

A SUBHARMONIC FUNCTION ON A CYLINDER

We study the boundary behavior of a subharmonic function on a cylinder.

Let $x=\left(x_{1}, \ldots, x_{n}\right) \varepsilon R^{n}(n \geq 3)$. A system of cylindrical coordinates for x is given by

$$
\begin{align*}
\rho^{2} & =x_{1}^{2}+\ldots+x_{n-1}^{2} \\
x_{i} & =\rho \sin \theta_{1} \ldots \sin \theta_{i-1} \cos \theta_{i} \quad(i=1,2, \ldots, n-2) \\
x_{n-1} & =\rho \sin \theta_{1} \ldots \sin \theta_{n-2} \tag{4-1}
\end{align*}
$$

where $0 \leq \theta_{n-2} \leq 2 \pi ; 0 \leq \theta_{i} \leq \pi \quad(i=1, \ldots, n-3)$.
It can be shown, under the transformation (4-1), that

$$
\begin{aligned}
& \rho^{n-2} \sin ^{n-3} \theta_{1} \ldots \sin \theta_{n-3} \sum_{i=1}^{n} \frac{\partial^{2}}{\partial x_{i}^{2}} \\
& =\frac{\partial}{\partial \rho}\left(\rho^{n-2} \sin ^{n-3} \theta_{1} \ldots \sin \theta_{n-3} \frac{\partial}{\partial \rho}\right)+\frac{\partial}{\partial \theta_{1}}\left(\rho^{n-4} \sin ^{n-3} \theta_{1} \ldots \sin \theta_{n-3} \frac{\partial}{\partial \theta_{1}}\right)
\end{aligned}
$$

$$
+\sum_{i=2}^{n-3} \frac{\partial}{\partial \theta_{i}}\left(\rho^{n-4} \sin ^{n-5} \theta_{1} \ldots \sin ^{n-i-3} \theta_{i-1} \sin ^{n-i-2} \theta_{i} \ldots \sin \theta_{n-3} \frac{\partial}{\partial \theta_{i}}\right)
$$

$$
+\frac{\partial}{\partial \theta_{n-2}}\left(\rho^{n-4} \sin ^{n-5} \theta_{1} \ldots \sin \theta_{n-5}\left(\sin \theta_{n-3}\right)^{-1} \frac{\partial}{\partial \theta_{n-2}}\right)
$$

$$
\begin{equation*}
+\frac{\partial}{\partial x_{n}}\left(\rho^{n-2} \sin ^{n-3} \theta_{1} \ldots \sin \theta_{n-3} \frac{\partial}{\partial x_{n}}\right) \tag{4-2}
\end{equation*}
$$

If a is positive real number and $n \geq 3$, we let $C(a)$ denote the upper half cylinder

$$
C(a)=\left\{x \in R^{n} \left\lvert\, 0 \leq \rho<\frac{\pi}{2 a}\right. \text { and } x_{n}>0\right\}
$$

If $n=2$, we let $c(a)$ be the upper half strip.

$$
C(a)=\left\{x \in R^{2} \left\lvert\,-\frac{\pi}{2 a}<x_{1}<\frac{\pi}{2 a}\right. \text { and } x_{2}>0\right\}
$$

Let S be al function defined on $C(a)$, we define

$$
M(b)=\sup \left\{\left.S(x)\right|_{x_{n}}=b, x \in C(a)\right\} \quad(b>0)
$$

and

$$
M(b)^{+}=\max [M(b), 0\}
$$

We first study a special form of the Bessel function. The
Bessel's differential equation

$$
\begin{equation*}
x^{2} y^{\prime \prime}+x y^{\prime}+\left(x^{2}-v^{2}\right) y=0 \tag{4-3}
\end{equation*}
$$

has a particular solution which is denoted by $J_{V}(x)$

$$
J_{v}(x)=\sum_{m=0}^{\infty} \frac{(-1)^{m}(x)^{2 m+v}}{2^{2 m+v} m!\Gamma(v+m+1)}
$$

where v is real and

$$
r(\alpha)=\int_{0}^{\infty} e^{-t} t{ }^{\alpha-1} d t \quad(\alpha>0)
$$

By integration by parts we obtain

$$
\Gamma(\alpha+1)=\int_{0}^{\infty} e^{-t} t^{\alpha} d t=-e^{-t} t f_{0}^{\infty}+\alpha \int_{0}^{\infty} e^{-t} t^{\alpha-1} d t=\alpha \Gamma(\alpha) .
$$

$J_{\nu}(x)$ is called the Bessel function of the first kind of order v. We consider the differential equation
(4-4)

$$
x y^{\prime \prime}+(1+2 k) y^{\prime}+\lambda^{2} x y=0
$$

It can be reduced to Bessel's deferential equation by letting $y=\frac{u}{x^{k}}(x \neq 0)$.

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{x^{k} \frac{d u}{d x}-k x^{k-1} u}{x^{2 k}}=\frac{u^{\prime}}{x^{k}}-\frac{k u}{x^{k+1}} \\
\frac{d^{2} y}{d x^{2}} & =\frac{d}{d x}\left(\frac{u^{\prime}}{x^{k}}-\frac{k u}{x^{k+1}}\right) \\
& =\frac{x^{k} u^{\prime \prime}-k x^{k-1} u^{\prime}}{x^{2 k}}-\frac{k u^{\prime} x^{k+1}-(k+1) x^{k} \cdot k u}{2 k+2} \\
& =\frac{u^{\prime \prime}}{x^{k}}-\frac{2 k u^{\prime}}{x^{k+1}}+\frac{(k+1) k u}{x^{k+2}}
\end{aligned}
$$

Substitute $\frac{d y}{d x}$ and $\frac{d^{2} y}{d x^{2}}$ in $(4-4)$ we obtain

$$
\begin{aligned}
x\left(\frac{u^{\prime \prime}}{x^{k}}-\frac{2 k u^{\prime}}{x^{+1}}+\frac{(k+1) k u}{x^{k+2}}\right)+(1+2 k)\left(\frac{u^{\prime}}{x^{k}}-\frac{k u}{x^{k+1}}\right)+\lambda^{2} x \frac{u}{x^{k}} & =0 \\
\frac{u^{\prime \prime}}{x^{k-1}}-\frac{2 k u^{\prime}}{x^{k}}+\frac{(k+1) k u}{x^{k+1}}+(1+2 k) \frac{u^{\prime}}{x^{k}}-\frac{(1+2 k) k u}{x^{k+1}}+\frac{\lambda^{2} u}{x^{k-1}} & =0 \\
\frac{u^{\prime \prime}}{x^{k-1}}+\frac{u^{\prime}}{x^{k}}-\frac{k^{2} u}{x^{k+1}}+\frac{\lambda^{2} u}{x^{k-1}} & =0 \\
x^{2} u^{\prime \prime}+x u^{\prime}-k^{2} u+\lambda^{2} x^{2} u & =0 \\
x^{2} u^{\prime \prime}+x u^{\prime}+\left(\lambda^{2} x^{2}-k^{2}\right) u & =0
\end{aligned}
$$

This equation has a particular solution $J_{\mathbf{k}}(\lambda x)$. Therefore

$$
\begin{aligned}
u & =J_{k}(\lambda x) \\
\mathbf{y} x^{k} & =J_{k}(\lambda x) \\
y & =\frac{J_{k}(\lambda x)}{x^{k}}
\end{aligned}
$$

From this we can conclude that $\frac{J_{k}(\lambda x)}{x^{k}}$ satisfies

$$
\begin{equation*}
x\left(\frac{J_{k}(\lambda x)}{x^{k}}\right)^{\prime \prime}+(1+2 k)\left(\frac{J_{k}(\lambda x)}{x^{k}}\right)^{\prime}+\lambda^{2} x\left(\frac{J_{k}(\lambda x)}{x^{k}}\right)=0 . \tag{4-5}
\end{equation*}
$$

4.2 Lemma. Let $-\infty<\mathrm{a}_{0}<\mathrm{b}_{0}<+\infty$. Suppose $\emptyset \varepsilon c^{1}\left(\left[\mathrm{a}_{0}, \mathrm{~b}_{0}\right]\right.$ such that $\emptyset\left(a_{0}\right)=0$ and $\emptyset>0$ in $\left(a_{0}, b_{0}\right)$. Assume that u and v belong to $c^{2}\left(\left[a_{0}, b_{0}\right]\right), v\left(a_{0}\right)>0, u\left(a_{0}\right) \neq 0$ and $u(c)=0$ for some $c \in\left\{a_{0}, b_{0}\right)$. If u and v satisfy

$$
\begin{equation*}
\left(\phi(t) u^{\prime}(t)\right)^{\prime}+p \phi(t) u(t)=0 \tag{4-6}
\end{equation*}
$$

$$
\begin{equation*}
\left(\phi(t) v^{\prime}(t)\right)^{\prime}+p \phi(t) v(t)<0 \tag{4-7}
\end{equation*}
$$

whenever $a_{0}<t<b_{0}$ where p is a real number, then v vanishes at least once in $\left(a_{0}, c\right)$.

Proof : Take c to be the smallest number larger than a_{0} such that $u(c)=0$. Suppose that $v(t) \neq 0$ for any $t \varepsilon\left(a_{0}, c\right)$. Then by the hypothesis that $v\left(a_{0}\right)>0$ and v is continuous, we get $v>0$ on (a_{0}, c). We may assume that $u>0$ on (a_{0}, c), by multiplying, if necessary u and the equation (4-6) by -1 , and we then have that $u^{\prime}(c) \leq 0$. By multiplying (4-6) by $v,(4-7)$ by u and subtracting, we get

$$
\left[\phi(t)\left(u^{\prime}(t) v(t)-v^{\prime}(t) u(t)\right)\right]^{\prime}>0
$$

Integration yields

$$
\begin{equation*}
\left[\phi(t)\left(u^{\prime}(t) v(t)-v^{\prime}(t) u(t)\right)\right]_{a_{0}}^{c}>0 \tag{4-8}
\end{equation*}
$$

But

$$
\begin{aligned}
{\left[\phi(t)\left(u^{\prime}(t) v(t)-v^{\prime}(t) u(t)\right)\right]_{a_{0}}^{c} } & =\emptyset(c) u^{\prime}(c) v(c) \\
& \leq 0
\end{aligned}
$$

since $\varnothing(c)>0, u^{\prime}(c) \leq 0$ and $v(c) \geq 0$. This contradicts (4-8). Therefore v vanishes at least once in $\left(a_{0}, c\right)$.
4.3 Theorem. Let $a>0$. Then the function $t \rightarrow \frac{J_{v}(\lambda t)}{t^{v}}$ never

$$
\lambda=\sqrt{n-1} \text { a. }(n \geq 3)
$$

Proof : We can show that the function $\frac{a}{t} \tan$ (at) is creasing in $\left(0, \frac{\pi}{2 a}\right)$ and

$$
\lim _{t \rightarrow 0^{+}} \frac{a}{t} \tan (a t)=a^{2}
$$

Therefore $\frac{a}{t} \tan (a t)>a^{2} \quad\left(0<t<\frac{\pi}{2 a}\right)$. We consider that $\left(t^{n-2}(\cos (a t))^{t}\right)^{\prime}+t^{n-2} \lambda^{2} \cos (a t)=-t^{n-2} a^{2} \cos (a t)-(n-2) t^{n-3} a \sin (a t)$ $+\lambda^{2} t^{n-2} \cos (a t)$
$=t^{n-2} \cos (a t)\left\{\lambda^{2}-a^{2}-(n-2) \frac{a}{t} \tan (a t)\right\}$
$=t^{n-2} \cos (a t)\left\{(n-2) a^{2}-(n-2) \frac{a}{t} \tan (a t)\right\}$
<0

$$
\begin{equation*}
\left(t^{n-2}\left(\cos (a t)^{\prime}\right)^{\prime}+t^{n-2} \lambda^{2} \cos (a t)<0\right. \tag{4-9}
\end{equation*}
$$

where $\lambda^{2}=(n-1) a^{2}$ and the last inequality follows from the fact that $\frac{a}{t} \tan (a t)>a^{2}$. The function $\frac{J_{v}(\lambda t)}{t^{v}}$ satisfies (4-5) and for $v=\frac{n-3}{2}$ we get

$$
\begin{equation*}
\left(\frac{J_{v}(\lambda t)}{t^{v}}\right)^{\prime \prime}+\frac{n-2}{t}\left(\frac{J_{v}(\lambda t)}{t^{v}}\right)^{\prime}+\lambda^{2}\left(\frac{J_{v}(\lambda t)}{t^{v}}\right)=0 . \tag{4-10}
\end{equation*}
$$

Multiplying (4-10) by $\mathrm{t}^{\mathrm{n}-2}$ and rearranging we obtain

$$
\begin{equation*}
\left(t^{n-2}\left(\frac{v_{v}(\lambda t)}{t^{v}}\right)^{\prime}\right)^{\prime}+t^{n-2} \lambda^{2}\left(\frac{v^{J}(\lambda t)}{t^{v}}\right)=0 . \tag{4-11}
\end{equation*}
$$

By (4-9), (4-11) and Lemma 4,2 for $a_{0}=0, b_{0}=\frac{\pi}{2 a}, \phi(t)=t^{n-2}, p=\lambda^{2}$ and $v(t)=\cos (a t)$ we get that $\frac{J_{v}(\lambda t)}{t^{\nu}} \neq 0$ for any t in $\left(0, \frac{\pi}{2 a}\right]$ since $v(t)$ never vanishes in $\left(0, \frac{\pi}{2 a}\right)$. Since

$$
\lim _{t \rightarrow 0^{+}} \frac{J_{v}(\lambda t)}{t^{v}}=\frac{\lambda^{v}}{2^{v} \Gamma(v+1)},
$$

it follows that $\inf _{0<t \leq \frac{\pi}{2 a}} \frac{J_{v}(\lambda t)}{t^{v}}>0$. This completes the proof.

$$
0<t \leq \frac{\pi}{2 a}
$$

For each $\mathrm{b}>0$ and $\mathrm{n} \geq 2$, we introduce

$$
D(b)=C(a) \cap\left\{x \in R^{n} \mid 0<x_{n}<b\right\}
$$

and

$$
E(b)=C(a) \cap\left\{x \in R^{n} \mid x_{n}=b>0\right\}
$$

Therefore by Theorem 3.14, there is a generalized Dirichlet solution, denoted by h_{b}, for the indicator function $X_{E(b)}$ of a subset $E(b)$ of $\partial D(b)$. We note that $0 \leq h_{b} \leq 1$. The following theorem indicates the growth of $h_{b}(x)$ with respect to b.
4.4 Theorem. Let $a>0$. If we fix each point x in $C(a)$, then there exist positive numbers A and B such that

$$
h_{b}(x) \leq A e^{-\lambda b} \quad(b>B)
$$

where $\lambda=\sqrt{n-1}$ a, $\quad(n \geq 2)$.

Proof : First we prove for the case $n=2$. We represent a point in R^{2} as a complex number in \mathbb{C} and recall that an analytic function f such that $f^{\prime} \neq 0$ on a domain $D \subset \mathbb{C}$ is called a conformal mapping. It is well known that every harmonic function of u, v transforms into a harmonic function of x, y under the change of variables

$$
u+i v=f(x+i y)
$$

where f is analytic function. To see this, let H denote any harmonic function of u and v. By this transformation $H(u, v)$ is transformed into a function $H(u(x, y), v(x, y))$. Let

$$
H^{*}(x, y)=H(u(x, y), v(x, y))
$$

By differentiation we have

$$
\begin{aligned}
& \frac{\partial H^{*}}{\partial x}=\frac{\partial H}{\partial u} \frac{\partial u}{\partial x}+\frac{\partial H}{\partial v} \frac{\partial v}{\partial x}, \frac{\partial H^{*}}{\partial y}=\frac{\partial H}{\partial u} \frac{\partial u}{\partial y}+\frac{\partial H}{\partial v} \frac{\partial v}{\partial y} \\
& \frac{\partial^{2} H^{*}}{\partial x^{2}}=\frac{\partial H}{\partial u} \frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial u}{\partial x}\left[\frac{\partial^{2} H}{\partial u^{2}} \frac{j u}{i x}+\frac{\partial^{2} H}{\partial v \partial u} \frac{\partial v}{\partial x}\right]+\frac{\partial H}{\partial v} \frac{\partial^{2} v}{\partial x^{2}}+\frac{\partial v}{\partial x}\left[\frac{\partial^{2} H}{\partial u \partial v} \frac{\partial u}{\partial x}+\frac{\partial^{2} H}{\partial v^{2}} \frac{\partial v}{\partial x}\right] \\
& \frac{\partial^{2} H^{*}}{\partial y^{2}}=\frac{\partial H}{\partial u} \frac{\partial^{2} u}{\partial y^{2}}+\frac{\partial u}{\partial y}\left[\frac{\partial^{2} H}{\partial u^{2}} \frac{\partial u}{\partial y}+\frac{\partial^{2} H}{\partial v \partial u} \frac{\partial v}{\partial y}\right]+\frac{\partial H}{\partial v} \frac{\partial^{2} v}{\partial y^{2}}+\frac{\partial v}{\partial y}\left[\frac{\partial^{2} H}{\partial u \partial v} \frac{\partial u}{\partial y}+\frac{\partial^{2} H}{\partial v^{2}} \frac{\partial v}{\partial y}\right]
\end{aligned}
$$

Adding,

$$
\begin{aligned}
\frac{\partial^{2} H^{*}}{\partial x^{2}}+\frac{\partial^{2} H^{*}}{\partial y^{2}}= & \frac{\partial H}{\partial u}\left(\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}\right)+\frac{\partial H}{\partial v}\left(\frac{\partial^{2} v}{\partial x^{2}}+\frac{\partial^{2} y}{\partial y^{2}}\right)+\frac{\partial^{2} H}{\partial u^{2}}\left[\left(\frac{\partial u}{\partial x}\right)^{2}+\left(\frac{\partial u}{\partial y}\right)^{2}\right] \\
& +2 \frac{\partial^{2} H}{\partial u \partial v}\left[\frac{\partial u}{\partial x} \frac{\partial v}{\partial x}+\frac{\partial u}{\partial y} \frac{\partial v}{\partial y}\right]+\frac{\partial^{2} H}{\partial v^{2}}\left[\left(\frac{\partial v}{\partial x}\right)^{2}+\left(\frac{\partial v}{\partial y}\right)^{2}\right]
\end{aligned}
$$

Since u, v and H are harmonic, $\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0, \frac{\partial^{2} v}{\partial x^{2}}+\frac{\partial^{2} v}{\partial y^{2}}=0$ and
$\frac{\partial^{2} H}{\partial u^{2}}+\frac{\partial^{2} H}{\partial v^{2}}=0$. Also, by the Cauchy-Riemann equations, $\frac{\partial u}{\partial x}=\frac{\partial v}{\partial y}$ and $\frac{\partial v}{\partial x}=-\frac{\partial u}{\partial y}$. Therefore

$$
\frac{\partial^{2} H^{*}}{\partial x^{2}}+\frac{\partial^{2} H^{*}}{\partial y^{2}}=0
$$

and H^{*} is a harmonic function of x and y.

Fig. I
Consider the set S of the form

$$
S=\left\{(x, y) \left\lvert\,-\frac{\pi}{2 a}<x<\frac{\pi}{2 a}\right., \quad 0<y<\frac{\sinh ^{-1} \sqrt{\sinh ^{2}(a b)-\sin ^{2}(a x)}}{a}\right\}
$$

We want to find the harmonic function H which satisfies the following boundary conditions :

$$
\begin{array}{ll}
H\left(-\frac{\pi}{2 a}, y\right)=H\left(\frac{\pi}{2 a}, y\right)=0 & \left(0<y<\frac{\sinh ^{-1} \sqrt{\sinh ^{2}(a b)-\sin ^{2}(a x)}}{a}\right) \\
H\left(x, \frac{\sinh ^{-1} \sqrt{\sinh ^{2}(a b)-\sin ^{2}(a x)}}{a}=1\right. & \left(-\frac{\pi}{2 a}<x<\frac{\pi}{2 a}\right) .
\end{array}
$$

and $H(x, 0)=0 \quad\left(-\frac{\pi}{2 a}<x<\frac{\pi}{2 a}\right)$.
To do this we transform S on the z-plane into the w-plane by the conformal mapping $w=\sin (a z)$. As indicated in Fig.I, the image of the base of S is the segment of the u-axis between the point $u=-1$ and $u=1$, the image of the side $A C$ and $B D$ are the segments $A^{\prime} C^{\prime}$ and $B^{\prime} D^{\prime}$ on the u-axis respectively, and the image of the curve AEB is $A^{\prime} E^{\prime} B^{\prime}=\left\{(u, v) \varepsilon w-p l a n e \mid u^{2}+v^{2}=\sinh ^{2}(a b)\right\}$. By interchanging the variables u and v to polar coordinates, we can write

$$
u=r \cos \theta, \quad v=r \sin \theta
$$

and $A^{\prime} E^{\prime} B^{\prime}=\{(u, v) \mid r=\sinh (a b), 0 \leq \theta \leq \pi\}$. A harmonic function H of r and θ on the semicircle center at 0 with radius $R=\sinh (a b)>1$ is

$$
\begin{equation*}
H(r, \theta)=\frac{2}{\pi} \tan ^{-1} \frac{2 R r \sin \theta}{R^{2}-r^{2}} . \tag{4-12}
\end{equation*}
$$

H is zero on $A^{\prime} B^{\prime}$ and unity on the curve $A^{\prime} E^{\prime} B^{\prime}$. Changing to the coordinates x and y by means of the transformation

$$
\begin{align*}
w & =\sin (a z) \quad=\sin (a x+i a y) \tag{4-13}\\
& =\sin (a x) \cosh (a y)+i \cos (a x) \sinh (a y)
\end{align*}
$$

we find that $u=\sin (a x) \cosh (a y), v=\cos (a x) \sinh (a y)$. Therefore

$$
\begin{aligned}
r \cos \theta & =\sin (a x) \cosh (a y) \\
r \sin \theta & =\cos (a x) \sinh (a y)
\end{aligned}
$$

and $r=\sqrt{\sinh ^{2}(a y)+\sin ^{2}(a x)}, \theta=\tan ^{-1}\left(\frac{\cos (a x) \sinh (a y)}{\sin (a x) \cosh (a y)}\right)=\tan ^{-1}(\cot (a x) \tanh (a y))$. The function H given by equation ($4-12$) therefore becomes $H^{*}(x, y)=\frac{2}{\pi} \tan ^{-1} \frac{a R \sqrt{\sinh ^{2}(a y)+\sin ^{2}(a x)} \sin \left(\tan ^{-1}(\cot (a x) \tanh (a y))\right.}{R^{2}-\left(\sinh ^{2}(a y)+\sin ^{2}(a x)\right)}$. Since H is harmonic on the semicircle, H^{*} must be a harmonic function of x and y in S. The boundary conditions for the two functions must be the same on corresponding parts of the boundaries. Fixing (x, y) in S we see that $\lim _{R \rightarrow \infty} R R^{*}(x, y)=\lim _{R \rightarrow \infty} R \cdot \frac{2}{\pi} \tan ^{-1} \frac{2 R \sqrt{\sinh ^{2}(a y)+\sin ^{2}(a x)} \sin \left(\tan ^{-1}(\cot (a x) \tanh (a y))\right.}{R^{2}-\left(\sinh ^{2}(a y)+\sin ^{2}(a x)\right)}$

$$
\begin{aligned}
& =\lim _{t \rightarrow 0} \frac{1}{t} \cdot \frac{2}{\pi} \tan ^{-1} \frac{2 t \sqrt{\sinh ^{2}(a y)+\sin ^{2}(a x)} \sin \left(\tan ^{-1}(\cot (a x) \tanh (a y))\right.}{1-t^{2}\left(\sinh ^{2}(a y)+\sin ^{2}(a x)\right)} \\
& =\frac{4}{\pi} \sqrt{\sinh ^{2}(a y)+\sin ^{2}(a x)} \sin \left(\tan ^{-1}(\cot (a x) \tanh (a y))\right.
\end{aligned}
$$

where the last equality is obtained by using L' Hopital rule. This together with the fact that

$$
\lim _{b \rightarrow \infty} \frac{\sinh (a b)}{e^{a b}}=\frac{1}{2}
$$

we can find a constant A such that

$$
\begin{equation*}
H^{*}(x, y) \leq A e^{-a b} \tag{b>B}
\end{equation*}
$$

Since h_{b} is the generalized Dirichlet solution for $X_{E(b)}, h_{b}-H^{*}$ is harmonic on S and $h_{b}-H^{*} \leq 0$ on ∂S. Since $h_{b}-H^{*}$ satisfies the maximum principle on $S, h_{b}-H^{*}$ cannot attain its supremum on S. Since \bar{S} is
compact, $h_{b}-H^{*}$ attains its supremum on $\overline{\mathrm{S}}$, in fact, on $\partial \mathrm{S}$. Therefore $h_{b}-H^{*} \leq 0$ on S. Fixing (x, y) $\in S \subset D(b)$, we have

$$
h_{b}(x, y) \leq H^{*}(x, y) .
$$

Therefore for sufficiently large b we obtain

$$
h_{b}(x, y) \leq A e^{-a b}
$$

where A is a constant. This completes the proof for the case $n=2$.
Next we prove for the case $n \geq 3$, let

$$
F_{v}\left(\lambda_{\rho}\right) \quad= \begin{cases}\frac{\lambda^{v}}{2^{v}(\nu+1)} & \text { if } \rho=0 \\ \frac{J_{v}\left(\lambda_{\rho}\right)}{\rho^{v}} & \text { if } 0<\rho \leq \frac{\pi}{2 a}\end{cases}
$$

where $v=\frac{n-3}{2}, \lambda=\sqrt{n-1}$ a. Thus by Theorem 4.3, $F_{v}\left(\lambda_{\rho}\right)$ is positive in $\left[0, \frac{\pi}{2 a}\right]$ and let

$$
\begin{aligned}
& K=\min ร F_{\nu}\left(\lambda_{\rho}\right)>0 . \\
& 0 \leq \rho \leq \frac{\pi}{2 a} \text { ORNUNIVERSIT }
\end{aligned}
$$

We define a function H_{b} by

$$
H_{b}(x)=\frac{\sinh \left(\lambda x_{n}\right) F_{V}\left(\lambda_{\rho}\right)}{K \sinh (\lambda b)} .
$$

For $\rho>0$, we consider that

$$
\begin{aligned}
& \Delta H_{b}(x)=\frac{1}{K \sinh (\lambda b)}\left[\frac{n-2}{\rho}\left(\frac{J_{v}(\lambda \rho)}{\rho^{\nu}}\right)^{\prime} \sinh \left(\lambda x_{n}\right)+\left(\frac{J_{v}(\lambda \rho)}{\rho^{v}}\right)^{\prime \prime} \sinh \left(\lambda x_{n}\right)\right. \\
& \left.+\left(\frac{J_{v}(\lambda \rho)}{\rho^{v}}\right)\left(\sinh \left(\lambda x_{n}\right)\right)^{\prime \prime}\right] \\
& =\frac{\sinh \left(\lambda_{x_{n}}\right) J_{v}\left(\lambda_{\rho}\right)}{K_{\rho}{ }^{\nu} \sinh (\lambda b)}\left[\frac{\rho^{\nu}}{J_{v}\left(\lambda_{\rho}\right)}\left(\left(\frac{J_{v}\left(\lambda_{\rho}\right)}{\rho^{\nu}}\right)^{\prime \prime}+\frac{n-2}{\rho}\left(\frac{J_{v}\left(\lambda_{\rho}\right)}{\rho^{\nu}}\right)\right)+\left(\frac{\sinh \left(\lambda x_{n}\right)}{\sinh \left(\lambda x_{n}\right)}\right)^{\prime \prime}\right] \\
& \left.=H_{b}(x)\left[\frac{\rho^{\nu}}{J_{v}\left(\lambda_{\rho}\right)}\left(\frac{J_{v}(\lambda \rho)}{\rho^{\nu}}\right)^{\prime \prime}+\frac{n-2}{\rho}\left(\frac{J_{v}\left(\lambda_{\rho}\right)}{\rho^{\nu}}\right)^{\prime}+\lambda^{2} \frac{J_{v}\left(\lambda_{\rho}\right)}{\rho^{\nu}}-\lambda^{2} \frac{J_{v}\left(\lambda_{\rho} \rho\right)}{\rho^{\nu}}\right)+\lambda^{2}\right] \\
& =0
\end{aligned}
$$

where the first equality is obtained by using (4-2) and the last equality follows from the fact that $\frac{J_{v}(\lambda \rho)}{\rho^{\nu}}$ satisfies

$$
u^{\prime \prime}(\rho)+\frac{n-2}{\rho} u^{\prime}(\rho)+\lambda^{2} u(\rho)=0
$$

Thus H_{b} is harmonic on $D(b) \backslash Z^{*}$ where $Z^{*}=\{x \in D(b) \mid \rho=0\}$ is a polar set. Since H_{b} is continuous on Z^{*}, H_{b} is harmonic on $D(b), h_{b}$ and H_{b} are bounded harmonic functions that satisfy

$$
\lim _{x \rightarrow y}\left(H_{b}(x)-h_{b}(x) \quad 0 \quad(y \in \partial D(b) \backslash z)\right.
$$

where Z is the intersection of the sphere center 0 radius $\frac{\pi}{2 a}$ and the hyperplane $x_{n}=b$ which is a polar set in $R^{n}(n \geq 3)$. It follows from Theorem 2.24 that $h_{b} \leq H_{b}$. Therefore

$$
\begin{aligned}
h_{b}(x) & \leq \frac{\sinh \left(\lambda x_{n}\right) F_{v}(\lambda \rho)}{K \sinh (a b)} \\
& =\frac{\sinh \left(\lambda x_{n}\right) F_{v}(\lambda \rho)}{K}\left(\frac{2}{e^{\lambda b}-e^{-\lambda b}}\right) \\
& =\frac{2 \sinh \left(\lambda x_{n}\right) F_{v}(\lambda \rho)}{K}\left(\frac{1}{e^{\lambda b}\left(1-e^{-2 \lambda b}\right)}\right) .
\end{aligned}
$$

This shows that for each x fixed in $C(a)$, there exists a positive number A which is independent of b such that
for all sufficiently large b.
4.5 Definition The limit inferior $\lim _{b \rightarrow \infty}$ inf $F(b)$ is defined by

$$
\lim _{b \rightarrow \infty} \inf F(b)=\sup _{b}\left\{\inf _{x \geq b} F(x)\right\}
$$

4.6 Theorem. Let $a>0$ and let S be a subharmonic in $C(a)$.

Assume that

$$
\lim _{x \rightarrow y} \sup S(x) \leq 0 \quad(y \in \partial C(a))
$$

and suppose that

$$
\lim _{b \rightarrow \infty} \inf e^{-\lambda b} M(b)^{+} \leq 0
$$

where $\lambda=\sqrt{n-1}$ a. Then $S \leq 0$ in $C(a)$.

We note that an analogous result for a subharmonic function on a cone has been given in [10].

Proof : For any fixed b, we consider S_{b} defined by

$$
S_{b}(x)=S(x)-M(b)^{+} h_{b}(x) \quad(x \in D(b))
$$

Since h_{b} is harmonic and S is subharmonic in $D(b), S_{b}$ is subharmonic in $D(b)$. By the hypothesis that

$$
\lim _{x \rightarrow y} \sup S(x) \leq \quad(y \in \partial C(a))
$$

and the property of h_{b} we get S_{b} satisfying

$$
\lim _{x \rightarrow y} \sup _{b} S_{b}(x) \leq 0 \quad(y \in \partial D(b))
$$

Therefore by Theorem 2,6, $S_{b}(x) \leq 0$. This gives

$$
S(x) \leqslant M(b)^{+} h_{b}(x)
$$

Keeping x fixed we have that

$$
\lim _{b \rightarrow \infty} \inf e^{-\lambda b} M(b)^{+} \leq 0
$$

Let $\varepsilon>0$ be given. By Theorem 4.4 we can find positive numbers A and B such that

$$
h_{b}(x) \leq A e^{-\lambda b} \quad(b>B)
$$

We can find a sequence of positive numbers $b_{j}, j=1,2, \ldots$ tending to infinity, with the property that for all sufficiently large j

$$
e^{\left.-\lambda b_{j_{M(}}\right)_{j}+}<\varepsilon / A
$$

Since x is in $D\left(b_{j}\right)$ and $b_{j}>B_{2}$ when j is sufficiently large, we conclude that $S(x)<\varepsilon$. By letting $\varepsilon \rightarrow 0$ we get $S(x) \leq 0$ for $x \varepsilon C(a)$
4.7 Corollary. Let $a>0$, let h be harmonic in the cylinder $C(a)$ such that it vanishes on the boundary $\partial C(a)$. If $\max \left\{|h(x)|\left|\left|x_{n}\right|=b\right\}\right.$ $=O\left(e^{\cdot \lambda b}\right)$ as $b \rightarrow \infty$ where $\lambda=\sqrt{n-1} a$, then $h=0$ in $C(a)$.

Proof : Since h is harmonic, h is subharmonic and superharmonic on $C(a)$. By Theorem $4.6, h \leq 0$ and $h \geq 0$ in $C(a)$. Therefore $h=0$ in $C(a)$.

