
Conventional Jar Test Experimentations

TABLE I Chemical Analyses of Ground Water during Jar test RUN No. A

Iron concentration in water3 mg/lFast mixing speed 100 rpm time1 min.Slow mixing speed 40 " " 3 "Settling time20 minutes.

				1		
Jar No.	1	2	3	4	5	6
KMnO ₄ used mg/1	0.25	0.5	1.0	1.5	2.0	2.5
Alkalinity mg/l as CaCO ₃	74	73	73	74	74	74
Total hardness mg/1 CaC0 ₃	82	80	83	80	81	82
Total iron mg/l Residual	0.21	0.13	0.04	0.01	0.01	0.01
pH	7.49	7.42	7.51	7.50	7.47	7.49
Floc. Formation	poor	fair	good	good	good + héavy	good heavy

Tested Water.

*

TABLE 2: Chemical Analyses of Ground Water during Jar test RUN No. B

Iron concentration in water 5 mg/l Fast mixing speed 100 rpm time 1 min. Slow mixing speed 40 " " 3 " Settling time 20 minutes.

				and the second		and a second sec
Jar N <u>o</u> .	1	2	3	4	5	6
KMnO ₄ used mg/1	1	2	3	4	5	6
Alkalinity mg/1 as CaCO ₃	72	74	73	73	74	74
Total hardness mg/l CaCO ₃	81	82	81	81	82 .	82
Total iron mg/l Residual	0.12	0.04	0.02	0.01	0,01	0.01
рН	7.46	7.52	7.50	7.57	7.53	7.54
Floc. Formation	poor	poor	fair	good	good	good Heavy

4.

. .

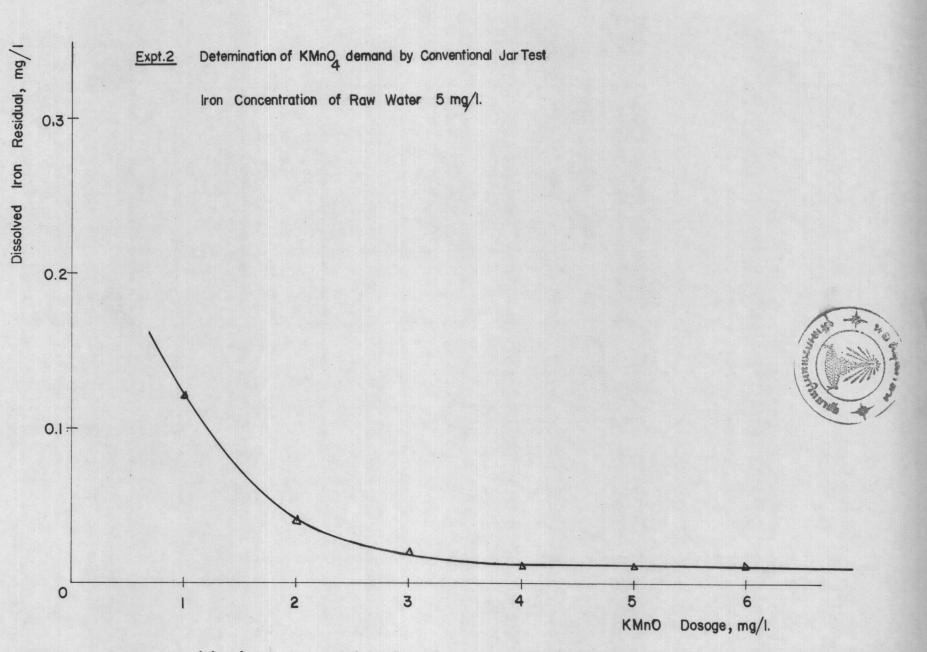
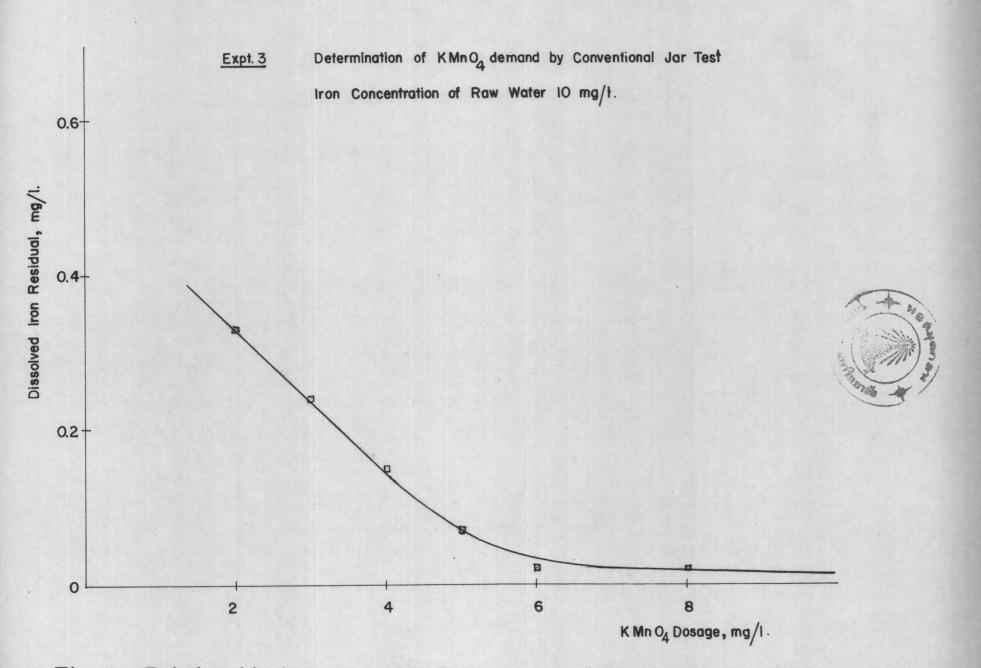


Fig 10 Relationship between KMnO₄ Dosage and Dissolved Iron Residual in Tested water.

TABLE 3 Chemical Analyses of Ground Water during Jar test

RUN No. C


+

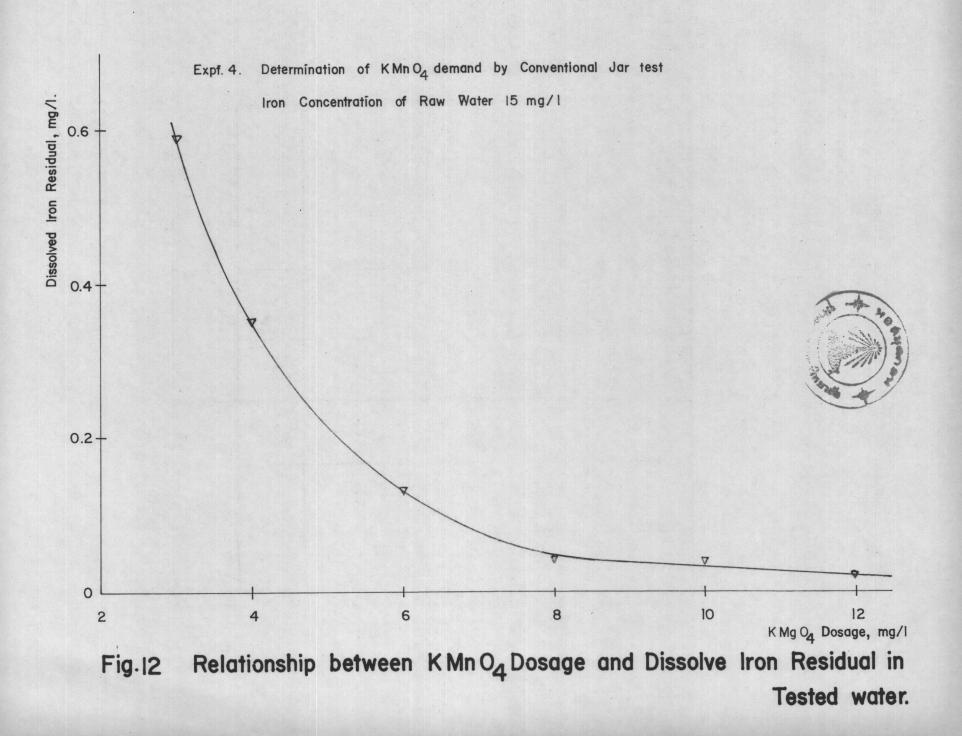
Iron concentration in water10 mg/lFast mising speed 100 rpm time1 min.Slow mixing speed 40 " " 3 "Settling time20 minutes.

Jar No.	1	2	3	4	5	6
KMn0 ₄ used mg/1	2	3	4	5	6	8
Alkalinity mg/l as CaCO ₃	75	74	75	76	75	76 -
Total hardness mg/1 CaCO ₃	83	83	82	81	82	83
Total iron mg/l Residual	0.33	0.24	0.15	0.07	0.02	0.02
рН	7.53	7.59	7.61	7.58	7.63	7.60
Floc.Formation	poor	fair	fair	good	good	good Heavy

- 52 -

1

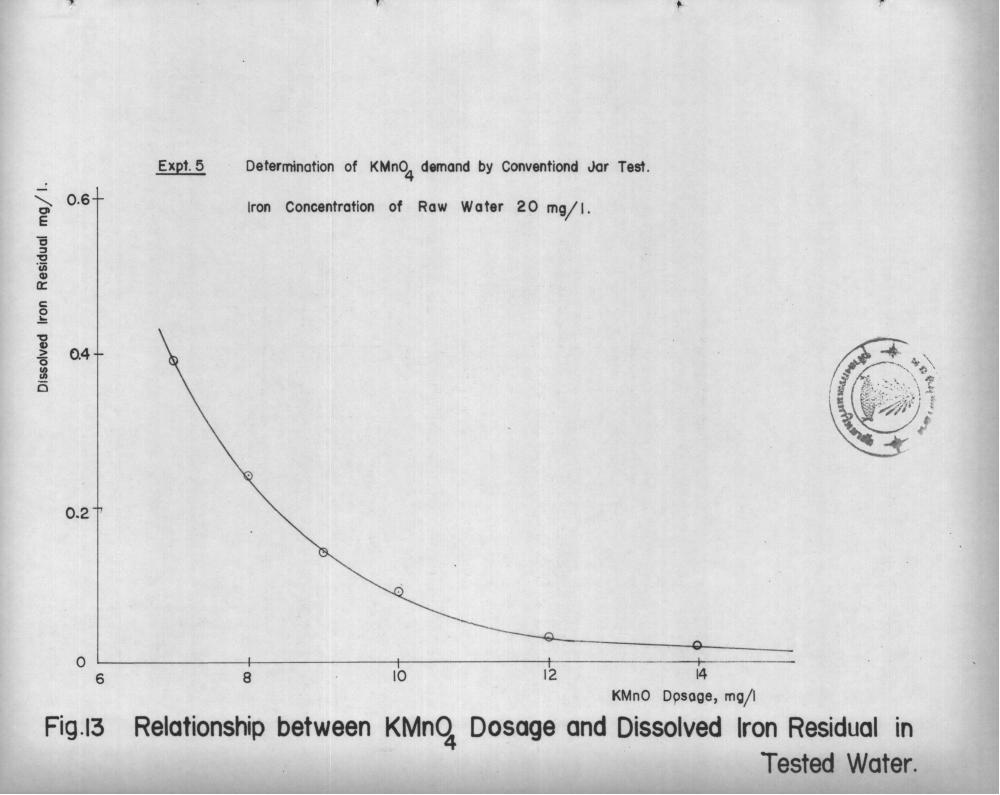
Fig. II Relationship between KMnO4 Dosage and Dissolved Iron Residual in Tested Water.

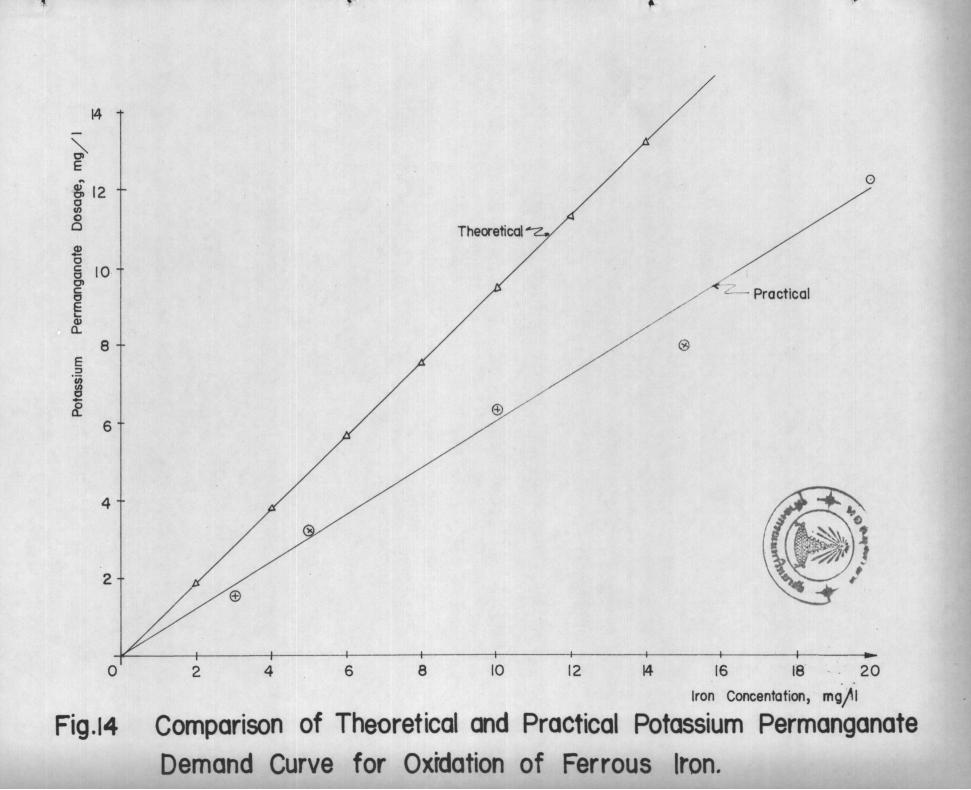

TABLE 4 Chemical Analysis of Ground Water during Jar test RUN No. D

Iron concentration in water15 mg/lFast mixing speed 100 rpm time1 min.Slow mixing speed 40 " " 3 "Settling time20 minutes.

1

Jar No.	1	2	3	4	5	6
KMnO ₄ used mg/l	3	4	6	8	10	12
Alkalinity mg/l as CaCO ₃	73	74	75	76	75	75
Total hardness mg/1 CaCO ₃	83	84	82	84	84	83
Total iron mg/l Residual	0.59	0,35	0.13	0.04	0.04	0.02
рН	7.56	7.52	7.57	7.55	7.59	7.58
Flec. Formation		fair	fair	good	good	good + Heavy




<u>TABLE</u> 5 Chemical Analysis of Ground Water during Jar test <u>Run No. E</u>

Iron concentration in water20 mg/lFast mixing speed 100 rpm time1 min.Slow mixing speed 40 ""3 "Settling time20 minutes.

Jar No.	1	2	3	4	5	6
KMnO ₄ used mg/1	7	8	9	10	12	14
Alkalinity mg/l as CaCO ₃	74	75	73	74	74	75
Total hardness ng/1 CeC03	82	82	. ^ ₿1	83	80	82
Total iron mg/l Residual	0.39	0.24	0.14	0.09	0.03	J . 02
pН	7.52	7.48	7.57	7.60	7.59	7.61
Floc. Formation	poor	fair	fair	good ,	good Heavy	good Heavy

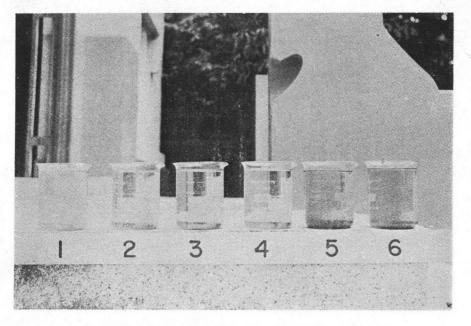
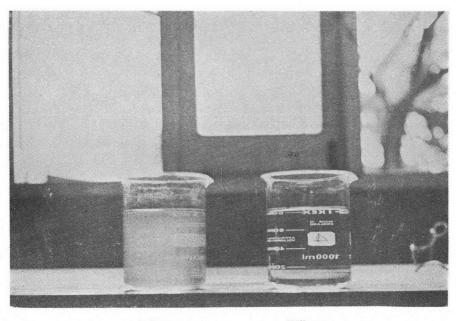



Fig. 15 Result after Jar Test Experiment.

InfluentEffluentFig. 16Comparison of Effluent and Influent Water.

Filtration Experimentations

- 60 -

TABLE 6 Total Iron Concentration in Effluent Water (mg/1)

RUN No. 1 - 5 Anthracite media

TIME			RUN NO.	Constant (
Hrs.	1	2	3	4	5
0		-	-	-	-
1	0.001	0.015	0.005	0.008	0.01
2	0.005	0.05	0.03	0.16	0.18
3	0.02	0.07	0.04	0.23	0.29
6	0.03	0.13	0.06	0,34	0.39
8	0.05	0.18	0.14	0.47	0.50
10	0.16	0.37	0.19	0.62	0.59
12	0.16	-	0.23	-	-
14	0.18	-	0.21	-	-
16	0.23	-	0.30	-	-
18	0.29	an a trade i	0.42	-	-
20	0.41	-	0.49	-	-
22	0.53	- A	0.58	-	
24	-	- 1-		-	-
26	-		-	-	-
28	-	-	-	-	-
30	-	-			-
32		-	-	19-1 - 19-18-18-18-18-18-18-18-18-18-18-18-18-18-	-
34	-	-	-		-
36	_	-	-	-	-
38	-	-	-	-	-
40	_	-	-	-	-

RUN NO. 1-5

Medium : Anthracite

Average Iron Concentration in Raw Water, 7.0 mg/l Depth of Medium 80 cm.

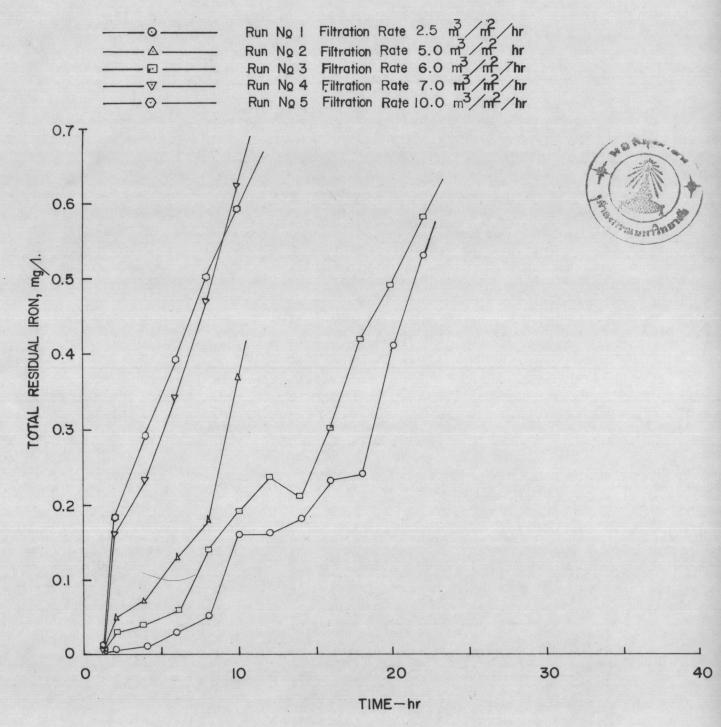
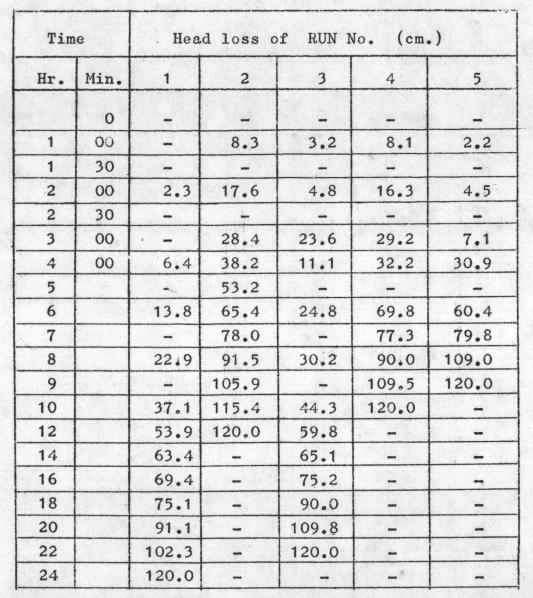



Fig. 17

Iron Concentration in Effuent Water At Various Filtration Time.

<u>TABLE</u>: 7 Filter Performance of Anthracite Media at Filtration rate of $2.5 - 10.0 \text{ m}^3/\text{m}^2/\text{hr}$.

1

TABLE

8 TURBIDITY (in FTU) OF INFLUENT AND EFFLUENT WATER Before and After entering the filter Column

10 P

all messes

Tir	ne	RU	N 1	RUN	2	RUN	3	RUN	14	RUN	5
HOUR	MIN	INF.	EFF.	INF.	EFF.	INF.	EFF.	INF.	EFF.	INF.	EFF
	0	14	-	18,5	_	5.5	_	6.2		12.5	-
1	00	-	-	15.0	0.15	5.2	0.20	6.7	0.31	9.2	0/3
1	30	13.5	0.4	18.7	0.18	-	-	-	-	-	-
2	00	11.0	0.35	19.0	0.20	5.5	0.20	4.9	0.24	7.5	0.1
2	30	-	-	15.0	0.21	-	-	-	-	-	-
3	00	-	-	20.1	0.20	-	-	-	-	5.6	0.1
4	-	8.0	0.20	20.0	0.18	6.4	0.25	7.1	0.28	7.4	0.2
5	-	-	-	17.0	0.25	-	-	-	-	-	-
6	-	5.5	0.32	16.5	0.25	6.3	0.27	8.3	0.31	4.8	0.2
7	-	-	-	14.0	0.25	-	-	-	-	5.1	-
8	-	6.1	0.36	15.5	0.26	6.5	0.33	5.1	0.30	6.7	0.2
9	-		-	-	0,29	-		11.2	0.42	16.0	0.3
10	-	6.1	0.39	16.7	0.30	4.9	0.30	10.4	0.57	-	-
11		- ·	-	14.5	0.40	- 1	-	-	-	-	-
12	-	7.7	0.40	-	-	6.0	0.39	-	-	-	-
14	-	7.5	0.42	-	-	5.9	0.41	-	-	-	-
16	-	7.4	0.47	-	-	. 7.1	0.48	-	-	-	-
18	-	8.8	0.49	-	-	8.3	0.53		-		-
20	-	9.1	0.53	-	-	6.5	0.53	-	-	-	-
22	-	9.3	0.51	-	-	7.2	0.55	-	-	-	-
24	-	10.0	0.60		-	-	-	-	-	-	-

Anthracite Media

TABLE 9 pH OF EFFLUENT WATER

Anthracite Media

Time			Run N	0.	
Hr.	1	2	3.	4	5
0	_	-	_	-	
1	-	7.3	7.75	7.38	7.55
2	7.65	7.35	7.90	7.45	7.5
4	7.38	7.5	7.70	7.43	7.49
6	7.50	7.6	7.64	7.4	7.5
8	7.49	7.58	7.71	7.5	7.5
10	7.60	7.61	7.92	7.51	7.57
12	7.55	7.65	7.69	A	-
14	7.58	-	7.85		
16	7.60	-	7.80	-	-
18	7.52		7.79	-	-
20	7.50		7.83	-	-
22	7.50	-	7.90	-	
24	7.51	-			

- 64 -

TABLE 10

ALKALINITY OF EFFLUENT WATER, mg/l as CaCO3

Fime			Run No.		
Hr.	1	2	3	4	5
0	-	_	_	_	_
1	-	-	-	67	66
2	72	72	88	66	67
4	68	66	80	64	65
6	72	72	76	66	70
8	72	68	78	65	70
10	74	72	79	67	67
12	74	70	80	-	-
14	72		80	-	-
16	72	-	82	-	-
18	72	-	80	-	-
20	72	-	81	9	-
22	69	-	81	-	-
24	71		-	-	

Anthracite Media

- 65 -

TABLE 11

HARDNESS OF EFFLUENT WATER, mg/1 as CaCO3

Time			Run No.		and the second
Hr.	1	2	3	4	5
0		-	_		-
2	80	72	76	82	85
4	82	90	84	84	86
6	86	82	84	84	86
8	82	82	80	85	85
10	84	82	80	85	85
12	84	84	84	-	-
14	80	-	84	-	-
16	80	-	82	-	-
18	83	-	80	19	-
20	81	-	80		-
22	82	-	82	-	-
24	80	-	-	-	-
26		-	-	-	-
28	_	-	-	-	-
30	-	_	-	-	-
32	- Sec 1999-	-	-	-	-
34	-	-	-	-	
36	-	-	-	-	-
38		-	-	-	-
40	Contract - Contract	-	-	-	-

[Anthracite Media]

- 66 -

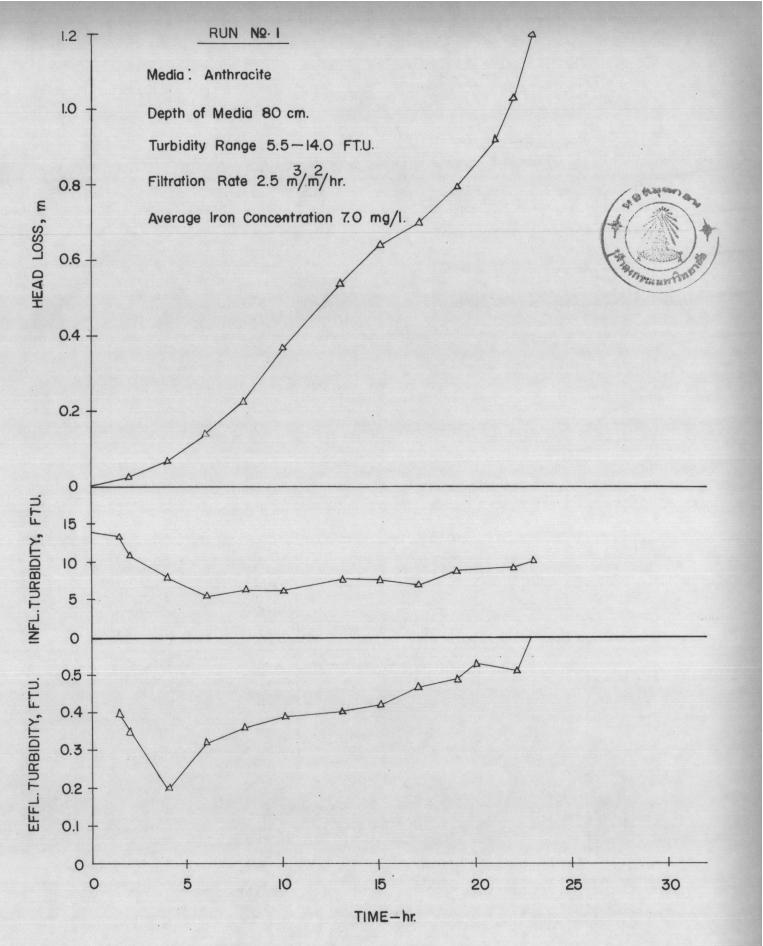


Fig. 18

Filter Performance of Anthracite Media

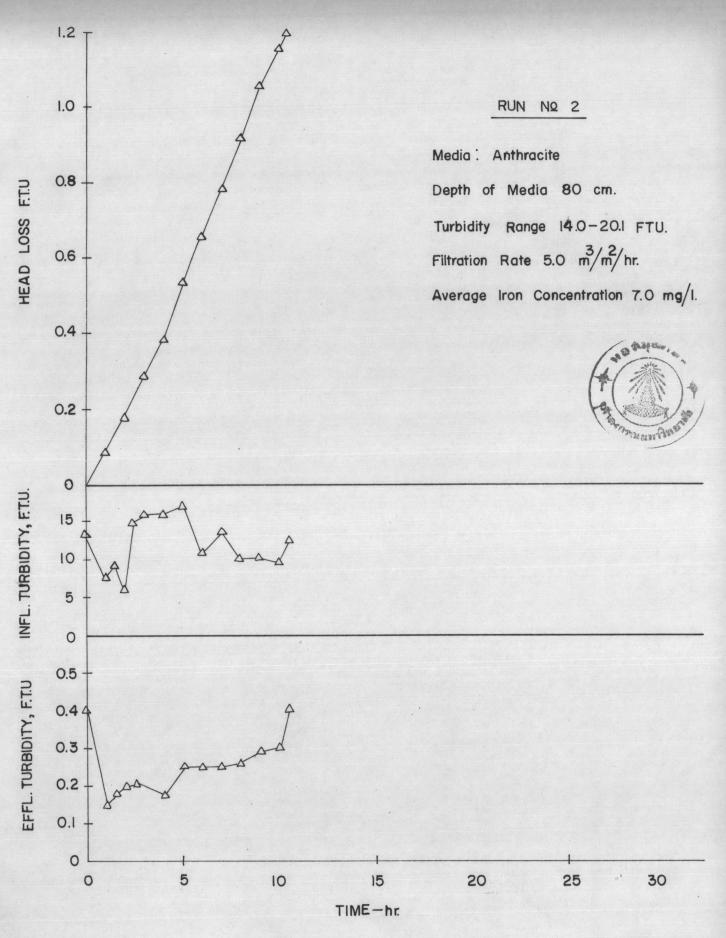


Fig. 19 Filter Performance of Anthracite Media

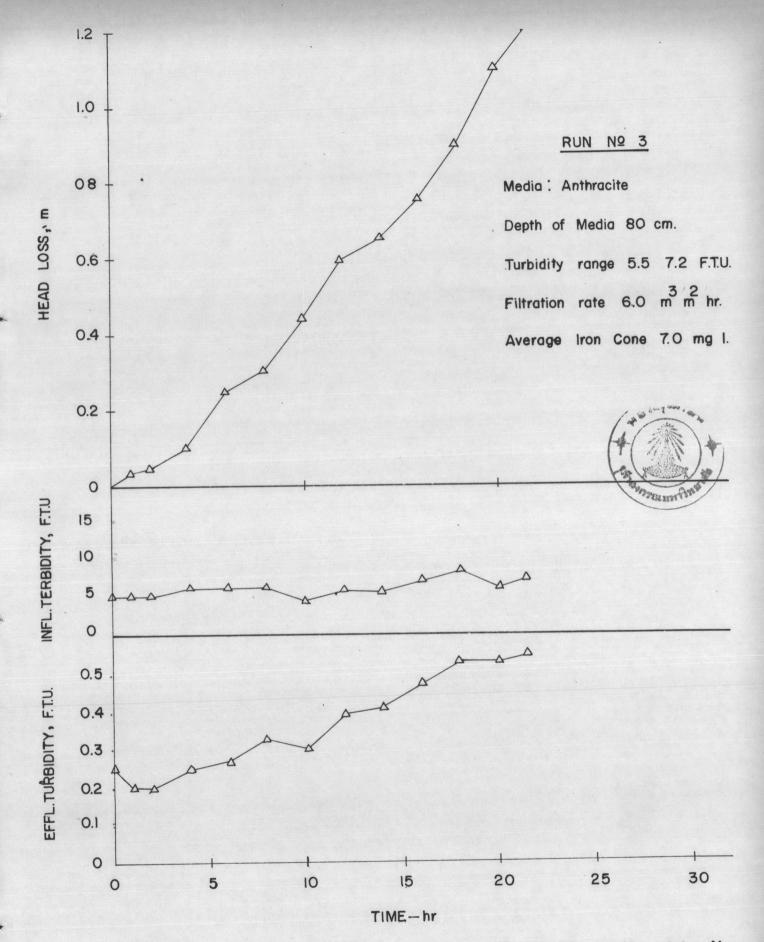


Fig. 20 Filter Performance of Anthracite Media

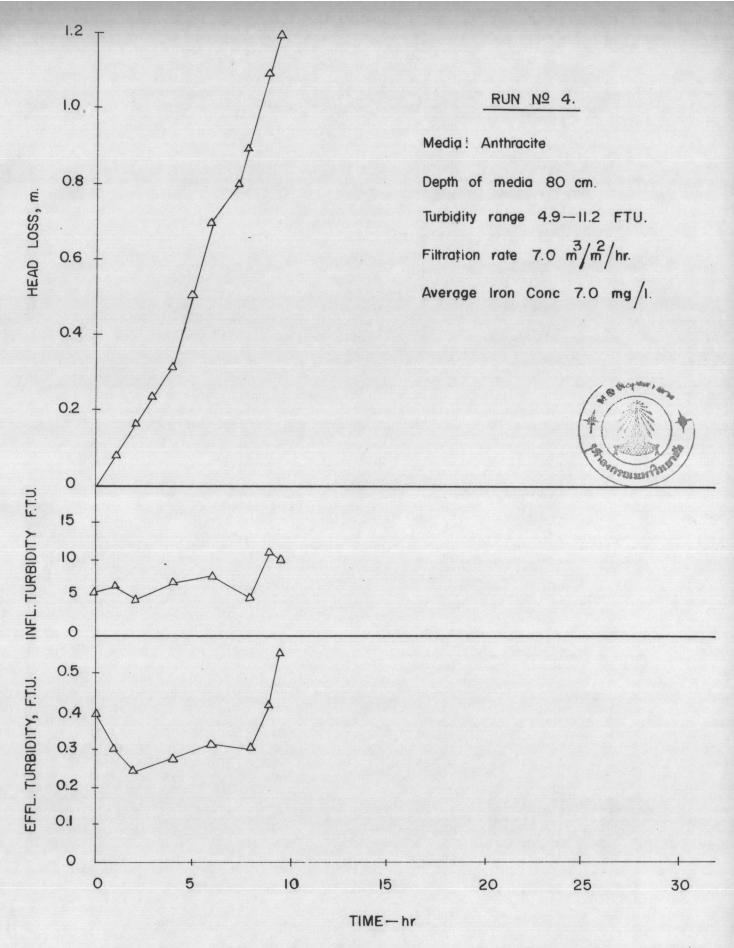
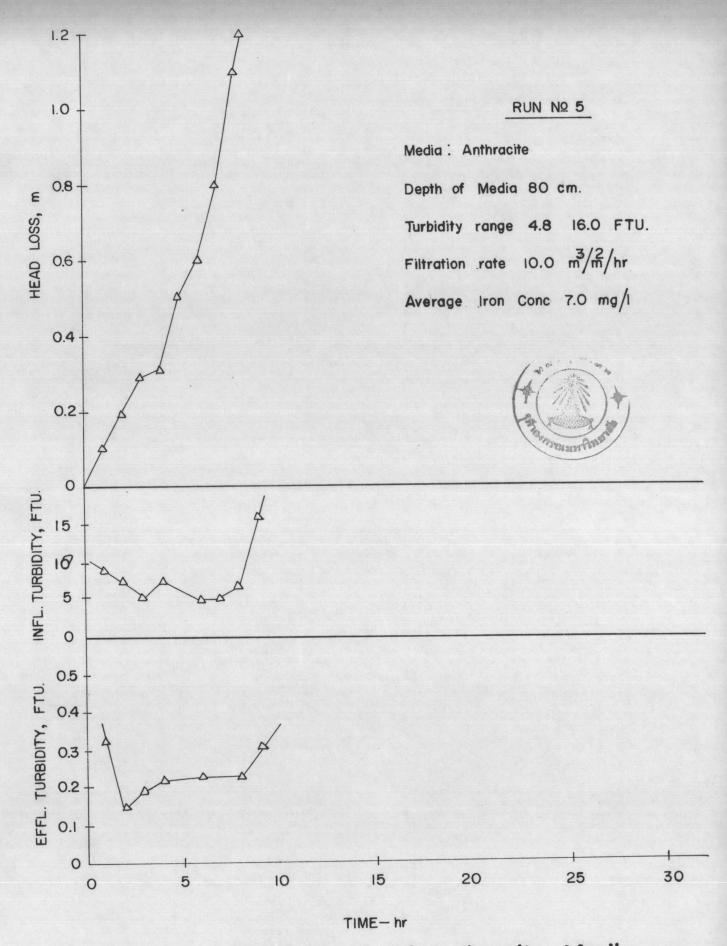



Fig. 21 Filter Performance of Anthracite Media.

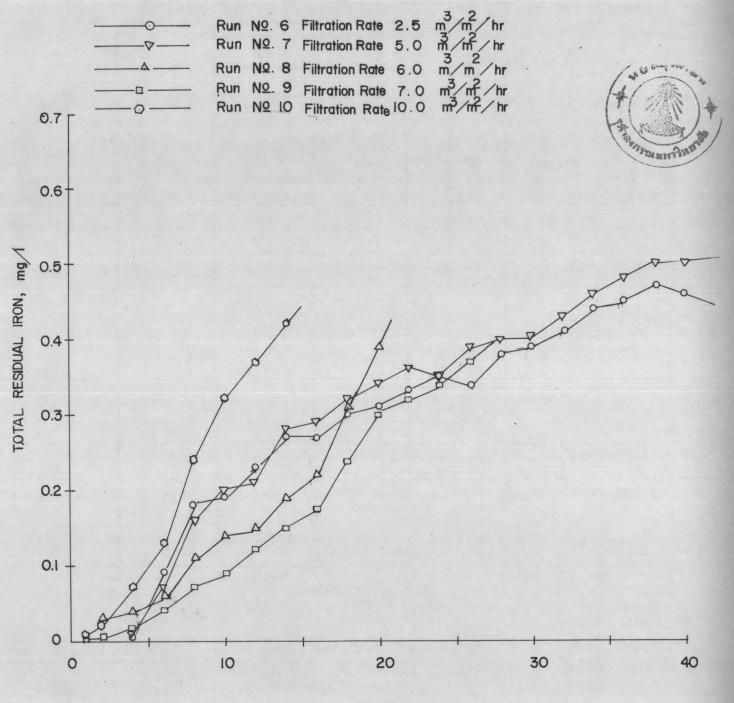
*

Fig. 22 Filter Reformance of Anthracite Media

TABLE 12 Total Iron Concentration in Effluent Water (mg/1)

Run No. 6 - 10 Burnt Rice Husk Media

TIME	1 1 5 1		Run No.		
hr.	No. <u>6</u>	.7	8	9	10
Ö	4	_	-		-
1	TRACE	TRACE	0.003	0.009	0.01
2	TRACE	TRACE	0.005	0.03	0.02
4	0.001	0.003	0.02	0.04	0.07
6	0.09	0.07	0.04	0.06	0.13
8	0.18	0.16	0.07	0.11	0.24
10	0/19	0.20	0.09	0.14	0.32
12	0.23	0.21	0.12	0.15	0.37
14	0.27	0.28	0.15	0.19	0.42
16	0.27	0.29	0.18	0.22	-
18	0.30	0.32	0.24	0.31	-
20	0.31	0.34	0.30	0.39	-
22	0.33	0.32	0.32	-	
24	0.35	0.36	C.34	-	-
26	0.34	0.35	0.37		-
28	0,38	0.39	-	-	-
30	0.39	0.40	-	-	-
32	0.41	0.43	-		-
34	0.44	0.46	-	-	-
36	0.45	0.48	-	-	
38	0.47	0.50	-	-	-
40	0.46	0.50		-	-


- 72 -

RUN Nº 6-10

Medium : Burnt Rice Husk.

Average Concentration in Raw Water 7.0 mg/l.

Depth of Medium 80 cm.

TIME-hrs.

Fig. 23 Iron Concentrations in Effuent Water at Various Filtration Time.

TABLE 13 Filter Performance of Burnt Rice Husk at Filtration rate of 2.5 - 10.0 $m^3/m^2/hr$.

Ti	ne		Head loss	of Run 1	No. (cm)		
Hr. Min.		6	7	8	. 9	10	
	0		-	-	-		
1	00	2.2	3.2	5.9	8:7	6	
1	30	-	-	-	-	-	
2	00	4.5	6.7	5.3	16:5	5	
2	30	-	-	<u>-</u>	-	-	
3	00	7.1	-	9.4	-	-	
4	00	-	10.8	17.6	27.3	20	
5		8,8	-	-			
6		- i	-	20.3	32.7	33	
7		-	-	-	-	-	
8		12.6	16.3	27.9	35.8	61	
9			-	-	-	-	
10		23.9	25.2	33.2	40.2	63	
12	1	-			-	81	
14		38.4	39.7	44.1	63.5	120	
16		-	-	65.7	85.9	-	
18		-	-	-	107.0	-	
20		50.1	56.8	75.8	120.0	-	
22			-	89.3	-	-	
24		52.3	75.7	108.0	-	-	

TABLE 13 (CONTINUED)

Tir	ne		Head los	s of Run I	No, (cm)
Hr.	Min.	6	7	8	9	10
26		_	-	120.0	-	-
28		66.2	82.5	-	-	-
30		-	94.3	-	-	-
32		85.4	108.0	-	-	-
34		-	-	-		-
36		96.9	120.0	-	-	-
38		<u> </u>	-	-	-	-
40		126.0	-	-	-	-

TABLE 14 TURBIDITY (in FTU) OF INFLUENT AND EFFLUENT WATER

Before and After entering the filter Column.

T	Time		16	RU	N 7	RU	N 8	RU	N 9	RUN	10
HOUR		INF.	EFF.	INF.	EFF.	INF.	EFF.	INF.	EFF.	INF.	EFF.
	0	8.7	0.37	9.4	0.32	7.9	0.42	12.2	0.29	16.5	0.30
1	00	8.0	0.35	-	-	10/1	0.19	17.3	0.22	13.7	0.29
1	30	-	-	-	-	-	-	-	-	-	-
2	00	7.3	0.21	10.6	0.20	9.7	0.22	11.2	0.21	12.1	0.29
2	30	-	-	-	<u> </u>	-	-	-	-	-	-
3	00		-	-	-		-	-	-	-	-
4		6.1	0.23	11.2	0.25	12.4	0.24	15.6	0.30	15.2	0.31
6		9.7	0.27	10.5	0.36	10.3	0.24	14.7	0.32	10.4	0.34
8		6.4	0.28	14.4	0.38	12.2	0.29	11.5	0.37	12.3	0.38
10		9.5	0.33	13.9	0.36	8.2	0.23	12.6	0.35	14.7	0.35
12		9.1	0.37	17.0	0.40	6.3	0.24	12.8	0.44	15.0	0.42
14	1.1	-			-	-	-	-	-	11.2	0.51
16		6.7	0:32	12.6	0.30	8,5	0.35	13.7	0.47	-	-
20		10.3	0.38	16.8	0.42	8.7	0.29	17.6	0.56	-	-
24	1	7.2	0.38	11.3	0.47	9.9	0.41	-		-	
26		-	-	-	-	7.2	0.43	-	-	-	-
28		8.4	0.42	14.3	0.53	-	-	-	-	-	-
32		7.4	0.45	12.1	0.55	-	-	-	-	-	-
36	1 1 1 1 1	8.8	0.51	15.4	0.56	-	-	-	-	-	-
38		6.4	0.58	15.3	0.60	-	-	-	-	-	-

Burnt Rice Husk Media

TABLE 15 ALKALINITY OF EFFLUENT WATER, mg/l as CaCO3

Time	Run No.							
·Hr.	6	7	8	9	10			
0		-	-	-	-			
1		-	-	-	-			
2	75	73	81	69	74			
4	73	78	83	71	74			
6	74	67	82	72	73			
8	68	66	81	71	76			
10	70	64	81	73	70			
12	71	68	79	74	72			
14	75	64	78	72	71			
16	71	60	81	71	-			
18	74	64	83	70				
20	75	64	80	73	-			
22	74	63	82		-			
24	71	61	81	-	-			
26	72	65	80	- '	-			
28	73	64	-	-	-			
30	73	68	-	-	-			
32	71	68		-	-			
34	69	67	-	-	-			
36	73	69	-	-	-			
38	72	65	-	-	-			
40	74	68	-		-			

[Burnt Rice Husk Media]

TABLE 16 pH OF EFFLUENT WATER

Time	Run No.								
Hr.	6	7	8	9	10				
0			_		-				
1	7.39	7.53	7.60	7.44	7.63				
2	7.37	7.58	7.69	7.47	7.57				
4	7.45	7.59	7.51	7.51	7.72				
6	7.48	7.55	7.54	7.42	7.60				
8	7.42	7.63	7.42	7.40	7.68				
10	7.40	7.76	7.63	7.53	7.53				
12	7.49	7.75	7.50	7.50	7.59				
14	7.50	7.78	7.50	7.58	7.61				
16	7.48	7.73	7.49	7.61	-				
18	7.52	7.57	7.58	7.62	-				
20	7.52	7.63	7.59	7.56					
22	7.50	7.61	7.52	-	-				
24	7.48	7.55	7.51	-	-				
26	7.47	7.50	7.62	-	-				
28	7.49	7.64		-					
30	7.40	7.79	-	-	-				
34	7.51	7.51	-						
36	7.49.	7.75	-	-	-				
38	7.52	7.74	-	-	-				
40	7.50	7.72		-	- *				

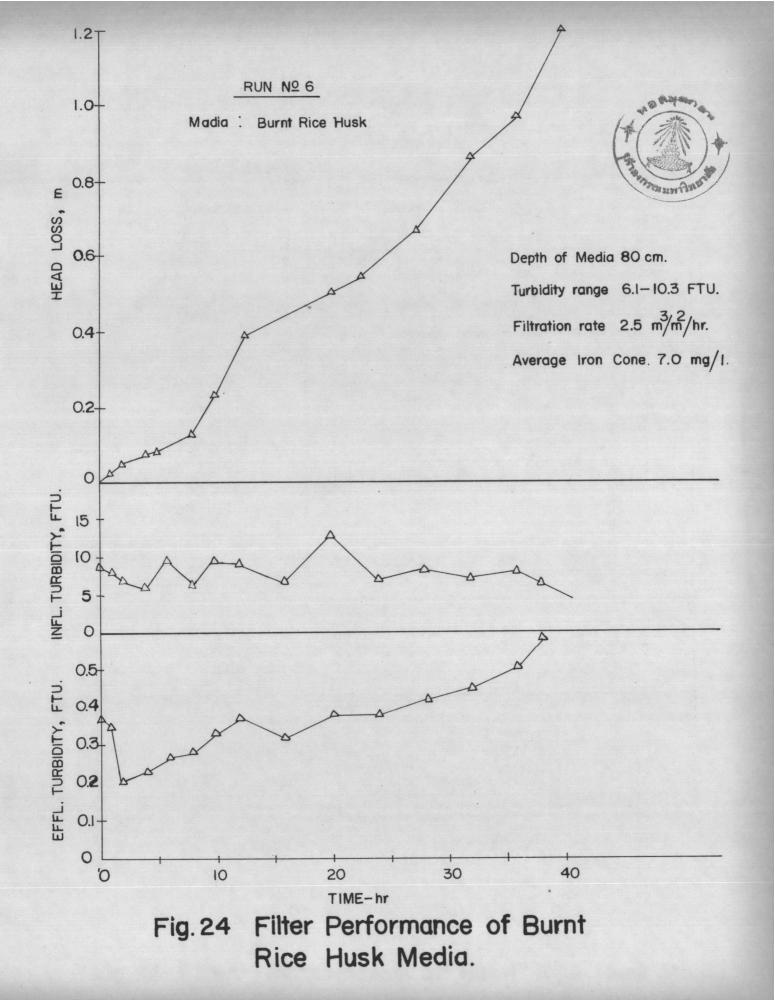

[Burnt Rice Husk Media]

TABLE 17

HARDNESS OF EFFLUENT mg/l as CaCO3

[Burnt Rice Husk Media]

	Run No.							
Time Hr.	6 -	7	8	9	10			
0	-	_	-	-	#			
2	86	81	77	82	81			
4	80	82	82	84	82			
6	82	81	80	82	80			
8	86	81	80	85	83			
10	82	82	82	85	82			
12	90	84	81	84	82			
14	86	83	82	83	80			
16	86	81	82	85	-			
18	86	81	82	84	-			
20	85	82	82	84	-			
22	84	84	83	-	-			
24	86	85	82	-				
26		-	-	-	-			
28	87	82	81	-	-			
30	85	82	-	-	-			
32	84	84	-	-				
34	86	83	-	-	-			
36	84	83		-	-			
38	87	82	-	-	-			
40	84	82	-		-			

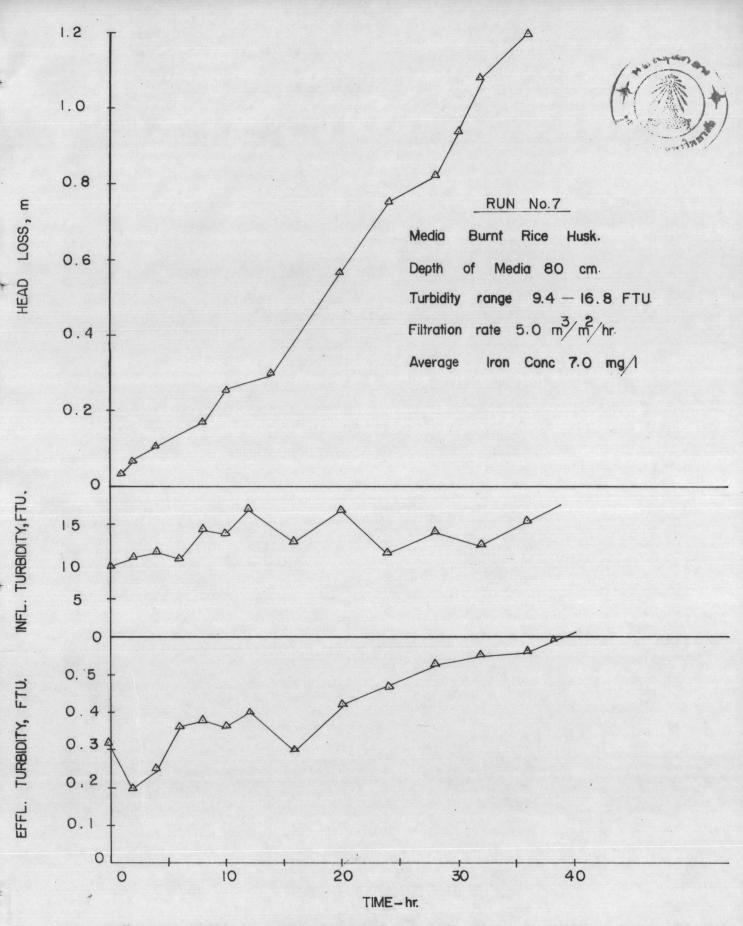
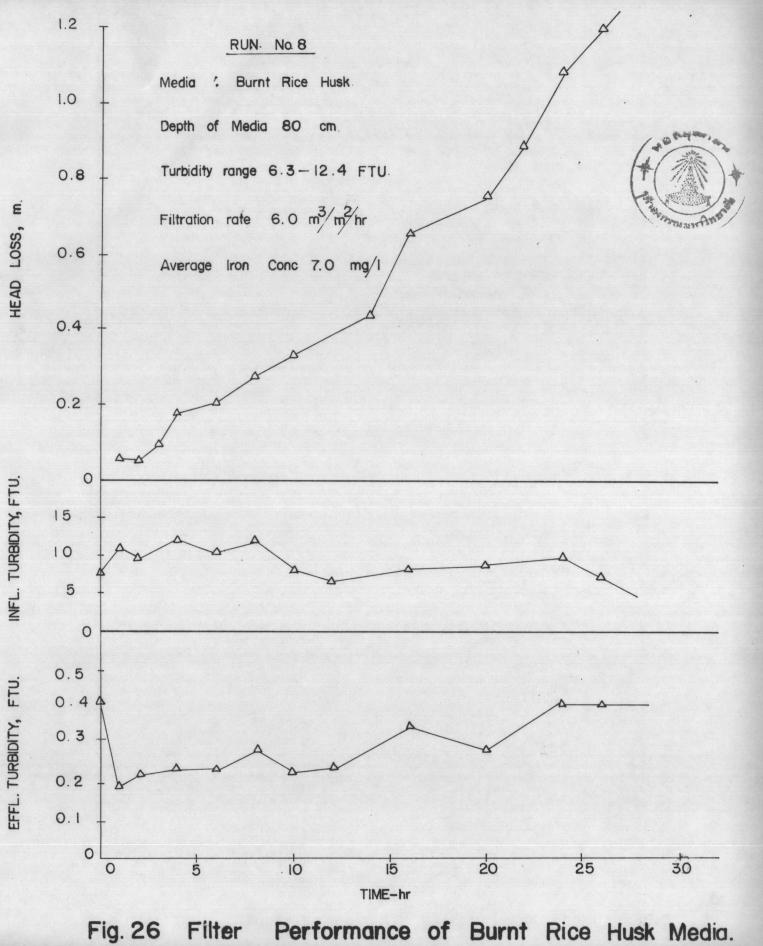
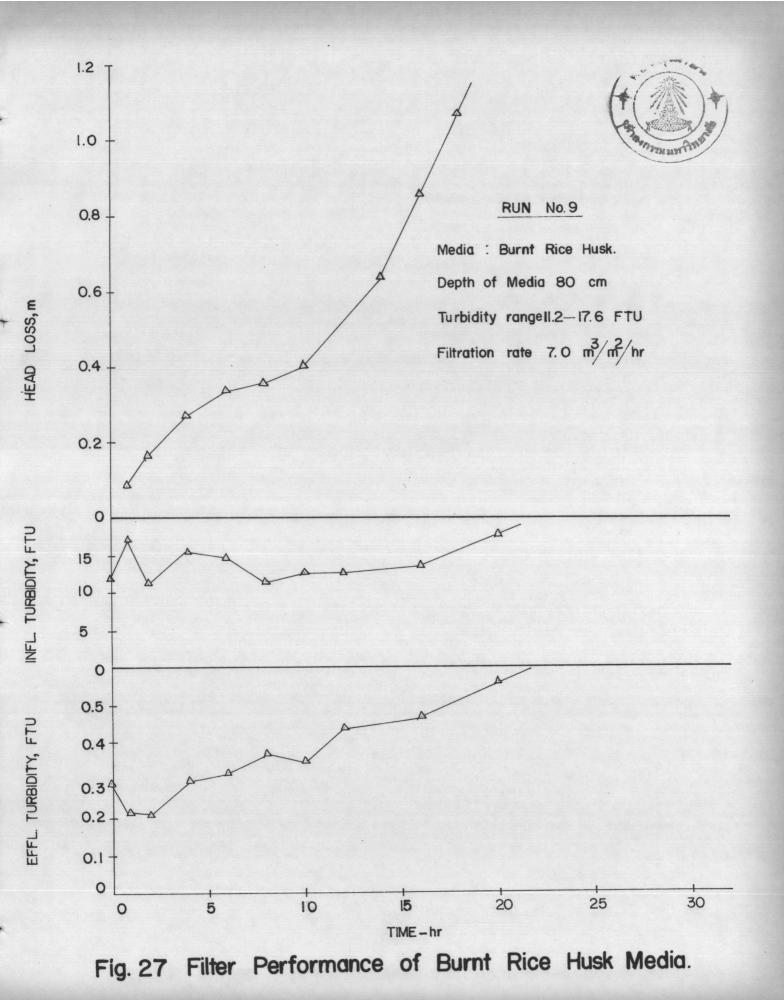
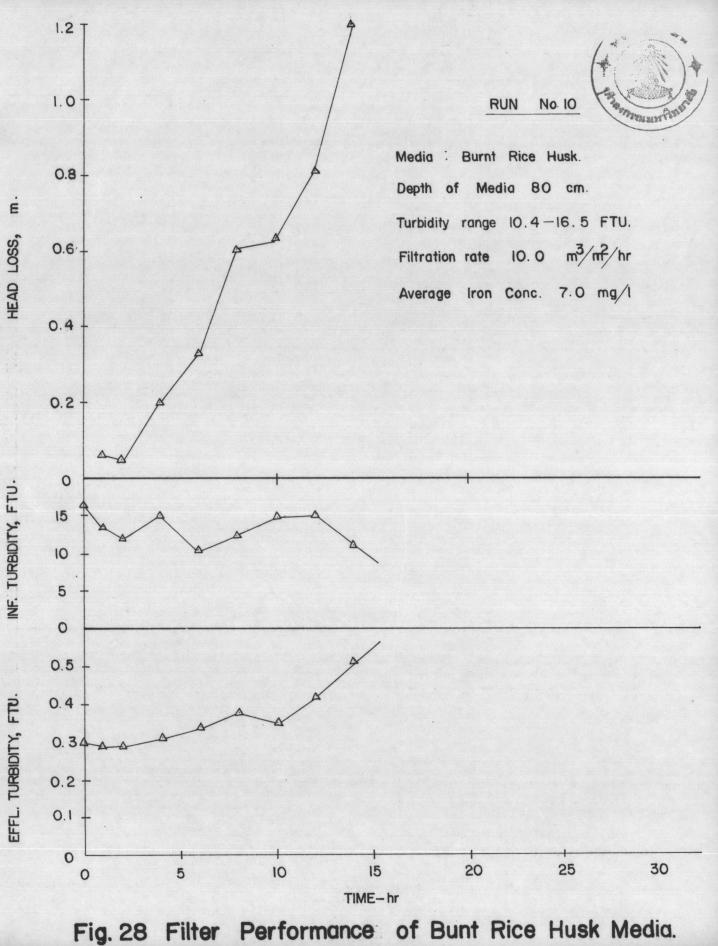
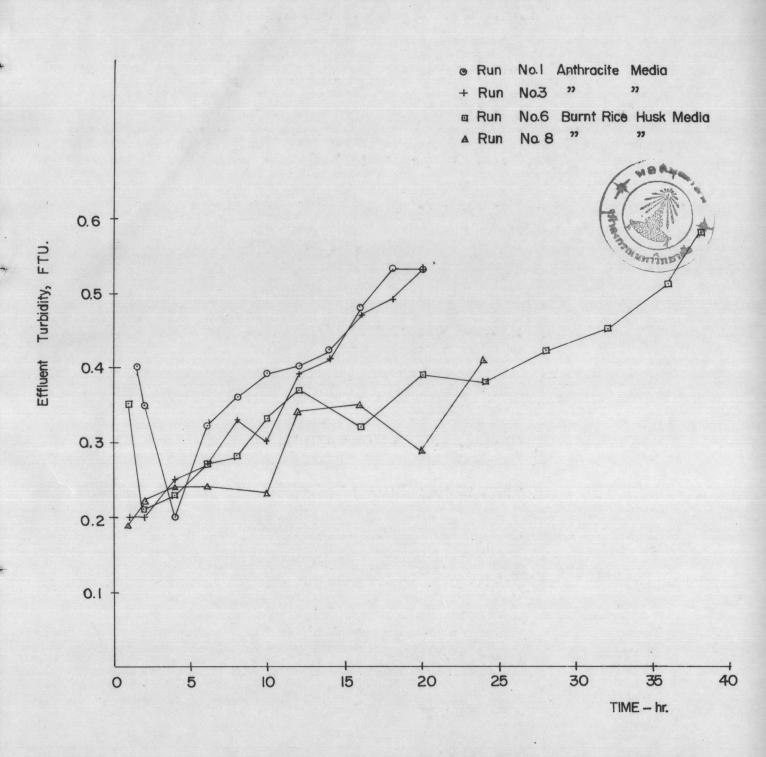
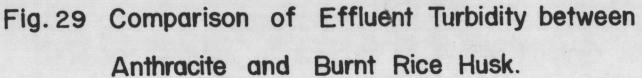





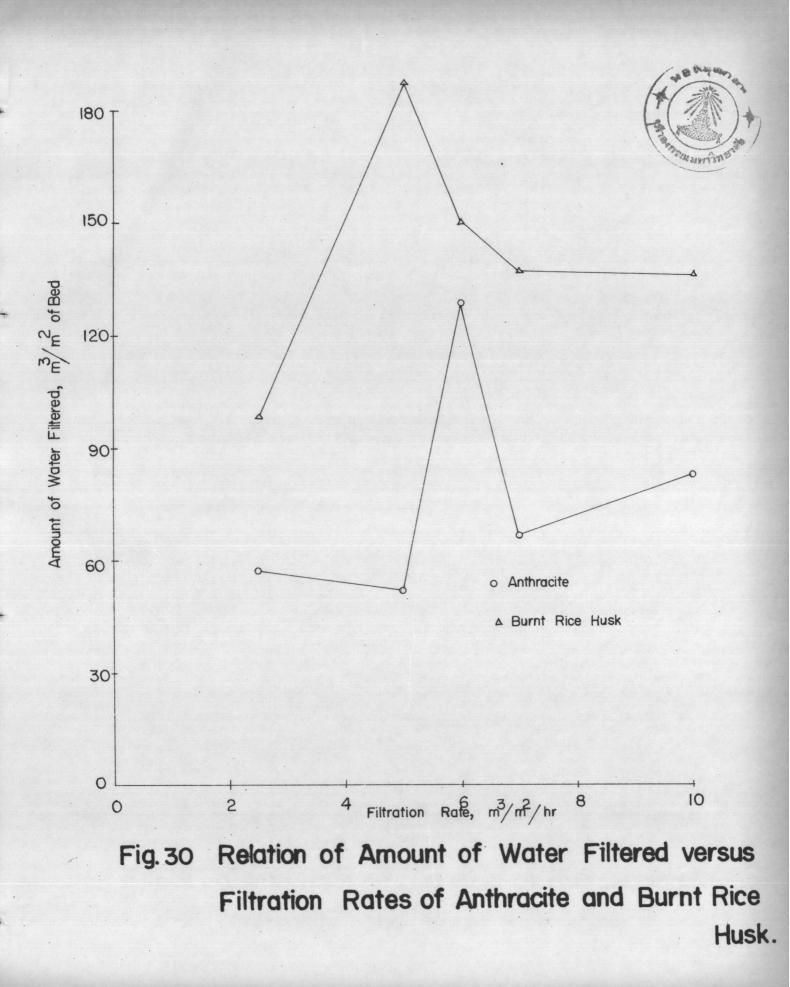
Fig. 25 Filter Performance of Burnt Rice Husk Media.

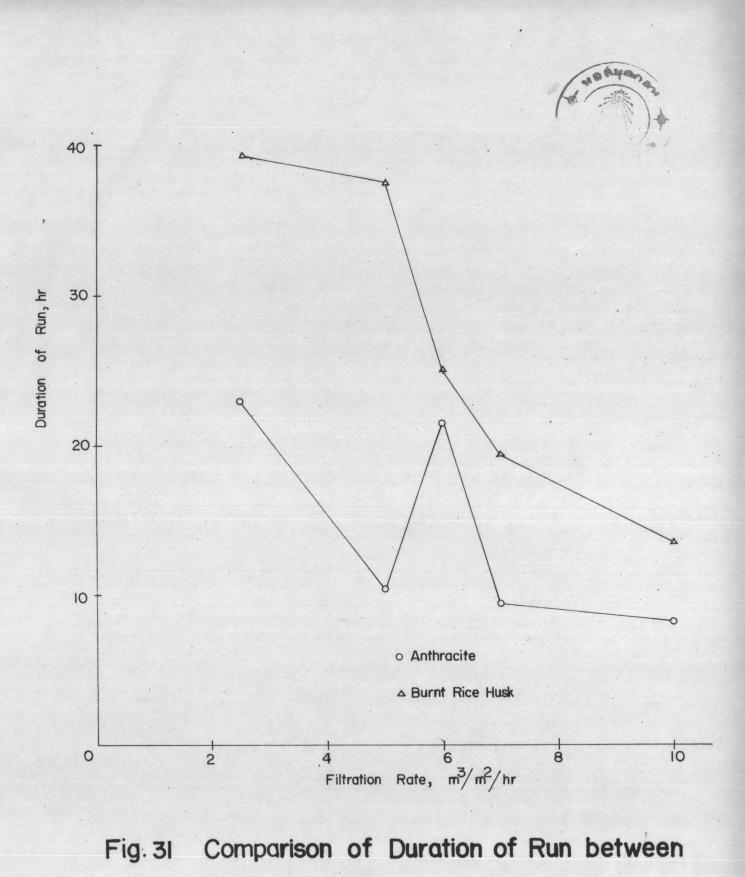
TABLE	1	2
LADLE	1	0

Summary of Results in Filter Performance


RUN	MEDIA	DEPTH OF MEDIA (cm.)	FILTRATION RATE (m ³ /m ² /hr)	INFLUENT TURBIDITY (F.T.U.)	AVG. (FTU)	EFFLUENT TURBIDITY (F.T.U.)	AVG. (FTU)	AVG. TUR. REM. EFF. (%)	AMOUNT OF WATER FILTERED (m ³ /m ² of BED)	DURATION OF RUN FOR HEADLOSS (1.2m)	RATE OF HEADLOSS (cm./hr.)
1	ATC*	80	2.5	5.5-14	8.85	0.20-1.4	0.49	94.5	57.2	22.9	5.23
2	ATC	80	5.0	6.2-16	11.95	0.15-0.43	0.30	97.5	52.0	10.4	11.53
3	ATC	80	6.0	5.5- 7.2	6.25	0.20-0.55	0.36	94.2	12.9	21.15	5.58
4	ATC	80	7.0	4.9-11.2	7.49	0.24-0.57	0.35	89.2	66.5	9.5	12.60
5.	ATC	80	10.0	4.8-16.0	8.31	0.19-0.58	0.28	96.6	83.0	8.3	14.49
6	BRH*	80	2.5	6.1-10.3	8.0	0.21-0.58	0.36	95.5	98.2	39.3	3.05
7	BRH	80	5.0	9.4-16.8	13.2	0.20-0.60	0.41	96.9	187.5	37.5	3,22
8	BRH	80	6.0	6.3-12.4	9.28	0.19-0.43	0.30	96.8	150	25.0	4.80
9	BRH	80	7.0	11.2-17.6	13.90	0.21-0.56	0.35	97.5	137.2	19.6	6.12
10	BRH	80 /	10.0	10.4-16.5	13.45	0.29-0.51	0.32	97.6	136	13.6	-8.79


Note: ATC*


= ANTRACITE COAL


BRH^{*} = BURNT

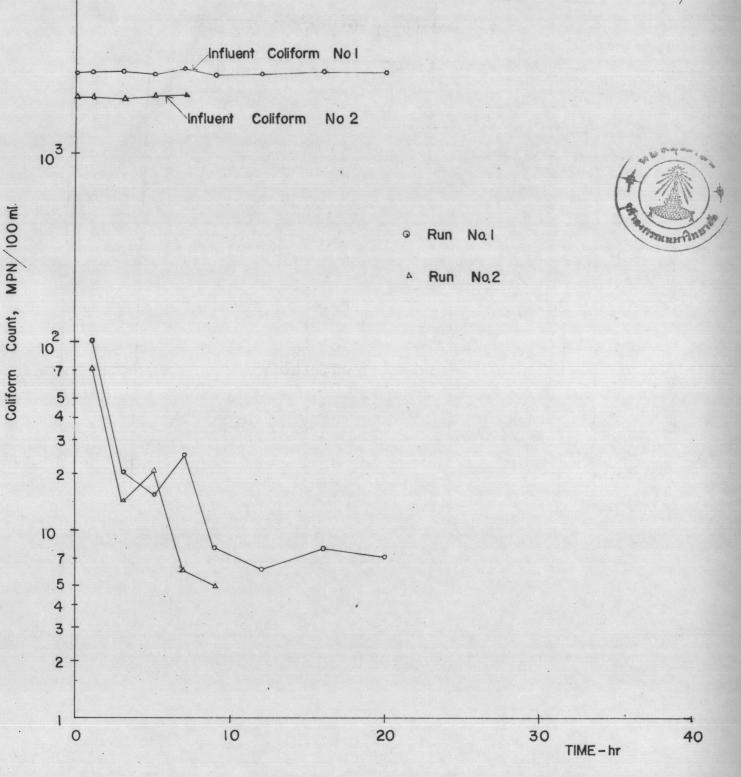
BURNT RICE HUSK

Anthracite and Burnt Rice Husk.

TABLE 19 Comparison of Coliform Removal of Anthracite and Burnt Rice Husk at 2.5 and 6.0 $m^3/m^2/hr$.

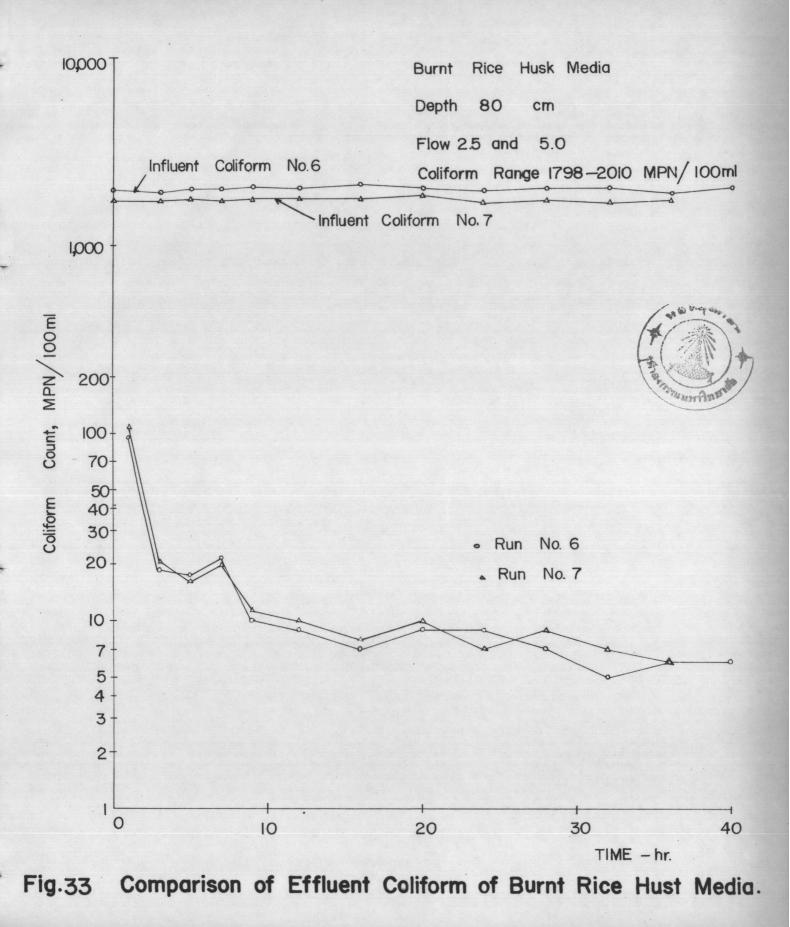
	Run No.1 (An	thracite media)	Run No.2 (Anthracite media			
Time Hr.		oliform Count PN/100 ml	Influent Coliform Count 1980 MPN/100 ml			
	Effluent Coliform Count	Coliform Removal Efficiency %	Effluent Coliform MPN/100 ml	Coliform Removal Efficiency %		
1	100	96.23	70	96.46		
3	20	99.25	15	99.24		
5	16	99.40	21	98.94		
7	25	99.06	6	99.70		
9	8	99.70	5	99.75		
12	6	99.77		-		
16	8	99.70		-		
20	7	99.74	-	-		
24	-	-	-	-		
28	-	-	-	•-		
32	-	-	-	-		
36	-	-		-		
40	-	-	-	-		

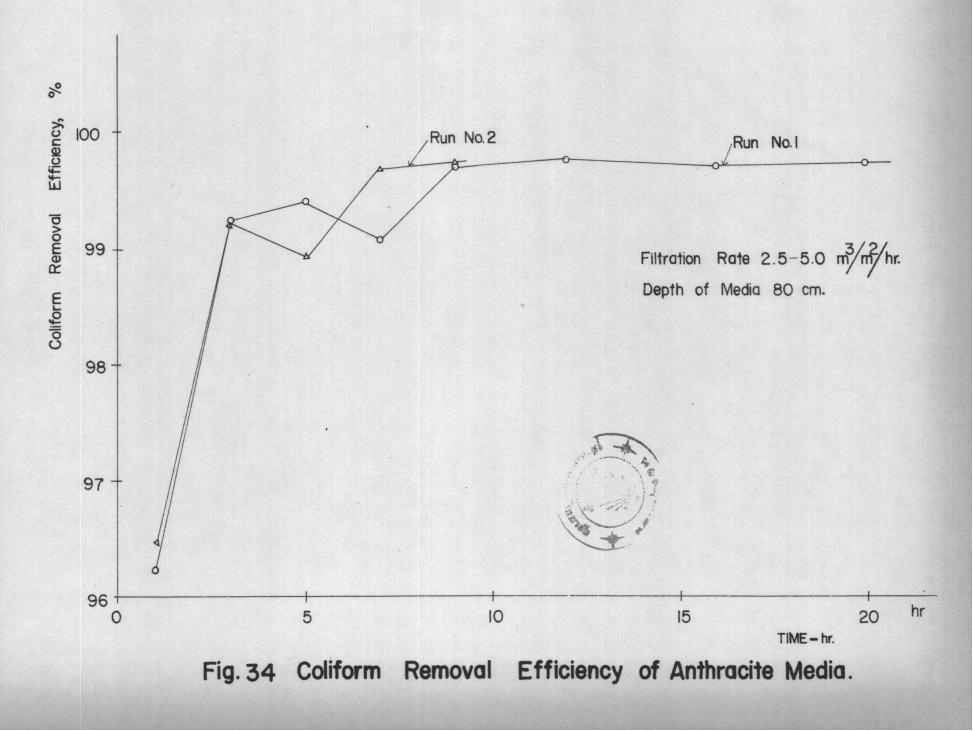
- 89 -

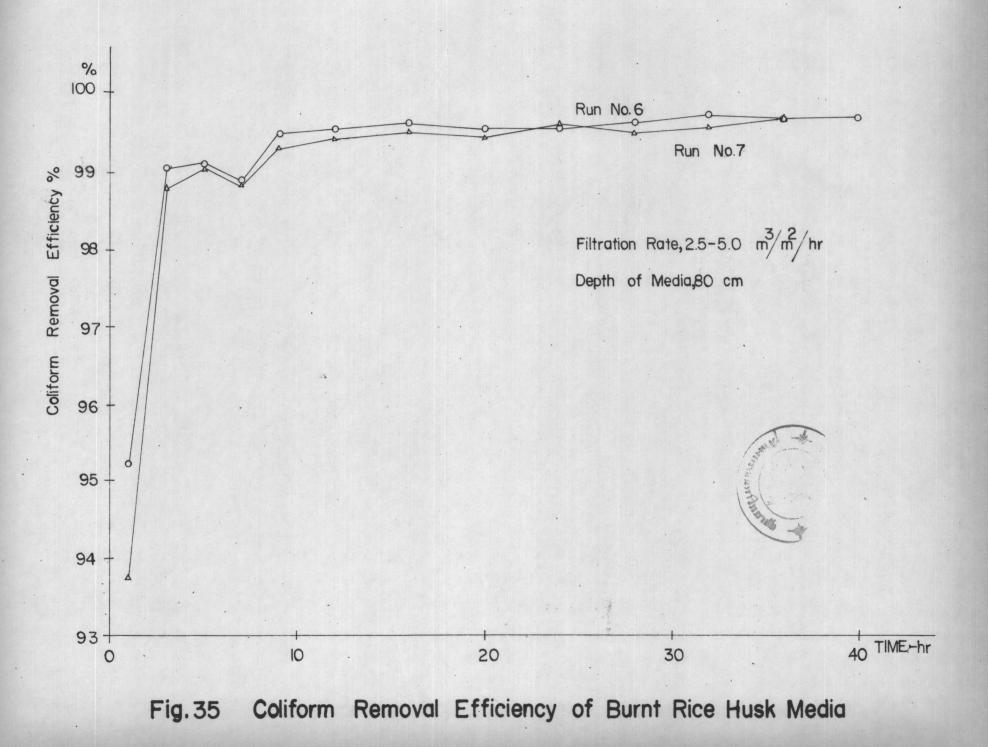

TABLE 19 (Cont'd)

Time	Influent Co.	ent Rice Husk) Liform Count N/100 ml	Run No. 7 (Burnt Rice Husk) Influent Coliform Count 1798 MPN/100 ml		
Hr.		Coliform Removal Efficiency%	Effluent Coliform MPN/100ml	Coliform Remo val Eff iciency%	
1	96	95.22	112	93.77	
3	19	99.06	21	98.83	
5	/ 18	99.11	17	99.06	
7	22	98,91	20	98.89	
9	10	99.50	12	99.33	
12	9	99.55	10	99.44	
16	7	99.65	8	99.56	
20	9	99.55	10	99.44	
24	9	9955	7	99.61	
28	7	99.65	9	99.50	
32	5	99.75	7	99.61	
36	6	99.70	6	99,72	
40	6	99.70	-	-	

Anthracite Media. Depth 80 cm.


Flow 2.5 and 5.0


Coliform Range 1798-2010 MPN/100ml



104

Fig. 32 Comparision of Effluent Coliform of Anthracite Media.

1400.0