RESUITS

In order to see the possibility of difference among controls, primary liver cell carcinoma and other liver diseases. The subjects were grouped into three categories. In the first category there were three groups of subjects: controls, other liver diseases than primary liver cell carcinoma (amocbic Iiver abscess, cirrhosis of the liver, cholangiocarcinoma and carcinoma of the head of pancreas) and primary liver cell carcinoma (wable 1,2). In the second category there were four groups of subjects: controls, amoebic liver abscess, obstructive jaundice (cholangiocarcinoma and carcinoma of the head of pancreas) and primary liver cell carcinoma (Table 3, 4). Thexe were six groups of subjects in the third category: controls, amoebic liver abscess, cirrhosis of the liver, cholangiocarcinoma, carcinoma of the head of pancreas and primary liver cell carcinoma (Table 5, 6).

Prealbumin, albumin, α_{1}-acid glycoprotein and transferrin (PAGE) in each category are shown in Table 1,3 and 5 whereas haptoglobin, α_{2} macroglobulin, ceruloplasmin, α_{2} HSaglycoprotein, hemopexin, Gc-globulin and transferrin (rocket immunowelectrophoresis) are shown in Table 2, 4 and 6. The comparison of proteins in each group of patients and controls of the three categories are shown in figures 4 to 13. Figure 14 shows the correlation curve of transferrin as determined by PAGE and rock immuno-electrophoresis.

Prealbumin, albumin and transferrin was significantly lower in all groups of patients (Tables 1,3 and 5), as well as α_{2} 4Sglycoprotein (Tables 2, 4 and 6). The significant difference among liver diseases for d_{2} HS-glycoprotein and albumin is shown in Tables 5 and 6. Hemopexin levels were significantly lower in patients with cholangiocarcinoma when compared with conirols (Table 6). There was no significant difference in the Gc-globulin levels in all groups of patients compared with controls (Table 2,4 and 6).

Acute-phase reactant proteins levels, namely haptoglobin, α_{2}-macroglobulin and ceruloplasmin, were significantly increased in all groups of patients in categories 1 and 2 (Tables 2 and 4) except ceruloplasmin levels in patients with amoebic liver abscess (category 2, Table 4). In the thixd category α_{2}-macroglobulin, haptoglobin and ceruloplasmin levels were significantly increased in all diseases except haptoglobin levels in patients with cirrhosis of liver and in patients with carcinoma of the head of the pancreas and ceruloplasmin levels in patients with amoebic liver abscess (Table 5). A significant difference among diseases was noticable (Table 6). The other acute-phase reactant protein level, namely α_{1} wacid glycoprotein, was significantly increase only in patients with amoebic liver abscess (Tables 3 and 5).

Table l: Mean values and standard deviations of prealbumin, albumin, α_{1}-acid-glycoprotein and transferrin among controls, other liver diseases and primary liver cell carcinoma by RAge calculated by analysis of variance.

Parameters	Gontrols $(\operatorname{se} x)$	Othex liver Diseases (gr.2)	Primary liver ce11 carcinoma (gr.3)
Prealbumin ($\mathrm{mg} / 100 \mathrm{ml}$)	$\begin{aligned} & 31 \pm 10 \\ & (19) \end{aligned}$	13 ± 6	$\begin{gathered} 17 \pm 7 \\ (24) \end{gathered}$
Albumin $(\mathrm{g} / 100 \mathrm{ml})$	(20)	3.7 ± 0.9 (27)	$\begin{gathered} 4.0 \pm 0.8 \\ (30) \end{gathered}$
α_{1}-acid glycoprotain $(\mathrm{mg} / 100 \mathrm{ml})$	$\frac{36 \pm 14}{(20)}$	4 ± 23	$\begin{gathered} 39 \pm 18 \\ (30) \end{gathered}$
Transferrin พาลงก ($\mathrm{mg} / 100 \mathrm{ml}$)	$\begin{gathered} 354 \pm 53 \\ (20) \end{gathered}$	$\frac{189 \pm 54}{(27)}$	$\begin{gathered} 226 \pm 56 \\ (30) \end{gathered}$

Prealbumin : There are significant differences between "gr.1 \& 2" and $" \mathrm{gr} .1 \& 3^{\mathrm{n}}\left(\mathrm{P}(0.01) ; " \mathrm{gr} .2 \& 3^{\mathrm{n}}(\mathrm{P} \leqslant 0.05)\right.$

Albumin :There are significant differences between "gr. $1 \& 2$ " and $" g r .1 \& 3 "(p<0.01)$

Transferrin: There are significant differences between "gr.1, 2 and gr. $3^{\prime \prime}$ (P < 0.01)

Table 2: Mean values and standard deviations of haptoclobin, α globulin, ceruloplasmin, \mathcal{L}_{2} HS-glycoprotein, transferrin, hemopexin and Gc-globulin among controls, other liver diseases and primary liver cell carcinoma by rocket immuno-electrophoresis calculated by analysis of variance.

Table 3: Mean values and standard deviations of prealbumin, albumin, α_{1}-acid glycoprotein and transferrin among controls, amebic liver abscess, obstructive jaundice and primary liver cell carcinoma by PAGE calculated by analysis of variance.

Albumin
：There are significant differences between
＂gr．1 \＆2＂。＂gr． $1 \& 3 "$ and＂gr．1 \＆ 4 ＂（ $\mathrm{P}<0.01$ ）； ＂gr． $2 \& 4$＂$(\mathrm{P}<0.05-\mathrm{T}$－test）。
\propto_{1}－acid glycoprotein：There are significant differences between
＂gr． $1 \& 2^{\prime \prime}$＂gr． $2 \& 3^{\prime \prime}$ and＂gr． $2 \& 4 "(P<0.01)$ ．

Transferrin

There are significant differences between ＂gr． $1 \& 2^{n}$＂＂gr． $1 \& 3^{n}$ ，＂gr． $1 \& 4 "$ and ＂ $\mathrm{gr} .2 \& 4^{n}(P<0.01)$ 。

Table 4: Mean values and standard deviations of haptoglobin, \mathcal{L}_{2} macroglobulin, ceruloplasmin, α_{2} HS-glycoprotein, transferrin, hemopexin and $G c-g l o b u l i n$ among controls, amebic liver abscess, obstructive jaundice and primary liver cell carcinoma by rocket immuno-electrophoresis calculated by analysis of variance.

$\begin{aligned} & \text { Parameters } \\ & (\mathrm{mg} / 100 \mathrm{ml}) \end{aligned}$	Controls $(g r .1)$	Amebic Iiver abscess (gr.2)	```Obstructive jaundice (gr.3)```	Primary liver cell carcinoma (gr.4)
Haptogiobin	251 ± 81 (18)	706 ± 135 (11)	431 ± 200 (9)	529 ± 238
α_{2}^{\prime}-macroglobulin	$\begin{gathered} 168 \pm 32 \\ (20) \end{gathered}$	$\frac{253 \pm 105}{(10)}$	$243 \pm \boxed{(11)}$	$\begin{gathered} 264 \pm 72 \\ (28) \end{gathered}$
Ceruloplasmin		54 ± 26 (11)	81 ± 25	$\begin{gathered} 73 \pm 29 \\ (30) \end{gathered}$
α_{2} HS-glycoprotein	73 ± 15 (19)	$\begin{gathered} 33 \pm 7 \\ (11) \end{gathered}$	41 ± 12 (11)	$\begin{gathered} 60 \pm 18 \\ (27) \end{gathered}$

α_{2}-HS glycoprotein : There are significant differences between "gr. $1 \& 2$ ", $" g r .1 \& 3 " \% " g r .1 \& 4 ", " g r .2 \& 4 "$ and $" g r .3 \& 4 "$ ($P<0.01$) and "gr. $2 \& 3$ " ($P<0.05-T$-test).

Transferrin
: There are significant differences between "gr.1 \& 2", $" g r .1 \& 3 " 。 " g r .2 \& \& "$ and $" g r .3 \& 4 "(P<0.01)$
: There are significant differences between "gr.l \& 3", "gr. 2 \& 3 " and "gr. $3 \& 4$ " ($\mathrm{P}<0.01$).

Table 5: Mean values and standard deviations of prealbumin, albumin, \mathcal{L}-acid glycoprotein, and transferrin among controls, amebic liver abscess, cirrhosis, cholangiocarcinoma, carcinoma of the head of pancreas and primary Iiver cell carcinoma by PAGE calculated by analysis of variance.

Parameters	$\begin{gathered} \text { Controls } \\ (g r .1) \end{gathered}$	Amolic liver abscess (gr.2)	Cirrhosis $(g r .3)$	Cholangio- carcinoma (gr.4)	Carcinoma head of pancreas (gr.5)	Primary liver cell carcinoma $(\mathrm{gr} .6)$
Prealbumin $(\mathrm{mg} / 100 \mathrm{ml})$	31 ± 10		${ }_{(3)}^{15 \pm 9}$	11 ± 7 (4)	14 ± 5 (3)	17 ± 7
Albumin $(\mathrm{g} / 100 \mathrm{ml})$	5.1 ± 0.6	$\frac{3.5 \pm 0.5}{(11)}$	3.2 ± 1.1 (5)	$4.1 \pm \frac{0.8}{(7)}$	4.1 ± 1.6 (2)	4.0 ± 0.8
```Q_-acia glyco- protein (mg/100 ml)```	$36 \pm 14$   (20)	$\begin{aligned} & \text { Q } 29 \pm 1612 \\ & \text { WULA }{ }^{(11)} \mathrm{GKOR} \end{aligned}$	$\begin{gathered} 37 \pm 25 \\ (4) \end{gathered}$	$32 \pm 19$   (7)	$29 \pm 25$   (4)	$\begin{gathered} 39 \pm 18 \\ (30) \end{gathered}$
Transferrin ( $\mathrm{mcs} / 100 \mathrm{ml}$ )	$\frac{354}{(20)} \pm 53$	$188 \pm 53$	$171 \pm 75$   (5)	$\begin{gathered} 180 \pm 25 \\ (7) \end{gathered}$	$\underset{(C)}{229 \pm} 67$	$226 \pm 56$



Table 6: Mean values and standard deviations of haptoglobin, $\alpha 2^{-m a c r o g l o b u l i n, ~ c e r u l o p l a s m i n, ~}$ of HS-glycoprotein, transferrin, hemonexin and Gc-globulin among controls, amebic liver abscess, cirrhosis, cholangiocarcinoma, carcinoma of the head of pancreas and primary liver cell carcinoma by rocket immoelectrophoresis calculated by analysis of variance.


Parameters $(\mathrm{mg} / 100 \mathrm{ml})$	$\begin{gathered} \text { Controls } \\ \text { (gr.1) } \end{gathered}$	Anaebic liver abscess （gr．2）	Cirrhosis （gr．3）	```Cholangio- carcinoma (gr.4)```	Carcinoma head of pancreas （gr．5）	Primary liver cell carcinoma （gr．6）
Transferrin	$\begin{gathered} 311 \pm 44 \\ (20) \end{gathered}$	$+63$	$191 \pm 80$   （5）	$157 \pm 33$   （7）	$162 \pm 48$   （4）	$281 \pm 75$   （30）
Hemopexin	$\begin{gathered} 30 \pm 15 \\ (20) \end{gathered}$		$\begin{gathered} 59 \pm 26 \\ (4) \end{gathered}$	$42 \pm 22$   （7）	$56 \pm 28$   （4）	$95 \pm 44$   （29）
Gc－globulin	$\begin{gathered} 34 \pm 5 \\ (20) \end{gathered}$	1）	$30 \pm 13$   （5）	$\frac{31 \pm 4}{(7)}$	$30 \pm 4$   （4）	$\begin{gathered} 34 \pm 1 \\ (29) \end{gathered}$

Haptoglobin ：There are significant differences between＂gr．1\＆2＂。＂gr．1\＆$\& 6^{\prime \prime}$＂gr． 2 \＆ $3^{07}$ 。 ＂gr． 2 \＆4＂and＂gr．2 \＆． 6 ＂$(\mathrm{P}<0.01)$ ；＂gr． 1 \＆ $4^{\prime \prime}$ and＂gr． 2 \＆ 5 ＂（ $\mathrm{P}<0.05$ ）
$\propto_{2}$－Macroglobulin ：There are significant differences between＂gr． 1 \＆ 2 ＂，＂gr． $1 \& 3$＂。＂gr． 1 \＆ $\mathbb{Q}^{n}$ 。
 ＂gr． 3 \＆ 5 ＂$(P<0.05)$



Figure 1: CHI\| AI @NGKORN \|NNIVFRSITY


Figure 2: Electropherogram obtained from PAGE

1. Prealbumin
2. $\alpha_{1}$-acid-glycoprotein
3. Albumin
4. Gc-globulin, $\alpha_{1}$-antichymotrypsin and $\alpha_{1}-B-g l y c o p r o t e i n$
5. $\alpha_{2}$ HS-glycoprotein
6. Hemopexin
7. Ceruloplamin
8. Transferrin


Figure 3: Peaks of transferrin produced by rocket immunoelectrophoresis.


Figure 4: Mean values and standard errors for haptoglobin in controls and liver diseases.


Figure 5: Mean values and standard errors for $\alpha_{2}$-macroglobulin in controls and liver diseases.


Figure 6: Mean values and standard errors for ceruloplasmin in controls and liver diseases.


Figure 7: Mean values and standard errors for hemopexin in controls and liver diseases.

$\square=$ controls (gr.I, 1, (1))
垍 $=$ other liver diseases (gr.II)
$\Pi=$ amebic liver abscess (gr.2, (2))
|浉 = obstructive jaundice (gr.3)
8\% = cirrhosis (gr. (3))
$\Delta y=$ cholangiocarcinoma (gr. (c) )
$\boxed{4}=$ carcinoma head of pancreas (gr. (5))
$\square$ primary liver cell carcinoma (gr.III, 4, (6))

Figure 8: Mean values and standard errors for $\alpha_{1}$-acid glycoprotein in controls and liver diseases.


Figure 9: Mean values and standard errors for transferrin in controls and liver diseases.


$\square=$ controls (gx,I, $1,(1)$ )
W other liver diseases (gr.II)
\# = amebic liver abscess (gr.2, (2)!
则 = obstructive jaundice (gr.3)
P0. $=$ cirrhosis (gr. (3))
$\Delta Y=$ cholangiocarcinoma (gr. (4))
Y = carcinoma head of pancreas (gr. (5))
0 = primary liver cell carcinoma (gr.III, 4, (6))

Figure 11: Mean values and standard errors for Gc-globulin in controls and liver diseases.



Figure 13: Mean values and standard errors for prealbumin in controls and liver diseases.


Figure 14: Correlation between transferrin by PAG and rocketimmunoelectrophoresis in controls, primary liver cell corcinoma and other liver diseases.

