CHAPTER I

PRELIMINARIES

Throughout this thesis much work will be done in sets of numbers.

Our notations using for these sets are:

N is the set of all natural numbers excluding zero:

Q is the set of all rational numbers;

 \mathbb{Q}^{\dagger} is the set of all positive rational numbers;

R is the set of all positive real numbers;

Z is the set of all integers;

 \mathbb{Z}_n , n $\in \mathbb{N}$ is the set of congruence classes modulo n in \mathbb{Z} .

The following definition of semiring will be used in this thesis.

This definition is slightly different from the one given in [1].

<u>Definition 1.1.</u> A nonempty set S is said to be a <u>semiring</u> if there are two binary operations, + (addition) and · (multiplication) defined on it such that:

(i)S is a commutative semigroup with respect to addition and multiplication;

(ii) $x(y + z) = xy + xz \quad \forall x, y, z \in S.$

Note that \mathbb{N} with the usual addition and multiplication is a semiring.

The following theorems will be used. The proof of these theorems will not be given but can be found in the references.

Theorem 1.2. If p is a prime number, then \mathbb{Z}_p is a field. See (4), page 91.

Theorem 1.3. The smallest subfield of a field is either isomorphic to \mathbb{Q} or \mathbb{Z}_p for some prime number p. See [5], page 7 - 8.

Theorem 1.4. Every integral domain can be embedded into a field.

See [4], page 101 - 103.

The field that was constructed in this theorem is called the field of quotients of the given integral domain.

The above theorem also says that if R is an integral domain, then the field of quotients of R is the smallest field containing R.

Theorem 1.5. Any finite abelian group is the direct product (sum) of a finite number of finite cyclic groups.

See [4], page 162 - 164.