CHAPYER II

DIFFERENTIAL RINGS, FIELDS AND IDEALS

The materials of this chapter are drawn from reference [{] .

In this chapter we shall present the definitions of differential
rings, fields and ideals and some of their basic properties which are
somewhat different from rings, fields and ideals in abstract algebra
since it is a three-operational system; these operations are called
addition, multiplication and derivation. The analysis of differential
algebra will follow the same pattern already laid out for abstract

algebra,

Definition 2-1 A differential ring 1s a commutative algebraic ring

together with an operation D (called derivation) such that
i) Da is defined and i3 an element of the ring for every
element a in the ring,
ii) D(a+Db) = Da+ Db for all a,b in the ring,

iii) D(ab) = Da.b + a.Db for all a,b in the ring.

Definition 2-2 A differential field is an algebraic field together

with an operation D satisfying properties 1), ii) and iii, above.

Definition 2-3 If 5?1 and j?é are two differential rings (fields)

with operation D, EQI is said to be a differential subring (subfield)

of gzz, provided ﬁ?l is a subring (subfield) of ¢322 and the D operator

for 9?2 coincides with the D operator for Rl whenever a £ Ql .
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Before proceeding furthur, let us look at several examples.

Example 2-1 Let R be a commutative ring with identity 1, R{x] is a
differential ring with operator D defined by Dx =.1 and Da = 0 for all

a in R.

Example 2-2 Let R be a ring as above R[x, exJ is a differential ring
with the operator D defined by Dx = 1, De*= e* and Da = 0 for all a in R.

We then have R(x!is a differential subring of R [ x, el

o .

Example 2-3 Let R be the same ring as in Example 1

n
2 ( 2k +]
R{x"}) =} &R,kéz_x
x lZ:akx #ak

R.[xzj is not differential ring if we use the operator D of Example 1,
since Dx® = 2x which is not element in R {xzj. If we defined D by
Dx? = 1, Da = 0 for all a in R, then R [xz] is a differential ring but
not a differential subring of R [xzj, since Dx? for R[xz] does not

coincide with Dx’ for R[x}.

Example 2-4 Let S be a subset of F% . Let ng be the set of all
infinitely differentiable functionsfrom S into F? . The pointwise
sum and product of f and g, denoted by f + g and f.g, respectively,
are the functions which satisfy.

(f+g)(x) = £(x)+ g(x)

(f.8) (x) = f(x) . gx)
Then jq is a differential ring with an operator D (differentiation in

Calculus)

002424
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Example 2-5 Let F be a field. Then F(x) and F(z e*) are differential

fields with the operator D as before.

Throughout this chepter R and T will denote a differential
ring and field respectively and D will denote the derivation operator of

a differential ring or field.

Lemma 2-1 Let 0 be the zero element of R and -a be additive inverse
of a in R . Then

i) D0 = o

ii) D(-a) = -Dpa .

Furthermore, 1f ‘R is a differential ring with identity 1, then DI = 0.

Proof By definition 2-1 (11),

DO = D(0+0) = DO+ DO,
hence DO = 0. Since

0 = DO = D(a - a) <~ Da+ D(-a),
therefore D(-a) = -pa. By defi ition 2-1 (iii)

Dl = D(1.1) = .DpIl.1 + 1D1,

]

implies that D1 0.

Lemma 2-2 Let a,b & 7 » b # 0 and denote -%— the inverse under

multiplication of b. Then

1‘) a bDa - aDb
b 2 *
b
Proof Let b # 0, first we find 5 —% . Since D1 = 0, 0 = D1 = D(b. %)
1 1
= Db, 5 + b.D 3
hence D Bl- = _2% . We now find D % .

b
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a i, o 1 i
D E D(a. Ty - Da. B 5 a.D‘F
_Da _al
b b2
bDa - aDb
5 :

Definition 2-4 An element c of a differential ring or field with an

operator D is said to be & constant if Dc = 0.

If a and b are constants of a differential ring or field, then

D(a+b) = Da+Db = 0

D(ab) = Da.b + a.Db = 0.
Hence a + b and ab are also constants of the differential ring or field
respectively. If c # O is a constant of a differential field, then by
lemma 2-2

n%_-=‘-D-§-0.

c

This implies that the set of all constants is a differential subring or

subfield, respectively, of the original differential ring or field and is

called the subring or subfield of constants.

) \
Definition 2-5 A differential ideal in J( is an ideal in je , when 53

is considered as a ring, and which is closed with respect to

differentiation.

Example 2-6 Let I be an ideal in R, the ring as in Example 2-1. It is
clear that I[x] forms an ideal in R[x] . We shall show that Iﬁﬂ is also
a differential ideal in R[é] . What we must prove is that IE{] is closed

with respect to differentiation. Let A = a  + a;x g LR, anin & IE{I °
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vaey Bz B Es

i.e. a a
¢ o’ n

1’

DA = a1+2ax +...+naxn“1.

Since a;, 2a ,..., na, € I, hence DA E I[x] . Thus I[x| is a

differential ideal in R[x] .

Example 2-7 Let R[x| be a differential ring with operator D as before.
Let

I = { f(x) € R[x] |£(1) =0},
Then I is an ideal in K[x| but I is not a differential ideal in R[x]
since f(x) = x2 -1 & I, but

(Pf)(x) = D(x2 1) #//2%

(f)(1) = 2 # 0,

Thus I is not closed with respect tec the operator D.

m
Definition 2-6 A differential ideal ¢ in JU 1is said to be a prime

differential ideal if ab € & , 2z,b ‘.Q implies that a & ¢ or

b &E ¢.

Example 2-8 Let R{x] be a differential ring as before. We claim that
I[x] is a prime differential ideal of K[x] if I is a prime ideal of R.

We already know that I[x] is a differential ideal of R[x] . It remains

to show that I[x] is prime. To show this, let a(x): a +ax+ ...+ amxm

and b(x) = bo +b,x+ ... + bnxn be two elements in R[x]_ such that

1
a(x)b(x) € 1I[x] . By definition 1-6

k
a(x)b(x) = c, tex+ oo tex,

X
where k £ m+ n and

c, = atbo + at-lbl + ... + aol:-t %
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Since a(x)b(x) & I[x] 5 Cos Cpaenes © & 1I. Suppose that b(x)é I[x],

then there is at least one bi é I for some i. Let j be the smadlest

/
value of i such that bj ﬁ[— I. <onsider

c - a8

5 b0+a by ' e FiodH +aobjE_I.

i §=-1"1 1°3-1

T o
Since I is an ideal, ajbo + aj-lbl ¥ it albj—l & I, hence aobj g 1

Since I is a prime idesl and b I, therefore a E I. We now

i

consider

c b + a.b, + i
o

byt oee agby g

+ aibj + aobj+1 &

j+1 T %441
and aj+1bo o+ ot 221:;3.__1 + aobj+1 & I, then a]bj & I and hence aIE I,

Continuing in this manner, we cbtain 8ys Byseesy B E 1. Thus

a(x) € I[x] . This implies that I[x] is a prime differential ideal of
R[x] .

Definition 2-7 A differential ideal 1l in Q is called perfect

differential ideal if Il contains an element of R whenever it contains

some power of that element i.e. at € N implies a € II..

Theorem 2-1 A prime (differential) ideal is perfect (differential)

ideal.

Proof Let Il be an arbtitrary prime (differential) ideal in a (differential)

ring R . Let at@ N, at = sat

a é I , therefeore atml & I since II is prime. Using this property again
t-1

t-2
a

, if 2 @ I we are done, so assume that

» lrplying at_z € I . Continuing in this way, Wwe have

a €ENI.. That is 1 1is perfect.



Remarks The converse of above thecrem is not true.

For an illustration of a differential ideal which is perfect but
not prime. Let I = (6) be ideal generated by € in z . We claim that
the differential ideal I[x] is perfect in /[x] but not pzime. First we
shall show that I[x| is not prime. Since 6 = 2.3 €  I[x] , 2 and 3
¢ I[x] so we can conclude that I[x] is not prime. Before showing I[x]
is perfect, we shall show that if a & 7/ and at & I, thena £ 1I.
Since a" & I, there exists m € [ such that a® = ém i.e. at = 2.3.m.
Since 2 and 3 arc prime, 2 and 3 divide a. Thus a is a multiple of 6 and
hence is in I. We now prove that I[x] is perfect. ILet a(x) = aga;x +
ees + anxn v B # C be an element in 2[};] such that (a(x))t & I[x] o TH
order to prove that I[x] is perfect we must prove that a(x) € I, i.e.

a,» al,..., a & 1I. By theorem 1 in the Appendix

n
t e \ t k e k
(a(®)) R - (k sKesenk Va2 %(a,x) 1...(a ) =
. * +i = Ok n° "o 1 n
0+K1+ - o ..n=t

t
It is clear that the constant term of (a(x))t is a_ and hence a, € I.

We now proceed by induction on n, the number of terms, we assume that

853 8yreees B €& T wherem < =n and shall show that amHe I. Since
t ) mtl et _ ot (okD)t Ly
(a(x)) " contains the term (am-l-lx ) a 1% and it can be easily
seen that the coefficient of x(mH')t in (a(x))t is
at 3 A £ ko kl km'l‘l akn
m+1 {\ . ]ao B #iBppy 08y
k oKoseeesk
— o n

: 1
(1) ko+k1+. i .+kn__=t

where km-l-l # t and

(2) k, + 2k2 + s+ (m + l)kmi-l fognk = (m+l)t.



21

We multiply both sides of equation (1) by mt+l and subtract
equation (2), this gives us

(m+1)k° + mkl + (m-l)k2 i oF km" km+2 - 2km+37.,.-

1f ko’ k = km are all zero, then km-i-Z"'“’ kn are also zero, contrary

120
to the fact that

t#k

m1=k1+k2+"'+k P oeas B B IE,

m+1 n
Therefore one of ko, kiseees km is not zero and then sach term of

I t 2 ko }cn kj
( Ja oo contains some a, = 1,2,.005m
Ed. st Forbypeeesak," Q nZ - ’
{ o n
and kmit

which is divisible by &, by induction hypethesis. Since the coefficient
k K

of x(' Dt is an element in I and Z(k & % )aoo ann can be divide
o’.“.r’_ n
t . =
by 6, it is necessary that a 1 is divisible by € and hence a (1 € L,

This completes the proof that I{x] is perfect.

Theorem 2~2 Let {lbu} be arbitrary collectien of differential ideals of
the differential ring R wheres o ranges over some index set I. Then ﬂt’pa
is also a differcntial ideal of :R 3

Moreover, if @a is perfect differential ideal, then ﬂq:a is also a perfect

differential ide=zl.

Proof It follows from theorem 1-i that ﬂtba is an ideal so it remains io
prove that ﬂ@a is closed with respect to differentiation. Iet a be an
arbitrary element in ﬂ@a , therefore a € @OL V o € I. Since fbu's are
differential ideals, Da €& fba \;’ ¢ & I. Hence Da £ ﬂ@a . This provos

the first part of the theorem.
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We next prove that ﬂ¢a is a perfect differential ideal whenever
3 P
{q)a}c; e 1 are perfect differential ideals. Let 2 S ﬂ@a, then
a? € @a \'! o cI. Since ¢a's are perfect differential ideals, this
iuplies that a € Qa Yo € I and hence a & ﬁ@a . Thus nqua is a

perfect differential ideal.

Definition 2-8 Let 0 be any subset of R

a) The intersection of all differential icdeals in Q containing

0 will be called the differential ideal generated by ¢ ; in

symbols, [o] .
b) The intersection of all perfect differential ideals in
containing o0 4s itself a perfect differential ideal

containing o &nd is called the perfect differential ideal

generated by 0 : in symbols, <0> .

Note Definition 2-3 (b) is always well-defimed since R itself is

perfect differential ideal containing o .

Notation Let O be any set of clements of rR ° g7 will denote the set

containing of ali clements of R which have integral power im ¢ :

6!

d B
{a € R | there exists a. k¥ € Z such that akE g ¥ «

We now define o, recursively as follows:

01 = <0 >

-

< = .‘\l Un-1> (n = 233,/‘}90-9)

; i Lo \ .
l.iemark The notation o, <On--1/ is used only in this chapter



¥ 23

o TFEMERY —

~— -

Lemma 2-3 Let £ be the union of the set cn(n = 35270 a)e Then B

is a perfect differential ideal. Furthermore, B = <0> .

Proof For a proof of the first statement, it is clear from the definition

of 0°_that 0. < 0”_ W= 1,2,,.. » BHence
n n i ¥

Oy © 0,& i @ iE B |
1 2 =y =

nt+l
and then follows from thcorem 1-2 that R 1is an ideal. We now prove that
oo

B is a differential ideal. Let a be an arbitrary element of L_{ g, s
n=
then there exists some k such that a & 0y, * Since Oy is a differential
o
ideal, Dz & 0y Thus U 74 is closed with respect to the operator D,
n=1

mI
that is B = U o, is a differential ideal. To see that B 1is a perfect
n=1

differential ideal, let a® € PR , then there is some r such that at & o_

and hence a € 0 ., It follows directly from the definition of [U'I:l

that a & rg'r_] = Ur+1 & R . This proves that B 1is a perfect
differential ideal,
As regards thc second assertion, since B = Oy U Oz U .. and

o o 25 9y £ B , P is a perfect differential ideal containing ¢ and
<g> 1is the intersection of all perfect differential ideals containing U
we can conclude that <o> I € R . On the other hand to prove that
B & <o>, it ie sufficient to show that

clg‘; a, = vos ;_,chnf_:... C <o> .
From the fact that [g] is the smallest differential ideal containing ©

and since <o> 1s a differential ideal containing ¢ , then

o= [O]% <> .
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We now proceed by induction on n. Assume that for all m < n,

Op < <g> . From this, we shell prove that g, C <o>, Let a be an

arbitrary element in Udn—l . It implies that there exists some integer

k 5
k such that a2 & o by our assumption él & <>, Since <o> is

n-1 ~’

a perfect differential ideal, 2 & <0> . Wence U’n < <o> , Thus

)
EU‘n-—l—j " e & <0> and this completes the proof of the lemma.

Notation Dkyrwill denote the k th-derivative of y i.e. the element

obtained by differentiating y k-times,

Definition 2-9 Let SFT be a differential field. A form in n
indeterminates Yyo Yoore o’V ie a polynomial in Vio Ypseees ¥ and a
finite number of their derivatives with coefficients in TF . That is, a

finite sum of the form

z o3 L 3 5 A
a o 4 i (D’ ) f y b eep [¢3) v.)
i1, i3, T 1 P 2 n

where the i_, j_are non-negative integers and a n
gt il..-injl... s

o,
(D Yy = Yi)-

Notation ff{yl, yz,‘.,gyn} denotes the set of all forms in n

)
indeterminates Vs Ygseeos ¥y with coefficients in Jf.
Remark f}?yl, Yos eov yn} forme a differentizal ring.

It follows directly from the definition of iFtyl, Yoseens yn}
that fftyl, Vo3 s0es yn} is closed with respect to differentiation and
it is not difficult to verify the commutative, associative, and

distributive laws. So we shall omit the proof of this remark,
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Definition 2-1" The partial derivative of a form A in?{yl,yz,...,yn}

with respect tc Dkyj, denoted by Mlg_ » 1s the form obtained by
oD i

differentiating A assuming that the other variables in A are constants.

1

From now on t-}f will denote the differential ring 7{:{1, alias yn}

where ?: is a fixed differential field of characteristic zero.

Lemma 2-4 If a differential ideal o in ga contains a positive integral
/D)
power aP of an element = in 1,1 it contains the positive integral power

(0a)?P"1 |

Proof Since a is a differential ddeal, it is cleosed with respect to

the operator D, So aP & o/ implies that naf = pap-l Da € o . From

the fact that ('7: is 2 subset of R and TF is a differential field of
characteristic zero, by theorem 1-11 C:F contains f;- . Hence using thc
fact that o is an ideal, we see that p-l.Da E . (If R were of
characteristic p, we could not draw this conclusion) Consider the
element ap—-r:(Da)s where 0 £ r <pand 6 £ s. If o contains
:511:‘-1'-.(1}:-3.)’EI , then ¢ contains

D(ap_r.(Da) % = (1‘)—1‘).9.1:"-:‘"'1(L‘i&)s"-1 -+ s.apﬁr(l\a) s-—1.D23.

Multiplying both sides of this equation by Da, this gives

pa. (L T DD = -0 T L) + 5.2 T(0a)®. 0%,

Since 0 contains Da.D(ap—r(Da)s) and sap—r(Da)s,!}za, it contains

s+2

l)_r_ll.fIJa)ErM‘ s, nence 0. contains ap_r“I(Da) . We already know

(p-r)a

that ap_lDa & 0o, so we apply this result p-1 times to the element

2p-1

ap_IDa, thus obtaining (Da) & o . This proves the lemma.
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4
Theorem 2-3 Let 0 be any subset of a differential ring f{ and let a
D)
be an arbitrary element of the perfect differential ideal <o> in J"i 5

then there exists a positive integer k such that & € [o] .

Proof Let a be zn arbitrary elerment in < 0 >, if a & [0'] we are
done. Now suppose that a € <0o> - [0—_[ . By lemma 2-3, < g >= OIUGZU

.+« , therefore therc exists z smallest postive integer n such that

At this point we shall show that some power of a is in cn--l -
Since Gn is a diffecrential ideal, we know that the derivatives of all
elements in o belong to Oy and thus it follews from theorem 1-2 and the
fact that o, = [U'n_]:[ » that a car be written as a linear combination
of a finite number of elements of G'n—-l and a finite number c? the
derivatives of elements of U’n-—l with coefficients in'R . It is

convenient to suppose that a car be written in the form

T
B - — N, ciai 2
i=1
; j{ )
where ¢, € . andigk AL or a, are the derivatives of elements
5 8 i n-1 i
of o At
We next claim that each ay has some power in Goof ™ In case a,

it is clear from the defiuition that ay has a

is an element of Gﬂn—-i .

i, 4 Consider the case that ay is the derivative of an

element in U‘n-I which is not an element in G)n

 §
power in Un-

_7 + (The derivatives of

elements in 0, are vot necessarity elements in 0°_ , since 0”7 ; may
not be a differential ideal). To prove this case, let b €& U‘u-l , then

there exists an m € ?Z.+ such that 1;I,n & crn According to lemma 2-4,

] ®
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2m~-1
(bb) (=g T * Continuing in this manner, for any & € Z+, we
get D%J must have some power in Un—l . Thies establishes the claim, We
then assume that each ai has a2 power Sy in.Un_1 . Let

8 = max {81,82,...,‘Sr} 5

If s, < s, then there exist oy & Z+;i = 1,2,..., r such that

i
g, m
= e _ i - LI rs-r+l
8y + m = s and ag=a;a” & Oy - Claim that a belongs to
Op-1 * To prove this, consider
rs-r+l rs-r+l
a = (cya; + cpay + ..o H crar) .

By theorem 1 in the Appendix
= ) e SN 1 ) k k i

ar® 2 S i {c.a,) 1(c 8,) 2...(c gy e
b g b 2 2 il
% 0 L 7E0% AR
et by A r

kf+"'+k =rs-r+l
T

Now we shall prove that there exists some ki > s, Assume that all

k,, i =1,2,..., r are less than s, then ki.g s~1, therefore,

i!
rs-r+l = kl +ky + ek kr £ r(s-1) < r(s-1) + 1 = rs-r+l which

is impossible. Hence we obtzin the result that there are some ki’

1=1,2,...o T suchethat ki > 8. Since each term of the expansion

contains some power of cja, greater than or equal to s, we see that each

rs-r+1

term must belong to Un~1 implying that: ® is in 0,1 * By the same
reasoning we treat the element ars-r+1 as a was treated. Thus ars~r+1
has a power in Un~2 . Continuing in this manner a finite number of

times we find that there exists some k & Z+ such that ak € 0 = Bﬂ -

This completes the proof of the theorem.
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Remark The theorem above is not true for differential rings of non-zero
characteristic.

Let Zp = the ring of integers modulo p.
zp{y} is the differential ring in y of characteristic p

tet o = P,00F, OHP, ..., ONHP}.
Since D(D%)p = p(D%)EH$§+1 = 0 forall 0 € i £ n, therefore
[)] = (o). Consider < o >, the perfect differential ideal generated
by 0. Since (D?)p € <0 >, and < 0 >»is a perfect diffecrential ideal,
then D% € <0 >, hence D§+1§; < g >, But it is clear that D§+1 has no

power in Bﬂ . Thus we can conclude that the theorem is not true if the

differential ring has non-zero characteristic.

The results of the next lerma is independent of theorem above and

is true for differential rings of non=zero characteristic.

lLemma 2-5 If a perfect differential ideal Il contains the product ab of
any two elements a and b then it contains the rroduct pa.0B for any non-

negative integers . n, m.

Proof We shall first prove that (Da)b belongs to II for amy m. This
proof is by induction on m. Assume that (Dg)b is in I , by the closure
of the operator D
p(dD.by = ™F).b + pB.mb
is in I . Multiply both sides of this equation by (DE+1)b, we obtazin that

o5 b.oeD 1) = (O hH.m%4 0D .b.05 o

is in 1T . By induction hypothesis (D@)b is in I , then (DE).b.D§+1.Db
is also in [T . This implies that ((D§+1)b)2 belongs to I and then

(DE+1)b is in 11 , since I is 2 perfect differential ideal. We now
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furthur prove that D"a.D"™ is in 1 for any n. Fix m, assume that
p"aD'b & 1. Then I contains

D(0™a.0%) = p™!a.p" + p"a.0™ .
Hence Il contains
p%a o™ lb.p(0%ac™) = D%ap®.0™ lap™tlp + (@Tan™b)? .

Thie implies that (DmaDn+1b)2E T . Since I 1is a perfect differential

ideal, Il contains Dmanﬁn+1b. This proves the lemma.

Theorem 2-4 Let ¢ be any subset of ?? . let €@ 3 a> ;50 5 b2 and
<G, ab > be the perfect differential ideals generated by the sets

= 0
ovf{al , o vu{b} and o v{ab} respectively, where a,b & K . Then

<o , a>Nco , K /AKE , abon>~ .

Proof Since ab belongs to /<0, a> amnd <0, b> , every element of <0, ab >
i 4n <0, 2> and <0, b > . Thus <0, ab > € <0, a>{) <0 , b> . It
remains only to show that <g, a > [} <o, b > C_ <o, ab >. Let d be an
arbitrary element in <g, a > {3} <o, b>,1n other words d & <o, a > and

d & <o, b > . By theorem 2-3, there exist positive integers r and s

such that d° & E:;, a] and a® = [c » B] . Being elements of [0, 2]

and [o, b] , both a¥ and d% can be expressed as finite linear expressions,
for d° of the elements of ¢ and a and their derivatives, and for a® of
the elemencs of ¢ and b and their derivatives with coefficients in ?{ .

Consider dr+s

r+s

, the product of a* and 4%, Each term of the expression for
d contains elements of 0 or a preoduct DmaDnb, for any positive integers
m, n. Since <g, ab > contzins ab, it then focllows from lemma 2~5 that

< g, ab > also contains p"ab™b for a1l m, n. Thus dr+s is in <g, ab >.

Since <o, ab > is a perfect differential ideal, <o, ab> contains d. This

completes the procf of the theorem.
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The goal of the remainder of this chapter is to study a special
kind of differential ring which we shall call iHotherian perfect

differential ring defined below.

a
Definition 2-11 Tet O be any subset of a differential ring Ji . We

say that a perfect differential ideal I has © as a basis whenever Il is

generated by the set ¢ ,i.e. I = <o> .

Definition 2-12 A differential ring ?{ is sald to be Noetherian

perfect differential ring if every perfect differential ideal of ﬁahas a

finite basis.

The existence of Noetherian perfect diffcrential rings will be
proved in the next chapter but we shall first study some properties of

this kind of differential ring.

Theorem 2-5 Let

be an infinite sequence of perfect differential ideals of Noetherian
perfect differentiai ring. Then there exists an integer n such that

Hn = Hn+1 __ T

o0
Proof Set n = LEJ I
— n
n=1

By the same argument: of the proof of lemma 2~3, we already know that I
is a differential dideal. Let ak be an arbitrary element in Il , then
there exists a sufficiently high subscript m such that ak is in Hm'

Since Hm is a perfect differentisl ideal, a & Hm and hence a € 1II.
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This implies that I is a perfect differential ideal. By hypothesis, I
is Noetherian perfect differential ring,ll has a finite basis which must
be contained in one ideal Hn of the sequence if = is sufficiently large;

heace I < IIn and since
n = Hluﬂzu R

we see that [[ = Hn . Hence

Pefinition 2-13 A perfect differential ideal I in any differential

ring will be called reducible if there exist perfect differential ideals

o and B such that 1 c o , I ¢ Rand I = o {1 B.

Definition 2-14 A perfect differential ideal is said to be irreducible

if it is pot reducille.
Theorem 2-6 A perfect differential ideal which is irreducible is prime.

Proof We shall show that a perfect differential ideal which is not prime
is reducible. Supposc that I 1is a perfect differential ideal which is
not prime. Then there are two elements a and b in-?%v such that ab € I
and a,b do not belong to II . Consider the two perfect differential
ideals <1, a > and < I, b > generated by the sets cobtained by adjoining
elements a and b, respectively, to the perfect differential ideal T .
Each of <II, a > and <II, b > contains Il as a proper subset. It then
follows from theorem 2-4 that <, a >(}<IM, b> = <1, ab >. Since
ab & T , therefore, <1, ab> = NI = <1 ,a >[I<I, b> . Hence I
satisfies definition 2-13, implying that NI is reducible. This proof is

complete.
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The following theorem provides an important result with which -o

close this chapter.

Theorem 2-7 In tioetherian perfect differential ring j% , any perfect
differential ideal in J/{ 1is the intersection cf a firite set of
irreducible perfect differential ideals. Furthermore, if II 1is any
perfect differential ideal in jq_ and there exist irreducible perfect
Il

differential ideals Tl Hr such that

i2 Dgesaiaiy
n = nlnnzﬁ f"mr,

where Hi fi it

j for i # j , then the set Hl, H?, AT Hr is unique.

Proof The theorem as stated actually comnsiste of two distinct
subtheorems; the first asserts the existence of a decomposition of the
given perfect differential ideal into a finite intersection of irreducible
perfect differential ideals, the second assures us that this decomposition
is unique. We shall prove each cof these subtheorems seperately.

We first prove the existence assertion. Tc hepin with, suppose
that this asserticn is not true. Then there exists a perfect differential
ideal I which is nct the intersection of a finite number of irreducible
perfect differential ideals. There are two cases to consider. In case
one Il can be written as itself, then I is reducible (otherwise, it
contradicts the assumption that Il is not the intersection of a finite

number of irreducible perfect differential ideals.). The other case is

L]
I = fﬂ] Bi where Bi'lre perfect differential ideals, but we can
i=1
oo
rewrite M as M = o [)B where a = ﬁl, and £ = rﬂ] Bi' Thus,
i=2

in either case, Il is reducible. So Il can be written as II = Y f} 1

where II € v and I C r\ . At least one of Y or T'l is not the intersection



33

of a finite number of irreducible perfect differential ideals, else Il is
the intersection of a finite number of irreducible perfect differential
ideals which contradicts to the assumption.

Let II, denote such a perfect differential ideal. By the same

1
reasoning as before, I; is reducible and Hl = yé-r) N, where
n, < Yé.and I, & n,. Let I, be one of these two differential
ideals which is not the intersection of a finite number of irreducible
perfect differential ideals, henceiHIC: Hz . By this process, we obtain
an Infinite sequence of perfect differential ideals Hl, HZ" Hns siva
such that

II1C Hzcl CIHnC
and there is no positive integer n such that

]I = 1-[ = L

This contradiction of theorem 2-5 proves the existence assertion.

As regards to the uniquencess assertion, suppose that
I = oy n oy S p— r]ur and T = B, ri B, § r}Bs where
oy St= aj . Bi g;_ Bj for 1 # 1. Ve shall prove that r = s and the a's
coincide with - the B's after a suitable rearrangement.

First, we claim that GIC;: Bi for some i = 1,2,..., s. To prove
this claim, assume that %y is not contained in Bi for all 1 = 1,2,..., 8;
then there exists b, < Bi i=1,2,..., s not in 0,. Since Bi is an
ideal, b;b,... b  is in Bi for all i = 1,2,..., s. Hence byb, ... b_ is

172 1"2

in I and then b;b, ... b, belongs to ;. Since b, "is mot in «, for

each i = 1,2,..., s we get a contradiction since the irreducible perfect
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d? fferential ideal o, must be prime, by theorem 2-6. Now we have that

1
oy is contained in some Bi, we may suppose that 0y = 81 after
rearrangement of the B's. Similary we can show that 61 el ak for some
kwm 1,2,,005 Tx Then Bl must be contained in %y otherwise 81 E %
some k # 1, hence @, © B; & o, contradicting the hypothesis that
0y gg; O 1 # k. That is a; = Bl' By the same reasoning, oy is
contained in some B, which k # 1, else 0y 6= 0y, Suppose it is B, and
then 82 is contained in oy« This implies that o, = 82.

Continuing in this manner we obtain r = s and the o's coincide
with the B's after a suitable rearrangement. This completes the proof of
theorem.

As an immediate consequence of this theorem we have the following.

Corollary In Noetherian perfect differential ring ?{ , any perfect
differential ideal in f%_ is the intersection of a finite set of prime
differential ideals.

Furthermore, 1f Il is any perfect differential ideal in ?{ and
there exist priﬁe differential ideals Hl’ Hz,..uy IIr such that

B Wy DV BAE ses § IR s
where Hi S; Hj for 1 # j then the set IIl,...s Hr ig unique.

We shall cal!l the prime differential ideals Hl’ Hz,..., Hr the

prime components of Il .
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