CHAPTER IV

AN APPLICATION OF DITFFERENTIAL ALGEBRA

In elementary calculus, there are many unsolvable problems,
especially in integration. For a long time mathematicians suspected but
were not sure that certain indefinite integrals could not be computed in
finite form in terms of the “elementary functions.,” Until Liouville
proved that the indefinite integral of certain functions such as fexzdx
cannot be so expressed. Later, Rosenlicht derived a criterion, due to
Liouville, that if f(z) and g(z) are two given rational functions of a
complex variable z, f(z) being nonzero, and g(z) being nonconstant, then
ff(z)egcz)dz is elementary if and only if there exists a rational
function of complex variable, say a, such that f = a’' + ag', where a' and
g' are derivatives of a and g respectively.

This final chapter contains results proved by Liouville and
Rosenlicht as well as some examples of elementary functions with
nonelementary indefinite integrals other than those given by Rosenlicht.
To start with, we are not interested in arbitrary functionms, but in
"elementary functions.”  Intuitively, an elementary fumetion is a
function which is obtained from polynomials, exponentials, logarithms,
trigonometric or inverse trigonometric functions by using the operations
of addition, subtraction, multiplication, division, radicals and
composition a finite number of times. More precise definitions are

given later.
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Notation Throughout this chapter, a' will denote the derivative of a.

Definition 4-1 ILet O # d and b be two elements of the differential

fleld f , d is said to be an exponential of b, or b a logorithm of d,

dl
d

if b' =

Definition 4-2 By én integral of an element b of a differential field,

we shall mean any solution of the differential equation y' = a.

Remark Two integrals of b which are contained in the same extegsion of

the differential field containing b differ by a constant.

Proof . Let Yy and ¥y be two integrals of b. That is,
L . 1
vy = by Yi8 b.
5 1]
Since (y; ~ y,) = Yy~ ¥y = b=b = 0, y;-y, is a constant.

Hence ¥ = ¥, + constant.

Notation The integral of an element b in €(z) is denoted by Sbdz.
We now establish the following convenient result which will be

needed later.

Lemma 4-1
k- B k
: i o PG U ' 1
(2. "a. i) a a a
ii 2 = K J+%—Ln“+k f.
1 %2 ‘n 2y 2 B S
a,7ay"...a

where 815 8,+.., 4 are nonzero elements of the differential field S;
and kl’ kZ""’ kn are integers.

We call this identity the "logarithmic derivative identity."
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Proof The proof is by induction on the number of term n. It is clear

k1 '
o 0y "
that if n =1, — = k. — . Now we suppose that the lerma is
kl 1 2,
i

true forn - 1, n 2 2, that is,

k, k k
172 n~-1,° ! . '
(ay7a; e ay 47 a3 92 k-1 %p-1
% & % = kl -E;*- + kz -{;—- + ceae T a_ 5
i n-1 1 2 n-1
al az . 8 © an..l
We have to prove that the equation is true for n. Ccnsider
(akl k2 kn—l kn i : k kz kn—l)' kn (,,k kz k‘n-l) (akn),
1 8.2 - » -an_l 8.n - al 8-2 - e 8 an_l aan + f-l a2 .. -an—l - n
1% Bt By Mk & BR R K
1 2 L n“1 an al 32 “ . n-‘l .ﬁn 1 2 - e .&n_l - n
By the induction hypothesis, we obtain
k, k :
1 Ty ® ¥ ' 7
(al CO S kyoay x k, a, g Wy WA
B IR = — — - S L T
1.2 n i 2 n-1 n

al az . e ’an
This completes the proof.

Lemma 4-2 Let j: be a differential field and s_ﬂ:x] be the polynomial
ring in one indeterminate X. (Do not confuse this with the set of forms.)

1f the maps D and D, ofa_F[X] into itself are defined by

n i n v q
DO( E ‘aixx > _;\ai}{

i=o0 i=o0
n n
D, ( :EE:: aiXi) = :E;: i aixi'l 3
i=o i=o

for 85 8yseees anE c\’}: Then
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i) DJ(A + B) = D}A =4 DJB
ii) Dj (AR) = (DJA)B + A(DJB)

for § = 0,1 and A,8 € “f[X].

Proof The proof of this lemma for the case j = 1 is 'very gimilar to the
proof of theorem 1-¢ and is omitted.

n
Now we prove the lemma for the case J=0. Let A = EE aiXi,

i=o0

m
&= . Y j
B b.X” where a_ and bm # 0. To prove (i), suppose that n > m,

]
j=o
T * Z“ s
A+ B = (a2, +' b)) + a.X
e i i i
i=o i=mtl
m tf Il '!(i
DO(A + B) = 2 ' (a.i * bi) + E ax
i=o i=mt]

li

L 1
E (a. +b)){ L aiX
87 R,

i=mt+1

I

Z’ Xi+ Z xi+ :___'bixi
i=o

i=mtl =0

n

M

L] i m L]
aiX + E : bixi
i=o

i=o

= DOA o DoB'

Iz order to prove (ii), let F = bxk. Consider
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n n
i k +k
A.F ( S axHext = ai‘bxi
=0 i=
2 P e T 'K
DO(A.F) = E : (aib) X = E (aib 4 aib)
i=o0 =0
. Atk +k
- St S
i=o i=o
< Bk < TS
= ( 2 ai)?)b. + ( E :ai}i_)bx
i=o i=o

= (DOA)F - A.DOF.

In the general case, let F, = bixi, Y= 0,1, 3., m, that is,

i
B=FO+F1+ eer + F .
A.B = AF_+ AF + ... AF_
(A.B) = DO(AFO) + DO(AFI) + .o+ DO(AFm)

(DOA) Fo+ ADFO+ (DOA) F1+ ADOF1+. wretl (DOA) Fn+ ADoFm

DOA(Fo-i- F.4+, . .+ Fm) 4+ A(D0F0+ DOF +... + DOFm)

1 1

= (DOA) B + ADOB.

This completes the proof of the lemma,

Our first theorem establishes a basic connection between the

ground differential field and its extension field.

Theorem 4-1 Let ‘fbe a differential field of characteristic zero and
j( a countably infinite algebraic extension field of GJ/‘ (That is,j{

can be written in the form j{ = (?:(xl’KZ"") where XysKps e Ej{ b 1
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Then the derivation on '} can be extended to a derivation on 7{ , and

this extension is unique.

Proof Let 6]:[X] be the polynomial ring in one indeterminate X. Define

the maps D, and Dl of ﬁ["x] into itself by

Ti n ] 1
D0 ( 2 aiXi) = E aiX 3
i=o

i=o0
n n
\ = ~1
Dl( E aiXi) N~ 'iail{i
i=o i=o0

for 8 58550005 8 (~ ('7' o LE j{, has a differential field structure

n -
extending that of ?, then for any x & J{ and A(X) = S aixiec_-]’[}(],

i=o

we have

(A(x)

]  § n‘.
a, + (alx) + ... F (anx)

i ¥ 1 1

i n-1 '
= ao+alx+a1x + ...+anx +annx X
] ¢ f 2 r n _1 \J
LI ) . - . .+ -
= ao+ a1+ a,x +...+ a x 4 (al+ ?azx + na_ x ).x

= O + 0@ .x .

If we replace A(X) by the minimal polynomial f£(X) of x ever 7' , then
0 = (Dof)(x) + (le)(x).x' .
We have that (le) (x) # 0, otherwise x is a root of the polynomial which
is of degree less than the minimal polynomial f(X). Then
. £ (x)

X = —,
(le) (x)
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According to theerem 1-12, there exists a unique minimal polynomial

f(x) of x over ‘?’, it them follows that the differential structure on j{

extending that on °_F is unique whenever it exists. We mow show that sueh
a structure om 'j{ exists, Assume first that j‘{ is a tinite extension of

"}' then j{ <Df(x) (theorem 1-14),

By the preceeding argument, we already know that if the derivation D

(0, 1) (x)
on "}{_ that extends the one om ‘}-’ exists, them Dx is equal te - O °
1 3

Since "}’[x] L 'T(x) - 'K + by theorem 1-12, there exists a pelynomial

(B, £) (x) .
8(X) ¢ ‘}'[x] such that g(x) = - (D_lfW;Y + Moreaver, any elemenmt inrx_

» -~
is of the form A(x) = Z gixi vhere a, ¢ “F and
10
(A®)' = (BA)(x) + (BA)(x).Dx. Now we define the map D of “F[X] iate

into itself by
DA = DA+ g(X)D,A
sty
for amy A € f7X] ., By lemma 4-2, we have

D(A+B) = DA + DB
D(AB) = (DA)B + A(DB)
andforanynecf,na- Doa-a".

We claim that D imduces a derivation on ‘\J{ extending that on ‘} .
To prove this, it is suffieient to show that D is well-defined. Thus
if A,B C G]:'[x] A~Bi.e, A-Bhas x as 1ts root or A - B =
C(X)£(X) for some C(X) € “F[x], we shall prove .thut DA -~ DB also has

x ai its root. Consider
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DA - DB = D(A - B) = D(C(X)£(X))
= C(X) (@) (X) + (DC)(X)£(X)
= CR D) (X) + g(X) (D, ) (X)) + (DC) (X) £(X)
(PA) (x) - (DB) (%) G (D D) (x) + g(x) (D, £) (x)
(_£)(x)

C (D ) (x) - ———— (D, £) (x))
(0, £) (x)

il

= 0

This proves that D is well-defined and thus proves the theorem for the case
in which K is a finite extension of ‘]f "

We come now to the case in which :ki i1s countably infinite
extension of 7, that is r}{ = 7(:{1,1:2,...). The procf of this case is
by induction. Assume that the theorem is true for m < n, what we must
show is it is also true for n. Let :Pil = if(xl’xZ""' xn-l)’ by the
induction hypothesis, j{l is a differential field, Since
ﬂf(xl,xz,..., x) = j’{l(xn), we are back to the case of a finite extension

of 7 - This completes the proof of the theorem.

Definition 4-3 Let u}: be a differential field, A differential field r]’{ is

sald to be a differential extension field of ? if ? is a differential

subfield of JA .

The following result will be the principal tool for proving the

main theorem of this chapter,

Lemma 4-3 Let 7 be a differential field and 7((:) a differential
extension field of ‘f having the same subfield of constants, with ¢t

transcendental over rff . Then
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i) if ¢ € ’]Fg then for any polynomial £(t) & GT[t] of
positive degree, (f(t))’ is a polynomial inuf[t] of the same
degree as f(t) or degree one less, according as the highest
coefficient of f(t) is, or is not a constant,

1]
ii) 4if %— (= fF , then for any nonzero a EE?T:and any nonzero

integer n we have

L
(atn) = ht" 5

for some ncnzero h g 7, implying that, for any polynomial
1
f(t) € v]:[-t] of positive degrec, (£(t)) 1is a polynomial
= T
inG:F[tJ of the same degree. Furthermore, (£f(t)) is a

multiple of f(t) only if f£(t) is a monomial,.

Proof For a proof of statement (i), set t' =b £ of Let the degree

of f(t) ben > o, so that

n n-1
f(t) a t + an—lt e a, P
e

with 83815005 8 & I a # 0. Then

(s )! v 3 1 ? ) B +
(t) ant + (nant + a3 t S a_

¥ ' = P
1II=atn+(nab+a )tn1+¢..+a.
n n n-1 o

This is a polynomial inaf[t'] of degree n if a, is not conmstant. If a, is
¥

constant and na b + a = 0,then
n n-1

T T ¥ ]
t + £+ £ =+
(na_ a 1) = pE na 8 3

iy

¥

= nanb + an—l

= 0.
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Since al; = 0, so na t+a is & constant and hence is in Ff . This
implies that t efj::, contrary to the assumption that t is transcendental
over GJ: . Thus if a is constant, (f(t))' has degree n-l.

In order to prove (ii), set -E—' = d E‘}. let a g .3{ ,a¥0
and let n be a nonzero integer then

L] v e 1] ] 7
(at™ = a2 t" +na t® lt = atn+na-:-tn

]
= (a +nad)tn "

1f a' + nad = 0, then at” ie a constant, therefore an element of d} 5
contradicting the fact that t is transcendental over :‘F + Therefore
(a' + nad) # 0. Hence (f('t))' has the same degree as f(t).

We now prove that if (f(t))‘ is a multiple of £(t), then f(t) is
a monomial. To prove this, suppose that £(t) is not a monomial, let antn
and amtm be two of its non-zero terms, n > m 3 o. We have

(a2 tn)' = (aa + na d)l:n

n n n

(amtm)' = (a;+ ma d)t" .

We already know that (£(t)) ' has the same degree as that of f(t), so since

(f(t))' is a multiple of f(t) we must have that
(F(t)) = g £(t).

with g € Gf, g # 0. Therefore,

' |

a + nand = g 2, and a, + mamd = g8a; implying that
L] L

a, + nand b a + mamd

O %

which gives
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v '
a ' '
e TP R PN -
a t a il
n m
and thus i
¥ ¥ - V6 )~
a !
% m , nt mt - Y
— a——— + ——— | — - LA = 0‘ [ 7 \
a a E t f
n m | (

By the "loparithmic derivative identity', =

-1 2
o € X1 = 0,
a a*l tnt_m
nm
a t” a t"
which gives us( m) = 0. This implies that is & constant and

at a t
m m

hence is in ?F » again contradicting the fact that t is transcendental

over 'f . This completes the proof.

7 S Fog il
Example 4-1 ILet "f = R(x), t = log x with t =% c J‘ t is
transcendental over 6}: .otherwise there exists a minimal polynomial

p(X)=Xn+a

n_lx“ L b € Gf[x] such that log x is a root,

that is

(log ) + a 1 (log x)n-l + ... +a. =0,
Differentiating this to get
n-1 1 : n-1 n-2 1
n(log x) =k an_l(log: x) + an_l(n—l)(log X) eyt
a = 0.

or
(n-—l)a -1

(1) (—-+ a _1) (log x)" ( a;_z) (log = L T a = C.

f(x)

— -1 -
We shall prove that a 3 # s Let a 1 87;0_ where g(x) # 0 and
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£(x) & R[x] and they have no common factor, S

L L E®EE) - £ @RE) .
. (2(x))>

]
We see that the denominator and numerator of an_l have no

1
common factor, thus the denominator of a 1 cannot be of degree one,

[ s '
that is, a 1 e —2-. Hence a 1+ -2- # 0. Dividing both sides of (1)

by 24 a1 yields

X
)
(n-1)a ' a
=1 . 1 n-1 n-2 o
(log x) +;(—-—;———+an_21(103 x) togy F==s 0
L
where a = a 1 +E » therefore the polynomial
"
-1)a a
o-1 , 1 (1A \ n-2 o
X +a(————-:-:—+an_2) e

has log x as its root, contrary to the assumption that £(X) 1s the
minimal polynomial of log x. Hence t is transcendental over 7:.
L Ll i
If t =e° with t = e . then% ¢ J’“ . t 1is also transcendental
oyl 5
over f' (The proof is given later). Let a = (1 + x)°. Then

att = (1 + x)Senx

(at™) § ((1 + %) Sem) '

= 5::":3“x + n(l + x)senx

= (5x* n(1 + x)7)e™*

5%+ n(1 + x)°)t"

which satisfies the result of this lemma.



Definition 4-4 Let f}: be a differential field. By an elementary

extension offr we mean a differential extension field of the form

ﬂ%tl,tz,..., tN) where for each i = 1,2,...,N, the element t, is either
algebraic over the fielid fF(tl,tq,...,ti_l), or the logarithm or

exponential of an element of f}ktl,tz,...,ti_l).

We now come to the main theory which provides the key to our

investigation.

Theorem 4-2 Let ﬁ? be a differential field of characteristic zero and
a4 € fF. If the equation y' = « has a soluticn in some elementary
differential extension field of ?F having the same subfield of constants,
then there are constants CysCoisams € EETF: and elements Ujslgsene, U,

n
v in “J: such that

i 2

n u 1
o - c —$-+ v
EE : i g
i=1
Proof Assume that the equation y' = o has a solution in an elementary

differential extension field EF(tl,tz,..., tN) of SF having the same

subfield of constants. Then there is a sequence of differential fields
T & Tl “woi = Wechsiinss

all with the same subfield of constants, each ty being algebraic over
j%tl,..., ty_1)» or the logarithm or exponential of an element of this
field.

We shall prove the theorem by induction cn N. The case N = 0 is
trivial., (Since y' = a ,y € iris an expression for g of the desired

form.) So assume that I > 0 and the theorem is true for N - 1.

75
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Applying the case N -~ 1 to the differential fields ciF(tl) &= j(tl,. s t‘N)’

therefore we can write o in the form
1

n ui T
(2) a = E ¢y 'q + v
i=1

but with UpsUpseees W 5 V in “‘_:F(tl) and Cyseres € e O:F (If ¥ =1, then
o = y', Yy & G.F(tl)' The proof of this case starts from now on,)
Setting t:1 = t, we have t algebraic over ?: , or the logarithm or
exponential of an element of uj-’. What we now have to do is to find a
similar expression for o, possibly with a different n, but with the

elements Upsenes U5 V belonging to :f

First suppose that t is algebraic over ‘}/ . Then, by theorem

1-12 .there are polynomials UI(X)""’ Un(x), V(X) €& (']:[X] such that
(3 Up(e) = ug, Up(t) = ‘upeeaig U A(E) = u , V() = v.
Let the distinct conjugates of t over ? in the algebraic closure of ff(t)

: be Tl (= t), Tysenes Ts' According to (2) and (3), we obtain

n (Ui(t)).

o = "¢
i o Ui(t)

+ V) .
i=1

Multiplying this equation by Ul(t)Uz(t) R .Un(t), gives us

n
E ¢y Ul(t)...(Ui(t))'...Un(t) + ((V(t))' - )Ul(t)Uz(t)...Un(t) = 0.
i=1

7 V 6—w/
Since Ui (x), (U:I. (X)) and (V(X)) are polynomials in f‘ [X__l and CioreeaCps

o & Cj: , it follows that

n

=7 v '
j.f_l. cy UI(X)...(Ui(X)) ...Un(x) + (VX)) - a)ul(x)...vn(x)
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is a polynomial in sffi] such that t is a root. £2s Tps+e+s Tg are
conjugates of t over iF, we must have that Tpae-»> Tg are also the roots
of this polynomial, then we get

n

. U3t @Oy ) 0 () + (W) - o LHCRLACRINE XCH
i=1

= 0
L
for every = {.2,..., &, ((Ui(rj)) makes sense for each § = 1,205 ©
i=1,2,..., n eince the derivation on ?}%t) can be extended to a

derivation on if(rl, Ty seoes Ts)). So

¢, W, (1)) \
a =T LA W(r;))

=i Uy ()
n ey (Ui(TZ)) '
o = + (V(1,))
; Uy (1) 2
n e, (U.(r)) :
o = NF A E WSS .
.iii-_L Ui(Ts) °

Adding all these equations yields )
o 5 s ey (Ui(TI)) . s c, ("Jz(r_.)) o s cn(Un(-r!)) :
thl I.Tl('rj) o Uz('rj) :?;-1-—* Un('tj)

8
+ > (v<Tj))’

3=1
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Using the "logarithm derivative identity", we get

e ) o @Y (). B (1)
e Ui(rj) U, (1Y, (1) ..Uy ()

for every 1 = 1,2,..., n. Hence we can write a@ in the fomm

(11, (U (1) Uy (1)) (VT 4ot V(D))

n c
. -5 1 L
if%__J Ui(Tl)Ui(TZ)...Ui(TE)

Since Ui(Tl)Ui(Tz)ubi(TB) and V(tl) H /s V(TB) are symmetric polynomials
in Tys Tpseees T with coefficients in éj:, by theorem 1-10, each of these
expressions is in f}:. llence the last equation is an expression for o cf
the required form,

In the remaining caseés, where t is logarithm or exponential of an
67
f

6...-/
element of j’ , we may assume that t is transcendental over [~ . Then we

have

B o (u (RE :
% EE 1L 2 VS ()
i=1 uy (£)

with ul(t),.,., un(t); v(t) & ffit). We can assume that ul(t),...,
u (t), v(t), are distinct and nome of the elements c),..., ¢, are zero.

Lach ui(t) can be written as

) % r
a pll(t) o pkk(t)

u,(t) =
S} Sm
ql'(t) eee Qo (t)
T
where p, (t), qj(t) are monic irreducible polynomizle inuf[;J » Ty, 84 are

positive integers and a . Differentiating this equation yields
= q
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s s r r ' T r s s
C @) q P (ENap, () . p ) ~(ap F(®) oy BN, P ) g ()

(ui(t))=
S1 sm 2
(c11 (t)...q (t))

Dividing this by ui(t), we obtain

' 31 Tk : = | *m !
(u; (£)) ) (ap; " (t)...p, (1)) ) (ql (t)...q (£))

T T 8 s
ui(t) apll(t) 4 .pkk(t) qll(t) s .qmm(t)

The "logarithmic derivative identity', gives
(uy (£)) ) _a_’_’_ r, (pl(t)) +“.+rk_ (pk(t)) ) 81(q1(t)) ) “._sm(qm(t)) .
u, (t) ? py () P, (£) q,(t) q ()

Consequently, we rewrite ‘Z fci (ui(t)) in a similar form, but with each
ui(t)

ui(t) either in GF or a monic irreducible of CIf[!:] . Ve now consider v{t).

The partial fraction decomposition of v(t) allows us to express v(t) as the

sum of an element of ’35[::] plus various terms of the form RlE), ,» Wwhere

T
(£(t))

f(t) is a monic irreducible, r a positive integey .and g(t) is a non-zero

element of?[t]_ of degree less than that of f(t). What we must do now is to

show that each of Ujsaeos U 5 V does not involve t, that is

Lo L B T
i=1 i
vhere ¢y, u;, v & G} o Yoy vy M

To start with, suppose first that t is the logarithm of an element

d
d

v .
irreducible element of df-[t:[ ., Then (f(t)) di=s also in "’J—[t] and it has degrec

1
of “F, so that t =5 for some d E—?ﬁ . Let f(t) be an arbitrary monic

"
less than that of f(t), so that f(t) does not divide (f(t)) . Thus if
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]
(uy (£))
ui(t) = f(t), then ———— is already in lowest terms, with denominator
u, (t)
i

£(t). 1f __Bﬁ_f-_)___r appears in the partial fraction expression for v(t)
(£(v))

where g(t) & ‘:}"[t] is of degree less than that of f(t) and r > o is the

maximum exponent of f(t), then (v(t)) will consist of

(BB (1) _ r a0 (E(D)
(E(eNT (FeN* (£())TH

and various terms having (f(t))k in the denominator for k ¢ r. Since
f(t) does not divide g(t)(f(t))' (otherwise, f(t) divides g(t) or (f(t))').
We see that a term with denominator (f(i:))r""1 actually appears in (v(t))'.
Hence if f(t) appears as a denominator in the partial fraction expression
of f£(t), it will appear in o , which is impossible. Therefore, £(t) does
not appear in the denominator of w(t). So f(t) cannot be one of the ui(t) s
either, We already know that each ui(t) is either in ‘r’:}/' or a monic

irreducible element of “‘Jf [t] . This implies that each ui(!:) = ('} and

vit) & c:'}:ft] . Comnsequently,

V n /AL ]
() = o - > # u—i
1=1 K

4
belongs to 'g: . Since (v(t)) 1is of the same degree as v(t) or degree onc
less, according as the highest coefficient of v{t) is, or is nect a constant,

by lemma 4-~3 (i) so v(it) is of the form

v(t) = ct+h
where ¢ is a constant and h & .  Thus
T
Il c, u ]
e B BN |
= — 4+ (et +
o 2 o (c h)
i=1
]
n c " v
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is an expression for o of the desired form.

Finally, consider the case where t is the exponential of an
element of G:F , say %‘ = b' with b T By virtue of lemma 4-3 (ii),
if f(t) is a monic irreducible element of?[t] other than t itself, then
(£t)) & F[t]end £(t) does not divide (£(t)) . By the same
reasoning as above, we have that £(t) cannot occur in the denominator of

v(t), nor can any ui(t) equal £(t). This asserts that v(t) can be written

as

vit) = Eajtj

where j ranges over a finite set of integers, a_‘] g(‘j: , and each of
quantities Ul(t),..., Un(t) is in O,T- or equal to t itself. However, if

some ui(t) = t, we have

1

(v, (£)) . ,

—_— = ? = b

uy (t) ‘

: o7,
which is in 7 . Comsequently, (v(t)) & _f*. According to lemma 4-3(ii)
¥
v(t) and (v(t)) have the same degree, hence v(t) is also in C:F .

If each “1(':) is in ‘ff , Wwe already have o0 in the required form, and
we are done. If not, we may thus limit ourselves to the case that only

one ui(t), say u.l(t) is not in T . Then ul(t) = t and

uz(t),..., un(t) (2 f}'/ , 80 we can t;rrite

L c, u
c,; t i i ’
i £4 e
o - i Z ui b
i=2
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v

n
c., u i
= i*_-'i"'l' (c.b + v) i
Z__l uy 1
i=2

with Ugseeos Uos clb + v all in 7 . This completes the proof of the

theorem.

Remark The condition that Ufand its elementary differential extension
field have the same subficld of constants is essential. This can be seen

from the following example.

Example 4-2 Let ? = R(x) with x =1l and o0 = % & RE.
1+x

Then the equation yf = g = —-!'—-—2— has a solution in the elementary

14+ %
differential extension field R(i,x, log(x + 1y)) = €(z, log z) of I .

We see that €(z, log =) has a different subfield of constants from that
of R(x), since the subfield of constants of €(z, log z) is €, whereas

R(x) has R for its subfield of comstants. We claim that ——-1——-2— cannot
1 +x

be written in the form

- g -~ e Pl

1+ X b

where Ciseves S € R and Uppeees W, Vo € R(x). To see this,

suppose that 1 7 can be written in this form. Let
1+x

r

y o= +x) T

where each Ty is an integer and 1 +x2 is not a facter of both numerator

and denominator of Qi(x) inR(x) i = 1,2,..., n. We have

Yy

uy

2ex @G
I
we? G
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Therefore,
n 1}
1 _ e 2rc1x s ey (Oi(x)) . v'
2 L Rl SR Q, () ’
14x oy 1VERS 1
that is,
n_..
1=-) 2rc.x n -~ L
B et i c, (Q, (x)) '
(4) i=1 5 = f\ P A AT Qi ErA
1 +x “I:IJ i

It is clear that 1 + xz does not appear in the denominator of
n

A
VT ey (0 () g
1 T q o ¢ Yew ¥e comsiderv € R(x). If 1+x does not

appear in the denominator of v, then the expression on the right hand

side of (4) has no 1 + xz in its denominator. This implies that 1 + xz

must divide 1 - 5™ 2r ¢ (X which 1s impossible.
A
i=1
If 1 + 32 occurs in the denominator of v, it will occur at least
L] L}
twice in the denominator of v , then v will be balanced neither by
5.7
2r,c,x n i
1_-]_ 11 A i/ ci(Qi(x))

nor by / ——=——— . This proves our claim,
14 5 i=1 0y (x)

L]
From this example if we replaces R(x) by C(z), with z = 1.

1 3 € €(z) has a solution in the elementary
1+z

differential extension field €(z, nz)., It is not difficult to verify

)
the equation y =

that 1 5 can be written in the form

l1+2
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ke oo oy,
1+ = “
i=1
with Cyseoes C (= € and Upsoves Wy Vo & €(z). To do this, note
that
1 = 1 =N TS TR S ST
1+ z2 (z +1)(z - 1) it g &5 s
L v
o 1 (z+3) 1 (z.m1)
2 24 4 2 z <A/ "

We see that —l—z-can be written in the required form.
14z
In the remainder of thizs chapter we shall find &« simple device
which tells us whether or not a function in the elementary differential
extension of €(z) is a rnonelementary indefinite integral. The
preliminary lemma below provides the key to establishing the needed

theorem.

g

Lemma 4-4 If g is a nonconstant element of €(z), then e is not algebraic

over €(z).

Proof Assume that e is algebraic over €(z), then there is a minimal
polynomial P(X) = ¥ + aiKF—l +...a in m(z)[x] such that ef is a root,

thué

"8 4 alﬁ(n*l)g 4 voa +a = 0,
n

Differentiating this to get

?

[ T i )
ng "B 4 (al + (n—l)alg )e(n Ds + ... + 8, = 0.

L]
Since g' #0_dividing this by ng yields



1

(a1 + (n-l)alg )

a
n-1
oDE T Ll e
ng ng
therefore, the polynorial
1
+(n-1)ﬂg) a
x“+ Ll g
ng ng

has e as its root, then by theorcm 1-12

1 T

(a, + (n~1)a,g ) __

x“+alxn”'1+..,+ a, = X'+ i e e ok ST - S
ng ng

This implies that

1 »
2, : 2n
a, = — or ng ¥ /77
ng n

may be either zero or nonm-zero element of €(z), we now suppose that

¥ 0, letia = ;g:; where 0 # g(z) and r(z) & € [z] . Ey the

e P L

Fundamental theorem of algebra, we can write a_ as

r r r
L. c (z - cl) 1(2 - cz) 2... (z = cn) i

e ky ko ke
(z - dl) (z - dz) e B dm)
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where c, Cysvees Cpy dl,,,., d & € and s k, are positive integers.

m

3
By the "logarithmic derivative identity’, we get
L

v ) v L i
a crl(z cl) crn(z-cn) ckl(z-dl) ckm(z-dug
——— +l‘)t+ - L
a, z - c1 z - c zZ - d1 z -d

cr cr ck ck
b e i B i e
z-¢c, z-cn zadl z-dm

)
4

Thus ;—-is a sum of fractions with constant numerators and linear
n
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T
denominators, whereas ng can have no linear denominator since if f(z)

occurs in the denominator of ng, it will occur at least twice in the
1 a'

]
denominator of ng . This yields EE' = ng = 0, contradicting the
n

assumption that g is nonconstant. This proves the lemma.

As an application of the foregoing ideas, we now comc to the
theorem which provides a convenient criterion to tell us whether a certain

function is a nonelementary indefinite integral or not.

Theorem 4-3 Let £(z) be a nonzero element of C€(z) and g(z) a nonconstant
element of €(z), then _ff(z)eg(z)dz is elementarv if and only if there
exists a(z) g C€(z) such that

1 )

f = a + ag

| '
Proof Setting ef = t, we have %— = g , by the preceeding lemma, t is

transcendental over C(z). Now let ffrz €(z) and ﬁj{t) = (¢(z,t).

Suppose first that &ff(z)eg(z)dz is elementary, in other words, the
aquation y' = fef e tht) has a solution in some elementary differential
extension field of f}tt), it then follows from theorem 4~2 that we can

write

—
with cy,..., ¢/ & €and up,..0, U, Vo “f(t). By factoring
numerator and denominator of each u; as a product of irreducible elements
ofﬁf[i] and using the "logarithmic derivative identity’, if necessary, we
can guarantee that the ui’s which are not in ?F' are distinct monic

irreducible elements of ff[i] . We decompose v into partial fractions
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with respect to °:F[_t:] . By the same reasoning as used in the prcof of
theorem 4-2, we have that the only possible mouic irreducible factor of

a denominator in v is t, which is also the only possikle u; mot in 7 .

That is, v is of the form

v = Zb.t:‘.j
J

where j ranges over a finite set of integers and each b:1 € ‘{f If uy = t
u;} ; : e, ul - c, u

for some i, i g g & “’ZF, then ‘: 5 + X € . We let 2z, e
ui ui ui

= d for some d ¢ G]: . Therefore

tf = d+ v'
or

'

v = tf -4,
lemma 4-3 (1i) implies that v is & polynomial inc_]: [t] of the same degree
as that of v,, thus there exist a;b (= G}such that

v = at-+h,
Differentiating this, we get

L] ] § L4
v = at+at +b

= (a"F ag‘)t + bt :
This implies that £ = 151r + ag'
As regards the converse, if there is an a i~ C(z) such that
f = ai + a;;? .
Multiplying this by t, we obtain
tf = a't+ atg"= (.*zu:)ﬁf = -
Thus one elementary integral of J[fe® is ae® . This completes the proof

of the theorem,
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Now, at last, we can illustrate the use of these ideas with

several examples.

2
Example 4-3 Consider [ e dz, if this integral is elementary then there
isana 0 & €(z) such that
¥
1 = a + 2az ,
or
?
a a
P(z)

Let a = O] where 0 # Q(z) and P(z) are in € [2] , we have

_ 0@ (). 6=
o P(z) ~P(2) Q) C

We can write

Q(z) _ A(z) + R(z
P(z) (=)

d

with degree R(z) < degree P(z), so

. A + Rz (B, Q@) .
) a P(z) ~ Pl T Q@)

L] 1
We see that, since P(z) and Q(z) do not divide (P(z)) and (Q(z))
respectively. P(z) and 9(z) occur in the denominator of the expression
in the right hand side of (5) which is not balanced by 2z. We can thus

assert that [ e dz is a nonelementary indefinite intepgral.

z
Example 4-4 For [ g-dz, if this integral is elementary, then there

exists a & (€(z) such that

1
— =
> a + a.
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Assume first that z occurs in the denominator of a, them it occurs at least
) " -
twice in the denominator of a and a + a which is not balanced by i-. If

z does not occur in the denominator of a, then if is clear that z does not
: % ¥
cccur in the denominator of both a and a + a . This case is impossible,
z
Thus, in either case this equation has no solution. Hence [ S-dz is not

an elementary indefinite intepral.

As an immediate cousequence of the above examples, we get that
s eez dz and [

10; =6 dz are nonelementary. The first assertion proved by

replacing z with e” and the second integral by replacing = with log z.
For [ log log z dz, we use intepration by psrts tc reduce this

integral to the previous integral, i.e.

dz
log =

J log log z dz = z log log z = [

Since flg: 5 is nonelenentary, this implies that [flog log z dz 1s also

nonelementary.
_ . 4 sin z
Lxample 4-5 As another spplication of these ideas, consider [ —_— dz,
eiz 7] E-—:l.z
As we know, Sin z = —33 - We first change variables iz = w,
thus
\ -w
8in z _ e - _
f z dz e .r zw dw 5

w -W

. G‘_—I 5 -
Let t = e" , C(w) r]:. Working in " (), i€ f = w : e

elementary, by theorem %~2, we can write

2 i c, u ’
kL S% 1 = T—_‘ 1 1 + v
tw <\ vy
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with Cys Cgseecy C £ C and Uys eees U, V (= “:F(t). By the same

reasoning as before we have that the u,'s which are net in 'iF are destinct

i

monic irreducible elements of °F[t] , and the only possible u, not in Uf

is t, and the only possitble monic irreducible factor of a denominator in v
is t, that is, we can write v= I bj t::l , where j ranges over a finite
L
. u ?
rm -y p: N - e
set of integers, bj € —f If vy = t, then ™ - 1 € 7 . Hence

v ]
o u S, u
> 11c nf, letz A ;1-1 = d for some d = a}/ Differentiating

i i
v yields
=Zt‘1(jb +b,)
Therefore
t2—
- d+> (jb +bj).
tw
or

2 —r——
A | ' 3¥1 )
-—T—- ar + Z t & bj+bj)

We thus see that j must be -1,0 and 1. That is,

r‘z i ' ¥ b2
el dt + (—‘n_1 + b_l) + bot + (b1 + bl)t "
1 7 1 v _1
henced+b0-0,b1+b1=;,_b_1+b._1..;T_,

But we have proven that the equation

¥
i
b1+b1 = =

has no solution. Therefore [ 512 2

dz is not elementary.
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As an immediate consequence of this example, we have that

fSin e? dz is also nonelementary. To see this, let e’ = w, then

jSin ez dz = JSinw dw .

W

Sin w

Since J =

dw 1is nonelementary, (see example 4-5) hencejs:[n e? dz

is also nonelementary.

Sin z o o g hE e

Example 4-6  For fe dz, since Sin z = ——— | let t = —
21 21
then we have
iz -iz
e
2i et-l-!r.t
f e dz =/ ~1 - dE; .
1 t
%z

We claim that f -S— g% is nonelementary. To do this, assume that

this integral in elementary, by theorem 4-3 we have that there exists an

a & €(z) such that

1
2= a +all - )
bz
or
a! 1 1
(6) L™ e gl

It is clear that the expression in the right hand side of (6) cannot be

written as a sum of fractions with constant numerators and linear
)

denominators, whereas -z—(see the proof of lemma /4-4) is a sum of fractione

with constant numerators and linear denominators. This is a contradiction.

I esin z

Hence dz is a nonelementary indefinite integral.



APPENDIX

Definition Let DysMpseee,n be non-negative integers such that
n

5 x ) will denote
1, 2’-&.’ r

n,+ n2+ sea + n, = n. Then the expression (n

nl
nllnzl Sl nr!

These numbere are called the nmultinomial coefficients in view of

the following thecrem which generalizes the Binomial theorem.

Theorem
= T n, n n
n _ M, n 1. & <
(a1+ ay+...+ ar) e ( )al 8y «..a

ngtn, .. An =n 012022 veefy
12 r

Proof The proof is by induction on r. It is trivial for r = 1,
Assume that the theorem is true for r. Let a; + a, # e o g, = b.

Then, by the Binomial theorem, we have

n n
(al+ ayt ... +a_ + ar+1) = (b + ar+1)
n
- My, n=-k .k
Sl el P
k=o
n
jzg:: n, n-k k
k=0
By the induction hypothesis
n n, n n
~- -k 1 k 1°2 r
(a,+ a*...+a+a )0 = ™a® . "
- r %+l > (241 \ (nl,n ,...,nr)a1 82 ay
k=0

n1+n2+...+nr=k



n n, n n-
' . k
3 y l,nz,..-,nr 1 2 r r""l
k=0 nr+. An ﬂk
n k n! k!
(k)(nl,nz,...,nr) T ki(n~k)! nll...nrl
_ n!
B nll...nr!(n-k)!
= n

Aysenes Bos n—k) %

Therefore

n n

n 1
QUE g e gl S 7z \(n SRR e

k=0 n +...+n

r n-k
r il

1
Let ny = n-k, then n_, . ranges from O to n znd hence
n n_n
n_ n 1 £ rhl
(ajt ap+ ... + ar+1) ‘:j ( )a1 coea_a gy

n,+...n =0 b LR S |

This completes the proof.

93



	Chapter IV An Application of Differential Algebra
	Back
	Appendix


