\underline{K \times (K - \{0\})}$ in the following way: Let $\alpha \in \underline{S \times (S - \{0\})}$. Choose $(a, b) \in \alpha$ and let $\phi(\alpha) = (a, b)$ where (a, b) is the equivalence class of (a, b) in $\underline{K \times (K - \{0\})}$. Clearly ϕ is a monomorphism. Hence $\underline{S \times (S - \{0\})}$ is isomorphic to a subsemifield of $\underline{K \times (K - \{0\})}$. Since $\underline{K \times (K - \{0\})}$, we get that $\underline{S \times (S - \{0\})}$ is isomorphic to a subsemifield of $\underline{K \times (K - \{0\})}$. Since $\underline{K \times (K - \{0\})}$, we get that $\underline{S \times (S - \{0\})}$ is isomorphic to a subsemifield of $\underline{K \times (K - \{0\})}$, $\underline{K \times (K - \{0\})}$ is the smallest semifield containing $\underline{S \times (S - \{0\})}$ is the smallest semifield containing $\underline{S \times (S - \{0\})}$ is the smallest semifield containing $\underline{S \times (S - \{0\})}$

 $\mathbb{N} \cup \{0\}$ with the usual addition and multiplication is an example of a semiring with 0 as multiplicative zero having 0-multiplicative cancellation. We also see that 0 is also the additive identity for this semiring.

If we extend + on \mathbb{N} with the usual addition and multiplication to $\mathbb{N} \cup \{0\}$ by n+0=0+n=0 and 0n=n0=0 $\forall n \in \mathbb{N} \cup \{0\}$, then $\mathbb{N} \cup \{0\}$ is also a semiring with 0 as multiplicative and additive zero having 0-multiplicative cancellation.

- Corollary 3.24. Let S be a semiring of order > 1 with multiplicative
 zero (0) having 0-multiplicative cancellation. Then the following hold:
- (1) If 0 is the additive identity, then the smallest semifield containing S also has 0 as the additive identity.
- (2) If 0 is the additive zero then the smallest semifield containing S also has 0 as the additive zero.

<u>Proof</u>: From Proposition 3.23, we have that $\underline{S \times (S - \{0\})}$ up to isomorphism is the smallest semifield containing S and O corresponds with $\{(0, a)\} \ \forall a \in S - \{0\} \text{ in } \underline{S \times (S - \{0\})}.$

Let $a \in S - \{0\}$ and $\alpha \in \underline{S \times (S - \{0\})}$. Choose $(c, d) \in \alpha$.

If 0 is the additive identity for S, then $\{(0, a)\} + \alpha = \{(ac, ad)\} = \{(c, d)\} = \alpha$. Hence $\{(0, a)\}$ is the additive identity for $\underline{S \times (S - \{0\})}$ and we have (1).

If 0 is the additive zero for S, then $\{(0, a)\} + \alpha = \{(0, ad)\}$ = $\{(0, a)\}$. Hence $\{(0, a)\}$ is the additive zero for $(0, a)\}$ and we have (2).

Now we shall determine the prime semifield of a semifield up to isomorphism.

Theorem 3.25. If K is a semifield of zero type, then the prime semifield of K is either isomorphic to $\mathbb{Q}^{\dagger} \cup \{0\}$ with the usual addition and multiplication or \mathbb{Z}_p where p is a prime number or the semifield in Table 3, page 25. Furthermore if the prime semifield of K is isomorphic to \mathbb{Z}_p for some prime p, then K is a field by Proposition 3.12.

 $\frac{\text{Proof}}{\text{Proof}}: \text{ Let } K \text{ be the prime semifield of } K. \text{ Let } n \in \mathbb{N} \cup \{0\}.$ Then define $nl = l + 1 + \ldots + 1$ (n times) if $n \neq 0$ and nl = 0 if n = 0, so we have $\{nl\}_{n \in \mathbb{N}} \cup \{0\}^{\subseteq K}$.

Case \forall m, n \in $\mathbb{N} \cup \{0\}$ if m \neq n, then ml \neq nl.

By Proposition 3.23, $(N \cup \{0\}) \times N$ is the smallest semifield containing $N \cup \{0\}$ with the usual addition and multiplication.

And we have that $(N \cup \{0\}) \times N \cong \mathbb{Q}^{\downarrow} \{0\}$ with the usual addition and multiplication.

Define $\phi: \mathbb{N} \cup \{0\} \longrightarrow K$ by $\phi(n) = n1 \ \forall n \in \mathbb{N} \cup \{0\}$. Then clearly we have that ϕ is a monomorphism. Hence $\phi(\mathbb{N} \cup \{0\}) \cong \mathbb{N} \cup \{0\}$, so up to isomorphism $\phi(\mathbb{N} \cup \{0\}) \times \phi(\mathbb{N})$ is the smallest subsemifield of K containing $\phi(\mathbb{N} \cup \{0\})$. Since $0, 1 \in K$, $n1 \in K' \ \forall n \in \mathbb{N} \cup \{0\}$. Hence $\phi(\mathbb{N} \cup \{0\}) \subseteq K$, so we have that up to isomorphism $\phi(\mathbb{N} \cup \{0\}) \times \phi(\mathbb{N}) \subseteq K$. Since $\phi(\mathbb{N} \cup \{0\}) \times \phi(\mathbb{N})$ is a subsemifield of K, up to isomorphism we have that $K \subseteq \phi(\mathbb{N} \cup \{0\}) \times \phi(\mathbb{N})$. Therefore $K \cong \phi(\mathbb{N} \cup \{0\}) \times \phi(\mathbb{N})$.

Let θ : $(|N \cup \{0\}) \times |N| \to \phi(|N \cup \{0\}) \times \phi(|N|)$ be defined in the following way: Let $\alpha \in (|N \cup \{0\}) \times |N|$. Choose $(m, n) \in \alpha$ and let $\theta(\alpha) = [(\phi(m), \phi(n))]$. It is clear that θ is well-defined and is an isomorphism. Thus $K \cong \phi(|N \cup \{0\}) \times \phi(|N|) \cong (|N \cup \{0\}) \times |N| \cong Q^{+} \cup \{0\}$ with the usual addition and multiplication.

Case $\exists m, n \in \mathbb{N} \cup \{0\}$, m < n and ml = nl.

Let $m_0 = \min \{ m \in |N| \cup \{0\} | \exists n \in |N| \mid n > m \text{ such that } ml = nl \}$ and let $n_0 = \min \{ n \in |N| \mid n > m_0 \text{ and } m_0 l = nl \}.$

- (1) Suppose that $m_0 = 1$ and $m_0 = 2$. Then 1 = 1 + 1. Since 0 + 1 = 1, we have that $\{0, 1\}$ as in Table 3, page 25 is a subsemifield of K. Hence $K' \cong \{0, 1\}$ as in Table 3, page 25.
 - (2) Assume that $m_0 \neq 1$ or $n_0 \neq 2$.
- (2.1) Suppose that $m_0 \neq 1$. Then there are two cases to consider either $m_0 = 0$ or $m_0 > 1$.

If $m_0 = 0$, then n_0 can not be 1 since $0 \neq 1$, so $n_0 > 1$. Suppose

 $n_0 = 2$, then 0 = 1 + 1. Since 0 + 1 = 1, we have that $\{0, 1\} \cong \mathbb{Z}_2$ is a subsemifield of K. So in this case we have that $K \cong \mathbb{Z}_2$. Suppose that $n_0 > 2$, then $n_0 - 1 \ge 2$ and $\forall m \in \mathbb{N} \cup \{0\}$, $m1 \in \{n1\}_{0 \le n \le \frac{n_0 - 1}{0}}$ (a) If $m_0 > 1$, then $n_0 > 2$, so $n_0 - 1 \ge 2$ and $\forall m \in \mathbb{N} \cup \{0\}$,

 $m1 \in \{n1\}_{0 \le n \le n} - 1$ (b)

(2.2) Suppose that $n_0 \neq 2$. Again n_0 can not be 0 or 1, so

 $n_0 > 2$. Hence $n_0 - 1 \ge 2$ and $\forall m \in |N \cup \{0\}, m \in \{n\}_{0 \le n \le n_0 - 1}$ (c)

From (a), (b), (c), we see that in all these cases $n_0>2$ and \forall m \in $|\mathbb{N} \cup \{0\}$, ml $\in \{nl\}_{0\leqslant n\leqslant n_0}-1$. From now on we shall assume that the cases (a), (b), (c) hold.

Let $B = \{ n1 \mid n1 \neq 0, n \in |N \}$. Then $2 \leq |B| < \infty$.

Let $C = \{ (n1)(m1)^{-1} \mid n1, m1 \in B \}$. Again $2 \le |C| < \infty$ and $0 \notin C$.

Claim that $C \cup \{0\}$ is a subsemifield of K.

We first show that if m_1^1 , $m_2^1 \in B$, then $(m_1^m 2)^1 \in B$. To prove this, we let m_1^1 , $m_2^1 \in B$. Since $m_1^1 \neq 0$ and $m_2^1 \neq 0$, $(m_1^1)(m_2^1) \neq 0$. Hence $(m_1^m 2)^1 \neq 0$.

Let $(n_1^{11})(m_1^{11})^{-1}$, $(n_2^{11})(m_2^{11})^{-1} \in \mathbb{C}$. Then $(n_1^{11})(m_1^{11})^{-1} + (n_2^{11})(m_2^{11})^{-1} = (n_1^{11})(m_1^{11})^{-1}(m_2^{11})(m_2^{11})^{-1} + (n_2^{11})(m_2^{11})^{-1}(m_1^{11})(m_1^{11})^{-1}$ $= ((n_1^{11})(m_2^{11}) + (n_2^{11})(m_1^{11})(m_1^{11})^{-1}$ $= ((n_1^{11})(m_2^{11}) + (n_2^{11})(m_1^{11})^{-1}$ $= ((n_1^{11})(m_1^{11}) + (n_2^{11})(m_1^{11}) + (n_2^{11})(m_1^{11})^{-1}$ $= ((n_1^{11})(m_1^{11}) + (n_2^{11})(m_1^{11}) + (n_2^{11})(m_$

If $(n_1^m_2 + m_1^n_2)1 = 0$, then $(n_1^n_1)(m_1^n_1)^{-1} + (n_2^n_1)(m_2^n_2)^{-1} = 0 \in C \cup \{0\}$. If $(n_1^m_2 + m_1^n_2)1 \neq 0$, then $(n_1^m_2 + m_1^n_2)1 \in B$ and so we have that $(n_1^n_1)(m_1^n_2)^{-1} + (n_2^n_2)(m_2^n_2)^{-1} \in C$. Since $0 + x = x \quad \forall x \in K$, $(C \cup \{0\}, +)$ is a subsemigroup of (K, +).

Let $(n_11)(m_11)^{-1}$, $(n_21)(m_21)^{-1}$ ∈ C. Then $((n_11)(m_11)^{-1})((n_21)(m_21)^{-1}) = (n_11)(n_21)(m_11)^{-1}(m_21)^{-1} = (n_11)(n_21)((m_21)(m_11))^{-1} = ((n_1n_2)1)((m_1m_2)1)^{-1}.$ Since n_11 , n_21 , m_11 , $m_21 \in \mathbb{B}$, $(m_1m_2)1$, $(n_1n_2)1 \in \mathbb{B}$ so $((n_1n_2)1)((m_1m_2)1)^{-1} \in \mathbb{C}$. Since $(m_11)(n_11)^{-1} \in \mathbb{C}$ and $((m_11)(n_11)^{-1})((n_11)(m_11)^{-1}) = 1$, we have that $\forall x \in \mathbb{C}$, $x^{-1} \in \mathbb{C}$. Thus (\mathbb{C}, \bullet) is a subgroup of $(\mathbb{K} - \{0\}, \bullet)$. Therefore we have the claim and clearly $\mathbb{C} \cup \{0\}$ is also of zero type.

Since $2 < |C \cup \{0\}| < \infty$, by Theorem 3.13 $C \cup \{0\}$ is a field. We have that $K \subseteq C \cup \{0\}$ since K is the prime semifield of K. Since $0, 1 \in K, nl \in K \forall n \in |N \cup \{0\}$. Hence $B \cup \{0\} \subseteq K$ and so $C \cup \{0\} \subseteq K$. Thus $K = C \cup \{0\}$ and so $K \cong \mathbb{Z}_p$ for some prime p.

Therefore if K is a semifield that has property (a) or (b) or (c), then $K\cong \mathbb{Z}_p$ for some prime p>2 and K is a field.

Theorem 3.26. If K is a semifield of infinity type, then the prime semifield of K is either isomorphic to $\mathbb{Q}^+ \cup \{0\}$ in Remark 3.7 (i) or the trivial semifield of order 2 or the almost trivial semifield of order 2.

Proof: Let K be the prime semifield of K. Since 0 + x = 0 $\forall x \in K$, $0 \in A$ where $A = \{x \in K \mid x + y = 0 \ \forall y \in K\}$. Hence $A \neq \emptyset$. By Theorem 3.9 (2), we have that either $A = \{0\}$ or A = K.

Case A = K. Then 1 + 1 = 0 and we have 0 + 1 = 0. Thus $\{0, 1\}$ is the trivial semifield of order 2 and the trivial semifield on $\{0, 1\} \cong K$.

Case $A = \{0\}$. Let $n \in |N \cup \{0\}$. Then define $n1 = 1 + 1 + \dots + 1$ (n times) if $n \neq 0$ and n1 = 0 if n = 0. Hence we have that $\{n1\}_{n \in |N \cup \{0\}} \subseteq K$.

Subcase \forall m, n \in $\mathbb{N} \cup \{0\}$ if m \neq n, then ml \neq nl.

Let $B = \{(n1)(m1)^{-1}\}_{m, n \in \mathbb{N}}$. Then by the isomorphism $\theta : \mathbb{Q}^+ \longrightarrow B$ given by $\theta(m) = (m1)(n1)^{-1}$ we have that $B \cong \mathbb{Q}^+$ with the usual addition and multiplication. Since $0 + x = 0 \ \forall \ x \in B \cup \{0\}$, we have that $B \cup \{0\} \cong \mathbb{Q}^+ \cup \{0\}$ as in Remark 3.7 (i). Therefore $B \cup \{0\}$ is a subsemifield of K and so $K \subseteq B \cup \{0\}$ since K is the prime semifield of K. Since $0, 1 \in K$, $n1 \in K$ $\forall n \in \mathbb{N} \cup \{0\}$. Hence $B \cup \{0\} \subseteq K$. Thus $K = B \cup \{0\} \cong \mathbb{Q}^+ \cup \{0\}$ as in Remark 3.7 (i).

Subcase $\exists m, n \in \mathbb{N} \cup \{0\}, m < n \text{ and } m1 = n1.$

Let $m_0 = \min \{ m \in |N \cup \{0\}| \exists n \in |N| \quad n > m \text{ such that } ml = nl \}$.

and let $n_0 = \min \{ n \in |N| \mid n > m_0 \text{ and } m_0 l = nl \}$.

- (1) If $m_0 = 1$ and $n_0 = 2$, then 1 + 1 = 1 and we have that $K' = \{0, 1\}$ with the almost trivial structure.

We will prove this claim by using induction on $k \geqslant n_0$. We have that $n_0 1 = 0$. Let $k \in \mathbb{N}$ be such that $k > n_0$ and assume that $\forall j, n_0 \leqslant j \leqslant k, j1 = 0$. Thus k1 = (k-1)1 + 1 = 0 + 1 = 0. Therefore by mathematical induction we have the claim.

Since $n_0 \ge 3$, $n_0^2 \ge 3n_0$. Hence $n_0^2 + 1 \ge 3 n_0$ and so $n_0^2 - 2n_0 + 1 \ge n_0$. By the claim we have that $((n_0 - 1)1)((n_0 - 1)1) = n_0$

 $(n_0^2 - 2n_0 + 1)1 = 0$ which is a contradiction since $(n_0 - 1)1 \in K - \{0\}$ and $(K - \{0\}, \cdot)$ is a group. Therefore (a) cannot occur. Hence $m_0 > 1$ and so $n_0 > 2$.

Let $B = \{m1\}_{m \in |N|}$. Then $2 \leq |B| < \infty$ and $0 \notin B$. Let $C = \{(m1)(n1)^{-1}\}_{m, n \in |N|}$. Then $2 \leq |C| < \infty$ and clearly C is a P.R.D. which contradicts Theorem 2.5. Therefore the case m > 1 also cannot occur.

(3) From (1) and (2) we then left to consider the case $m_0 = 1$ and $n_0 \neq 2$. Hence n_0 cannot be 1 since $n_0 \neq m_0$, so $n_0 > 2$.

Claim that \exists n \in \mathbb{N} such that nl has no multiplicative inverse.

Suppose this claim is not true, then \forall $n \in \mathbb{N}$, nl has a multiplicative inverse. Let $B = \{ml\}_{m \in \mathbb{N}}$. Then $2 \leq |B| < \infty$ and $0 \notin B$. Let $C = \{(ml)(nl)^{-l}\}_{m}$, $n \in \mathbb{N}$. Again we have that $2 \leq |C| < \infty$ and $0 \notin C$. Clearly C is a P.R.D. which contradicts Theorem 2.5. Hence we have the claim and \exists $n' \in \mathbb{N}$ such that n'l has no multiplicative inverse. Hence n'l = 0. Then $m_0 = 0$ which is a contradiction since $m_0 = 1$, so this case cannot occur and we have the theorem.

Example 3.27. $\mathbb{Q}^+ \cup \{0\}$ with the usual multiplication is a group with zero 0. Let + be defined by $x + y = \max. \{x, y\} \ \forall x, y \in \mathbb{Q}^+ \cup \{0\}$. Then $\mathbb{Q}^+ \cup \{0\}$ is a semifield of zero type and 0 + 1 = 1 + 0, 1 + 1 = 1, so its prime semifield is isomorphic to Table 3, page 25.

If we define + on $\mathbb{Q}^+ \cup \{0\}$ by $x + y = \min_{\bullet} \{x, y\}$ $\forall x, y \in \mathbb{Q}^+ \cup \{0\}$, then we have $\mathbb{Q}^+ \cup \{0\}$ is a semifield of infinity type and 1 + 0 = 0 + 1 = 0, 1 + 1 = 1, so its prime semifield is isomorphic to the almost trivial semifield of order 2.

Remark 3.28. From Theorem 3.13 we know that a finite semificid of zero type of order > 2 is a field. If we drop the condition that + is commutative in the definition of a semifield, then we can have a finite semifield of zero type of order > 2 which is not a field since for any abelian group G with zero and + defined by x + y = x if x, $y \neq 0$ and x + 0 = 0 + x = x satisfies all the axioms of a semifield except + is not commutative.

Also, if we define + by x + y = x if x, $y \neq 0$ and x + 0 = 0 + x= 0, then we have that G is a semifield of infinity type.

In fact, even if • is not commutative then the + defined above distribute over • on both sides so we could get a non-commutative semifield.