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CHAPTER II

fiia

POSITIVE RATIONAL DOLATHNE

Definition 2.1. A nonempty set D is said to be a _positive rational domain,

abbreviated by P.R.D,, if there are two binary operations, + (addition) and

« (multiplication) defined on it such that :

(i) D is an abelian group with respect to multiplication;
(ii) D is a commutative semigroup with respect to addition;

(111) x(y + 2z) = xy + %z A4 X,y,z¢ D.
We will denote the multiplicative identity of a P.R.D. by 1.

Example 2.2, ﬂ}‘ and {frwith the usual addition and multiplication are

infinite P.R.D.'s.

Example 2,3, Let D = {1} and define 1*1 =1, 1+l = 1, Then D is a P.R.D.

Example 2.5. (i) A field is not a P.R.D. since 0 has no inverse.

(ii) If D is a P,R.D,, then D x D 1s also a P.R.D.

Theorem 2.5. There is neo finite P.R.D, of order > 1.

Proof : Suppose that there exists D a finite P.R.D. of order
n> 1, Since (D, ) is a finite abelian group, D is a finite direct product

of finite cyclic groups, Thus D=D xD x .., x D_ for some cyclic
- "h
groups Dnl, Dnz, ees 5 D of orders D5 Doy eee p Mp> 1 respectively.
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Let Xps Xy eee s Xy be generators of Dnl, Dn?’ ... 5 D_ respectively.
Let me¢ N. We defineml =1+ 1+ + 1 (m times). Therefore '

{m]']mg N € D. Since D is finite,-:-]m, s¢/N m<cs such that sl = ml.

Hence (s-m)1 + ml = ml and so we have that 3 X, vy ¢ D such that y + x = X.

Therefore x-ly +1=1,8032z¢Dsuch that z +1=1 (*)

(1) Claim that Vm, 1 ¢ m < n, - 1, xT+ 1 # 1.

To prove this claim we first prove that Vm,1 < m ¢ nl—l, if
X+ 1= 1, then x’{m +1=1WVkelN. Wewill prove this by using
induction on k € IN . "Letm e{l, 2y sev s My " 1} be such that x“f +1=1,
Let k ¢ IN . Assume that xl;'m + 1 = 1. Hence we have that xT(xl;m +1) = xT,
and so xgkﬂ)m + xT + 1= xT 4+ 1. Therefore xikﬂ)m +1=1. By

mathematical induction we conclude that Vm,1<mg( n,- 1,1f xT +1=1,
then xlim +1=1 Vke|N. Next, we prove that Vm, lgmggnl— 1 1f m|nl,

then xT + 1# 1, Suppose that this is not true, t‘nen3 m 1$mo$n1_ 1
’ m
such that mn and x °, 1= 1. Hence JkefiN -{1} such that n, = m k.
0
(k—li'mo m (k-l)mo
Sinee k-1€!N , X + 1 = 1. Therefore x, (¥
m

m
so 1 + xlo = xlo. Thus xlo = 1 which is a contradiction since

1 <m_ g n; - 1. Hence we have that V myl ¢ m g n, - 1 if mlnl, then

xT+_1# 1.

+ 1) -xlo and

Now, we will prove (1). If n; =2, then we have that x,; + 14 i

since 11'2. Suppoge that n1> 2. We will prove (1) by using induction on k.-
1{k$n1~ 1. Again, 3 + 1 # 1 since 1|n1. Let ke.{z, 3, soy n; - 1}.

Assume that Vme”\l,m <k, xT + 1 # 1, If k]nl, then we have that
xlf + 1 # 1. Suppose that k*nl and xl; +1 =1, Hence 3 m?EH\l such that
(m + 1k

mok < ny < (mo + 1)k. Since n, < (mo + Dk < 2n1, X, = x{ for some



(mo + Dk
Case j ¢ k. Then Xy +1 =1 and sc x{ + 1 = 1 vhich contradicts

the induction hypothesis.

w

Casc j = k. Then On + 1)k = k mod (n ). Eence nllmok which is
contradiction since 0 < mok Ry
case 1 > k. Then § = ks + r for some r,s € IN 0gr<kandsgmosince
if s >m, then nok < sk<m < (mo + 1)k, a contradiction.

If r=0and 8 = e then (mo + 1)k *’mok mod (nl), so k =0 mod.(nl)

and therefore we Lave that xﬁ = 1, a contradiction since 2 { k ¢ m; - 1.

Ifr=0ards¢m o? then (m + 1)k = sk mod (nl) ard so
fm - s)k
(m +1 -8k 0 mod (n ) Since x, ° +1 =1,
@ -s+Dk % MO k
X + X, = Xy Fence 1 + x; = Xy and s0 1 = Xy which is a
contradiction since 2  k ¢ ny = 1.
If 0<r < kand s ¢ m, then (m 4+ 1k = ks + r mod (n ). Hence
() 21 -
fmb 1 - s)k
(mo + 1 - 8) 2 r mod (nl). Since Xy +1=1, xl + 1 = 1 which

contradicts the induction hypothesis.
We thus see that all these three cases lead to contradictions.
X ,

Hence we nust have that x; + 1 # 1. By mathematical induction we have (1).

(2) Ae in (1), we can prove that V3 13 <D x? +1#1Vn

lgm{nj-l.
(3) Claim that ¥ z€ D={1}, z+ 1 # 1.
.If (D, + ) is a cyclic group, then the proef of (1) gives us the
clain, . Suppose that (D, ) is not a cyclic group, then h > 1. Note that

jul m :
ifz=(x, 05 ey %"), then z € D {1} 3ff 31, 1 ¢1i ¢ h such that

i"f

the components of z which are not 1. By (2), we can see that if z has

rm, 7 0 mod (ni). We will prove this claim by inductior on the number of

]

exactly one component which is not 1, then z + 1 # 1. Let k€ {2, 3, sssy h}.
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Assume that y + 1 # 1 for all y€ D - {1} having the property that the number
of comporents‘of y which are not 1 is less than k.-' Suppose that

ot "h
3 zo = (xl s Xp's eees Xy YeED -{l}having k components which are not 1

andz°+1=1. We may assume that Ogmlgnl—l,(}g,mzs n2—1, ——

0 ¢ mo<ny - 1. Ve mav rearrage the indices if necessary so that
0 m

17y Xy s eees Xy are those k components of z which are not 1. Hence
15‘“15“1"19 1.¢ my & My = Lanalens lgmkg n - l‘and m1=0 \7 j such

that K+ 1 ¢ J ¢ e From now on we shall assume that D has the decomposition

just described.
Let M -{ z € D| z has k components which are not 1 and z + 1 = 1}.
Let N={zE M|V], k+1¢j ¢hm =0mod (n)}.N#¢ since z € N.

3
Let mo = min. { m|1lgmg n - 1 such that Jzecl and the kth component of

ziax{':} .
Then 3 z, = (XTI. x‘:z’ vies xt‘f_'ll, x:", 1, wevy 1) € N where
lgmlgnl-l,lsmzinz—l, eaey Logmy g < nk_l-landlsmognk-l.
(%*) * Cleim that Y/ s € IN ,3?4‘1:1.
Since z,€ M, z. + 1 =1, Let s¢ |N . Assume that z- + 1 = 1,

1 1 1
5 s s+l
Hence zl(z1 + 1) = zl, so we have that z + 2 + 1= z, + 1. Thus

1§
z?+1+ 1 = 1 and Ly mathematical induction we have (¥¥). _
Now, consider m . There are two cases, either m_ 1 _nk orm_ 4 m.
| Assume that m i nk. Then Ty = jmo for some j € N -{1} .
Suppose that Vi, 1 ¢ i ¢k~ 1, Im = 0 mod (ni). Therefore z:{ = 1.
S j-1

%% 'j -] = o =
Ly (%*%), z3 + 1=1, so zl_(zl + 1) zy- Ferce 1 + z zy and so
z, = 1 which is a contradiction., Therefore io’ 1 <1 ¢ k=1 such that

jr:.i # 0 mod (1:;3l ). Again by (**), we have that zi 4+ 1 = 1 which implies
) (e _



o, dmg gm, Lo
A i, Im, tl M, Pan m_,
at xl ] xz g o0y xio_l ’ io L) xi +1 [ I H_l » 1. sewy 1)+1-1
°

fm

which contradicts the induction h-ypotheais since x " © 4 1. Therefore
()

m "4 n . Thus ve have that T se IN such that

(s+l)m
'mo<“k< (s+1)mo(2nk. Plem:exk °-x{:forsomej.lgjgnk-l.

Cage 1. Assume that j < m_, Suppose that 4 1,11 ¢ k - 1 such

that (s + Dm, =0 wod (ny ). By (*), zi‘” + 1 = 1 vhich implies that
0 o
(s+1)m1 (s+1)m2 (a-!-l)mio_ 1 (a+1)mi°+ 1 (a+1)m.k _ g
(xl » xz I g ewey xio- 1 ) 1’ xi°+ 1 » "e0y Kk - 1 9

xilr. 1, «vep 1) + 1 =1, which contradicts the induction hypothesis. Therefore

we have that V 1, 1 ¢ 1 ¢ k-1, (z:-i-l)mi # 0 mod (ni). Since z?ﬂ +1=1,

(stl)m;  (s+l)m, (s+Dmy_y 4
(xl s Xy s e Xy W o 1, +esy 1) + 1 = 1 which contradicts

the choice of m .

Case 2. Assume that j =m . Then (s)m = m mod (n ) and so nk|sm°,
a contradiction since 0 < sm < o

Case 3., Assume that i > m. Then j = r,m + r, for some Ti» r, & |N

0 €5, € m and rlg s since if T, > 8 then sm < rym. <y < (s+1)mo, which

2

is a contradiction.

(3.1) Case r, = s and X, = 0. ‘:hen (a+1)m° = sm_ mod (r%),
Hence m = 0 mod (nk) and we have that x.ko = ] which is a contradiction.

(3.2) Case r, <s and PO 0. Then (s+1)m° ®rm mod (n.k), and

80 (s-!-l—rl)mo = 0 mod (nk). Suppose thatV/ 1, 1 ¢ 1 < k-1,

s-r

(s+1-r%)mi = 0 mod (ni). Therefore zf"l—r_ = 1, By (*%) z, 1 +1=1, s0
B-

;;1(21,t ! 4 1) = Zye Hence 1 + zy = 7 Therefore we have that 1 = z,, a

contradiction. So 3 io’ 1 g iog k-1, such that (z;-i-l--t-:l_)m1 # 0 mod (ni ) }%
° o

-
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s+1-—r1
Again by (**), z, +1=1, so

(s+1--r1)m1 (s+1-r1)m2 (s+1-r1)mio_1 (s+l-r1}mio {s+1-r1)mio+1
(x1 s Xy yoeees Xgo g » ¥y » X5 41 ,
o o o
(stl-T))m )
cees Xy s 1, eeey 1) +#1 =1, which contradicts the induction

- \ 1
(s+l 2P

hypothesis since'xi © 41.
o

(2.3) Cass r S8 and 0 < ¥{< m . Then (s+1)mC £ +r, mod (nk),

2520
and so (s-’rl—rl)mo =1, mod (nk). Cuprose t‘:szitlz—rﬂ io' 1 ¢ iog k-1, euch
that (s-!-l-rl}mi = 0 mod (ni ¥<// By (¥%) 2y 1 4+1=1, so
o 0 '
(s+1-r1)m1 (s+1«r1)m2 (s+1-r1)mioh1 (s+1-r1)mio+1
(x1 s %, s aees Xy ol X4 § ensey
[ o
(s+1--1:1)m1_{k_1 "
%1 > % o 1y eesyl) #+ 1 =1, 5hich contradicts the induction

hypothesis, Therefore Wil 1 £1.€ k=1, {s+1-r‘)mi # 0 mod (ni) and

we have that

(s+l-r )m (s+l-1r dm (a+1-1,) T
(xl : ls 1"-2 \ 2! susy x}’.—l 1“'k-1’ x]r’.?.' 1i aves N+1=1

which contradicte the choice of m

- . < = r =
(3.4) Case r, = and 0 <ﬁrg< rm . Then ‘S+l)mb = sm + 1, mod (nk)..
and so mo = r? mod ( nP)' Hence xk°= xk2 which is a contradiction since

0<ry,<m < n- L,

e thus sce that cases 1, 2 and 3 lead to contradictions. Hence
we must have that V 2z & D -~{1} having k& components wbich are not 1,
z+ 1 # 1. By induction we heve (3) f.e. WV 2z€ D {1}, z+1 £ 1.

Since J z ¢ Dsuch-that g+ 1 =1 by(*lwe must then have that 1 + 1 = 1.
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Fron (1), we have that (xl, 1, osey 1) + 1 =y for some
ye& D-{1} . Hence (%, 1, «ccs )+1+1=y+1, Since 1 +1=1,
we cet that y = (xl, 1y sesp 1) +1 = (xl, ¥ eveg 1) ¥ 14 1wyh 1.
Thus 1 = 1 + y—l and y-l 4 1 since y # 1. This contradicts (3). Hence

such a D cannot exist and we have the theorem. #

Remark 2.7, Let (D, * ) be an atelian group. If we define + on D by
x+y=x V x, y€D, then (D, +) is 2 non-commutative semigroup.
Since x(v + z) = xy = xy + x2, D satisfies all the axioms of P.R.D. except

+ is not commutative.

In particular, we see that if the condition of + Leing commutative
was dropped, then we can have a set D of finite order > 1 which satisfies

the axioms of a P.R.D.

In fact, even if (D, * ) is rot abelian then + distributes over the
+ defined above on both sides so we could get a P.R.D, of finite order > 1
which has nor-abelian multiplication, if we drop the condition that + Le

commutative.

Corollary 2.7. If S is a finite semirinz of order > 1, then § cannot be

multiplicatively cancellative.

Proof : Suprose there exists § a firite semiring of order n > 1
such that S is multiplicativelv cancellative. Let x ¢ S. Define,fx: §—>8§
by &(y) = Xy Vye S. Let ¥y, yp¢€ S be such that fx(yl) = fx(yz).

Then xyl = xy2 and so yl = V.. I‘.ence.fx is one-to-one. Since S is finite,

fx is onto.ja e ¢ S such that fx(e) = x, S0 Xe = ex = X. Let y¢ S. Then
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xy = (xe)y = x(ey), so vy = ey = ye and hence e is the multiplicative

identity, 3 _v_lg S such that f (y-l) = e, Hence y_v-l = y-ly = e. Thus
¥

we have that (S, +« ) is an abelian group and so S is a finite P.R.D. of

order > 1, contradicting Theorem 2.5. #

Remark 2.8. IN 1is a semiring which is multiplicatively cancellative.

For a P.R.D. of order 1 we see that 1 is also its additive
identity and additive zero but in a P.R.D. of infinite order we cannot

have this.

Proposition 2.9. If D is an infinite P.R.D. then D cannot contain any

additive identity.

Proof : Suppose D has an additive identity e, Hence e + x = x

VKG D. so 1 + e-lx = e_lx Vxe D, Since (D, -+ ) is a proup, {ehlx} D.

X€D -
Therefore 1 + z = z V 2D, so 1 is also the additive identity. Hence 1 = e.

Let x€ D-{1}. Thenl1+x=%x, sox " #1 =1, Sincex > +1 =x ),

x'l = 1. Hence x = 1, a contradiction. #

Proposition 2.10., If D is an infinite P.R.D. then D cannot contain any

additive zero.

Proof : Suppose D has an additive zero 0, Hence 0 + x = 0

Vxe D,sol +0 x=1 Vx¢ D. Since {0_1 x} D, 1 is also the

XE€D
additive zero., Thus 0 = 1. Let x¢ D —{ 1}. Then 1 + x = 1 and so

-1 =1 1 1

X +1=x ", Sincex +1=1, x =1, Hence x = 1, a contradiction. f

Theorem 2.11, If S is a semiring then S can be embedded into a P.R.D, iff

5 is multiplicatively cancellative.
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Proof : Assume that S is multiplicatively cancellative. Define
a relation~ on S x S by (x, y) ~ (x; vy} iff xy'=x'y Vx, vy, ¥, 7€ 8.
Clearly ~ is reflexive and symmetric. Let (a, b), (c, d), (e, £) € S xS
be such that (a, b) ~ (c, d) and (¢, d) ~ (e, f). Then ad = cb and cf = ed,
so adf = cbf and cfb = edb. Hence adf = edb. Since S is multiplicatively
cancellative, we get that af = eb. Therefore (a, b) ~ (e, f), so ~ 1is
transitive and ~ is an equivalence relation.

Let oc¢, P E 'E':E—S Define + and ¢« on _s_%g in the following
way

Choose (a, b) € o ~and (c, d) € ’Ii and let
x +p = [(ad + be, bd)] and ot.'F. = [(ap, bd)] . To shew + and . are
well-defined, let (a', b’ )€ &« and (, &d)e "5 . Then a¥ = a' b and
od =c d. Hence abd =a bd and cv'd =c'b' d, so adV d =42 dbd and
" beb'd =bc'b d. Therefore adb’ @ + beb' d = a' d'bd + b' c'bd, and
(ad + b’ d = (4 d +H ¢ )Ibd. Thus (ad +bc, bd) ~ (/& +¥ I, V),
so + is well-defined. Since ach' d’ = a'bed and a' bed = & ¢ bd, act/ d = d c bd.
Hence (ac, bd) ~ (@, bd) and + is well-defined.

Claim that (_§_’1:’:__S_, 4+, *) is a P.R.D,

Let a€ S, Let « €& S xS. Choose (c, d€ « . Then
((a, )}t = ((ac, ad)] = ?(c, ) =o so [(a, a)] 4is the
aultinlicative identity, also [(d, e)]oe = [(cd, ed)). = [(a, a)]
so every element has a multiplicative inverse. Clearly « is commutative and
associative. Thus (S x S, *) is an abelian group, and clearly w, +) is
a commutative semigroup. . _

Let o » 'F , ¥ € S x8. Choose (a, b.)E o o (8 d)e’li

o

and (e, f) €& ¥.
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Then o ( P +7%) [ (a(ef + de), b(af)) )

[ (acf + ade, bdf)]

( (acf + ade, bdf)][(b, b))

[ (acbf + aebd, adbf)]

[ (ac, bd) ] +[ (ae, bf)]
= of.P + .

Therefore S x S is a P.R.D.

Let:E S. Define f: S—> SxSby f (r) = (ra, a)] Vre S,
Let x, y € S. Then f (x +y) = ( (xa +;a, a)) = [(xa + ya, a)][(a, a))
- [ (xa% ya%, a2)) = ((xa, &)} + [va, &) = f(x) + f(y) and
flxy) = [ (xya, 8)) = [ Gxyas &) 1 (Ga, a)) = ( (xyaZ, a%)) =
((xa, 2)) ((va, a)) = fx)f(y). Therefore f is a hemomornhism.

Let x, y€ S be such that f(x) = f(y). Then [ (xa, a)] = [(ya, a)].
Hence xa2 = va’ and so x = y. Thus f is one-to-one and so we can embed

S into S x S.

Conversely, assume that S can be embedded into D which is a P.R.D.

Let x, y, z€ S be such that xy = xz. Hence x—lxy = x-lxz, soy = z.

Thus S is multiplicatively cancellative. . #

Remark 2.12. In the above theorem if S has a multiplicative identity 1

then we can embed § into § x S in 2 canonical way by defining f(xr) = [ (x, 1)].

———
-~

Proposition 2.13. If S is 2 semiring with multiplicative cancellation, then

S x S is the smallest P.?.D, containing § un to isomorphism i.e, every P.R.D.

contajning S has 2 sub P,R.D. isomorphic te § x S.
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Proof: Let D be a P.R,D. such that § € D.
Define € : Il_}é_l) — D in the following way :
Let o« € I)__%_D Choose (a, b)€ o and let O (%) = ab-l. To show 0 is
well-defined, let (&, B)€ o ., Then ab’ = db. Hence a e and o
is well-defined.

Let o, P € Q_%___I_J ., Choose (a, b) € & , (c, d)E‘P . Then

=1 y.ed}

6 (x+P) = (ad + bc) (bd) ™ = ab =0 (x) +0 (p) ard
0 (ap) = (ac) ()™} = (ab7)(ed™) = 8 () 0 (P). Hence 0 15 a
homomorphism.

Let @, PE D x D be such that 0 (#) =8 (). Choose (a, b) € «

and (c, d)€ P. Then ab”t = ed”!

and so ad = bc. Hence % = [(a, b)] -
[(c, d)] =P and 0 is one-to-one.

Let x € D. Then 6 ([(x, 1)]) = x and @ is orto. Therefors we
have _D_%S__D 2D,

Define ¢ @ §__3_§ < D_'x:l} in the following way : Let « € §_§_§.
Choose (a, b) € = and let $(x) = ((a, b)]t whkere [(a. b)]r is the equivalence
class of (a, b) in D x D. Clearly ¢ is a monomorphism. IHence § x § is
isomorphic to a sub-P.R.D. of D x D. Since D = p__g_D, we have that S__E_S is

isomorphic to a sub-P.R.D. of D and so S x 8 is the smallest P.R.D. containing

S up to isomorphism, i

Theorem 2.14. If D is an infinite P.R.D., then the smallest sub-P.R.D. of D

+
is either isomorphic to @ with usual addition and multiplication or {l}.

Proof : Since the intersection of sub-P.R.D. s is a sub-P,R.D.,

we have that the smallest sub-P.R.D. of a P.R.D. exists and is

001867
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the intersection of nll of its sub-P.R.D.'s. Let D' be the smallest

cub-P.R.D. of D. Let nC IN . Then defire nl = 1+ 1+ ... +1 (n times),

so we have that {nl} c D ‘
{ ‘ne |N

Case Vm, o € N if m # n then ml # nl.

Note that IN with the usual addition and multinlication is a
multiplicatively cancellative gemiring and ( IN x IN s+ o) B ( Gf, +, )

Define 8 : IN —> Dby O(r) =nl Vne IN . Iet nys nzelN
Then 8(n, + 'nz) = (n1 + n2)1 - nll +myl = B(nl) + B(nz) and

e(n,n,) = (n1n2)1 = (nll) (n,1) = B(nl)e(nz). ' Thus © is a homomorphism.

1"2
Clearly © is one-to-one, SO o(IN) = IN and 0(IN) is also a multiplicatively

cancellative semiring contained in D. Therefore by Proposition 2.13

0( INYy x o(IN) 1s the smallest sub-P.R.D. of D containing @(IN) up to
isomorphism. Since e(l) € D', al € D Vne IN. Hence 6( IN) < D, so

up to isomorphism we can consider i:hat_B(lN DI - a(IN) < D'. Since D is
o

the smallest sub-P.R.D., up to isomorphism we can consider that

D e 9(|N) x B(\N). Therefore D & 0( IN) x BUN)

Let f: IN xIN - 8 INy x 8(IN) be defined in the following
way : Let « ¢ IN xIN . Choose (my n) € & and let f() =
[(B(m), Q(n))]. It is clear that f is well-defined and is an isomorphism.

mhus D' 2 0C(IN) x o(IN) = INxIN = Q.

Case 4 m, a€IN , m <n and ml = nl.

Let m_ = min.{m e IN ' dnelN n>m and ml = nl} and let
min.{ne\N ! n>m_ and m 1 = nl}.

Claim that m_ =1 and n_ = 2
o o
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Suppose that m_ # 1 or n, # 2. Hence m > lorn > 2, If

n > 1 then no> 2. Thus in both cases we have that n_ - 12 2 and

Vme IN m}e{nl}lénéno_l. LEtB’{nl}1$n<no-land

~

C= {(nl)(ml)-l}nl’ ml € B Then C is a finite set with cardinality > 1
and 1= 1-1€ C. lLet (a,D(mD7, (nzl)(mzl)-le C. Then |
(@, D+ D ! = (D DT m D D (@, 1) (m, 1~ 1) (my D7
= ((a,1) (my1) + (0y1) (1) (@D m,H™H
= ((nym )1 + (a1 ((my1) (my 1))
=((n;m, + n,m)1) ((mzmljl)"le G
And ((ny 1) (my DY (0,1 (7Y = (D (ap) (g D7 mp 1™
= (ull)(nzl)((mzl)(mll))'_1
= (ta;n D) ((mym)1) e C
Stnce (1) (D% € and ((a ) (mDTH (D (D7) = 1, ve have that
V¥ xe ¢, x 'e C. Therefore C is a finite sub-P.R.D. of D with
cardinality > 1, which contradicts Theotem 2.5. Hence the claim is true

and we have 1 + 1 = 1. Therefore {1 }= D. #

+
Example 2.15, @ with the usual multiplication and + defined by x + y =

+
min.{xs ‘}} Vv x, € . is a P.R.D. with {1} as its srmallest sub-P.R.D.

Remark 2.16. { (a b

+
) | a,ce @ ,be@} satisfies all the axioms of
0 ¢

a P.R.D. excent that . is not commutative.
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