CHAPTER 1T

PRELIMINARIES

The purpose of this chapter is to summarize the necessary
background materials of abstract algebra needed as a basic reference for
the remaining ones. However, for the most part definitions and theorems

are stated without proofs which can be found in references [6] , [7] ,
(8], [9], [10] ,[12] .
IDEALS

Definition 1-1 A nomerpty subset I of a ring F is said to be a (two-

sided) ideal of R if
i) a,b € I imply a-b € I, and

ii) for every 2 € I and r £ R both ar and ra are in I.

Theorem 1-1 Let {Ii} be an arbitrary collection of ideals of a ring B,
where i ranges over some index set. Thenf\li is alsc an ideal of R.

(For proof see Bﬂ)‘

Definition 1-2 The ideal generated by a nonempty subset S of a ring R

is the ideal which is the intersection of all ideals of R containing S
and is denoted by (&), that is,

(s) = f}{IIS Z I ; I is an ideal of R} .

This definition is well-defined, since the entiring ring R itself
is an ideal containing any subset of R: thus the set (S) exists and
satisfies S (. (S), and by virtue of theorem 1-1 (S) forms an ideal. It

is noteworthy that whenever I is any ideal of R with § (. I, then



necessarily (8) & 1I. For this rzason, one often speaks of (S) as being

the smellest ideal of R containing S,

Theorem 1-2 Let R be a commutative ring with identity 1 and S be a
nonempty subset of R, then the ideal of R generated by S is the set of all

elements of the form

\L
£
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r.x
i=1 b 35 4

forriE R,xie Sandn > 1.

Proof For convenience, set

s = {g rixilri[,_—‘ BXp€E S5 1.
i=1

What we must prove is (S) = S, Let x - 8, hence x (= (S), and since

(8) is an ideal, rx & (5) forany r {= R, and thus ﬁ: Bk, € (8
i=1
So we can conclude that S L (8). On the other hand, S C S since if

x € S, then x= 1,x & S. It remains to prove that S is an ideal so
that S is an ideal containing S, and using the fact that (S) is the
smallest ideal containing S, we have (S) &. § implying that (S) = S.

To prove that S is an ideal, let a, b € §, then a and b are of the form

n m g .
a = SToag%y o b = < biyi ,» for a;, by E R, %Yy € s.

-3
i=1 i=]
Hence
n m
a-b = T a,¥. = == b -
= At TR



That is, a - b is of the form < r,z, where r; ¢ R, z; € S, and

thus a-b € S. Foranyr ( R,

ra = i“' ra;x, = ‘S%"! 8%y
- —_—
i=1 i=1

where s; = ra; € R, sora € S implying that S is an ideal. This

completes the proof,

Remark If S consists of a finite number of elements, say 815 8gseens 855
then the ideal which they generate is customarily denoted by (al, COYRREP
an). Such an ideal is said to be finitely generated with the given

elements 815 8y5¢0:5 &, a8 its generators. That is,

(alp azgqa-, an) = {r}.al + tzaz + s o e + rnanl rié R, l.s is‘ k }-

Definition 1-3 An ideal I of the ring R is a prime ideal if for all a,b

in R, ab € I implies that a & I or b € I.

Definition 1-4 An ideal P in a ring R is called perfect if P contains

an plement of R whenever it contains some power of that element : atc P

implies a ¢ P.

Theorem 1-3 Let

:

I~
mn

-
N

1 = L n

be an ascending chain of ideals of a ring R. Then C I, is also an
i=1

ideal of R. Furthermore, if it is an ascending chain of prime ideals,

then | I, is a prime ideal in R.
i=1
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Proof let T= L/ I, anda,b ¢ I. Then a C I, and b € I, for
i i=1

some i and j. Now one of the ideals Ii and Ij contains the other, and
so we may choose £ = max {i,j} so that a and b belong to I, . Then

a - b belongs to I£ , and so to I. Let a & I and r £ R. Then

a ¢ Is for some 8. Since Is is an ideal, ra and ar belong to I3 and
hence belong to I. Therefore I is an ideal. If each In is a prime
ideal, we shall prove that I is also a prime ideal. ZLet ab C: I, then
ab « I, for some k. Since I, is a prime ideal, n © I, orb 3 L.

Thus 2 (= I orb (< 1. Therefore I is a prime ideal.

Polynomial Rings

Definition 1-5 1Let X be a ring. By the polynomial ring over R in one

indeterminate X, written as R[}] , we mean the set of all elements of

the form

£(X) = ao+a1x+...+anf‘,

where n can be any nonnegative integer and where the coefficients a2y,

+++s @ are all in R. CEuch elements are called polynomials over R.

If a_ = 0, we call a the leading coefficient of f(x), and the

integer n 1is called the degree of the polynomial,

If a = R we can define

k
f(a) :g::a aR
n=o0 °
and if f(a) = 0, we call the element a a root or a zero of the polynomial

£(X).




X * e

Definition 1-6 If £(¥) = a +aX+ ...aX andg(X) =b_+b

1 1

b nx“ are both in R[X] then

) 2D +a® = c + X+ ... ct}f.t
where for each i, cy = 2y + bi

il) £fX)g(®) = eyt Xt Lo o X
where g " atbo + at-lbl + at-2b2 P avis aobt :

Definition 1-7 Let R be a ring with identity 1, a polynomial whose

leading coefficient is 1 is said to be a monic polynomial.

Theorem 1-4 (Division Algorithm)
Let F be a field and £(x), g(x) # O polynomials in F[X] . Then
there exist unique polynomials t(X) and r(X) in F[X] such that
£(X) = tDgX + (X
where either r(X) = 0 or deg r(X) < deg g(X).

(For procf see [7])

Theorem 1-5 Let 2 be an integral domain and R[X] the polynomial ring
over R. Let £(X) and g(X) be two polynomials in R[X| of respectively
degrees m and n, let k = max (m - n + 1,0) and b be the leading
coefficient of g(X). Then there exist unique polynomials g(X) and r(X)

such that

bﬁ f(X) = q(X g(X) + r(X)

where r(X) is either of degree less than n or is zero.

Proof Ifm < n, there is nothing tco prove since we take k = o, q(X) = o,
r(X) = £(X) and we certainly have that

£f(X) = 0.g(X) + £(X).



-Consider the cesem > n, letd=m-n > 0, We can write

£(0 = a +aX+...ax" and g(X) = bc+bX+...+ann

1
where a , bn_# 0. The existence proof is by induction on d, if d = 0,
we have

T N Ja-1 - -2
bnf(x) ang(x) + (an—lb ab .JIx + (an—Zb anbn_z)xn * se

n n n- n

+ab ~ab .
on n o

So we have proven the theorem if d = 0, thereforc we can assume that the
theorem holds for all polynomials £(¥) such that deg £(X) - deg g(X) < d

(d > 1). Consider
i :
bn f ( x) r_,.mn P; (R) -+ y o l (X)

= ~-n
where r;(X) = (o2 , -b 4a)TT " HU. (ba -ba)X "4 ...+

b .

a
2 i Wl o}

Thus bnf(x) - ame“ug(K) has degree at mest m=1, we might as well assumc

that it has degree m~1, if not, the argument is the same, By the induction

hypothesis there ¢xist pclynomials ql(K), r,(¥) such that
(r=1) -n+1 N -1 m ”
b (b £(X) - a X" gD = q(Ve® + 1,(D,
where deg rz(x) <nor rz(x) = 0, We neced now only take
m-n o :
q(X) = ab 5 Gl (X, r®X) = r,(X).
As regards uniqueness, we suppose that bi £(X) has an other form
Y £(X) = h(0g(0) + p(¥). Then

(@@ - q(X)g(X) = p(X) - r(X).

If h(X) - q(X) # 0, then (h(X) - q(X))g(X) has degree at least n, whereas



deg (p(X) - r(¥X)) < n. Hence h(X) - q(X) =0, p(X) - r(X) = 0. This

completes the proof of the theorem.

Definition 1-8 Let R be a commutative ring with identity. If

£(X) = a +a,X+ ...+ anx“ ¢ R[X| , then the derivative of f£(X),

written as f'(X), is defined to be

£1(X) = + 28,8+ oo # nan)‘.'.n-l.

o
Theorem 1-6 If £(X), g(X) € R[X] and r € E, then
1) (X + g))’

i1) (r £(X))°

£7(X) +g"(X)

r £'(X)

£'(X)eg(® + £(XNg"(X)

111) (£(Xg()’

(For proof see [10])

Definition 1.9 1Let R be an integral domain. A polynomial p(X) in R[}ﬂ

is said to be irreducible over R 1if whenever p(X) = a(X)b(X) with a(X),

b(X) € R[X] then either a(X) cr b(X) has degree 0 (i.e., is a constant).

Theorem 1-7 (Unique Factorization in F[X])

If F is a field, then each polynomial f(X) & F[X| of positive
degree is the product of a non-zerc element of F and irreducible monic
polynomials of F[X] : Apart from the order of the factors, this

factorization is unique. (see [6])

Polynomials in several indeterminates.

Definition 1-10 Let R be a ring. A polynomial ring over B in n

indeterminates xl,xg, asib 1y xn, denoted by R[XPXZ’ .way Xn] , is the set of

all elements of the form of a finite sum:

- S 1 i

1, 2 n
11 50w i Xl xz LRI Xn ]
n

\'f
‘.....:.a
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where the i y ‘are non-negative integers and a, € R. Each

loouin

3

i
_ X," ... X ds called a monomial,

ay

1

Definition 1-11 A polynomial in the n ideterminates Xl,..., Xn is cdlled

a symmetric polynomial if it is invariant under all permutations of the

indices 1,2,..., n.

2 G
Example X% + Xﬁ e }{3 - XIXZ - X1X3 - K2}‘3 is a symmetric polynomial

in 3 indeterminates Xl’ Xz and XS'

Definition 1-12 The elementary symmetric polynomials are defined as

follows:

o
8, (Xy5eees X)) = S/ X /NI * ENF oo + X

i=1
—rl'——l
8y (Xjseee, X)) = ig( 5 xixj = XXt AKX Kbt KX+
+ X X
. e I? 2
33(}{1,..., x_n} = E R xixjxk
1 <<k

s (Xl,...,Kn) = XIXZ Xn .

From now on F will denote a field.

Theorem 1-8 If f(X) = a + aIX F s anx“ c F[X] has the n zeroes

xl,xz,...,xn in F, then
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a
(Cypunss B = (-1)3 5-‘1‘3 o § o B e
n

%
(For proof see [11])

Theorem 1-9 Every symmetric polynomial in Xl, Kpseees Xﬁ over F can be
expressed as a polynomial in the elementary symmetric polynomials over F.

(For proof see [11])

Theorem 1-10 Let f(X) & F[X] of degree n with roots X 3Kpsenns X .

1f g(yl,yz,...,yn) is a symmetric polynomial in Yq2¥gaeesY, OVer F, then

g(xl,xz,..., Xn) is an element of F.

Proof Since Xl,ng...g Xn are the roots of f(X), by theorem 1-8 the
elementary symmetric polynomials sj(xl,...,Xh) = (-—1)j ;Efj i 3 o= 10,
vosg Mo “THERD sj(xl,.t., Xh) € F. Now g(yl,yz,...,yn) i: a symmetric
polynomial over F, it then follows from theorem 1-9 that g(yl,...,yn) can
be writter as a polynomial over F in indeterminates sl(yl,...,yn),
sz(yl,...,yn),..., sn(ylg..., )+ This implies that g(xl,..., Xh) is a
polynomial over F in 51(X1’°"’ xn), sz(xl,..., Xh), Sw— sn(Xl,..., Xh)

which are in F. Hence g(Kl, Epseees Xn) € Fe

Fields and Extensicn Fields

Definition 1-13 [Let F be a field and 1 its multiplicative identity. ¥

is said to be of characteristic p > o if p is the least positive integer

for which p.1 = 0 and F is said to be of characteristic 0 if there is nc

positive integer p for which p.l = o except p = o.

Definition 1-14 A field which does not contain any proper subfields is

called a prime field.
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Theorem 1-11 Any prime field of characteristic zero is isomorphic to

the field of rational numbers. (For proof see [2])

Definition 1-15 Let F be a field; a field K is said to be an extension

of F if F is a subfield of K. We call F a ground field.
From now on ¥ will denote a ground field and K an extension of F.
Let a;, a,,..., a_ be fixed elements inKR. Let f(Xl,Xz,..., Xn)

and g(X;,%,,..., X ) be two polynomials in F[x1 +Xys+2+, X ] such that

f(al,..., an)

g(a;,ay,..., a ) # C, then the guotient - belongs to K

g(al, a— an)

(since K is a field) and the set of all such quotients is a field, denoted

by F(al,az,..., an). We call 1“(&1,,";12,...9 an) the subfield of K which is

obtained by aq;]_uuction of the elements 815 895000 a, to F.

Definition 1-16 If K is finite dimensional as a vector space over F, we

say that K is a finite extension of F. If K ic infinite dimensional as 2

vector space over F, we say that ¥ is an infinite extension of F.

Definition 1-17 An element a < K is said to be algebraic over F if

there exists a polynomial £(X) in F[X] such that f(a) = 0. Ctherwise, a

is transcendental over ¥,

Definition 1-18 1Let a be an element of K which is algebraic over F. The

monic irreducible polynowial in F[X] of which a is a root will be called

the minimal polynomial of a in FD{] s, Or over F,

Theorem 1-12 If a is algebraic over F, then there exists a unique minimal

polynomial of a in F[X] and the field F(a) coincides with F[a] . Moreover,
if the minimal polynomial of a over F is of degree n, then any element of

F(a) has a unique cxpression of the form
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n-1 n-2 )
c.a L c,a *r cwn F Chel * &4 & F

(For proof see [@]),

Definition 1-19 Two elements a and b of one and the same extension field

K of F are conjupate over F if they are algebraic over F a2nd have the same

minimal polynomial over ¥.

Definition 1-20 The extension field K of F is simple extension of F if

K = F(a) for some a in K.

Theorem 1-13 If f(X) is a non-constant irreducible polynomial in F[ﬁj 1

then there exists a simple extension F(a) such that a is a root of £(X) .

(For proof see [8]).

Definition 1-21 The extension K of F is called an algebraic extension

of F if every element in K is algebraic over F. Extensions which are not

algebraic are called transcendental extensions.

Theorem 1-14 Any finite extension of a field of characteristic zero is

a simple extension (See [7]).

Definition 1-22 If F is a subfield of K, then ¥ ig said to be an

algebraic closure of F if

i) K is an algebraic extension of F and
ii) K possesses no proper algebraic extensions (that is, if every

algebraic extension of F coincides with F).

Theorem 1-15 If F is a field, then there existe an algebraic closure of

F, and any two algebraic closures of F are isomorphic (For proof see Eﬂ).



	Chapter I Preliminaries

