CHAPTER TIT

ON THE BASIS THEOREM OF DIFFERENTIAL ALGEBRA

The present chapter consists of two principal parts, The first part
contains some preliminary lemmas about forms and systems of forms which play
a central role in differential algebra and in particular, these results are
necessary for the investigation of the second part. The second part is
devoted to proving a very important theorem of differential algebra, the
basis theorem which states that if T is a differential field of
characteristic zero and Yys¥gse++s¥, 2a¥e n indeterminates, then

?{71.1}2,.. .,yn} is a Noetherian perfect differential ring.

Throughout this chapter, the differential ring jl) will denote

‘I{yl.yz. sii's '7n} ‘

1, SYSTEMS OF FORMS AND SOME PRELIMINARIES PROPERTIES.

The materials of this part are based on reference [2]

In the preceeding chapter we have already studied elements of the
differential ring Ffy,,y,.. ++s¥p}  which we called forns. A form, let us
reeall, is a polyngmial in YysVgreens¥y and any number of their derivatives
with ‘cg_efficientn in Lf . _th,.“ is a finite sum

£, 3 i
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where the i _, §_ are non-negative integers, a, ... €'JJ: and
m* “r 1}_ "njl Jn

i
0
D '“ym is the :I.III th derivative of Vpr M = 1o@peensl {D Yy =Yy .
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From now on, capital ' ~ii. letters denote forms.

Notation The derivative of Yy will be indicated by means of a second

subscript. Thus

- oy,

yij

We write ¥ * P ™ D°yi.

The ] th derivative of a form A, denoted by A(j) is the form obtained

by differentiating A j-times.

Definition 3-1 A form A in .fi i1s said to be of order m with respect to Yo
denoted by ord A = m in Y4 if A involves y, or some of its derivatives and m
is the greatest positive integer such that Yia is present in a term of A with
a coefficient distinct from zero.

1f Y4 does not appear in A, the order of A with respect to ¥y will be

taken as zero.

Definition 3-2 A form A in j%. is said to be of class p, denoted by

class A = p if p 18 the largest integer such that ij appears in A for some
non-negative integer j with non-zero coefficient.

We see that if A is an element in f}L, A is of class zero.

Definition 3-3 Let Al and A2 be two forms. The form A2 is said to be of

higher rank than A, in y , or more briefly, higher than A in y if either

i) Ay 1s of higher order than A, in yp

or
i1) Al and A2 are of the same order, say q in yb and the exponent

(degree) of You in A, is greater than that of y

pa in Al or we B3y

that A2 is greater degree than Al in yﬁ&.
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Two forms for which no difference in rank is created by the preceeding,
will be said to be of the same rank in yp.

All forms of class zero are of the same rank.

Definition 3-4 Let A; and A, be two forms. A, 1s said to be of higher rank
_t_:_;ﬁa_n__&l, or more briefly, higher than A, 1f either
i) A, is of higher class than A;
or
ii) A and A, are of the same class, say p > o, and A, is higher than
Al in yp.
Two forms for which no difference in rank is established by the fore-—

going definition, will be said to be of the same rank.

In order to understand definitions above easily, observe the following

example:

Example 3-1 Let R = G'f{y .yz,y3,y4} where 61 is a differential

field.
let A = ay;+ay,, +ayay, + 23753735
¥ ,_
Ay = B¥ia F by¥ Vo, + oYy, \'2
Ay = eyt Vg F vyt ey,

where a:l’bj’ck are all non-zero elements in ? .

,
3 inyl

4 in ¥,
ord A, = {
5 in Y3

0 iny4

class Al = 3
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ord A2 = <

class Az = 3
class A3 = 4,

Al is higher than AZ in ¥y» by definition 3-3 (i)

A, 1s higher than A, in Yo» by definition 3-3 (ii), since A; and A, are of
the same order 4 in Yo but the degree of Yoy in Ay = 2, which is greater
than the degree of Vo4 = 1 dn AI.

Al is higher than A2 in Yg» by definition (1).

AI is higher than A2, by definition 3~4 (ii) because Al and A2 are of the
same class 3 but A, is higher than A2 in Yge

A3 is higher than both Al and A,, by definition 3-4 (i), since :* .w &

3
class Aa =4 > class A1 = class A2 = 3,

Lemma 3-1 If A, 1s higher than A, and Ay 18 higher than Ay, then A, is

3
higher than 4.
Proof Suppose first that Ay 1is higher than A; due to condition (i) and that
A3 is higher than A2 due to condition (1), then it is clear from the definition
that A, 1s higher than A; by condition (1).

Suppose now that A, is higher than A, by (1) and that AS is higher than
A, by (i1). Since Ay and A, are of the same class and A, is of higher class
than A; then Aq 1s of higher class than A;. Thus A4 is higher than A, by 1).

Now suppose that A, is higher than A, by (i1), while A, is higher than

3
A2 by (1). A2 and Al are of the same elass but AS is of higher class than A2,

therefore A3 is of higher class than Al and hence Aﬁ is higher than Al by (1).
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Finally, if A, is higher than Ay by (11) ahd A, 1s higher than A, by
(11) then A, A, and Ag are of the same class, say p. But A, is of higher
order than Al in Yo and Ag 1s of higher order than A, in Yp This implies
that Aa is of higher order than Al in y_. Thus A3 is higher than Al by

P
condition (4i).

Ilewa 3""2 If Aly Az, ey Aq’l.-

is an infinite sequence of forms such that, for every q, A is not higher

g+l
than AQ’ then there exists a positive integer r such that for q > T Aq has
the same rank as ﬁi'
Proof Aq+1 is not higher than Aq, in other words Aq is higher than AQ+1 or
Aq and A¢+1 have the same rank, 1f Aq is higher than Aq+1’ there are 3
possible cases as follows:
i) Aq is of higher class than Aq+1
ii) Aq and Aq+1 are of the same class m > o, but Aq is of higher
order than Aq+1 in = =
iii) Aq and Aq+1 are of the same class m > o and the same order in

Yoo 82y t, but Aq is of higher degree than Aq+1 in Vut:*

We first consider the case (i). Since Aq+1 is not higher than Aq, we
see that the classes of the Aq form a non-increasing set of non-negative
integers; it is then clear that there exists a positive integer n, such that

forq > ng Aq have the same class as Ah » 8ay p. If p = o we are done.
o

If p > o we are in case (ii). The set of the orders of the Aﬁ for q > o
for ms a non-increasing set of non-negative integers and again there exists a
positive integer m > o such that for q > m the forms Aq have the same

class and the same order in yp, say s.
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Finally we have case(ii), and by the same reasonihg as above there
exists a positive integer r 2 m > n such that for q > r the form Aq
will eventually have a commor degree in ypb. Thus forq > r Aq have the

same rank as Ar‘ This proves the Lemma.

The following corollary yields a moke general result than that of
above lemma which is restricted to sequences <{Aq} « But the corollary allows

the set of forms to be uncountable.

Corollary Every finite or infinite set of forms contains a form which is not

of higher than any other form of the set.

Proof If the set of forms is finite, the corollary is trivial. Assume that
there is an infinite set of forms containing no form which is not higher than
any other form of the set. Thus if we pick a form in this set, it is higher
than some other forms of the set. At this point we shall construct a sequence
of forms by the following method.

To start with, we pick A!’ it is then clear from assumption that Al is
higher than another form of this set. We pick A, such that A; is higher than
Az and then A3 such that A2 is higher than ASL By this process of construction
we have an infinite sequence of forms

A, Ays veey Aq’ Sk

such that for every q, Aq is higher than AQ+1. This contradition of the

preceeding lemma proves the corollary.

Definition 3-5 If Al is of class p > o, A2 will be said to be reduced with

respect to A, if A2 is of lower rank than AI in yp.

Example 3-2 Let A, and A, be the first two forms given in Example 3-1. 4, is
reduced with respect to Al’ since Al is of class 3 and ord Al =5 in Y3 > ord A2

= 2 in Y3» that is, A2 is of lower ramnk than Al in ¥q-



41

Definition 3-6 The system

(1) Al, Bys woos A

3 g

will be called an ascending set if either

i) r=1 and Al #0
or
1) £ > 1, A, 1s of class greater than 0, and for j>1i, A, is of

J
higher class than A; and is reduced with respect to Ay
Remark It follows directly from the definition above that
i) r < n = the number of indeterminates

ii) every non-zerc form of ﬁ? is an ascending set.

Exagle 3-3 Let R % G}{YlsystB’y‘asyssaYB}

4 = gy

B = Dbyt b2V§7

Ay = o6+ Yl e

A, = 4y31,3:5735%03

Ag = 571592 * f23'36":243"51

where a;, bj’ € dl’ ﬁm are all non-zero elements in i; . The system

s 495 Ags By ,50A4

forms an ascending set. From this example we see easily that the class of Ai

is an increasing set of positive integers and if Ai is of class Py then

ord Aj in ypi < ord Ai in ypi fory > 1

Definition 3-7 The ascending set (1) will be said to be of higher rank, or

more briefly, higher than the ascending set

(2) Bys Bys oevs By

if either



42

i) there is a positive integer j, exceeding neither r nor s, such
that Ai and B, are of the same rank for i < j and Aj is higher
than B

3

or

ii) s > r and A; and B, are of the same rank for i < r.
If j = 1 in (i), this is taken to mean that A, 1s higher than B,.

Two ascending sets for which no difference in rank is established by
the preceeding definition will be said to be of the same rank. For such sets,

r = 8 and Ai and Bi are of the same rank for every i.

Example 3-4 F{ is a differential ring as in example 3-3. If B = ay;1
where a # 0 in r}: , then B is an ascending set and the ascending set in

Example 3-3 is higher than the ascending set B by (i). Morever, let

By = a) yg

D z 2
By = by Vet P Y5957
5 - & ef <
3 €1 Y16 T 2 Yo7¥47
. 3 " 3 2
B, dy Y14 + 95 Y26Y43Y36
B = f] ¥11Y22Y33 + £5 Y51Y45Y36
- - - 2 -
Be = Dby ¥yg¥sp + by v,995 + B3 v,
The system

By, By, By, B,, By, B,
forms an ascending set and the ascending set in Example 3-3 is higher than
this ascending set, by (ii) since the number of forms in this ascending set
= 6 > the number of forms in the ascending set in Example 3-3 = 5 and Ay
and Bi are of the same rank for i £ 5. If we delete in turn the form B6,

we then have that the system
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Blj BZ, B3, Ba, 35
again forms an ascending set and this ascending set is of the same rank as the

ascending set in Example 3-3,

Lemma 3-3 let &; , &, and &; be ascending sets such that &, is higher
than ¢, and ©®; is higher than ®3; . Then ®; is higher than &;.
Procf Let ®; and &, be represented by (1) and (2) respectively, and let
®3 be
Cys Cps veus Cpo

Suppose first that ¢, is higher than &, and &, is higher than @&,
by (1). Since ¢, is higher than @&; by (i), there exists a positive integer
i3 & sand j K t, such that Bi and Ci are of the same rank for i < j

and B, is higher than C ¢, is higher than &, by (i) also implies that

3 3

there exists a positive integer k, k & r and k £ 8, such that Ai and Bi

are of the same rank for i < k and Ak is higher than Bk'

£k <€ F; Aig Bi and Ci are of the same rank for 1 < k., Bk and Ck

are of the same rank and Ak is higher than Bk’ hence Ak is higher than Cp -
Thus &; is higher than &4 by (i).

Itk > j, Aj and Bj are of the same rank but Bj is higher than Cj’

this implies that A3 is higher than Cj and Ai and Ci are of the same ramk for
i < j, hence ¢; dis higher than ¢, by (i).

If k = j, then Aj is higher than Bj and Bj is higher than Cj implying

that Aj is higher than Cj by lemma 3-1 and A_, Bi and C; are of the same rank

for 1 < j. We have again that &; is higher than &; by (1).
Suppose now that @; is higher than &; by (i), while &; is higher than 3,
by (ii). @, 1is higher than &, implies that there exists a positive
~ ~

integer j, j £ r and j < s such that Ai and Bi are of the same rank for

i < j and A, is higher than B

; 50 while @®; is higher than ®; by (ii)
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implies that t > s and Bi and C; are of the same rank for i < s.

Therefore Ai’ Bi and C, are of the same rank for 1 < J as well as Bj and

Then A, is higher

Cj being of the same rank, but Aj is higher than Bj' 4
than Cj. Thus @1 is higher than ¢3 by (1).

The next step we let ¢1 be higher than @2 by (ii) and ¢2 be higher
than ¢3 by (i). Let j be the positive integer, § < s, § < t, such that
B, and C; are of tho same rank for i < j and Bj is higher than Cj' Since

@1 is higher than Qz by (ii), we have 8 > r and Ai and Bi are of the same

rank for i £ r. Ifj > r, then t > r and ﬂi are of the same rank as Ci

for 211 1 £ y. This implies that &, is higher than ¢_ by (1i). If

1 3

j € r, then A, is higher than C, and Ai and Ci are of the same rank for

k| 3

i < j. Thus ¢1 is higher than @, by (i).

3
Finally if ¢1 1s higher than ¢2 by (ii) while ¢2 is higher than
¢3 by(ii), then t > r and A; is of the same rank as c, for 4 £ =,

whence ¢1 is higher than @ by (ii).

3

We shall need the following fact:

Lemma 3-4 Let

Ql’ ¢2, “any ¢q 3 L

be an infinite sequence of ascending sets such that is not higher

Ot

than ¢q for any q. Ther there exists a subscript r such that, for q > r,

@q has the same rank as ¢r.

Proof To begin with, consider the first forms of the @q's for any q, By
virtue of the lemma 3-2, there exists a positive integer m such that, for
q > m, they are all of the same rank as the first form of the @m. For

the case in which ¢q with q > m has only one form, we are done.
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We now suppose that s is the least positive integer such that s > m
and ¢s has at least two forms. We are immediate confronted with the question:
Is it possible that there exists a positive integer 2 > 8 such that %: has
one form ? A short word about this, there 18 no positive integer £ > s such
that ¢E has one form, since if @R has one form, it then follows from
definition 3~7 (ii) that @R is higher than @s, contrary to the hypothesis
that @2 is not higher than QE. Thus ¢q has at least two forms for q 2 s.
However, by the same reasoning the second forms of @q's will eventually be of
the same rank. Continuing in this manner, since the ¢q's are ascending sets
and no Qq can have more than n forms where n is the number of indeterminates,
we have that there exists a positive integer r such that all the ¢q with

q > r have the sezme number of forms, corresponding forms being of the same

rank. This completes the proof of lemma.

As a consequence of this result we have

Corollary Every finite or infinite set of ascending sets contains an
ascending set whose rank is not higher than that of any other ascending set
in the set.

The proof of this corollary is the same as the proof of the corollary

of lemma 3-2,

Definition 3-8 1Let I be any finite or infinite system of forms, not all

zero. An ascending set & of I is said to be a basic set of £ if ® has the

least rank among all ascending sets of I ,
Remark The definition above is well-defined, since every non-zero form of I
is an ascending set and by the corollary of lemm 3-4, among all ascending

sets, there exist certain ones which have least rank.



46

At this point, we now introduce a method for constructing a basic set
from any given system of forms I . It is easy in case £ is finite. Suppose
that I is infinite. Of the non-zero forms in I , by the corollary of
lemma 3-2, there exists a form of least rank, say Al.

If Al is of claes zero, then it is a basic set of I . Let Al be of
class greater than Zero. If I has no non-zero forms reduced with respect to
&1, then Al is a basic set, Agsume such reduced forms exist; they are all of
higher class than Al, otherwise there is at least one form B which is of lower
class than A; or the class of B equals the class of Ay. If B is lower class

than Ags then B is of lower rank than A, by definition 3-4 (i). Consider the

1

case that the class of B equals the class of A Since B is reduced with

i
respect to Al’ therefore B is of lower rank than Al. In either case B is of
lower rank than Al which contradicts the minimality of the rank of Al.

Let A2 be the least rank which is feduced with respect to Al. Unless
I contains non-zero forms reduced with respect to Al and A2, we claim that
the ascending set Al, Az will be a basic set of I . To prove this, assume
that there exists an ascending set ® of I such that & is lower than the
ascending set Al’ Az. If @ is lower than the ascending set Al, Az by
definition 3-7 (i), then the first form of ¢ is the same rank as Al since

the first form of @ is not of lower rank than A. because of the minimality

g |
of the rank of Al and is not of higher rank than A! because of the assumption,
Now it is necessary that the second form of & is lower than A2. Since the
second form of @ is reduced with respect to the first form of &, it is also
reduced with respect to Al’ contrary to the least rank of A2 of forms which
are reduced with respect to Ay, If ® 1is lower than the ascending set Ay, Ay
by definition 3-7 (ii), then the number of forms of ® is greater than 2 and

the first and the second form of @ are of the same rank as Al and A2

respectively. Since ¢ is an ascending set, the third form of @ is reduced
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with respect to the first and the second form of & , hence it is also reduced
with respect to Al and Az, contrary to the assumption that I contains no
non-zero forms reduced with respect to Al and Az. This proves the claim, If
such reduced forms exist: let A3 be one of them of least rank. Continuing thie

process at most n steps we arrive at an ascending set which is a basic set of

z -

Definition 3-9 If A1° in (1), is of class greater than zero, a form K will

be said to be reduced with respect to the ascending set (1) if K is reduced

with respect to every éi, i=210..0p =

From now on, the first form Al in the ascending set (1) considered is

assumed to be a form of class greater than zero.

Lemma 3-5 Let I be a system of forms for which the ascending set (1) is a
basic set. Then no non-zero form of I can be reduced with respect to (1).
Proof Suppose that therc is a form K reduced withk respect to (1). Then K

has to be higher than A., otherwise K would be an ascending set lower than (1).

1)
S5imilarly K must be higher than Az, otherwise Al, K would be an ascending set
lower than (1). By the same reasoning K is higher than Aj, 4,, ..., A.. This
leads us to the conclusion that K is of higher class than Aj’ ] = 3 2yeeny T

and then

By s By o scry Mgy B

is an ascending set lower than (1). This is a contradiction since the

ascending set (1) is a basic set of I .

Summarizing the preceeding lemma, we may now assert:



48

Corollary Let I be a system of forms for which the ascending set (1) is
a basic set. If a non-zero form, reduced with respect to (1), is adjoined

to I , then the basic sets of the resulting system are lower than (1),

vefinition 3-10 If a form G 1s of class p > o, and of order m in yp

gg , the partial derivative of G with respect to ypm

rm
will be called the separant of C .

a) The form

b) The coefficient of the highest power of Ypm in G will be called

the dnitial of G .

Remark It is clear from the definition above that the separant and initial
of G are both lower than G .
Using the above lemmas we arrive at the following result which is

necessary for the proof of the basis theorem.

Theorem 3-1 Let G be any form. Si and '1‘i be respectively the separant and
initial of Ai in (1), 1 = 1,2,..., r. Then there exist non-negative integers
S4s tyo i=1,2,..., r, such that when a suitable linear combination of the Ai
and a certain number of their derivatives with forms for coefficients is

gsubtracted from

U
nd
rt

s s s
sle? . gtrp
r

1 1 2 : T

N

the remainder, R, iz reduced with respect to (1).

Proof For the case G is reduced with respect to (1) there is nothing to prove,
merely put 840 £ = 0 for every 1 = 1,2,..., r and all coefficients of the ﬂi
and their derivatives can be taken to be zero,

So we may assume that G is not reduced with respect to (1).

Let A, be of class p. and of order m, in y ook R Ty B
i i i Py
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Let j be the largest value of i such that G is not reduced with

respect to Ai
Let G be of order h in yp
2

ra. We suppose
(k,)

Since G is not reduced with respect to Aj’ then b >
Claim that Aj s

o

first that h > mjg set kl = h - mj, therefore k] > o,
the kl th derivative of Aj* will be of order h in y_  and aleo linear in y

t of y h .. To prove this,
i

P4

A

with Sj as the coefficier

we write
o k
= -+ ?"I

Aj D o Ak yp m R

k=1 j j

where | ] and ak are forms not involving v 5 = LeZiaws W &
13
3A
, that is,

We now investigate Sj’ the separant of Ag =
? P3™y

S, * ST Lok¥hy
= ) .In
] k=1 P57y

iV
Consider 5 the first derivative of Aj

k
-+ Ak k-1
1 "
©y ypjmj+1

1) == .
D = T+ ST @Ay
<
3 k=1 o pim
:
i 1S : o k-1
Thus will be of order m,+1 in y_  with < ﬂ}. kv = 8
J 3 P _— : p.m. j
We rewrite

coefficient of ypjmj+1

1) 2 k-1
= - SO
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o k
where suit 5 DE]—!— E’ Dﬂ.k. ypm .
=1 3
It is clear that i does not involve vy
p.m,+1 .
s
52
Differentiate 4 again, we have
(2)
- DEI * z (Dtk&kyp p,m.+1 kAkprri pm+2)
J :] j 3 33
(2)
Hence Aj will be of order mj + 2 in yp with Sj as the coefficient of
3
Ipm+ 2"
v i

(k,)
Continuing in this way, A11 will eventually be of order mj + kl = h

in ypj and linear in ijh with Sj as the coefficient of ypjh d

In other words,

(k)
Aj = O + .:uj ijh

where O is a form not imvolving yp h which proves the claim.

J
(ky)
We now take yp 1, 29 an indeterminate and A’j as a polynomial in yp f
i 3

of degree one with coefficients in the ring R , it then follows from theorem

1-5 that there exists 2 non-negative integer vy such that

| (k P
¥ = +
(3) S j G 1 j nl
where Dl =0 or Dl does pot involve yp h For uniqueness, we take v, as
J
small as possible.
If Bl = 0, the theorem is proven for the case h > m, .
For the case Dl does not involve yp b We shall prove that Dl is of
5 :
order less than L in yp . Suppose that Dl is of order k ir yp with k > L,

3 h
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(k,) v
Since Aj and Sj G are of order h in yp s therefore they do not involve

3

y . Hence y must appear in C, , this implies that D, must contain
pjk pjk 1 1

terms involving yp

h and yp K This is a contradiction since yp h does

] ] 3

not appear in D This proves our statement.

1
Now let m be an arbitrary integer with pj < m £ n where n is the
number of indeterminates. Claim furthur that Dy is not of higher rank than
G in 25 To prove this claim, it is only necessary to mention the case in
which Vo is actually present in G and let G be of order £ in b o (If . is
not present in G, then Vs will not be present in ﬁl’ thus D1 and G are of the
same rank in ym). By the same proof as above we have that the order of D1 in
Y, can not exceed £ . What we must prove now is that Dl is not of greﬁter

degree than G in Yp1° Io proyve this, assume that L, is of greater degree than

G in Yo * Then C1 nust involve Y in the same degree as D,» say q. This

(k,)
implies that Cl Ajl hes to contain terms involving yp h y;g‘ Since D1 doese
3
v
1
not involve yp h and Sj is free of Voo Sj G = Dl does not involve

k|
¥y h‘ygiﬁ . This contradiction proves our claim.
i

If D1 is still of order greater than mj in yp , we take
i

kz = ord D1 in yp - mj »
i
then ky > 0 and by the same reasoning as above, there exists a non-negative

integer v, such that

2
v, (kz)
(4) Sj Dl = C2 Aj + D2

with D, of lower order than D, in Yy and not of higher rank than D, (or G)
b

in any ¥ withm > pj. In order tc have a unique procedure, we take v, as



small as possible. If the order of D, in yp

continue as before obtaining

v (k,)
s 3
s, b, = LAY
v (k,)
4 _ 4
SJ D3 C4Aj
v
u-1
8,"" D, , c
qu (ku)
8% = oA

where ki = ord }I]:L“_1 iny

We eventually arrive at Eu , of order not greater than m

Multiplying (3) through by §.2

v
S

2.4 vy

S

v

= m

18¢ = 508

j ]

vields

Vo

+ S5oD

3

4 =

3

is greater than m, ,we

3

Qg

3

Substituting for szDl from (4) in this relation, gives

V2. ¥y Vo

G = 5,704

51 85 3

(k

+ C,A

273

v

Let us multiply this equation by Sj3

result, we have

v, V. V
sj3s 261 . g

3i '3

v, v, (k,)
W e 1
S GlAj

+ D .

and we substitute for S

(k,)
+ 5,342

¥4

13

(k)
+ C3A3 + D3

Repeating this type of computation finally yields

in
YP

52

a

D, in the
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v v v v v, (k) v v, (k,) (k)
-1 1 u 2 1 u 3 2 u
g%, Y h.8.'¢ = codBL ek e, A% & oo +OAY 4D
354 3 Sy =55 Gy 3 ey Ot e
Setting Bj I + v, . SR ¥
v v v (k,)
-1 i+1 i
. = N A i = V2 sasan=Ls
1 ij Sj Cilj » 1 u
F =
u u
We have
s (k,) (k,) (k)
3 . 1 2 u
(5) sjc FIAj +F2Aj +...+FuAj +D .

Furthermore, Du is not of higher rank than Du-l’ Du-2’°"’ Dl and G in Y
whenever n > m > pju

If Du is of order less than mj in yp , then Du is reduced with
J

respect to A;,. Morever, we claim that Du is reduced with respect to Ai for

]
i > j. To see this, G is reduced with respect to Ai for i > j by

assumption, and hence the order of G in yp is less than the order of Ai in
i
y for i > j. Since 4,, A,,..., A 1s an ascending set, therefore
Py Jr—2 =
Py > pj for i > 1ji. We already know that for Py 2> pj
Ord Du in ypi £ ord G in ypi < ord Ai in ypi , that is, Du is
reduced with respect tc Ai with i > j, this proves the claim (We will be

back where we started and treat the ascending set Al’ Az,..., Aj-l and Du

in place of G.) If Du is of order m, in yp , (We start proving the

3

theorem for the case in which h = mj from nzw on.) we now consider Du and
Aj as polynomials in ypjmj with Tj as the coefficient of the highest power
of ypjmj in Aj and then use theorem 1-5 again, we fingd, there is a non-
negative integer t, such that

3

3 -
(6) D, BA, + K,



54

where K = o or K is of lower degree then A, in yp g For uniqueness,

3
we take tj as small as possible. We thus limit ourselves to the case in
whichK # o, btherwise we are done. IfK # o, thenK is reduced with
respect to Aj‘ By the same proof as above, we can guarantee that K is
also reduced with respect to Aj+i it R e
that K is reduced with respect to Ay Aysenns Ar. If this occurs, the

Ar. It is possible in this casc

proof stops here, Suppose that K is not reduced with respect to

AI, Az,..., ‘Q“j—l . Let g be the largest value i, 1 < 1 < j such that

- -

K is not reduced with respect to _A.i and we will then be back to starting
point again and treatR as G was treated, we find, there exists a non-
negative integer sg such that

s (k) (kD ()

(7) sgsx = BAT FEATHLLLHEAT 4D

where Dw is of order not greater than mg in yp and furthermore, if m > P>
g £

Dw is not of higher ramk than K in 9
Suppose that Dw is of order less than mg in yp , by the same procf

g
Agi—l geae 3 Ar. Ve shall then tbe

as above Dw is reduced with respect to Ag,
back where we started again.
Suppose that Dw is of order mg in yg ,» We take a non-negative integer

tg as small as possible such that

f t
(8) T8 = H'4 +K'
g v g
1
where K' is reduced with respect to Ag’ Agi'-l yiw wny A’r'

t o
Substituting ngDw in ng X (7) yields the result

t s t (ki) (k';)
T 85 8k = T8EA" 4 ...+ EA
g g g " 1lg w

) +B'A +K',
£ g
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t s
Substituting this in ngsgg x (6), we obtain

) (k')

(k!
+ ... +EAY ) +H'A +K',
vog g

Tgsgrjn = TgSgHA +T3(EA1
s B 3 g g 3 g

t. 8 &
We now arrive at the final stage, substituting this in ngsggTjj x (5),

gives us
-] t (k) (k) t s
sgsjrg'rjc-'r gTj(F + ... FAYY -1 B Byp
g3 g "3 g & u j g B 3
(k! ) (k') '

w

—Tg(EA +...B A" )-H'A =K.
4 v'g i

Thus when such a linear combination of A and their derivatives is

j‘i
a
subtracted from Sijg jjTQEG the result is reduced with respect to

A, A A .
g T

g-*.1 5 %885

Continuing in this way, we reach a form R required in the

statement of the theorem. This completes the proof of theorem.

Remark Our procedure deotermines a unique R . We call this R the

remainder of G with respect to the ascending sct (1).

2, THE BASIS THEQZEM

Before proving the basis theorem, it will be convenient to

establish the following lemmas:

Lemma 3-6 If the perfect differential ideal {E> has a finite basis,

then it has a finite basis consisting of elements of O .

7
Proof Ilet 815 8pse0e; Ay be the elements of a finite basis of \p? .
According to theorem 2-3, each a ., m= 1,2,..., 5 as an element of <ﬂ>
) t
has a power in [?] . Let t, be a positive integer such that a. belonga

t
to Eﬂ_ s m=1,2,.,., s. Being an clement of LU 5 am is equal to



a linear combination of a finite number of elements of O and a finite
number of derivatives of elements of O with elements in R as
coefficients, that is a finite sum of the form

t
a W= 2 Byl

= T3k %%

where i,j,k are non-negative integers, Vi € 0 and bi € R s W= 3200058
Let Um be the set consisting of all Y1 in the e}qzreastion of amm , hence
Um is a finite subset of O . It is clear that amm is in ”Um> . Sinee
<cn> is a perfect diffcrential fdeal, a_1is also in <Gm for all m = 1,2,

+sey 8. This implies that a_ € {L:II,UZ,..., On for alt m's= 1,2, ;5 B

Since <a1,a2,..., an> =<cr) . ‘then (01,029..‘, 09> =.\c> . This

proves the lemma.

Lemma 3-7 Let I be perfect differential ideal without a finite basis.
Let F,, F2,..., FS be forms and A the system obtained by multiplying
each form of % by sone product of non-negative powers of ‘Fl, Fz,. o Fs,

Assume that \/A> has e finite basis then E,F.le. . .Fe> has ne finite
b -

basis.

Proof Suppose that '/E 5 Fle. FQ has a finite basis, it then

N
follows from the preceeding lemma that <E’F1F?’ . "Fs> can be represented
— \
as <H1,H2,..., P"t FIFZ"'FS/ where HI,H?...,H‘: are forms of I .

By hypothesis, <ﬂ> has a finite basis, so we use the preceeding lemma

again to conclude that <A> has a finite basis consisting of elements of

A . Since A is composed of elements of the form F F?B.Ka

where B 8TC non-negative integers, i = 1,2,..., s and Ka is in I , we

may write



o |

; Bl B g
g Is.. 21 “28 Em1 gms \
(A = QF TS FRCSTS RS e P T

Let Il be the set of H's and ¥'s above. It is obvious that
R
<I! R FIFZ.”;.«S> (I FiFy.  Fy i
i1 _8is /
1 "'Fs Ki is in <1'[> s 1 =1,2,...,, m since \H> is an ideal,

thus we get A <H> ;

Each F

Since I has no finite basis, there exists a form L of £ not in

/n\ By %s v:
\H/. Some Fl ...FS L is in \A} and hence in <II ) . Consequently, if
g is the maximum of B1sBps - svn By F%Fg .,Fng is also in ’\II> and thus

\ \
F)F,...F.L 16 in (1) since’ {M ) /is perfect differential ideal. L is in

/ \
(T, F1F2...FS> = { 1/5(H) ore ). » as well s being in <H,L>

AN 1772

% | /
By virtue of theorem 2-4, L 15 in (L, FIFZ,._,FBL> vhich is T
since F1F2. ..FSL is in ’<1'{/‘ . ~This contradiction proves the lemma.

/

; X
Lemma 3-8 Llet I and 4 I~ PIFZ...FS/. be perfect differential

ideals having no finite basis. Then at least one of the perfect
# P
differential ideals ’\\Z ,F1> 3 {\Z ,F2> ilil (\Z ,FS\/\, has no

finite basis.

/ 4
Proof Assume that all «Z ,Fl> " /‘3 ,F> S <E ,F> have =
—— L 2 8

s .7 -
finite basis. We know that \E ,I‘i> ¢i, i> where each (I)i is

a finite subset of % , 1 =1,2,..., s, due to lemma 3~6, also

<>:,1v1> = <¢1, e Fi\/\ :

We write this out explicitly
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{\):,F1> . L Bypeies B, F1>
/' - /
/\E,F2> = {0, 0y 9, F2>

P . :
\E,F> \1’1’ Cpaenns B, F;> "

By .rtue of theorem 2-4

™ £ E,F_.>
jml N %
and hence equals

G

- /“

=
CESE - T

<<D1, <1>2,..., ¢s’F1F2"'Fs\> . This means that

’FlFZ"'Fs> has a finite basis, contrary to the hypothesis.

We now have all the necessary information to prove the basis

theorem.

oind -
The basis theorem The differential ring J”{Yisyz, s .,yn} where T
is a differential field of characteristic zerc is Noetherian perfect

differential ring.

Proof We suppose the theorem is false. Then there exist perfect
differential ideals of Gj"{yl,yz,. s yn} not having a finite basis.
We construct a basic set for each. According to the corcllary of
lemma 3-4, there is a perfect differential ideal I without a finite
basis whose basic sets arc not of higher rank than the basic sets of
any other perfect differential ideal without a finite basis., Let & be
the ascending set (1), a basic set of ¥ . Then Ay # 0 is not an

element of CJC , because ?—T is a differential field and if O # AIG ‘zF,



then AIl, the inverse of 4, under multiplication, exists implying that
a”la = identity of T}fis also in I . Thus I has the identity as a
finite basis.

Consider ¥ - ¢ , the set consisting of all elements of I not
in ¢ . By theorem 3-1, to each form GOL in ¥ , where o ranges over

some index set, there corresponds a remainder RO which is reduced with

respect to (1).

s s =3 t
al, o2 or, ol B2 or
2]
Let Sl 52 ST - I TZ ...Tr Ga correspond to L where

S:L and Ti are separan: and initial of Ai, i=1,2,..., r, respectively.
Let 2 be the system composed cf &I,AZ,,.., Ar and the remainders
Ra of forms of Z -~ © .,

Let A be the system composed of &1,A29..., Ar and
8 8 t t
al or., ol or,, _ e
Sy +ee STy TG, where GmeE @ .

We claim that:ﬁf> has a finite basis. To prcve this, assume that

i .
XQ} has no finite basis. therefore { contains some non-zero Ra not in

\

(1). There are three cascs:

i

Case 1 Ra is of class greater than that of Ar’ Since Ra is reduced
with respect to (1), then
Aysbysecey A, Ry
forms an ascending set which is of lower ramk than (1), by definition 3~7(ii),

This is a contradiction.

Case 2 Ra is of the same class as Ai’ for sore 1i. Form the
ascending set

ApsBgsenes Ay g0 By
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By definition 3-7 (i), this ascending set is lower than (1), ccatrary to the

the least rank of (1).

Case 3 Class Ai < c¢lass Fb < class Ai+1’ for some 1i. Form tho

ascending set

AI,AZ,-..-,A:L, Rcf, -
This ascending sct is lower than (1) by definition 3-~7 (i) which is a

con radiction.

Case 4 Class Ra < class Al‘
then the ascending set Ra is lower than (1) which 1s a contradiction.
In either case (.Q\/\, has a basic set of lower rank than(l), This
contradiction provece the claim.
It is clear that <SB> = <A> ¢ S0 <ﬁ> also has a finite

basis. By lemma 3-7, ;" L ,8,55...8 T;T

172 1

it then follows from the preceedinp lemma that at least one of the perfect

2...'I‘ I} has no finitebasis and
ry

differential ideals

i y ’)‘ 5
‘{E'Sl> s wusy { s s]y : ;\): ,T1> o ...,/\E : '.'cr>.
has no finite basis.
We now claim that Si and Ti for every 1 = 1,2,..., r are reduced

with respect to (1).

Let A, be ¢f class pj. What we have to prove is that S, is lower

3j i

than Aj in Yo 3 T8 Y2000 B 1o 125 anies 2
k|

If ) > 1, 1% 1a clear that the class of Si is less than that of

Aj. Then Si is lower than ﬁj in ypj.
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If1 > j, then 44 1s reduced with respect to A, since (1) is an

i
ascending set, that is

ord A, in < ord A, in .
i yp. yp.

J ] J

Since orxd Si in yp £ ord z‘-&i in yp v
3 3
This implies that Si is of lower order than A1 in yp , hence Si is
. 3

reduced with respect to Aj "

If 1 = j, then it follows directly from the definition of separant
tuac 54 is of lower then Ai’ thus Si is reduced with respect to Ai.

In either casa 51 is reduced with respect to (1), for every
i=1,2,..., r. By the same reasoning T, 1s reduced with respect to (1)
for every 1 = 1,2,..., r.

By the corollary of lemma 3-5, \: %\ Si> and \/E 5 Ti> are lower
than (1) for all i = 1,2,..., r. ‘Thus oné of <fz, sﬂ} ’ <E, Ti> 5
i=1,2,..., r which has no finite basis is lower than the basic set (1)
of Z , contrary to the agsumption that the basic set (1) of I which is
not of higher rank than the basic sets of any otlier perfect differential

ideals without a finite basis. This completes the proof of the basis

theorem.,

Remark The basis theorem is not true if 9: is of non-zero characteristic
Let p be a prime number and q.; = ,zp, a field of characteristic p.

In the differential ring R_ = gp {y}, let I be the system of forms

Y5 ¥is Bosore

Form <E> . a perfect differential ideal in R generated by I .
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Suppose that the basis theorem is true, then there exists a finite

set of forms in Z , say yp, y? 5o s yﬂ such that

{E> I Y ,---,y§> .

; P P P P P
Since Y+l ig in ¥ , therefore Ynt1 = '<? 5 Y seees yn:> , contrary
P P p P
to the fact that Y4y is not in <y > Y1 srees Yn> .
With the two equivalent corollaries below, we achieve the objective

of this chapter.

Corollary Every system I of forms has a finite subset FysFpsenes F,

such that, for each form A € I there is a positive integer t such that

8 e [Pl B

Proof As a consequence of the basis theorem, the perfect differential
ideal (L) has a finite basis, that is, there arc forms FioFpsens,y Fy in
L such that

<z> = _<F1, B FB> -
Let A be an arbitrary form of I , it then fellows from theorem 2-3

that there is a positive integer t such that At§§ [FI,FZ,..., F;] g

Corollary Every system I of forms has a finite subset Fl’ FZ""’ Fs

such that I 4is contained in the perfect differential ideal generated by

Fl’ Fz,ol" Fs :

z

I

<F1, R, sinrs FS> .
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