CHAPTER II

POSITIVE RATIONAL DOMAINS

<u>Definition 2.1.</u> A nonempty set D is said to be a <u>positive rational domain</u>, abbreviated by P.R.D., if there are two binary operations, + (addition) and • (multiplication) defined on it such that:

- (i) D is an abelian group with respect to multiplication;
- (ii) D is a commutative semigroup with respect to addition;
- (iii) x(y + z) = xy + xz $\forall x,y,z \in D$.

We will denote the multiplicative identity of a P.R.D. by 1.

Example 2.2. \mathbb{Q}^+ and \mathbb{R}^+ with the usual addition and multiplication are infinite P.R.D.'s.

Example 2.3. Let $D = \{1\}$ and define $1 \cdot 1 = 1$, 1+1 = 1. Then D is a P.R.D.

Example 2.5. (i) A field is not a P.R.D. since 0 has no inverse.
(ii) If D is a P.R.D., then D x D is also a P.R.D.

Theorem 2.5. There is no finite P.R.D. of order > 1.

<u>Proof</u>: Suppose that there exists D a finite P.R.D. of order n > 1. Since (D, ·) is a finite abelian group, D is a finite direct product of finite cyclic groups. Thus $D = D_{n_1} \times D_{n_2} \times \dots \times D_{n_h}$ for some cyclic groups $D_{n_1}, D_{n_2}, \dots, D_{n_h}$ of orders $n_1, n_2, \dots, n_h > 1$ respectively.

Let x_1, x_2, \ldots, x_h be generators of $D_{n_1}, D_{n_2}, \ldots, D_{n_h}$ respectively. Let $m \in \mathbb{N}$. We define $ml = 1 + 1 + \ldots + 1$ (m times). Therefore $\{ml\}_{m \in \mathbb{N}} \subseteq D$. Since D is finite, $\exists m, s \in \mathbb{N} \mod s$ such that sl = ml. Hence (s-m)1 + ml = ml and so we have that $\exists x, y \in D$ such that y + x = x. Therefore $x^{-1}y + 1 = 1$, so $\exists z \in D$ such that z + 1 = 1 ______(*)

(1) Claim that $\forall m, 1 \le m \le n_1 - 1, x_1^m + 1 \ne 1.$

To prove this claim we first prove that \forall m , 1 \leqslant m \leqslant n₁-1, if $\mathbf{x}_1^m+1=1$, then $\mathbf{x}_1^{km}+1=1$ \forall k \in \mathbb{N} . We will prove this by using induction on k \in \mathbb{N} . Let m \in $\left\{1,\,2,\,\ldots\,,\,n_1-1\right\}$ be such that $\mathbf{x}_1^m+1=1$. Let k \in \mathbb{N} . Assume that $\mathbf{x}_1^{km}+1=1$. Hence we have that $\mathbf{x}_1^m(\mathbf{x}_1^{km}+1)=\mathbf{x}_1^m$, and so $\mathbf{x}_1^{(k+1)m}+\mathbf{x}_1^m+1=\mathbf{x}_1^m+1$. Therefore $\mathbf{x}_1^{(k+1)m}+1=1$. By mathematical induction we conclude that \forall m , 1 \leqslant m \leqslant n₁-1, if $\mathbf{x}_1^m+1=1$, then $\mathbf{x}_1^{km}+1=1$ \forall k \in \mathbb{N} . Next, we prove that \forall m , 1 \leqslant m \leqslant n₁-1 if m | n₁, then $\mathbf{x}_1^m+1\neq 1$. Suppose that this is not true, then \exists m \ni 1 \leqslant m \mid n \mid 1 such that \mathbf{n}_1 and $\mathbf{x}_1^{(k+1)m}$ \mid 1 = 1. Hence \exists k \in \mid N \mid 1 such that \mathbf{n}_1 \mid m \mid N \mid 1 such that \mathbf{n}_1 \mid m \mid n \mid

Now, we will prove (1). If $n_1=2$, then we have that $x_1+1\neq 1$ since $1\mid 2$. Suppose that $n_1>2$. We will prove (1) by using induction on k $1\leqslant k\leqslant n_1-1$. Again, $x_1+1\neq 1$ since $1\mid n_1$. Let $k\in \{2,3,\ldots,n_1-1\}$. Assume that $\forall m\in \mathbb{N}, m< k$, $x_1^m+1\neq 1$. If $k\mid n_1$, then we have that $x_1^k+1\neq 1$. Suppose that $k\nmid n_1$ and $x_1^k+1=1$. Hence $\exists m\in \mathbb{N}$ such that $m_0k< n_1<(m_0+1)k$. Since $n_1<(m_0+1)k<2n_1$, $x_1=x_1^j$ for some j, $1\leqslant j\leqslant n_1-1$.

Case j < k. Then x_1 + 1 = 1 and so $x_1^j + 1 = 1$ which contradicts the induction hypothesis.

Case j = k. Then $(m_0 + 1)k = k \mod (n_1)$. Hence $n_1 \mid m_0 k$ which is a contradiction since $0 < m_0 k < n_1$.

Case j > k. Then j = ks + r for some $r, s \in \mathbb{N}$ $0 \le r \le k$ and $s \le m_0$ since if $s > m_0$, then $m_0 k \le sk \le m_1 \le (m_0 + 1)k$, a contradiction.

If r = 0 and $s = m_0$, then $(m_0 + 1)k = m_0 k \mod (n_1)$, so $k = 0 \mod (n_1)$ and therefore we have that $x_1^k = 1$, a contradiction since $2 \leqslant k \leqslant n_1 - 1$.

If r=0 and $s < m_0$, then $(m_1)k \equiv sk \mod (n_1)$ and so $(m_0+1-s)k \equiv 0 \mod (n_1)$. Since $x_1 + 1 = 1$, $(m_0-s+1)k + x_1^k = x_1^k$. Hence $1+x_1^k = x_1^k$ and so $1=x_1^k$ which is a contradiction since $2 \le k \le n_1-1$.

If 0 < r < k and $s \le m_0$, then $(m_0 + 1)k = ks + r \mod (n_1)$. Hence $(m_0 + 1 - s)k = r \mod (n_1)$. Since $x_1 + 1 = 1$, $x_1^r + 1 = 1$ which contradicts the induction hypothesis.

We thus see that all these three cases lead to contradictions. Hence we must have that $x_1^k+1\neq 1$. By mathematical induction we have (1).

- (2) As in (1), we can prove that \forall j $1 \leqslant$ j \leqslant b, $\mathbf{x}_{\mathbf{j}}^{\mathbf{m}} + 1 \neq 1 \ \forall$ m $1 \leqslant$ m \leqslant n₄ 1.
 - (3) Claim that $\forall z \in D \{1\}, z + 1 \neq 1$.

If (D, \cdot) is a cyclic group, then the proof of (1) gives us the claim. Suppose that (D, \cdot) is not a cyclic group, then h > 1. Note that if $z = (x_1^{m_1}, x_2^{m_2}, \ldots, x_h^{m_h})$, then $z \in D - \{1\}$ iff $\exists i, 1 \leqslant i \leqslant h$ such that $m_1 \neq 0 \mod (n_i)$. We will prove this claim by induction on the number of the components of z which are not 1. By (2), we can see that if z has exactly one component which is not 1, then $z + 1 \neq 1$. Let $k \in \{2, 3, \ldots, h\}$.

Let $M = \{z \in D \mid z \text{ has } k \text{ components which are not } 1 \text{ and } z + 1 = 1\}$. Let $N = \{z \in M \mid \forall j, k + 1 \leq j \leq h, m_j \equiv 0 \text{ mod } (n_j)\}$. $N \neq \emptyset$ since $z \in N$. Let $m_0 = \min$. $\{m \mid 1 \leq m \leq n_k - 1 \text{ such that } \exists z \in N \text{ and the } k^{th} \text{ component of } z \text{ is } x_k^m\}$.

Then $\exists z_1 = (x_1^{m_1}, x_2^{m_2}, \dots, x_{k-1}^{m_{k-1}}, x_k^{m_0}, 1, \dots, 1) \in \mathbb{N}$ where $1 \leq m_1 \leq n_1 - 1, 1 \leq m_2 \leq n_2 - 1, \dots, 1 \leq m_{k-1} \leq n_{k-1} - 1 \text{ and } 1 \leq m_0 \leq n_k - 1.$ (**) Claim that $\forall s \in \mathbb{N}$, $z_1^s + 1 = 1$.

Since $z_1 \in M$, $z_1 + 1 = 1$. Let $s \in IN$. Assume that $z_1^s + 1 = 1$. Hence $z_1(z_1^s + 1) = z_1$, so we have that $z_1^{s+1} + z_1 + 1 = z_1 + 1$. Thus $z_1^{s+1} + 1 = 1$ and by mathematical induction we have (**).

Now, consider m_0 . There are two cases, either $m_0 \mid n_k$ or $m_0 \nmid n_k$. Assume that $m_0 \mid n_k$. Then $n_k = jm_0$ for some $j \in \mathbb{N} - \{1\}$. Suppose that $\forall i, 1 \leq i \leq k-1$, $jm_i \equiv 0 \mod (n_i)$. Therefore $z_1^j = 1$. Ey (**), $z_1^{j-1} + 1 = 1$, so $z_1(z_1^{j-1} + 1) = z_1$. Hence $1 + z_1 = z_1$ and so $z_1 = 1$ which is a contradiction. Therefore $\exists i_0, 1 \leq i_0 \leq k-1$ such that $jm_i \neq 0 \mod (n_i)$. Again by (**), we have that $z_1^j + 1 = 1$ which implies

that $(x_1, x_2, \dots, x_{i_0-1}, x_{i_0}, \dots, x_{i_0+1}, \dots, x_{k-1}, \dots, x_{k-1}, \dots, x_{k-1})$ which contradicts the induction hypothesis since $x_i^{jm_1} > 1$. Therefore $m_0 \nmid n_k$. Thus we have that $m_0 \leq n_k \leq n_k \leq n_k$ such that $m_0 \leq n_k \leq n_k \leq n_k \leq n_k$. Hence $m_0 \leq n_k \leq n_k \leq n_k \leq n_k$. Hence $m_0 \leq n_k \leq n_k$

 x_k^j , 1, ..., 1) + 1 = 1, which contradicts the induction hypothesis. Therefore we have that \forall i, 1 \leq i \leq k-1, $(s+1)m_i \neq 0 \mod (n_i)$. Since $z_1^{s+1} + 1 = 1$, $(s+1)m_1 \quad (s+1)m_2 \quad (s+1)m_{k-1} \quad x_k^j, 1, \ldots, 1) + 1 = 1 \text{ which contradicts the choice of } m_0.$

Case 2. Assume that $j = m_0$. Then $(s+1)m_0 = m_0 \mod (n_k)$ and so $n_k \mid sm_0$, a contradiction since $0 < sm_0 < n_k$.

Case 3. Assume that $j > m_0$. Then $j = r_1 m_0 + r_2$ for some r_1 , $r_2 \in |N|$ $0 \le r_2 < m_0 \text{ and } r_1 \le s \text{ since if } r_1 > s \text{ then } sm_0 < r_1 m_0 < n_k < (s+1)m_0, \text{ which is a contradiction.}$

- (3.1) Case $r_1 = s$ and $r_2 = 0$. Then $(s+1)m_0 = sm_0 \mod (n_k)$. Hence $m_0 = 0 \mod (n_k)$ and we have that $x_k^0 = 1$ which is a contradiction.
- $(3.2) \quad \underline{\text{Case } r_1 < s \text{ and } r_2 = 0}. \quad \text{Then } (s+1)m_0 = r_1m_0 \mod (n_k), \text{ and}$ $\text{so } (s+1-r_1)m_0 = 0 \mod (n_k). \quad \text{Suppose that } \forall i, 1 \le i \le k-1,$ $(s+1-r_1)m_1 = 0 \mod (n_i). \quad \text{Therefore } z_1^{s+1-r} = 1. \quad \text{By } (**) z_1 + 1 = 1, \text{ so } z_1^{s-r_1} + 1) = z_1. \quad \text{Hence } 1 + z_1 = z_1. \quad \text{Therefore we have that } 1 = z_1, \text{ a contradiction.}$ $\text{contradiction.} \quad \text{So } \exists i_0, 1 \le i_0 \le k-1, \text{ such that } (s+1-r_1)m_i \neq 0 \mod (n_i).$

Again by (**), $z_1^{s+1-r_1} + 1 = 1$, so $(s+1-r_1)^m_1 \quad (s+1-r_1)^m_2 \quad (s+1-r_1)^m_{i_0-1} \quad (s+1-r_1)^m_{i_0} + 1 \\ (x_1^{s_1}, x_2^{s_2}, \dots, x_{i_0-1}^{s_0-1}, x_{i_0}^{s_0-1}, x_{i_0}^{s_0-1}, x_{i_0+1}^{s_0-1}, x_{i_0+1}^{s_0-1},$

(3.3) Case $r_1 < s$ and $0 < r_2 < m_0$. Then $(s+1)m_0 \equiv r_1m_0 + r_2 \mod (n_k)$, and so $(s+1-r_1)m_0 \equiv r_2 \mod (n_k)$. Suppose that $\exists i_0, 1 \leqslant i_0 \leqslant k-1$, such that $(s+1-r_1)m_1 \equiv 0 \mod (n_1)$. By (**) $z_1 + 1 = 1$, so $(s+1-r_1)m_1 = (s+1-r_1)m_2 = (s+1-r_1)m_1 = (s+1-r_1)m_1 = 1$ $(x_1, x_2, \dots, x_{i_0-1}, \dots, x_{i_0+1}, \dots, x_{i_0+1}, \dots, x_{i_0+1}) = (s+1-r_1)m_1 = 1$ $(s+1-r_1)m_1 = (s+1-r_1)m_1 = 1$ $(s+1-r_1)m_1 = 1$

 $(s+l-r_1)^m_{k-1} \quad r_2 \\ x_{k-1} \quad , \quad x_k^2, \quad l, \dots, l) \ + \ l = 1, \ \text{which contradicts the induction}$ hypothesis. Therefore $\forall i, \ 1 \leqslant i \leqslant k-1, \ (s+l-r_1)^m_{\ i} \not\equiv 0 \mod (n_i)$ and we have that

 $(s+1-r_1)^m 1$, $(s+1-r_1)^m 2$, $(s+1-r_1)^m k-1$, r 2, r 2, r 3, r 4, r 4, r 4, r 5, r 5, r 6, r 7, which contradicts the choice of r 6.

(3.4) Case $r_1 = s$ and $0 < r_2 < m_0$. Then $(s+1)m_0 = sm_0 + r_2 \mod (n_k)$, and so $m_0 = r_2 \mod (n_k)$. Hence $x_k = x_k$ which is a contradiction since $0 < r_2 < m_0 < n_k - 1$.

We thus see that cases 1, 2 and 3 lead to contradictions. Hence we must have that \forall $z \in D - \{1\}$ having k components which are not 1, $z+1 \neq 1$. By induction we have (3) i.e. \forall $z \in D - \{1\}$, $z+1 \neq 1$. Since \exists $z \in D$ such that z+1 = 1 by (*), we must then have that 1+1 = 1.

From (1), we have that $(x_1, 1, ..., 1) + 1 = y$ for some $y \in D - \{1\}$. Hence $(x_1, 1, ..., 1) + 1 + 1 = y + 1$. Since 1 + 1 = 1, we get that $y = (x_1, 1, ..., 1) + 1 = (x_1, 1, ..., 1) + 1 + 1 = y + 1$. Thus $1 = 1 + y^{-1}$ and $y^{-1} \neq 1$ since $y \neq 1$. This contradicts (3). Hence such a D cannot exist and we have the theorem.

Remark 2.7. Let (D, ·) be an abelian group. If we define + on D by $x + y = x \quad \forall x, y \in D$, then (D, +) is a non-commutative semigroup. Since x(y + z) = xy = xy + xz, D satisfies all the axioms of P.R.D. except + is not commutative.

In particular, we see that if the condition of + being commutative was dropped, then we can have a set D of finite order > 1 which satisfies the axioms of a P.R.D.

In fact, even if (D, *) is not abelian then * distributes over the + defined above on both sides so we could get a P.R.D. of finite order > 1 which has non-abelian multiplication, if we drop the condition that + be commutative.

Corollary 2.7. If S is a finite semiring of order > 1, then S cannot be multiplicatively cancellative.

Proof: Suppose there exists S a finite semiring of order n>1 such that S is multiplicatively cancellative. Let $x\in S$. Define $f_x\colon S\to S$ by $f_x(y)=xy$ $\forall y\in S$. Let $y_1,\ y_2\in S$ be such that $f_x(y_1)=f_x(y_2)$. Then $xy_1=xy_2$ and so $y_1=y_2$. Hence f_x is one-to-one. Since S is finite, f_x is onto. $\exists \ e\in S$ such that $f_x(e)=x$, so xe=ex=x. Let $y\in S$. Then

xy = (xe)y = x(ey), so y = ey = ye and hence e is the multiplicative identity. $\exists y^{-1} \in S$ such that $f(y^{-1}) = e$. Hence $yy^{-1} = y^{-1}y = e$. Thus we have that (S, \cdot) is an abelian group and so S is a finite P.R.D. of order > 1, contradicting Theorem 2.5.

Remark 2.8. N is a semiring which is multiplicatively cancellative.

For a P.R.D. of order 1 we see that 1 is also its additive identity and additive zero but in a P.R.D. of infinite order we cannot have this.

Proposition 2.9. If D is an infinite P.R.D. then D cannot contain any additive identity.

Proof: Suppose D has an additive identity e. Hence e + x = x $\forall x \in D$. So $1 + e^{-1}x = e^{-1}x \ \forall x \in D$. Since (D, \cdot) is a group, $\{e^{-1}x\}_{x \in D} = D$. Therefore $1 + z = z \ \forall z \in D$, so 1 is also the additive identity. Hence 1 = e. Let $x \in D - \{1\}$. Then 1 + x = x, so $x^{-1} + 1 = 1$. Since $x^{-1} + 1 = x^{-1}$, $x^{-1} = 1$. Hence x = 1, a contradiction.

Proposition 2.10. If D is an infinite P.R.D. then D cannot contain any additive zero.

Proof: Suppose D has an additive zero 0, Hence 0 + x = 0 $\forall x \in D, \text{ so } 1 + 0^{-1}x = 1 \quad \forall x \in D. \text{ Since } \left\{0^{-1} x\right\}_{x \in D} = D, \text{ 1 is also the additive zero. Thus } 0 = 1. \text{ Let } x \in D - \left\{1\right\}. \text{ Then } 1 + x = 1 \text{ and so } x^{-1} + 1 = x^{-1}. \text{ Since } x^{-1} + 1 = 1, x^{-1} = 1. \text{ Hence } x = 1, \text{ a contradiction. } \#$

Theorem 2.11. If S is a semiring then S can be embedded into a P.R.D. iff S is multiplicatively cancellative.

<u>Proof</u>: Assume that S is multiplicatively cancellative. Define a relation \sim on S x S by $(x, y) \sim (x', y')$ iff $xy' = x'y \quad \forall x, y, x', y' \in S$. Clearly \sim is reflexive and symmetric. Let (a, b), (c, d), $(e, f) \in S \times S$ be such that $(a, b) \sim (c, d)$ and $(c, d) \sim (e, f)$. Then ad = cb and cf = ed, so adf = cbf and cfb = edb. Hence adf = edb. Since S is multiplicatively cancellative, we get that af = eb. Therefore $(a, b) \sim (e, f)$, so \sim is transitive and \sim is an equivalence relation.

Let α , $\beta \in \frac{S \times S}{\sim}$. Define + and \cdot on $\frac{S \times S}{\sim}$ in the following way:

Choose $(a, b) \in \infty$ and $(c, d) \in \beta$ and let $\infty + \beta = [(ad + bc, bd)]$ and $\infty \beta = [(ac, bd)]$. To show + and \cdot are well-defined, let $(a', b') \in \infty$ and $(c', d') \in \beta$. Then ab' = a'b and cd' = c'd. Hence ab'd' = a'bd' and cb'd' = c'b'd, so adb'd' = a'dbd' and bcb'd' = bc'b'd. Therefore adb'd' + bcb'd' = a'd'bd + b'c'bd, and (ad + bc)b'd' = (a'd' + b'c')bd. Thus $(ad + bc, bd) \sim (a'd' + b'c', b'd')$, so + is well-defined. Since acb'd' = a'bcd' and a'bcd' = a'c'bd, acb'd' = a'c'bd. Hence $(ac, bd) \sim (a'c', b'd')$ and \cdot is well-defined.

Claim that $(S \times S, +, \cdot)$ is a P.R.D.

Let $a \in S$. Let $\alpha \in \underline{S \times S}$. Choose $(c, d) \in \alpha$. Then $[(a, a)] \alpha = [(ac, ad)] = [(c, d)] = \alpha$ so [(a, a)] is the multiplicative identity, also $[(d, c)] \alpha = [(cd, cd)] = [(a, a)]$ so every element has a multiplicative inverse. Clearly \cdot is commutative and associative. Thus $(\underline{S \times S}, \cdot)$ is an abelian group, and clearly $(\underline{S \times S}, +)$ is a commutative semigroup.

Let α , β , $\gamma \in \frac{S \times S}{\sim}$. Choose (a, b) $\in \alpha$, (c, d) $\in \beta$ and (e, f) $\in \gamma$.

Then
$$\alpha(\beta + \gamma) = \{ (a(cf + de), b(df)) \}$$

$$= \{ (acf + ade, bdf) \}$$

$$= \{ (acf + ade, bdf) \} \{ (b, b) \}$$

$$= \{ (acbf + aebd, adbf) \}$$

$$= \{ (ac, bd) \} + \{ (ae, bf) \}$$

$$= \alpha\beta + \alpha\gamma.$$

Therefore $S \times S$ is a P.R.D.

Let $a \in S$. Define $f : S \longrightarrow \underline{S \times S}$ by $f (r) = [(ra, a)] \forall r \in S$. Let $x, y \in S$. Then f (x + y) = [(xa + ya, a)] = [(xa + ya, a)][(a, a)] $= [(xa^2 + ya^2, a^2)] = [(xa, a)] + [(ya, a)] = f(x) + f(y) \text{ and}$ $f(xy) = [(xya, a)] = [(xya, a)][(a, a)] = [(xya^2, a^2)] = [(xa, a)][(ya, a)] = f(x)f(y)$. Therefore f is a homomorphism.

Let x, y \in S be such that f(x) = f(y). Then [(xa, a)] = [(ya, a)]. Hence $xa^2 = ya^2$ and so x = y. Thus f is one-to-one and so we can embed S into $S \times S$.

Conversely, assume that S can be embedded into D which is a P.R.D. Let x, y, $z \in S$ be such that xy = xz. Hence $x^{-1}xy = x^{-1}xz$, so y = z.

Thus S is multiplicatively cancellative.

Remark 2.12. In the above theorem if S has a multiplicative identity 1 then we can embed S into $\frac{S \times S}{\sim}$ in a canonical way by defining f(r) = [(r, 1)].

Proposition 2.13. If S is a semiring with multiplicative cancellation, then $\frac{S \times S}{\sim}$ is the smallest P.R.D. containing S up to isomorphism i.e. every P.R.D. containing S has a sub P.R.D. isomorphic to $\frac{S \times S}{\sim}$.

Proof: Let D be a P.R.D. such that $S \subseteq D$.

Define $\theta : \underline{D \times D} \longrightarrow D$ in the following way:

Let $\alpha \in \underline{D \times D}$. Choose $(a, b) \in \alpha$ and let θ $(\alpha) = ab^{-1}$. To show θ is well-defined, let $(a', b') \in \alpha$. Then ab' = ab. Hence $ab^{-1} = ab'^{-1}$ and θ is well-defined.

Let α , $\beta \in \underline{D \times D}$. Choose $(a, b) \in \alpha$, $(c, d) \in \beta$. Then $\theta (\alpha + \beta) = (ad + bc)(bd)^{-1} = ab^{-1} + cd^{-1} = \theta (\alpha) + \theta (\beta)$ and $\theta (\alpha\beta) = (ac)(bd)^{-1} = (ab^{-1})(cd^{-1}) = \theta (\alpha) \theta (\beta)$. Hence θ is a homomorphism.

Let α , $\beta \in \underline{D} \times \underline{D}$ be such that θ (α) = θ (β). Choose (a, b) $\in \alpha$ and (c, d) $\in \beta$. Then $ab^{-1} = cd^{-1}$ and so ad = bc. Hence $\alpha = \{(a, b)\} = \{(c, d)\} = \beta$ and θ is one-to-one.

Let $x \in D$. Then θ ([(x, 1)]) = x and θ is onto. Therefore we have $\underline{D} \times \underline{D} \cong D$.

Define $\phi: \underline{S} \times \underline{S} \to \underline{D} \times \underline{D}$ in the following way: Let $\alpha \in \underline{S} \times \underline{S}$.

Choose $(a, b) \in \alpha$ and let $\phi(\alpha) = [(a, b)]$ where ((a, b)] is the equivalence class of (a, b) in $D \times D$. Clearly ϕ is a monomorphism. Hence $\underline{S} \times \underline{S}$ is isomorphic to a sub-P.R.D. of $\underline{D} \times \underline{D}$. Since $\underline{D} \cong \underline{D} \times \underline{D}$, we have that $\underline{S} \times \underline{S}$ is isomorphic to a sub-P.R.D. of \underline{D} and so $\underline{S} \times \underline{S}$ is the smallest P.R.D. containing \underline{S} up to isomorphism.

Theorem 2.14. If D is an infinite P.R.D., then the smallest sub-P.R.D. of D is either isomorphic to \mathbb{Q}^{\dagger} with usual addition and multiplication or $\{1\}$.

Proof: Since the intersection of sub-P.R.D.'s is a sub-P.R.D., we have that the smallest sub-P.R.D. of a P.R.D. exists and is the intersection of all of its sub-P.R.D.'s. Let D' be the smallest sub-P.R.D. of D. Let $n \in \mathbb{N}$. Then define $nl = 1 + 1 + \ldots + 1$ (n times), so we have that $\{nl\}_{n \in \mathbb{N}} \subseteq D'$ Case $\forall m, n \in \mathbb{N}$ if $m \neq n$ then $ml \neq nl$.

Note that $\mathbb N$ with the usual addition and multiplication is a multiplicatively cancellative semiring and $(\mathbb N \times \mathbb N, +, \cdot) \cong (\mathbb Q^+, +, \cdot)$

Define $\theta: |\mathbb{N} \longrightarrow \mathbb{D}$ by $\theta(n) = n1 \quad \forall n \in |\mathbb{N}|$. Let $n_1, n_2 \in |\mathbb{N}|$. Then $\theta(n_1 + n_2) = (n_1 + n_2)1 = n_11 + n_21 = \theta(n_1) + \theta(n_2)$ and $\theta(n_1n_2) = (n_1n_2)1 = (n_11)(n_21) = \theta(n_1)\theta(n_2)$. Thus θ is a homomorphism. Clearly θ is one-to-one, so $\theta(|\mathbb{N}|) \cong |\mathbb{N}|$ and $\theta(|\mathbb{N}|)$ is also a multiplicatively cancellative semiring contained in \mathbb{D} . Therefore by Proposition 2.13 $\underline{\theta(|\mathbb{N}|) \times \theta(|\mathbb{N}|)}$ is the smallest sub-P.R.D. of \mathbb{D} containing $\theta(|\mathbb{N}|)$ up to isomorphism. Since $\theta(1) \in \mathbb{D}'$, $n1 \in \mathbb{D}'$ $\forall n \in |\mathbb{N}|$. Hence $\theta(|\mathbb{N}|) \subseteq \mathbb{D}'$, so up to isomorphism we can consider that $\underline{\theta(|\mathbb{N}|) \times \theta(|\mathbb{N}|)} \subseteq \mathbb{D}'$. Since \mathbb{D}' is the smallest sub-P.R.D., up to isomorphism we can consider that $\underline{\theta(|\mathbb{N}|) \times \theta(|\mathbb{N}|)} \subseteq \mathbb{D}'$. Therefore $\underline{\mathbb{D}'} \cong \underline{\theta(|\mathbb{N}|) \times \theta(|\mathbb{N}|)}$.

Let $f: \frac{|N \times N|}{|N \times N|} \longrightarrow \frac{\theta(|N|) \times \theta(|N|)}{\infty}$ be defined in the following way: Let $\alpha \in \frac{|N \times N|}{\infty}$. Choose $(m, n) \in \alpha$ and let $f(\alpha) = (\theta(m), \theta(n))$. It is clear that f is well-defined and is an isomorphism. Thus $D' \cong \underline{\theta(|N|) \times \theta(|N|)} \cong \underline{|N \times N|} \cong \underline{Q}^{\dagger}$.

Case $\exists m, n \in [N]$, $m \in [N]$, $m \in [N]$ and m = [N].

Let $m_0 = \min \{ m \in |N| \mid \exists n \in |N| \mid n > m \text{ and } ml = nl \}$ and let $n_0 = \min \{ n \in |N| \mid n > m_0 \text{ and } m_0 l = nl \}$.

Claim that $m_0 = 1$ and $n_0 = 2$.

Suppose that $m_0 \neq 1$ or $n_0 \neq 2$. Hence $m_0 > 1$ or $n_0 > 2$. If $m_0 > 1$ then $n_0 > 2$. Thus in both cases we have that $n_0 - 1 \geqslant 2$ and $\forall m \in \mathbb{N}$ $m_1 \in \{n1\}_1 \leqslant n \leqslant n_0 - 1$. Let $B = \{n1\}_1 \leqslant n \leqslant n_0 - 1$ and $C = \{(n1)(m1)^{-1}\}_{n1, m1 \in B}$. Then C is a finite set with cardinality > 1 and $1 = 1 \cdot 1 \in C$. Let $(n_11)(m_11)^{-1}$, $(n_21)(m_21)^{-1} \in C$. Then $(n_11)(m_11)^{-1} + (n_21)(m_21)^{-1} = (n_11)(m_11)^{-1}(m_21)(m_21)^{-1} + (n_21)(m_21)^{-1}(m_11)(m_11)^{-1} = ((n_11)(m_21) + (n_21)(m_11))((m_21)(m_11))^{-1} + ((n_1m_2)(m_21)^{-1}) + ((n_1m_2)(m_2m_1)(m_2m_1))^{-1} = ((n_1m_2 + n_2m_1)1)((m_2m_1)(m_21)^{-1}) = (n_11)(n_21)((m_21)(m_11))^{-1} = (n_11)(n_21)((m_21)(m_11))^{-1} = (n_11)(n_21)((m_21)(m_11))^{-1} = ((n_1n_2)1)((m_2m_1)1)^{-1} \in C$

Since $(m_1 1)(n_1 1)^{-1} \in C$ and $((n_1 1)(m_1 1)^{-1})((m_1 1)(n_1 1)^{-1}) = 1$, we have that $\forall x \in C, x^{-1} \in C$. Therefore C is a finite sub-P.R.D. of D with cardinality > 1, which contradicts Theorem 2.5. Hence the claim is true and we have 1 + 1 = 1. Therefore $\{1\} = D$.

Example 2.15. \mathbb{Q}^+ with the usual multiplication and + defined by $x + y = \min \{x, y\} \ \forall \ x, \ y \in \mathbb{Q}^+$ is a P.R.D. with $\{1\}$ as its smallest sub-P.R.D.

Remark 2.16. $\left\{ \begin{pmatrix} a & b \\ 0 & c \end{pmatrix} \mid a,c \in \mathbb{Q}^+, b \in \mathbb{Q} \right\}$ satisfies all the axioms of a P.R.D. except that \cdot is not commutative.