PRELIMINARIES

The purpose of this chapter is to summarize the necessary background materials of abstract algebra needed as a basic reference for the remaining ones. However, for the most part definitions and theorems are stated without proofs which can be found in references [6], [7], [8], [9], [10], [11].

IDEALS

<u>Definition 1-1</u> A nonempty subset I of a ring R is said to be a (two-sided) ideal of R if

- i) $a,b \in I \text{ imply } a-b \in I, \text{ and }$
- ii) for every a E I and r E R both ar and ra are in I.

Theorem 1-1 Let $\{I_i\}$ be an arbitrary collection of ideals of a ring R, where i ranges over some index set. Then $\bigcap I_i$ is also an ideal of R. (For proof see [6]),

<u>Definition 1-2</u> The ideal <u>generated</u> by a nonempty subset S of a ring R is the ideal which is the intersection of all ideals of R containing S and is denoted by (S), that is,

(S) = $\bigcap \{I \mid S \subseteq I ; I \text{ is an ideal of } R\}$.

This definition is well-defined, since the entiring ring R itself is an ideal containing any subset of R; thus the set (S) exists and satisfies S \subseteq (S), and by virtue of theorem 1-1 (S) forms an ideal. It is noteworthy that whenever I is any ideal of R with S \subseteq I, then

necessarily (S) \subseteq I. For this reason, one often speaks of (S) as being the smallest ideal of R containing S.

Theorem 1-2 Let R be a commutative ring with identity 1 and S be a nonempty subset of R, then the ideal of R generated by S is the set of all elements of the form

$$\sum_{i=1}^{n} r_i x_i$$

for $r_i \in R$, $x_i \in S$ and $n \ge 1$.

Proof For convenience, set

$$\overline{S} = \{ \sum_{i=1}^{n} r_i x_i \mid r_i \in \mathbb{R}, x_i \in S \}.$$

What we must prove is $(S) = \overline{S}$. Let $x \in S$, hence $x \in (S)$, and since (S) is an ideal, $rx \in (S)$ for any $r \in R$, and thus $\sum_{i=1}^{n} r_i x_i \in (S)$. So we can conclude that $\overline{S} \subseteq (S)$. On the other hand, $S \subseteq \overline{S}$ since if $x \in S$, then $x = 1.x \in \overline{S}$. It remains to prove that \overline{S} is an ideal so that \overline{S} is an ideal containing S, and using the fact that (S) is the smallest ideal containing S, we have $(S) \subseteq \overline{S}$ implying that $(S) = \overline{S}$. To prove that \overline{S} is an ideal, let $a, b \in \overline{S}$, then a and b are of the form $a = \sum_{i=1}^{n} a_i x_i$, $b = \sum_{i=1}^{m} b_i y_i$, for $a_i, b_i \in R$, $x_i, y_i \in S$.

Hence

$$a-b = \sum_{i=1}^{n} a_i x_i - \sum_{i=1}^{m} b_i y_i$$
.

That is, a - b is of the form $\sum_{i=1}^{k} r_i z_i$ where $r_i \in R$, $z_i \in S$, and thus a - b $\in \overline{S}$. For any $r \in R$,

$$ra = \sum_{i=1}^{n} ra_i x_i = \sum_{i=1}^{n} s_i x_i$$

where $s_i = ra_i \in \mathbb{R}$, so $ra \in \overline{S}$ implying that \overline{S} is an ideal. This completes the proof.

Remark If S consists of a finite number of elements, say a_1 , a_2 ,..., a_n , then the ideal which they generate is customarily denoted by (a_1, a_2, \ldots, a_n) . Such an ideal is said to be finitely generated with the given elements a_1 , a_2 ,..., a_n as its generators. That is,

 $(a_1, a_2, ..., a_n) = \{r_1a_1 + r_2a_2 + ... + r_na_n | r_i \in \mathbb{R}, 1 \le i \le k \}.$

Definition 1-3 An ideal I of the ring R is a prime ideal if for all a,b in R, ab { I implies that a { I or b { I.

<u>Definition 1-4</u> An ideal P in a ring R is called <u>perfect</u> if P contains an element of R whenever it contains some power of that element : a^t ∈ P implies a ∈ P.

Theorem 1-3 Let

$$\mathbf{I}_1 \subseteq \mathbf{I}_2 \subseteq \dots \subseteq \mathbf{I}_n \subseteq \dots$$

be an ascending chain of ideals of a ring R. Then $\bigcup_{i=1}^{\infty} I_i$ is also an ideal of R. Furthermore, if it is an ascending chain of prime ideals, then $\bigcup_{i=1}^{\infty} I_i$ is a prime ideal in R.

Proof Let $I = \bigcup_{i=1}^{\infty} I_i$ and $a,b \in I$. Then $a \in I_i$ and $b \in I_j$ for some i and j. Now one of the ideals I_i and I_j contains the other, and so we may choose $\ell = \max\{i,j\}$ so that a and b belong to I_{ℓ} . Then a - b belongs to I_{ℓ} , and so to I. Let $a \in I$ and $r \in R$. Then $a \in I_s$ for some s. Since I_s is an ideal, ra and ar belong to I_s and hence belong to I. Therefore I is an ideal. If each I_n is a prime ideal, we shall prove that I is also a prime ideal. Let $ab \in I$, then $ab \in I_k$ for some k. Since I_k is a prime ideal, $a \in I_k$ or $b \in I_k$. Thus $a \in I$ or $b \in I$. Therefore I is a prime ideal.

Polynomial Rings

<u>Definition 1-5</u> Let R be a ring. By the <u>polynomial ring over R in one</u> indeterminate X, written as R[X], we mean the set of all elements of the form

$$f(X) = a_0 + a_1 X + ... + a_n X^n$$
,

where n can be any nonnegative integer and where the coefficients ao, a₁, ..., a_n are all in R. Such elements are called polynomials over R.

If $a_n \neq 0$, we call a_n the <u>leading coefficient</u> of f(x), and the integer n is called the degree of the polynomial.

If a \subseteq R we can define

$$f(a) = \underbrace{\frac{k}{\sum_{n=0}^{\infty}} a_n a^n}$$

and if f(a) = 0, we call the element a <u>a root</u> or a <u>zero</u> of the polynomial f(X).

Definition 1-6 If $f(X) = a_0 + a_1X + \dots + a_mX^m$ and $g(X) = b_0 + b_1X + \dots + b_nX^n$ are both in R[X] then

i)
$$f(X) + g(X) = c_0 + c_1 X + ... c_t X^t$$

where for each i, $c_i = a_i + b_i$

ii)
$$f(X)g(X) = c_0 + c_1X + ... + c_kX_k$$

where $c_t = a_tb_0 + a_{t-1}b_1 + a_{t-2}b_2 + ... + a_0b_t$.

<u>Definition 1-7</u> Let R be a ring with identity 1, a polynomial whose leading coefficient is 1 is said to be a monic polynomial.

Theorem 1-4 (Division Algorithm)

Let F be a field and f(x), $g(x) \neq 0$ polynomials in F[X]. Then there exist unique polynomials t(X) and r(X) in F[X] such that

$$f(X) = t(X)g(X) + r(X)$$

where either r(X) = 0 or deg r(X) < deg g(X). (For proof see [7])

Theorem 1-5 Let $\mathbb R$ be an integral domain and $\mathbb R[X]$ the polynomial ring over $\mathbb R$. Let f(X) and g(X) be two polynomials in $\mathbb R[X]$ of respectively degrees m and n, let $k = \max (m - n + 1,0)$ and b_n be the leading coefficient of g(X). Then there exist unique polynomials g(X) and r(X) such that

$$b_n^k f(X) = q(X) g(X) + r(X)$$

where r(X) is either of degree less than n or is zero.

<u>Proof</u> If m < n, there is nothing to prove since we take k = 0, q(X) = 0, r(X) = f(X) and we certainly have that

$$f(X) = 0.g(X) + f(X).$$

Consider the case m > n, let d = m - n > 0, We can write $f(X) = a_0 + a_1 X + \dots + a_m X^m \text{ and } g(X) = b_0 + b_1 X + \dots + b_n X^n$ where a_m , $b_n \neq 0$. The existence proof is by induction on d, if d = 0, we have

$$b_{n}f(X) = a_{n}g(X) + (a_{n-1}b_{n} - a_{n}b_{n-1})X^{n-1} + (a_{n-2}b_{n} - a_{n}b_{n-2})X^{n-2} + \dots$$

$$+ a_{0}b_{n} - a_{n}b_{0}.$$

So we have proven the theorem if d=0, therefore we can assume that the theorem holds for all polynomials $\ell(X)$ such that $\deg \ell(X) - \deg g(X) < d$ (d > 1). Consider

$$b_{n}f(X) = a_{m}X^{m-n}g(X) + r_{1}(X)$$
where $r_{1}(X) = (b_{n}a_{m-1} - b_{n-1}a_{m})X^{m-1} + \dots (b_{n}a_{m-n} - b_{n}a_{m})X^{m-n} + \dots + b_{n}a_{n}$

Thus $b_n f(X) - a_m X^{m-n} g(X)$ has degree at most m-1, we might as well assume that it has degree m-1, if not, the argument is the same. By the induction hypothesis there exist polynomials $q_1(X)$, $r_2(X)$ such that

$$b_n^{(m-1)-n+1}(b_n f(X) - a_m X^{m-n} g(X) = q_1(X) g(X) + r_2(X),$$

where deg $r_2(x)$ < n or $r_2(x) = 0$. We need now only take

$$q(X) = a_m b_n^{m-n} \cdot X^{m-n} + q_1(X), r(X) = r_2(X).$$

As regards uniqueness, we suppose that $b_n^k f(X)$ has an other form $b_n^k f(X) = h(X)g(X) + p(X)$. Then

$$(h(X) - q(X))g(X) = p(X) - r(X).$$

If $h(X) - q(X) \neq 0$, then (h(X) - q(X))g(X) has degree at least n, whereas

deg (p(X) - r(X)) < n. Hence h(X) - q(X) = 0, p(X) - r(X) = 0. This completes the proof of the theorem.

<u>Definition 1-8</u> Let R be a commutative ring with identity. If $f(X) = a_0 + a_1 X + \ldots + a_n X^n \in R[X] \text{, then the } \underline{\text{derivative of } f(X)},$ written as f'(X), is defined to be

$$f'(X) = a_1 + 2a_2X + ... + na_nX^{n-1}$$
.

Theorem 1-6 If f(X), $g(X) \in R[X]$ and $r \in R$, then

i)
$$(f(X) + g(X))^{\dagger} = f^{\dagger}(X) + g^{\dagger}(X)$$

iii)
$$(f(X)g(X))^{\dagger} = f^{\dagger}(X)g(X) + f(X)g^{\dagger}(X)$$

(For proof see [10])

<u>Definition 1.9</u> Let R be an integral domain. A polynomial p(X) in R[X] is said to be <u>irreducible</u> over R if whenever p(X) = a(X)b(X) with a(X), $b(X) \in R[X]$ then either a(X) or b(X) has degree 0 (i.e., is a constant).

Theorem 1-7 (Unique Factorization in F[X])

If F is a field, then each polynomial $f(X) \subset F[X]$ of positive degree is the product of a non-zero element of F and irreducible monic polynomials of F[X]. Apart from the order of the factors, this factorization is unique. (see [6])

Polynomials in several indeterminates.

<u>Definition 1-10</u> Let R be a ring. <u>A polynomial ring over R in n</u>

indeterminates X_1, X_2, \ldots, X_n , denoted by $R[X_1, X_2, \ldots, X_n]$, is the set of all elements of the form of a finite sum:

$$\sum_{i_1} a_{i_1} \cdots a_{i_n} x_1^{i_1} x_2^{i_2} \cdots x_n^{i_n}$$
,

<u>Definition 1-11</u> A polynomial in the n ideterminates X_1, \ldots, X_n is called a <u>symmetric polynomial</u> if it is invariant under all permutations of the indices $1, 2, \ldots, n$.

Example $X_1^2 + X_2^2 + X_3^2 - X_1X_2 - X_1X_3 - X_2X_3$ is a symmetric polynomial in 3 indeterminates X_1 , X_2 and X_3 .

<u>Definition 1-12</u> The <u>elementary symmetric polynomials</u> are defined as follows:

$$s_{1}(X_{1},...,X_{n}) = \sum_{i=1}^{n} X_{i} = X_{1} + X_{2} + ... + X_{n}$$

$$s_{2}(X_{1},...,X_{n}) = \sum_{i < j} X_{i}X_{j} = X_{1}X_{2} + ... + X_{1}X_{n} + X_{2}X_{3} + ... + X_{2}X_{n} + ... + X_{n-1}X_{n}$$

$$+ X_{n-1}X_{n}$$

$$s_{3}(X_{1},...,X_{n}) = \sum_{i < j < k} X_{i}X_{j}X_{k}$$

$$s_n (X_1, \dots, X_n) = X_1 X_2 \dots X_n$$

From now on F will denote a field.

Theorem 1-8 If $f(X) = a_0 + a_1 X + ... + a_n X^n \in F[X]$ has the n zeroes $X_1, X_2, ..., X_n$ in F, then

$$s_{j}(X_{1},...,X_{n}) = (-1)^{j} \frac{a_{n-j}}{a_{n}}, j = 1,2,...,n.$$

(For proof see [11])

Theorem 1-9 Every symmetric polynomial in $X_1, X_2, ..., X_n$ over F can be expressed as a polynomial in the elementary symmetric polynomials over F. (For proof see [11])

Theorem 1-10 Let $f(X) \in F[X]$ of degree n with roots X_1, X_2, \ldots, X_n . If $g(y_1, y_2, \ldots, y_n)$ is a symmetric polynomial in y_1, y_2, \ldots, y_n over F, then $g(X_1, X_2, \ldots, X_n)$ is an element of F.

Proof Since X_1, X_2, \ldots, X_n are the roots of f(X), by theorem 1-8 the elementary symmetric polynomials $s_j(X_1, \ldots, X_n) = (-1)^j \frac{a_{n-j}}{a_n}$, $j = 1, 2, \ldots, n$. Then $s_j(X_1, \ldots, X_n) \in F$. Now $g(y_1, y_2, \ldots, y_n)$ is a symmetric polynomial over F, it then follows from theorem 1-9 that $g(y_1, \ldots, y_n)$ can be writter as a polynomial over F in indeterminates $s_1(y_1, \ldots, y_n)$, $s_2(y_1, \ldots, y_n), \ldots, s_n(y_1, \ldots, y_n)$. This implies that $g(X_1, \ldots, X_n)$ is a polynomial over F in $s_1(X_1, \ldots, X_n)$, $s_2(X_1, \ldots, X_n)$, $\ldots, s_n(X_1, \ldots, X_n)$ which are in F. Hence $g(X_1, X_2, \ldots, X_n) \in F$.

Fields and Extension Fields

<u>Definition 1-13</u> Let F be a field and 1 its multiplicative identity. F is said to be of characteristic p > 0 if p is the least positive integer for which p.1 = 0 and F is said to be of characteristic 0 if there is no positive integer p for which p.1 = 0 except p = 0.

<u>Definition 1-14</u> A field which does not contain any proper subfields is called a prime field.

Theorem 1-11 Any prime field of characteristic zero is isomorphic to the field of rational numbers. (For proof see [3])

Definition 1-15 Let F be a field; a field K is said to be an extension of F if F is a subfield of K. We call F a ground field.

From now on F will denote a ground field and K an extension of F.

Let a_1, a_2, \ldots, a_n be fixed elements in K. Let $f(X_1, X_2, \ldots, X_n)$ and $g(X_1, X_2, \ldots, X_n)$ be two polynomials in $F[X_1, X_2, \ldots, X_n]$ such that $g(a_1, a_2, \ldots, a_n) \neq 0$, then the quotient $\frac{f(a_1, \ldots, a_n)}{g(a_1, \ldots, a_n)}$ belongs to K

(since K is a field) and the set of all such quotients is a field, denoted by $F(a_1,a_2,\ldots,a_n)$. We call $F(a_1,a_2,\ldots,a_n)$ the subfield of K which is obtained by adjunction of the elements a_1, a_2,\ldots,a_n to F.

<u>Definition 1-16</u> If K is finite dimensional as a vector space over F, we say that K is a <u>finite extension</u> of F. If K is infinite dimensional as a vector space over F, we say that K is an <u>infinite extension</u> of F.

Definition 1-17 An element $a \in K$ is said to be algebraic over F if there exists a polynomial f(X) in F[X] such that f(a) = 0. Otherwise, a is transcendental over F.

<u>Definition 1-18</u> Let a be an element of K which is algebraic over F. The monic irreducible polynomial in F[X] of which a is a root will be called the <u>minimal polynomial</u> of a in F[X], or over F.

Theorem 1-12 If a is algebraic over F, then there exists a unique minimal polynomial of a in F[X] and the field F(a) coincides with F[a]. Moreover, if the minimal polynomial of a over F is of degree n, then any element of F(a) has a unique expression of the form

$$c_0 a^{n-1} + c_1 a^{n-2} + ... + c_{n-1}, c_1 \in F$$

(For proof see [8]).

<u>Definition 1-19</u> Two elements a and b of one and the same extension field K of F are <u>conjugate over F</u> if they are algebraic over F and have the same minimal polynomial over F.

<u>Definition 1-20</u> The extension field K of F is <u>simple extension</u> of F if K = F(a) for some a in K.

Theorem 1-13 If f(X) is a non-constant irreducible polynomial in F[X], then there exists a simple extension F(a) such that a is a root of f(X). (For proof see [8]).

<u>Definition 1-21</u> The extension K of F is called an <u>algebraic extension</u> of F if every element in K is algebraic over F. Extensions which are not algebraic are called <u>transcendental</u> extensions.

Theorem 1-14 Any finite extension of a field of characteristic zero is a simple extension (See [7]).

<u>Definition 1-22</u> If F is a subfield of K, then K is said to be an algebraic closure of F if

- i) K is an algebraic extension of F and
- ii) K possesses no proper algebraic extensions (that is, if every algebraic extension of F coincides with F).

Theorem 1-15 If F is a field, then there exists an algebraic closure of F, and any two algebraic closures of F are isomorphic (For proof see [8]).