CHAPTER I

PROPER INVERSE SEMIGROUPS

L. O' Carroll has proved that any proper inverse semigroup can be fully $\sigma\text{-embedded}$ into an F-inverse semigroup.

In this chapter, we show that any semilattice of groups which is proper can be fully σ -embedded into an F-inverse semigroup which is also a semilattice of groups. Moreover, we show in general that this is true for the case of semilattices of inverse semigroups.

Let S be an proper inverse semigroup, and $\sigma(S)$ be the minimum group congruence on S. Let

- $M(S) = \{ \phi \in X \subseteq S \, | \, E(S) \, . \, X = X \subseteq a \sigma(S) \text{ for some } a \in S \}.$ L. O' Carroll has shown in [8] that the set M(S) under the usual set multiplication is an inverse semigroup, and for $X \in M(S)$ and $X \subseteq a \sigma(S)$, we have $X^{-1} = \{x^{-1} \, | \, x \in X\} \subseteq a^{-1} \sigma(S)$. Then he has given the following theorem:
- 1.1 Theorem [8]. Let S be a proper inverse semigroup. Then M(S) is an F-inverse semigroup with the semilattice of idempotents M(E(S)) and with $\{a\sigma(S) \mid a \in S\}$ as its set of maximum elements. The natural partial order on M(S) is that of inclusion, and $\psi: S \longrightarrow M(S)$ defined by $a\psi = aE(S)$ is a full σ -embedding of S into M(S). Moreover,

 $S | \sigma(S) \cong M(S) | \sigma(M(S)).$

The next theorem shows that if a proper inverse semigroup S

is a semilattice of groups, then M(S) is also a semilattice of groups. The following lemmas are proved first :

1.2 <u>Lemma</u>. If S is a regular semigroup, then every $\mathbf L$ -class and every $\mathbf R$ -class of S contains an idempotent.

<u>Proof</u>: Let L_a be the $\mathcal L$ -class of S containing $a \in S$. Since S is regular, a = axa for some $x \in S$. Then Sa = Sxa and hence $xa \in L_a$. Since xa is an idempotent of S, L_a contains an idempotent.

Similarly, every \Re -class of S contains an idempotent by using the fact : a = axa in S implies $ax \in E(S)$ and aS = axS. #

1.3 <u>Lemma</u>. Let S be a regular semigroup whose idempotents are in the center of S. Then S is a semilattice Y of groups and Y = E(S).

<u>Proof</u>: First, we show that $\mathcal{L} = \mathcal{R}$ which implies that \mathcal{H} is a congruence on S. Let $(a, b) \in \mathcal{L}$. Then Sa = Sb. Since S is regular, there exist x, $y \in S$ such that a = axa and b = byb and hence Sxa = Sa = Sb = Syb. Then a = syb and b = txa for some s, $t \in S$. Since $E(S) \subseteq C(S)$, it follows that

a = s(yb) = (yb)s = (ybyb)s = b(yyb)s = b(yybs) and

b=t(xa)=(xa)t=(xaxa)t=a(xxa)t=a(xxa)t. Therefore $(a,b)\in \mathcal{R}$. This proves that $\mathcal{L}\subseteq \mathcal{R}$. Similarly, we can show that $\mathcal{R}\subseteq \mathcal{L}$, so $\mathcal{L}=\mathcal{R}$. Hence

$$\mathcal{H} = \mathcal{L} \cap \mathcal{R} = \mathcal{L} = \mathcal{R}$$
.

Since $\mathcal L$ is a right congruence and $\mathcal R$ is a left congruence, $\mathcal H$ is a congruence on S. Let $a \in S$. Then $H_a = L_a$ and by Lemma 1.2,

 $L_a = L_e$ for some $e \in E(S)$, so $e \in H_a$. This proves that every $\mathcal H$ -class contains an idempotent. Hence every $\mathcal H$ -class is a group [[1], Theorem 2.16]. Therefore $S = \bigcup_{e \in E(S)} H_e$ is a disjoin union of groups [[1], Lemma 2.15]. For e, $f \in E(S)$ and x, $y \in S$, x $\mathcal H$ e and y $\mathcal H$ f imply xy $\mathcal H$ ef, so $H_e H_f \subseteq H_{ef}$. This completes the proof of the lemma. #

1.4 <u>Lemma</u>. The set of all ideals of a semilattice is a semilattice under the usual set multiplication.

The proof of Lemma 1.4 is obvious.

1.5 <u>Proposition</u>. Let a proper inverse semigroup $S = \bigcup_{\alpha \in Y} G_{\alpha}$ be a semilattice Y of groups G_{α} . Then M(S) is a semilattice \bar{Y} of groups, where \bar{Y} is the set of ideals of Y.

<u>Proof</u>: First, to show that $E(M(S)) \subseteq C(M(S))$, let $F \in E(M(S))$ and $X \in M(S)$. Because E(M(S)) = M(E(S)) by Theorem 1.1, $F \subseteq E(S)$. Since S is a semilattice of groups, fx = xf for all $x \in S$, $f \in E(S)$, [Introduction page 11], so it follows that FX = XF. Thus $E(M(S)) \subseteq C(M(S))$.

Since M(S) is an inverse semigroup, it is regular, so by Lemma 1.3, M(S) is a semilattice \bar{Y} of groups and \bar{Y} = E(M(S)) = M(E(S)). Next, we show that M(E(S)) is the set of all ideals of E(S). Because

 $M(E(S)) = \{ \phi \subset X \subseteq E(S) \mid E(S).X = X \subseteq e\sigma(E(S)) \text{ for some } e \in E(S) \}$ or $M(E(S)) = \{ \phi \subset X \subseteq E(S) \mid E(S).X = X \},$ every member of M(E(S)) is an ideal of E(S). Let I be an ideal of

E(S). Then $I \neq \emptyset$, E(S) $I \subseteq I$ and $I \subseteq I^2 \subseteq E(S)$ I, so E(S) I = I. Thus $I \in M(E(S))$. Therefore $\bar{Y} = M(E(S))$ is the set of ideals of E(S). Since S is a semilattice Y of groups, Y = E(S), so that \bar{Y} is isomorphic to the set of ideals of Y. Hence the proposition is proved. #

The following theorem follows directly from Theorem 1.1 and Proposition 1.5:

1.6 Theorem. Let $S = \bigcup_{\alpha \in Y} G_{\alpha}$ be a semilattice Y of groups G_{α} . If S is proper, then S can be fully σ -embedded into a semilattice \bar{Y} of groups which is F-inverse, where \bar{Y} is the set of all ideals of Y.

Let $S=\bigcup_{\alpha\in Y}S_{\alpha}$ be a semilattice Y of inverse semigroups S_{α} . It is easy to see that for each subsemigroup T of Y, $\bigcup_{\alpha\in T}S_{\alpha}$ is an inverse subsemigroup of S and

$$E\left(\bigcup_{\alpha\in T}S_{\alpha}\right) = \left\{e\in E\left(S_{\alpha}\right) \middle| \alpha\in T\right\} = \bigcup_{\alpha\in T}E\left(S_{\alpha}\right).$$

Next, we show in more general that if S is a semilattice of inverse semigroups, then so is M(S). The following lemma is given first:

1.7 <u>Lemma</u>. Let a proper inverse semigroup $S = \bigcup_{\alpha \in Y} S_{\alpha}$ be a semilattice Y of inverse semigroups S_{α} . For each ideal I of Y, let $S_{I} = \bigcup_{\alpha \in I} S_{\alpha}$,

$$A_{I} = \{X \in M(S_{I}) | X \cap S_{\alpha} \neq \emptyset \text{ for all } \alpha \in I\},$$

$$E_{I} = E(S_{I}),$$

and $\sigma_{\rm I}$ denote the minimum group congruence of $S_{\rm I}$. If I and J be ideals of E(S), then the following hold :

- (1) E_I is an ideal of E(S) and $E(S).E_I = E_I.E(S) = E_I.$
- (2) $A_{\underline{I}} \subseteq M(S_{\underline{I}}) \subseteq M(S)$.
- $(3) A_{\mathbf{I}} A_{\mathbf{J}} = A_{\mathbf{IJ}}.$
- (4) A_T is an inverse subsemigroup of M(S).
- (5) $A_{\mathsf{T}} \cap A_{\mathsf{J}} = \phi \text{ if } I \neq J.$

Proof : First, we recall that

 $M(S_I) = \{ \phi \subseteq X \subseteq S_I | E_I X = X \subseteq a\sigma_I \text{ for some } a \in S_I \}.$

(1) Since $E(S_{\alpha}) \neq \phi$ for all $\alpha \in I$, $E_{I} = \bigcup_{\alpha \in I} E(S_{\alpha}) \neq \phi$. Let $e \in E(S)$ and $f \in E_{I}$. Then $e \in S_{\gamma}$, $f \in S_{\alpha}$ for some $\gamma \in Y$, $\alpha \in I$, so that $ef \in E(S)$ and $ef \in S_{\gamma\alpha} \subseteq S_{I}$ since I is an ideal of Y. Hence $ef \in E_{I}$. This proves E_{I} is an ideal of E(S) and so

 $E(S).E_{I} = E_{I}.E(S) \subseteq E_{I}.$ But $E_{I} = E_{I}E_{I} \subseteq E(S).E_{I}.$ Hence $E(S).E_{I} \subseteq E_{I}.E(S) = E_{I}.$

(2) Let $X \in M(S_I)$. Then $\phi \subset X \subseteq S_I \subseteq S$ and $E_I X = X \subseteq a\sigma_I \text{ for some } a \in S_I.$

Hence by (1),

$$\begin{split} &E(S).X = E(S).E_{\underline{I}}X = E_{\underline{I}}X = X \subseteq a\sigma_{\underline{I}} \subseteq a\sigma(S)\,. \end{split}$$
 Hence $X \in M(S)$. Therefore $M(S_{\underline{I}}) \subseteq M(S)$. But $A_{\underline{I}} \subseteq M(S_{\underline{I}})$. Then we obtain $A_{\underline{I}} \subseteq M(S_{\underline{I}}) \subseteq M(S)$.

 $(3) \quad \text{Let } X_1 \in A_I \text{ and } X_2 \in A_J. \quad \text{Let } x_1 \in X_1 \text{ and } x_2 \in X_2. \quad \text{Then} \\ x_1 \in S_\alpha \text{ and } x_2 \in S_\beta \text{ for some } \alpha \in I, \ \beta \in J, \text{ so that } x_1 x_2 \in S_{\alpha\beta} \subseteq S_{IJ}. \\ \text{Hence } X_1 X_2 \subseteq S_{IJ}. \quad \text{Because } X_1 \in A_I \text{ and } X_2 \in A_J, \text{ we have} \\$

$$E_I X_1 = X_1 \subseteq a\sigma_I$$

for some $a \in S_{\overline{1}}$, and

$$E_J X_2 = X_2 \subseteq b\sigma_J$$

for some $b \in S_J$, and

$$X_1 \cap S_{\gamma} \neq \phi$$
, $X_2 \cap S_{\delta} \neq \phi$

for all $\gamma \in I$, $\delta \in J$.

Let $\gamma \in I$, $\delta \in J$. Then $X_1 \cap S_{\gamma} \neq \phi$ and $X_2 \cap S_{\delta} \neq \phi$ so that there exist a, b \in S such that a \in $X_1 \cap S_{\gamma}$ and b \in $X_2 \cap S_{\delta}$. Hence ab \in $X_1 \times X_2 \cap S_{\gamma \delta}$. This proves that $X_1 \times X_2 \cap S_{\alpha} \neq \phi$ for all $\alpha \in IJ$. From

$$\mathbf{E}_{\mathbf{IJ}} \mathbf{X}_{1} \mathbf{X}_{2} \subseteq \mathbf{E}_{\mathbf{I}} \mathbf{X}_{1} \mathbf{X}_{2} = \mathbf{X}_{1} \mathbf{X}_{2}$$

and for $x_1 \in X_1$, $x_2 \in X_2$, say $x_1 \in S_\alpha$, $x_2 \in S_\beta$,

$$x_1 x_2 = ((x_1 x_2)(x_1 x_2)^{-1})(x_1 x_2) \in E(S_{\alpha\beta}) X_1 X_2 \subseteq E_{IJ} X_1 X_2,$$

we have $E_{IJ}(X_1X_2) = X_1X_2$.

Let $x_1 \in X_1$ and $x_2 \in X_2$. Since $X_1 \subseteq a\sigma_1$ and $X_2 \subseteq b\sigma_J$, we have $x_1\sigma_I a$ and $x_2\sigma_J b$ so that $ex_1 = ea$ and $x_2 f = bf$ for some $e \in E_I$, $f \in E_J$. Hence $fex_1x_2 f = feabfe$. Since $(fex_1x_2)(fe) = (feab)(fe)$ and fex_1x_2 , $feab \in S_{IJ}$ and $fe \in E_{IJ}$, we have $(fex_1x_2)(fe) \in \sigma_{IJ}$ and hence

$$(x_1x_2)\sigma_{IJ} = (fex_1x_2)\sigma_{IJ} = (feab)\sigma_{IJ} = (ab)\sigma_{IJ}.$$

Therefore $X_1 X_2 \subseteq (ab) \sigma_{I,I}$.

Hence we prove $A_I A_J \subseteq A_{IJ}$.

 $(4) \quad \text{Since } E(S_{\alpha}) \subseteq E_{I} \quad \text{for all } \alpha \in I, \ E_{I} \cap S_{\alpha} \neq \phi \text{ for all } \alpha \in I.$ Then $E_{I} \in A_{I}$ because $E_{I} \subseteq e\sigma_{I}$ for all $e \in E_{I} = E(S_{I})$. Hence $A_{I} \neq \phi$. By (3), $A_{I}A_{I} \subseteq A_{II} = A_{I}$ and hence A_{I} is a subsemigroup of M(S). Next, let $X \in A_{I}$. Then $X \in M(S_{I})$ so that $X^{-1} = \{x^{-1} | x \in X\} \in M(S)$. Since $X \in A_{I}$, $X \cap S_{\alpha} \neq \phi$ for all $\alpha \in I$. Let $\alpha \in I$. Then there exists $a \in S$

such that $a \in X \cap S_{\alpha}$. Hence $a^{-1} \in X^{-1} \cap S_{\alpha}$, so $X^{-1} \cap S_{\alpha} \neq \emptyset$. This proves $X^{-1} \in A_{\underline{I}}$. Hence $A_{\underline{I}}$ is an inverse subsemigroup of M(S).

- (5) Assume I \neq J. Then there exists $\alpha \in Y$ such that either $\alpha \in I \setminus J$ or $\alpha \in J \setminus I$, say $\alpha \in I \setminus J$. Since $S_J = \bigcup_{\beta \in J} S_{\beta}$, $S_{\alpha} \cap S_J = \emptyset$. Then for each $X \in A_J$, $X \subseteq S_J$ so that $X \cap S_{\alpha} = \emptyset$ and hence $X \notin A_I$. Thus $A_I \cap A_J = \emptyset$. #
- 1.8 <u>Proposition</u>. Let a proper inverse semigroup $S = \bigcup_{\alpha \in Y} S_{\alpha}$ be a semilattice Y of inverse semigroups S_{α} . Then M(S) is a semilattice \bar{Y} of inverse semigroups where \bar{Y} is the set of all ideals of Y.

 $\underline{\text{Proof}}: \text{ Assume that } S = \bigcup_{\alpha \in Y} S_{\alpha} \text{ is a semilattice } Y \text{ of inverse}$ semigroups S_{α} and \bar{Y} be the set of all ideals of Y. For each $I \in \bar{Y}$, let A_T be defined as above, that is,

 $A_{I} = \{X \in M(S_{I}) | X \cap S_{\alpha} \neq \emptyset \text{ for all } \alpha \in I\},$

where $S_T = \bigcup_{\alpha \in I} S_{\alpha}$.

We claim that M(S) = $\bigcup_{I \in \overline{Y}} A_I$. By Lemma 1.7 (2), $A_I \subseteq M(S)$ for all $I \in \overline{Y}$, so that $\bigcup_{I \in \overline{Y}} A_I \subseteq M(S)$.

Conversely, let $X \in M(S)$. Let $I \subseteq Y$ be such that $\alpha \in I$ if and only if $X \cap S_{\alpha} \neq \phi$.

Since $X \in M(S)$, E(S) . X = X. We show I is an ideal of Y. Since $X \neq \emptyset$, I $\neq \emptyset$. Let $\alpha \in I$, $\beta \in Y$. Since $X \cap S_{\alpha} \neq \emptyset$, there exists $a \in S$ such that $a \in X \cap S_{\alpha}$. Let $e \in E(S_{\beta})$. Then $ea \in E(S) . X = X$ and $ea \in S_{\beta} S_{\alpha} \subseteq S_{\alpha\beta}$, so that $X \cap S_{\alpha\beta} \neq \emptyset$ which implies $\alpha\beta \in I$. Therefore I is an ideal of Y and $X \subseteq S_{I}$. For $x \in X$, $xx^{-1} \in E(S_{I}) = E_{I}$ so that $x = (xx^{-1})x \in E_{I}X$. Hence $X \subseteq E_{I}X$. Because $X \in M(S)$,

$$E(S).X = X \subseteq b\sigma(S)$$

for some $b \in S$. Thus,

$$X \subseteq E_T X \subseteq E(S).X = X$$

so that $E_I X = X$. Next, let $x \in X$. Since $x \in b\sigma(S)$, there exists $e \in E(S)$ such that xe = be. Pick $f \in E_I = E(S_I)$. Then $fe \in E_I$ and $bf \in S_I$ and

$$x(fe) = (xe)f = (be)f = (bf)(fe)$$

so that $x \in (bf)\sigma_I$. Thus $X \subseteq (bf)\sigma_I$. Hence $X \in A_I$.

Therefore M(S) = $\bigcup_{I\in \bar{Y}}A_I$. By Lemma 1.7 (5), this union is disjoint. By Lemma 1.7 (3) and (4), M(S) is a semilattice \bar{Y} of inverse semigroups A_I . #

The next theorem follows directly from Theorem 1.1 and Proposition 1.8.

1.9 Theorem. Let $S = \bigcup_{\alpha \in Y} S_{\alpha}$ be a semilattice Y of inverse semigroups S_{α} . If S is proper, then S can be fully σ -embedded into an F-inverse semigroup which is a semilattice \bar{Y} of inverse semigroups, where \bar{Y} is the set of all ideals of Y.