CHAPTER I

HEAVILY DOPED STMICONDUCTORS (ﬁ“

1.1 Introduction.

When the studies of semiconductor began, physicists and engineers
had to contend with impure semiconductors containing 1019-1020 cm-3 of
foreign impurities. The techniques for preparing pure semiconducting
single crystals were developed. And while the gradual reduction of the
impurity concentration achieved, new properties of these impure crystals
were discovered and applied in practical devices. Finally it became clear
that the technology of semiconductor devices required not crystals of
maximum purity but crystal with impurities introduced in precisely known
anounts.

Up to 1958, all semiconductor devices were made of lightly doped

6 impurities per em’. These

semiconductors. containing not more than 10l
impurities, being isolated, formed narrow states in the band gap for
electrons or holes. After that technology btegin to return to crystals
containing impurities in amounts reaching 1020 cm-3, heavily doped. Some
applications of such heavily doped semiconductors are used in laser,
light emitting diodes and some active componentsof solid state systems,

i.e.,bipolar transistor.
Heavily doped semiconductors ere only & part of the more general

problem of disordered systems.
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1.2 Disordered Systems.l

A system of particles is called disordered if there is no
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long-range order in the distribution of the particies. For the charge
carriers (electrons or holes) an equivalent definition is that, a
condensed macroscopic system is called disordered if the potential energy
of the charge carrier is spatially nonperiodic. Liquids, amorphous,
glassy substances, disordered elloys and heavily doped semiconductors

are some exemples of disordered systemsl.

The disordered materials mentioned above ﬁight be very different
physically. However, the theory of electronic structures is couwon
feature of all disordered systems. The discussion of disordered materials
has been based on highly simpl{fied mwodel band structures. It begin with
perfect and imperfect crystals, and observing the cffects Of increasing

disorder on the electronic structures,
The universal structural feature of perfect crystals is their
periodicity. The one - electron hemiltonian satisfies the equation
B, %) = H(P,T +L) 1.2.1
for eny translational vector ) of direct lattices.

Then, by the Dloch's theorem, the eigenfunctions wnk of H

are such that

by (1) = ET U_p(F) 1.2.2

where Unﬁ(;) is periodic functions with the periodicity of the direct

lattices,

Unﬁ(? +T) = unﬁ(?) ) 1.2.3



k is the wave vector end n = 1,2,3,... 1is so-called band index.

A1l eigenfurctions (1.2.2) are extended. An electron described
by (1.2.1) go everywhere in the crystal with equal probability Just as in
the free elcctron case. The energy spectrum of the electron consists of
continuous bands at allowed levels separated by forbidden gaps. The
density of states p(E) goes to zero at the banc edges as the square root

of the energy (Fig.l.1l).
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Fig.l.1l Energy band scheme of perfect crystals.

Now, let us consider a crystal containing a single localized
imperfection such as an impurity. If the locelized change AV produced
by the imperfection in the crystal potential V is weak, we can used the
Born approximmtion to obtain the solution of the scattering problem. The
result is that the stotes rescin extended. The change in the density of
states is small and the sharp band edges remain. As AV increases beyond

a certain criticel value , the energy state splits off the band &s a



§ - function in the band gap. This state is bound to and localized e&round
the imperfection. Both attractive and repulsive loculized potential
changes can bind an electron in the crystal in localized states. A

strong repulsive change can push a localized state cbove the upper bound
of the continuur: , in the same way that an attractive potential can push

the localized stote below the lower bound of the continuum (Fig.l.2a).

The next step is to consider an imperfect crystal. Consider the
case of low but finite concentration of random distribution of individual

imperfection.
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Fig. 1.2a. Fig. 1.2b.

Fig.1.2 Density of states p(E) as a functiocn of encrgy E for
a. o crystal containing only one localized imperfecticn,
b. & crystel containing o low concentration of localized

imperfections.



For weak scattering potential, the electron wave functions remain
extended. Since the concentration of imperfection is much smaller than
the concentration of regular atoms, the change in the density of states
to be smzll. When each AV is large enough, there will be a2 non = zero
density of states inside the gap with a peak expected around the position
of the bound state corresponding to a single impurity. II the
concentration is high enough, individuel localized states broaden to

form an imperfection band (Fig.1.2b). If the imperfections were regularly
arranged in a superlattice there would bes e narrow imperfection band with

sharp cdges pussessing the typical features stemming from the periodicity.

As the randomness incrcases, the band becones broader. For
Ec< E < E; » the states remaoin extended. At the energics Ec' L; they
change abruptly from extended to localized states. So that for E < Ec and
E > E; there are tails of localized states (Fig.l.3). The cnergies Ec and

E; are :alled mobility edges.
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Fig.1.3 The density of states of an isolated energy band in a
disordered material. There is a band of extenaed states
inside the energies Ec and E; with teils of localized

stetes outside.



To determine the existence of band gep in disordered materials,
photon absorption can be used. The fact that gless is transparent shows
that amorphous 5102 hes a band gap of several electron volts. The shape
of the absorption edge indicates the way the density of states behaves
near the band edges. The absorrtion coefficient a(w) drops markedly at
some threshold frequency W, which is close to that of the crystalline
materials. Two types of tehavior are observed ; sharp edge and optical

tail.

In the case of sharp edge, a(w) is practically zero at w < w, -
For the existence of the tail a(w) is approximated by an exponential
function of frequency w, where w < w,

a{w) = exp (EE:;;El)) 1.2,k

W is a characteristic energy

The d.c. conductivity at low temperature gives the most direct
way of distinguishing between localized and extended states. An electron
or hole in a localized state has zero molLility whereas the extended states
have a finite mobility. The measurements of the Knight shift and of the
nuclear relaxation time confirm the idea of the electron states in & gap
as being localized.

1.3 Heavily Doped Semiconductors. °—2

In pure semiconductor crystals, the periodic structure of ionic cores
causes the energy spectrum of electronic structure of the crystals to form into
continuous allowved bends separated by forbiden gaps. Edges of these bands are

sharply cut - off. Vhen impurities are introduced into the periodic crystal



the extra carriers (electrons for donor impurities and holes for
accepters) would change the band structure. In the case of low
concentration of impurities, +ihe impurity atoms are far apart and
there are po interaction between them. wach impurity foru a localized
state in an energy gep below a conducticon band for donvr level and

above valence band for acceptor level (Fig.l.2).

To simplify the calculation, for exemple, of donor state the
hydrogenic model ig used to approximate the system of an individual
impurity with an electron. For en isotropic material which dielectric
constant €, the effect of liost atoms can be crudely expleined in terus
of effective mass m: of an electron. Ly solving the Schrodinger
equation with hydrogenic Hemiltonian one cobtain the acnor state lying
at an energy

® L

B © 1.3.1
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below the conduction btand edge. In the same mencr cn accepter state
liee at an encrgy
LR

mhe

a 2h252

above the valence band edge . Lﬁ is an effective nass of iwle currier .

As mention earlier, at sufficiently low concentration the states
closely resemble individual impurity state. When the concentration 4, is
inereased further the range of impurity potential can exceed the impurity

separation. The localized states grew in spatial extention until sowe of



stetes have finite amplitude throughout the material. These impurity
states broaden to form impurity bend. A state broadens symmetrically
above and below its original position and the velues cf E, and ﬁa'
become smaller. Experimental results of reduction in these encrgiles
are shown in Fig.l.l. The ionization energies venish in Ge and £i at
difference concentrations. Since in 51 the impurity states are more
highly localized. /i greater impurity concentration is required in Si

for the same weve overlap as in Ge,
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Fig.l.l4a. Dependence of the Fig, 1.4b. Dependence of the ionization
ionization energy of donors in energies of donors and acceptore in
ger maniun on their concentration. silicon on their concentrations.

In recl system the impurity atoms are distributed randomly. The
randon impurity potential has fluctuations of varying shape anc size
distributed throughout the semiconductor. These fluctuations produce
locrlized tail states above and below the impurity band. Lerge
fluctuations are less than small ones so o tail c¢f density of states

deereases away fror. the band edge.



Let us define the dimensionless quantity Elfj c¥®, This quentity

directly relates to the avercge separation distance tetween impurity

atoms as
)] a¥

where a¥*¥ is an effective Lour radius defined Ly

a¥ = e 1.3.k

The calculation showsthat the upper edge of impurity band uerges inte
the unperturbed conductiorn band at ﬁl/laf # 0,180 and the Ferwi level
enters tne conduction band &t ﬁljBa* = 0.43, hence a separated Land

model is not tenable at these doping levels.

A quentitetive theory is possible at higher impurity densities,
The theory is usually based on the gpproximction of linecr sercening.,
The screened potential at ony point is given by ¢ superposition of
individually screencd Coulomb impurity potentizl, For Linear screening

the electror - impurity petential energy ray be written as

vir) = I v(¥-R), 1.3.5
i i
- 2 b
where vir = R,) = -e exp '—u | =R, 1.3.6
1 _'_"'" . - i g
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the screened Coulomb potential energy of electron st point r respect

to impurity at point ﬁi . The reciprocal screening length is given in
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the Thouas - Ferni approximction by

2 Lne?
Q =, = p(E)(-sf )AE 1:.3.7
oE
{ B-E, )7
where £ = i1+exp| =7 ]| 1.3.8

1s the Ferni - Direc distribution function and p(L) is the bend density
of states. If the screcening is due to elcctrons ir severel bands, or

electrons and holes Q2 = I Q? where Qi is calculcted from (1.3.7)

for each band. The effecti;eness of carriers screcning ie deternined Ly
the reletive magnitudes of the sereening length and the effective vohr
redius. If Qa¥ > 1, the screening is uore effective and tine effect
of impurity potentisls is less dmpertant. It sheculd be noted that when
p(E) is celculated it will depénd on Q through the potential V(T).
Therefore (} and Ef for a given concentration N can be obtained in a self-
consistent calculations. However, 'Q can be cpproxinated Ly using the
unperturbed band density of states in (1.3.7) if the Fermi level is high

above the band edge, Fence, the reciprocal sereening length can Le

approxinated as
2 L3
Q€ = s 3 1.3.9

llote that, the screenced Couloml potentiel mentioned sbove contein
crudely the exchange and corrclation effects of the electrecn-electron

interzetion.

The calculation of p(E) can be arpronchcd in pnany ways.
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However, by using a semiclassicel approxiunetion, Lane has calculated the
density of states near the conduction band edge and obtained

3/, 1/

%
p(B) = & (FZ) Ea fyiPmy, 1.3.10
2m T
where
X
-1/, 1/2 %
Y(x) = =n ¢ /f(x—;) exp(-2°)dg e 16

The semiclassical approximetion is a linitation on the accuracy of thne
theory. The tail states thet calculated by this theorun are an over
estinate.

Halperin and L&xa used a guantuu isechanicel theory to iuprove the

accuracy of p(E). They proposed that p(E) can be represent in the Torm of,

p(E) Ca(B) exp(-b(E)/28) 1.3.12

]

C and £ are constants.  a(E) and B(E) can Be evaluated in nuniericel tatle
not analytic form. But the process of calculation is cumbersome since it
involves solving the Hartree type equation.

Recently Sa-yakanit 9 hes used the Feymnman poth integral technique
to acheive an analyticel form of p{E). This work gives . ti.e same form of
p(E) as propose by (1.3.12), This new approach can be used to evaluate

Kane's equation (1.3.10) or gives nmuucrical results the samwe values as

calculated by Halperin and Lax by using approuvriate conditiouns.
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