CHAPTER II

PRELIMINARY

This chapter will give some definitions and theorems which will be needed in our investigation.

The materials of this chapter are drawn from reference $[3]$.

1. Generalized semi-metric space

2.1.1 Definition. Let E be a non-empty set. A generalized semi-metric on E is a function

d : $E \times E \longrightarrow R(\ge 0)^* = R(\ge 0) \cup {\infty}$ satisfying

1) $d(x, y) = d(y, x)$; 2) $d(x, x) = 0;$ 3) $d(x, y) \leq d(x, z) + d(z, y)$

for all x_1 , y_1 , z^2 \in E .

A generalized metric on E is a generalized semi-metric on E such that

 $d(x, y) = 0$ implies $x = y$

for any x , $y \in E$. i.e. if d is a generalized metric 2) becomes

 $d(x, y) = 0$ if and only if $x = y$.

A generalized semi-metric (respectively generalized metric) space is a set E together with a generalized semi-metric d (respectively generalized metric) on E and denoted by (E, d). Note that a generalized semi-metric (respectively generalized metric) space is a semi-metric (respectively metric) space if all values of d are in R (\geq 0). And we can see easily that a metric space is a special case of a generalized semi-metric space.

2.1.2 Definition. Let (E, d) be a generalized semi-metric space.

An open ball with center at $x \in E$ and radius $r > 0$ is the subset $S(x, r)$ of E, defined by

 $S(x, r) = \{ y \in E / d(x, y) < r \}$.

A closed ball with center at $x \in E$ and radius $r > 0$ is the subset S [x, r] of E, defined by

 $S [x, r] = \{ y \in E / d(x, y) \le r \}$

2.1.3 Definition. A subset G of a generalized semi-metric space (E, d) is called an open set if, given any x ϵ G there exists $r > 0$ such that $S(x, r) \in G$.

2.1.4 Definition. A subset F of a generalized semi-metric space (E, d) is closed if its complement is open.

2.1.5 Definition. A point x of a generalized semi-metric space (\mathbb{E}, d) is called a cluster point of $A \subseteq \mathbb{E}$ if, for every $r > 0$ $S(x,r)$ \cap $A + \emptyset$.

2.1.6. Definition. Let (E, d) be a generalized semi-metric space. The closure of $A \subseteq E$ is the subset \bar{A} of E, defined by

 $\overline{\Lambda} = \{ x \in \Lambda / x \text{ is a cluster point of } \Lambda \}$.

 $\overline{3}$

2.1.7 Definition. A sequence $\{x_n\}$ in a generalized semimetric space (E, d) is said to d-converge to a point $x \in E$ if, given any $\xi > 0$, there exists a positive integer M such that $d(x_n, x) < \varepsilon$ for all $n \geq N$. The point x is called a limit of the sequence $\{x_n\}$.

Clearly, $\left\{x_n\right\}$ d-converges to x iff $d(x_n, x)$ converges to 0. 2.1.8 Definition. Let f be a mapping from a generalized semi-metric space (E_1, d_1) into a generalized semi-metric space (E_2, d_2) . A function f is said to be continuous at a point $x_0 \in E_1$ if, for any $\xi > 0$ there exists $\delta > 0$ such that for all $x \in \mathbb{E}_1$, $d_2(f(x), f(x_0)) < \xi$ whenever $d_1(x, x_0) < d$.

The mapping f is said to be continuous on E if it is continuous at every point on E.

2.1.9 Proposition. Let f be a mapping from a generalized somi-metric space (E_1, d_1) into a generalized semi-metric space (E_2, d_2) . Then f is continuous if and only if a sequence $\{f(x_n)\}\$ of \mathbb{E}_2 , d₂-converges to $f(x)$ whenever the sequence $\{x_n\}$ of \mathbb{E}_1 d_1 -converges to $x \in E_1$.

Proof. Assume f is continuous. Given any $\{\epsilon\}$ 0 and $x \in \mathbb{E}_{\tau}$, there exists $S > 0$ such that for all $y \in E_1$

 $d_1(x, y) < \delta$ implies $d_2(f(x), f(y)) < \xi$.

If $\{x_n\}$ d₁-converges to x then there exists a positive integer N such that for all $n \geq N d(x_n, x) < \delta$. So that $d_2(f(x_n), f(x)) < \xi$. **Therefore the sequence** $\{f(x_n)\}$ d₂-converges to $f(x)$.

To prove the converse, assume that $\{ f(x_n) \} d_2$ -converges to $f(x)$ whenever $\left\{ x_n \right\}$ d₁-converges to x_{\bullet} Suppose f is not continuous at a point $x_0 \in \mathbb{R}$. Therefore there exists an $\epsilon > 0$ such that for each $\delta > 0$ there is $x' \in E_1$ such that $d_1(x', x_0) < \delta$ and $d_2(f(x'))$, $f(x_0)) \geq \varepsilon$. So that for each positive integer n, we can choose x_n such that $d_1(x_n, x_0) < \frac{1}{n}$ and $d_2(f(x_n), f(x_0)) \geq \epsilon$. Clearly, $\{x_n\}$ d₁-converges to x_0 , but $\{f(x_n)\}$ does not d₂-converge to $f(x_0)$. This contradicts our assumption. The proof is complete.

2.1.10 Proposition. Let (E, d) be a generalized semi-metric space and $A \subseteq E$. Then

 $d(x, A) = 0$ if and only if $x \in \overline{A}$

where

 $d(x, \Lambda) = inf \{ d(x, \Lambda) / \Lambda \in \Lambda \}$.

Assume $d(x, \Lambda) = 0$, suppose $x \notin \Lambda$, then there exist Proof. $r_x > 0$ such that $S(x, r_x) \cap A = \emptyset$. For any $y \in A$, we have $y \notin S(x, r_x),$ so that $d(x, y) \ge r_x > 0$. Therefore

 $d(x, \Lambda) = \inf \{d(x,y) / y \in \Lambda\} \geq r_x > 0$. Contradict the assumption $d(x, \Lambda) = 0$. Therefore $x \in \tilde{\Lambda}$.

To show that converse, assume $x \in \Lambda$. Suppose $d(x, \Lambda) = r > 0$. Since $d(x, y) \geq d(x, A) = r$ for all $y \in A$, i.e. there exists $r > 0$ such that for all $y \in A$, $y \notin S(x, r)$ and hence $A \cap S(x,r) = \emptyset$. Therefore $x \notin \tilde{A}$. Contradict the assumption $x \in \tilde{A}$. The proof is complete.

2.1.11 Theorem. Let (E, d) be a generalized semi-metric space. Define a relation R on E as follows :

 $(x, y) \in R$ if and only if $d(x, y) < +\infty$. Then R is an equivalence relation¹⁾ on E and E is decomposed into (disjoint) equivalence classes.

We shall call this decomposition of E the canonical decomposition. **Proof.** 1) For all $x \in \mathbb{F}$, $d(x, x) < +\infty$, we have $(x, x) \in \mathbb{R}$;

2) Since $d(x,y) = d(y,x)$, if $(x,y) \in R$, then $(y, x) \in R$;

3) If $(x,y) \in R$ and $(y, z) \in R$, then $d(x, y) < +\infty$ and $d(y, z) < +\infty$. Since $d(x, z) < d(x, y) + d(y, z)$, we have $d(x,z) < +\infty$. Therefore $(x,z) \in R$. The proof is complete.

 $1)$ See appendix

2.1.12 Definition. A sequence $\left\{ x_n \right\}$ in a generalized semimetric space (E, d) is called a d-Cauchy sequence if, given any ξ > 0, there is an integer N such that $d(x_n, x_n') < \xi$ whenever $n, n' \geq N$.

2.1.13 Definition. A generalized semi-metric spece (E, d) is said to be d-complete if every d-Cauchy sequence in E is d-convergent to an element in E.

 $2.1.14$ Theorem. Let (E, d) be a generalized semi-metric space. $E = U \{ E_{\lambda} | \lambda \in \mathcal{A} \}$ be the canonical decomposition and for each $d \in \mathcal{A}$ d_d = $d|_{E_d} \times E_d$, the restriction of d to \mathbb{E}_{d} X \mathbb{E}_{d} . Then

a) for each $d \in \mathcal{A}$, $(\mathbb{E}_{d}$, d_{d}) is a semi-metric space, b) for each $d, \beta \in \mathcal{A}$, with $d \neq \beta$

 \cdot d(x, y) = + or

for any $x \in E_d$ and $y \in E_3$;

c) (E, d) is a complete generalized semi-metric space if and only if for each $d \in \mathfrak{R}$, $(\mathbb{E}_{d}$, d_{d}) is a complete semi-metric $space_{\bullet}$

Proof. a) Clearly, d_d is a semi-metric.

b) Suppose for some $d, \beta \in \mathcal{A}$ with d, β, β there exists $x \in E_d$ and $y \in E_\beta$ such that $d(x, y) < +\infty$. Therefore x and y are in the some class. Contradict the assumption that

x and y are not in the same class. The proof is complete.

c) Assume (E, d) is a complete generalized semi-metric space. For each $d \in \mathbb{A}$, let $\left\{ x_n \right\}$ be a d_d -Cauchy sequence in \mathbb{E}_{d} . Then $\{x_n\}$ is also d-Cauchy in E . Since E is complete, $\left\{ x_n \right\}$ d-converges to a point $x \in \mathbb{E}$. Since $\left\{ x_n \right\}$ d-converges to x, hence $d(x_n, x) < +\infty$ for sufficiently large n. It follows that $x \in E_d$. Therefore(E_d, d) is a complete semimetric space.

To prove the converse, suppose that for each $d \in \mathbb{N}$, $(\mathbb{E}_{\mathbf{a}} \bullet \mathbb{I}_{\alpha})$ is a complete semi-metric space. Let $\{\mathbf{x}_n\}$ be a d-Cauchy sequence in E. Then there exists a positive integer N such that $d(x_m, x_n)$ < + ∞ for m, n \geq N so that there exists an $d \in \mathcal{R}$ such that $x_n \in \mathbb{E}_d$ for $n \geq N$. Since \mathbb{E}_d is a complete semi-metric space, the sequence $\{x_n | n \gg N\}$ d_{χ} -converges to $x \in \mathbb{E}_{\chi} \subset \mathbb{E}$. Therefore (E, d) is a complete generalized semi-metric space.

2. Metric space and the complete metric space

2.2.1 Theorem. The set of all real number X with a function d defined as follows :

 $d(x, y) = | x - y |$

where x_i y are any real numbers, is a metric space. We shall denote this metric space by $(\overline{\mathfrak{a}}^1, d)$ or simply $\overline{\mathfrak{p}}^1$.

Proof. The nonnegative function d satisfies property 1) and 2) in definition 2.1.1. Moreover, for any x, y, z in X, d satisfies property 3) by setting $a = x - z$, $b = z - y$ in inequality

 $|a + b| \leq |a| + |b|$

for any real numbers a, b so that

 $\vert x-y\vert < \vert x-z\vert + \vert z-y\vert$.

Therefore (X, d) is a motric space.

2.2.2 Lemma. If f and g are any bounded real valued functions defined on a set X then

 $\sup_{x \in X} |f(x) + g(x)| \leq \sup_{x \in X} |f(x)| + \sup_{x \in X} |g(x)|$

Proof. Since f and g are bounded real valued functions, $f + g$ is also bounded real valued function. Let

 $a = \sup_{x \in X} |f(x)|$, $b = \sup_{x \in X} |g(x)|$.

For any $x \in X$, $| f(x) | \xi a$ and $| g(x) | \xi b$ so that $| f(x) + g(x) | \le | f(x) | + | g(x) | \le a + b$.

Therefore

$$
\sup_{x \in X} |f(x) + g(x)| \leq \sup_{x \in X} |f(x)| + \sup_{x \in X} |g(x)|
$$

The proof is complete.

2.2.3 Theorem. The set of all continuous functions defined on the closed interval $[a, b]$, with a function d given by

$$
d(f, g) = \sup_{a \in X \le b} |f(x) - g(x)|,
$$

is a metric space. We shall denote this metric space by $C_{[a,b]}$. Proof. Let f , g , h be any three functions in $C_{[a,b]}$. Since

$$
d(f,g) = \sup_{a \leq x \leq b} |f(x) - g(x)|
$$

 $\leq \sup_{x \leq x} \left\{ \left| f(x) - h(x) \right| + \left| h(x) - g(x) \right| \right\}$

By lemma 2.2.2, we have

$$
d(f,g) \leq \sup_{a \leq x \leq b} |f(x) - h(x)| + \sup_{a \leq x \leq b} |h(x) - g(x)|
$$

= d(f, h) + d(h, g).

Moreover, d satisfies the properties 1) and 2) in definition obviously. Our proof is complete. $2.1.1$

2.2.4 Lemma. Let f_i , g_i for $i = 1$, 2,..., n be any bounded real valued functions defined on a set X. Then for any x 6 X and $i = 1, 2, \ldots, n$

$$
\sup_{x, \mathbf{i}} \left| f_{\mathbf{i}}(x) + g_{\mathbf{i}}(x) \right| \leq \sup_{x, \mathbf{i}} \left| f_{\mathbf{i}}(x) \right| + \sup_{x, \mathbf{i}} \left| g_{\mathbf{i}}(x) \right|
$$

Proof. Since f_i , g_i are bounded real valued functions for $i = 1$, 2,..., n, hence $f_i + g_i$ is also bounded real valued function for each $i = 1, 2, \ldots, n$. Let

$$
a = \sup_{x, i} |f_i(x)|, \quad b = \sup_{x, i} |f_i(x)|
$$

so that for any x and i

$$
|f_i(x)| \leq a \quad , \quad |g_i(x)| \leq b
$$

and hence

$$
| f_{\mathbf{i}}(\mathbf{x}) + g_{\mathbf{i}}(\mathbf{x}) | \langle f_{\mathbf{i}}(\mathbf{x}) | + | g_{\mathbf{i}}(\mathbf{x}) | \langle a + b \rangle.
$$

Therefore

$$
\sup_{x, i} |f_i(x) + g_i(x)| \leq \sup_{x, i} |f_i(x)| + \sup_{x, i} |g_i(x)|.
$$

The proof is complete.

2.2.5 Theorem. Let $C_{[a,b]}^n$ be a space of n-tuples $f = (f_1, f_2, \ldots, f_n)$ of continuous function f_1, f_2, \ldots, f_n defined on the closed interval [a, b] with a function d given by

$$
d(f, g) = \sup_{x, i} |f_i(x) - g_i(x)|.
$$

Then $C_{[a,b]}^n$ is a metric space.

Proof. Let f , g , h be any three functions in $C_{[a,b]}^n$ so that

$$
d(f, g) = \sup_{x, i} |f_i(x) - g_i(x)|
$$

\$\leq\$
$$
\sup_{x, i} \{ |f_i(x) - h_i(x)| + |h_i(x) - g_i(x)| \}
$$

By lemma 2.2.4, we have

$$
d(f,g) \leq \sup_{x, i} |f_i(x) - h_i(x)| + \sup_{x, i} |h_i(x) - g_i(x)|
$$

= $d(f, h) + d(h, g)$

and hence d satisfies property 3) of definition 2.1.1. Moreover, d satisfies properties 1) and 2) of definition 2.1.1 obviously. The proof is complete.

2.2.6 Lemma. Cauchy sequence in R is bounded.

Proof. Let $\left\{ x_n \right\}$ be a Cauchy sequence in \overrightarrow{R} . Let $\epsilon =$ \mathbb{I} there exists N such that

$$
\left|\begin{array}{cc} x_n - x_m \end{array}\right| < \quad 1
$$

for all m , $n \geq N$. Since

$$
x_n = x_n - x_N + x_N
$$
\n
$$
|x_n| \le |x_n - x_N| + |x_N|
$$
\n
$$
\le |x_n| + 1
$$

for $c11$ $n \geq N_0$ Let

 $M = max$ (x_1 , x_2 , ..., x_{N-1} , x_N + 1), therefore $|x_n| \leq M$ for all n. The proof is complete.

2.2.7 Proposition. The metric space (R, d) is complete Proof. Let $\{x_n\}$ be a d-Cauchy sequence of points in \overrightarrow{R} . Given any $\xi > 0$, there exists an N such that

 $|x_n - x_m| < \frac{\varepsilon}{2}$

for all $m, n \geq N$. Let

 $A_{N+k} = \left\{ x_n / n \ge N + k, \text{ for all nonnegative integers } k \right\}$ so that $n_N \supset n_{N+1} \supset \cdots$. By lemma 2.2.6, n_{N+k} is bounded above by a real number M_{\bullet} So that each A_{N+k} has the least upper bound. Let $\mathbf{d}_k = \sup A_{N+k}$, then $\mathbf{d}_0 \geq \mathbf{d}_1 \geq \ldots \ldots$ Let

 $B = \{d_0, d_1, \ldots \}$

B has a lower bound namely - M, since - $M \leq x_n \leq M$ for all n. So that B has the greatest lower bound. . Let

$$
x = \inf B
$$

then there exists $\alpha_{k_{\text{c}}}$ such that

$$
x \leqslant \phi_K \leqslant x + \frac{\epsilon}{2} \tag{1}
$$

where $d_k = \sup_{K_0} A_{N+k_0}$. Therefore there exists $x_m \in A_{N+k_0}$ such that

 α ₁

$$
\frac{1}{2} < x_{\text{m}} \leq d_{k_{0}}
$$

where $m \geq N + k_0$.

By equation (1) and (2)

$$
x - \frac{\varepsilon}{2} \leq d_{k_0} - \frac{\varepsilon}{2} < x_m \leq d_{k_0} < x + \frac{\varepsilon}{2}
$$

$$
x - \frac{\varepsilon}{2} < x_m < x + \frac{\varepsilon}{2}
$$

and hence $|x_{m}-x| < \frac{\varepsilon}{2}$.

Now, for any $n \ge m$ we have

$$
|x_{n} - x| \leq |x_{n} - x_{m}| + |x_{m} - x|
$$

$$
< \frac{\xi}{2} + \frac{\xi}{2} = \xi.
$$

Therefore $\left\{ x_n \right\}$ converges to x_* The proof is complete.

2.2.8 Definition. Let $\{f_n\}$ be a sequence of functions from an arbitrary set X into a metric space (Y, d) . Then $\left\{ f_n \right\}$ is said to d-converge uniformly to a function $f : X \longrightarrow Y$ if,

for every $\mathcal{E} \geq 0$, there exists a positive integer N such that $n \geq N$ implies $| f_n(x) - f(x) | < \varepsilon$ for all $x \in \overline{X}$.

2.2.9 Lemma. Let $\{f_n\}$ be a sequence of continuous functions on [a, b] which converges uniformly to f, then f is continuous on $[a, b]$.

Proof. Given any $\xi > 0$, there exists a positive integer N such that for all $n \geq N \mid f_n(x) - f(x) \mid < \frac{\xi}{2}$ for all $x \in [a, b]$. Let x_0 be any element in [a, b] so that f_N is continuous at x_0 , i.e. there exists $\delta > 0$ such that

 $|x - x_0| < \delta$ implies $|f_N(x) - f_N(x_0)| < \frac{\epsilon}{2}$.

Therefore we have

$$
|f(x) - f(x_0)| \le |f(x) - f_N(x)| + |f_N(x) - f_N(x_0)| + |f_N(x_0) - f(x_0)|
$$

$$
< \frac{2}{3} + \frac{2}{3} + \frac{2}{3} = \epsilon
$$

whenever $|x - x_0| < \delta$. This completes the proof.

2.2.10 Proposition. The metric space $C_{\lceil a,b\rceil}$, where d is defined in theorem 2.2.3, is complete.

Let $\{f_n\}$ be any d-Cauchy sequence in a metric space Proof. ${}^C_{\lceil a,b\rceil}$. Then, given any $\xi > 0$, there exists a positive integer N such that

$$
d(f_n, f_{n'}) = \sup_{a \le x \le b} |f_n(x) - f_{n'}(x)| < \frac{\epsilon}{2}
$$

for all n, $n \geq N$. Therefore we have

$$
(*)
$$
 $f_n(x) - f_{n'}(x) | < \frac{\xi}{2}$

for all n, $n' \geq N$ and $x \in [a, b]$. For each x fixed in [a, b], the sequence $\left\{ f_n(x) \right\}$ forms a Cauchy sequence in \overrightarrow{R} . Since \overrightarrow{R} is complete, $\left\{ f_n(x) \right\}$ converges to an element in \overrightarrow{R} . Let

$$
c_x = \lim_{n \to \infty} f_n(x)
$$

Now we define a function f on [a, b] such

$$
f(x) = c_{x}
$$

for all $x \in [a, b]$. Then we have

$$
f(x) = \lim_{n \to \infty} f_n(x).
$$

for each $x \in [a, b]$.

By taking n['] goes to + oo in $(*)$, we have

$$
|f_n(x) - f(x)| \leq \frac{\xi}{2} < \xi
$$

for all $n \geq N$ and $x \in [a, b]$, i.e. $\{f_n\}$ d-converges uniformly to f. By lemma 2.2.9, we have $f \in C_{[a,b]}$. Thereforc $\{f_n\}$ d-converges to f \in $C_{[a,b]}$. The proof is complete.

2.2.11 Proposition. The metric space $c_{[a,b]}^n$, where d is defined as in theorem 2.2.5, is complete.

Proof. Let $\{f^{(p)}\} = \{ (f_1^{(p)}, f_2^{(p)}, ..., f_n^{(p)}) \}$ be a d-Cauchy sequence of continuous function of a metric space $C_{[a, b]}^n$.

001983

that

Given any $\epsilon > 0$ there exists a positive integer N such that

$$
d(f^{(p)}, f^{(q)}) = \sup_{x, i} |f^{(p)}(x) - f^{(q)}(x)| < \frac{\epsilon}{2}
$$

for all $p, q \ge N$ so that

$$
(\ast \ast) \qquad | f_{i}^{(p)}(x) - f_{i}^{(q)}(x) | < \frac{\epsilon}{2}
$$

for all $p, q \ge N$, $x \in [a, b]$ and $i = 1, 2, \ldots, n$. For each x and i fixed $\left\{ f_i^{(p)}(x) \right\}$ forms a Cauchy sequence in \mathbb{R} . Since \mathbb{R} is complete, $\left\{ f_i^{(p)}(x) \right\}$ converges to an element in $\mathbb{\dot{R}}$. Let

$$
c_{i,x} = \lim_{p \to \infty} f_i^{(p)}(x)
$$

for i = 1, 2, ..., n. Now we define the functions f_i on $[a, b]$ such that

$$
f_{i}(x) = c_{i,x}
$$

for all $x \in [a, b]$ and $i = 1, 2, ..., n$. Hence

$$
f_{i}(x) = \lim_{p \to \omega} f_{i}^{(p)}(x).
$$

So that there exist positive integers N_i such that

$$
| f_{i}^{(p)}(x) - f_{i}(x) | < \xi
$$

for all $p \geq N_1$, $x \in [a, b]$ and $i = 1, 2, \ldots, n$. Let

$$
M = \max \{ N_1, N_2, \dots, N_n \} .
$$

If $p \geqslant N$, then

$$
d(f^{(p)}, f) = \sup_{x, i} |f^{(p)}(x) - f_i(x)| < \xi
$$
.

Therefore $\{f^{(p)}\}$ d-converges to f.

By taking q goes to + ∞ in $(**)$, we have

$$
f_{\mathbf{i}}^{(p)}(x) - f_{\mathbf{i}}(x) \vert < \epsilon
$$

for each i = 1, 2, ..., n and $x \in [a, b]$, i.e. $\{f_i^{(p)}\}$ d-converges uniformly to f_i. By lemma 2.2.9, f_i are continuous, for i = 1, 2, ..., n and hence f = $(f_1, f_2, \ldots, f_n) \in C_{[a, b]}^n$. The proof is complete.

If (Y, d) is a closed subspace of a 2.2.12 Proposition. complete metric space (X, d) . Then (Y, d) is complete. Let $\{x_n\}$ be a d-Cauchy sequence in $Y \subset X$. Since Proof. (X, d) is complete and Y is closed, we have $\{x_n\}$ d-converges to a point $x \in Y$. The proof is complete.