Chapter V

DIRECT CONSTRUCTION OF STEINER TRIPLE SYS

5.0 Introduction

In Chapter IV we proved that the condition $n = 1$ or $\mathfrak{Z}(\text{mod }6)$ is sufficient for the existence of n-STS. In this chapter various methods for direct construction of n-STS for all n with $n \equiv 1$ or 3 (mod 6) are provided. Section 5.1 deals with methods of constructing n-STS for any $n \equiv 1$ or 3 (mod 6) with $n \geq 49$. Material in this section is drawn from $4 \int$. Sections 5.2 and 5.3 give methods for direct construction of n-STS for certain values of n, which include all n such that $7 \le n \le 45$ and $n \equiv 1$ or 3 (mod 6). The method given in Section 5.2 is a generalization of that given in This method gives construction of n-STS for all $n \equiv 1 \pmod{6}$ $|1|$. for which a finite field of order n exists. Section 5.3 gives method, due to Doyen $\begin{bmatrix} 2 \end{bmatrix}$, for constructing n-STS for all $n \equiv 3 \pmod{6}$ and $n \geqslant 9$. The last section, Section 5.4, exhibits. the existence of STS with Property I and II mentioned in Chapter III.

5.1 Distribution Method for Constructing n-STS

The methods for constructing n-STS in this section will make use of the distribution of certain 2t integers into t pairs with differences 1,2,.., t. Propositions 5.1.1 - 5.1.8 give such dis--tributions needed in our construction. The truth of these propo--sitions can be verified easily. These proofs will be omitted.

5.1.1 Proposition. Let $t = 4m$ and $m \ge 2$. Then the integers 1,2,.. ...2t can be distributed into t pairs (b_{r}, a_{r}) , $r = 1, ..., t$, such that $b_r - a_r = r$ according to Chart I.

Chart I

5.1.2 Proposition. Let $t = 4m + 1$ and $m \ge 2$. Then the integers 1,2,..., 2t, can be distributed into t pairs (b_r, a_r) , $r = 1, \ldots, t$, such that $b_r - a_r = r$ according to Chart II.

Chart II

5.1.3 Proposition. Let $t = 4m + 2$ and $m \ge 2$. Then the integers 1,2,...,2t - 1, 2t + 1 can be distributed into t pairs (b_p, a_p) , $r = 1$,...,t, such that $b_r - a_r = r$ according to Chart III.

Chart III

 $5.1.4$ Proposition. Let $t = 4m + 3$ and $m \ge 2$. Then the integers 1,2,,.,,2t - 1, 2t + 1 can be distributed into t pairs (b_x, a_y) , $r = 1, 2, ..., t$, such that $b_r - a_r = r$ according to Chart IV.

Chart IV

 $m \geq 1$

 b_{r} \mathfrak{X}^{\bullet} a_p $5m + 5$ $5m + 4$ $\mathbf 1$ $8m + 7$ $6m + 6$ $2m + 1$ $4m + 3$ $6m + 5$ $2m + 2$ $2m + 2 + k$ $2m + 2 - k$ $k = 1, 2, \ldots, 2m + 1;$ $2k$ $6m + 6 + k$ $6m + 5 - k$ $k = 1,2,..., m - 1;$ $1 + 2k$ $7m + 5 + k$ $5m + 4 - k$ $k = 1, 2, ..., m$ $2m + 1 + 2k$

5.1.5 Proposition. Let $t = 4m$ and $m \geq 2$. Then the integers $1, 2, \ldots, t$, $t + 2, \ldots, 2t$, $2t + 1$ can be distributed into t pairs $(d_r, c_r), r = 1, ..., t$ such that $d_r - c_r = r$ according to Chart V.

5.1.6 Proposition. Let $t = 4m + 3$ and $m \ge 2$. Then the integers $1,\ldots,t$, $t+2,\ldots,2t$, $2t+1$ can be distributed into t pairs (d_r, c_r) , $r = 1, ..., t$, such that $d_r - c_r = r$ according to Chart VI. $m \geqslant 0$

Chart VI

5.1.7 Proposition. Let $t = 4m + 1$ and $m \ge 2$. Then the integers 1, ..., t, t + 2, ..., 2t, 2t + 2 can be distributed into t pairs (d_r, c_r) , $r = 1, ..., t$, such that $d_r - c_r = r$ according to Chart VII.

Chart VII

5.1.8 Proposition. Let $t = 4m + 2$ and $m \ge 2$. Then the integers $1, \ldots, t$, $t + 2, \ldots, 2t$, $2t + 2$ can be distributed into t pairs $(d_r, c_r), r = 1, ..., t$, such that $d_r - c_r = r$ according to Chart VIII

Chart VIII

5.1.9 Lemma. For any positive integer t, let x and y be distinct numbers from 1 to 6t + 1. Then

(i) $x - y$ or $y - x$ is congruent modulo 6t + 1 to one of the integers $1, 2, \ldots, 3t$.

(ii) $x - y$ or $y - x$ is congruent modulo 6t + 1 to one of the integers $1, 2, \ldots, 3t - 1$, $3t + 1$.

Proof: We shall show by cases that $x - y$ or $y - x$ is congruent modulo $6t + 1$ to one of $1,2,\ldots,3t$.

case 1. $1 \le x,y \le 3t + 1$.

We may assume that $x \to y$. Hence $1 \leq x - y \leq 3t$. Therefore $x - y$ is congruent modulo 6t + 1 to one of $1, 2, \ldots$, 3t.

case 2. $3t + 1 < x$, $y \le 6t + 1$.

We may assume that $x > y$. Hence $1 \leq x - y \leq 3t$. Therefore $x - y$ is congruent modulo 6t + 1 to one of 1,..., 3t - 1.

case 3. $1 \le x \le 3t + 1$, $3t + 1 \le y \le 6t + 1$.

Then $1 \leq y - x \leq 6t$. If $1 \leq y - x \leq 3t$, then $y - x$ is congruent modulo 6t + 1 to one of $1, \ldots, 3t$. In case 3t $\langle y - x \leq 6t \rangle$ we have - $(6t) \le x - y \le - (3t)$. Hence $1 \le x - y + 6t + 1 \le 3t + 1$ so that $x - y$ is congruent modulo 6t + 1 to one of 1,..., 3t.

case 4. $1 \leqslant y \leqslant 3t + 1$, $3t + 1 \leqslant x \leqslant 6t + 1$.

Similarly to case 3 we can show that $x - y$ or $y - x$ is congruent modulo $6t + 1$ to one of $l_1, \ldots, 3t_r$.

Thus (i) is proved. To prove (ii) we observe from (i) that $x - y$ or $y - x$ is congruent modulo 6t + 1 to one of $1, ..., 3t$. Assume that $x - y$ is congruent modulo 6t + 1 to one of $1, ..., 3t$. If $x - y$ is congruent modulo $6t + 1$ to one of $1, 2, \ldots, 3t - 1$, then (ii) is

proved. In case that $x - y$ is congruent to 3t modulo 6t + 1 we have $y - x = -3t = - (6t + 1) + (3t + 1)$. Therefore $y - x$ is congruent to $3t + 1$ modulo $6t + 1$. Thus (ii) is proved.

5.1.10 Theorem. Let $n = 6t + 1$ and $t \ge 8$. For $r = 1, \ldots, t$, let (b_n, a_n) be defined as in Propositions 5.1.1 - 5.1.4 depending on the residue of t modulo 4. Let $C = \{1, 2, ..., 6t + 1\}$ and $S(C)$ be the family of the following 3-subsets of C:

 ${p, p + r, p + t + b_n}$, $p \in C, r \in \{1, 2, ..., t\}$ where each number is taken modulo $6t + 1$.

Then $(C, S(C))$ is n-STS.

Proof: The total number of 3-subsets in $S(C)$ is at most $t(6t + 1)$ $\frac{1}{6}$ n(n - 1). Thus to show that (C,S(C)) is n-STS, it suffices to show that for any 2-subset T of C there exists a 3-subset H in S(C) such that $T \subset H$. Let $T = \{ x, y \}$ be any 2-subset of C . In this proof the addition is the addition in the residue class ring modulo $6t + 1.$

case 1. $t \equiv 0$ or 1 (mod 4).

By the construction of (b_r, a_r) we have $\{1, 2, ..., 3t\}$ $\{1, \ldots, t \ t + b_1, \ldots, t + b_t, t + a_1, \ldots, t + a_t \}$. By Lemma 5.1.9(i) we may assume that $y - x$ is congruent modulo 6t + 1 to one of 1,2,...,3t. Thus $y - x = r$ or $y - x = t + b$ or $y - x = t + a$ for some $r, 1 \leq r \leq t$.

case $1(a)$ $y - x = r$. Let $H = \left\{ x_1 x + r_1 x + t + b_n \right\}$. Then $H \in S(C)$ and $T \subset H$. case 1(b) $y - x = t + b_n$.

Let $H = \{x_1, x + r_1, x + t + b_r\}$. Then $H \in S(C)$ and $T \subset H$. case 1(c) $y - x = t + a_n$.

Let $p = y - t - b_p$. Hence $p + r = y - t - b_p + r = y - t - a_p =$ x and $p + t + b_r = y - t - b_r + t + b_r = y$. Let $H = \begin{cases} p, p + r, p + r + b_r \end{cases}$ Then $H \in S(C)$ and $T \subset H$.

case 2 , $t = 2$ or 3 (mod 4).

By the construction of (b_r, a_r) we have $\{1, \ldots, 3t - 1, 3t + 1\}$ 1, ..., $t, t + b_1, \ldots, t + b_t, t + a_1, \ldots, t + a_t$, $\ldots, t + a_t$, By Lemma 5, 1.9(ii) we may assume that $y - x$ is congruent modulo 6t + 1 to one of l.... $3t - 1$, $3t + 1$. Thus $y - x = r$ or $y - x = t + b$ or $y - x = t + a$ for some r , $1 \nleq r \nleq t$. Similarly to case 1 we can prove that there exists H in S(C) such that $T \subset H$.

Hence $(C, S(C))$ is n - STS.

5.1.11 Lemma. For each positive integer t let x and y be distinct numbers from 1 to 6t + 3 such that neither $x - y$ nor $y - x$ is congruent to $2t + 1$ modulo $6t + 3$. Then

(i) $x - y$ or $y - x$ is congruent modulo 6t + 3 to one of 1,..., $2t$, $2t + 2, \ldots, 3t$, $3t + 1$.

(ii) $x - y$ or $y - x$ is congruent modulo 6t + 3 to one of 1,..., $2t$, $2t + 2$,..., $3t$, $3t + 2$.

We shall show by cases that $x - y$ or $y - x$ is congruent Proof: modulo 6t + 3 to one of $1, ..., 2t, 2t + 2, ..., 3t, 3t + 1$.

case 1. $1 \nleq x, y \nleq 3t + 2.$

We may assume that $x > y$. Hence $1 \leq x - y \leq 3t + 1$. Therefore $x - y$ is congruent modulo 6t + 3 to one of 1,..., 2t, 2t + 2,..., 3t, 3t+1. case 2. $3t + 2 \le x, y \le 6t + 3$

We may assume that $x > y$. Hence $1 \leq x - y \leq 3t + 1$ so that $x - y$ is congruent modulo 6t + 3 to one of l_{1}, l_{2}, l_{3} 2t, 2t + 2,..., 3t. case 3. $1 \le x \le 3t + 2$, $3t + 2 \le y \le 6t + 3$,

Then $1 \leq y - x \leq 6t + 2$. If $1 \leq y - x \leq 3t + 1$, then $y - x$ is congruent modulo $6t + 3$ to one of $1, \ldots, 2t$, $2t + 2, \ldots, 3t$, $3t + 1$, In case 3t + 1 \langle y - x \langle 6t + 2 we have - (6t + 2) \langle x - y \langle - $(3t + 1)$. Hence $1 \le x - y + 6t + 3 \le 3t+1$ so that $x - y$ is con--gruent modulo 6t + 3 to one of $1, \ldots, 2t, 2t + 2, \ldots, 3t + 1$.

case 4. $1 \le y \le 3t + 2$, $3t + 2 \le x \le 6t + 3$.

Similarly to case 3 we can show that $x - y$ or $y - x$ must be congruent modulo 6t + 3 to one of $1, \ldots, 2t, 2t + 2, \ldots, 3t, 3t + 1$.

Thus (i) is proved. To prove (ii) we observe from (i) that $x - y$ or $y - x$ is congruent modulo 6t + 3 to one of $1, \ldots, 2t, 2t + 2$, 3t, 3t + 1. Assume that $x - y$ is congruent modulo 6t + 3 to one of $1, \ldots, 2t$, $2t + 2, \ldots, 3t$, $3t + 1$. If $x - y$ is congruent modulo $6t + 3$ to one of $1, \ldots, 2t$, $2t + 2, \ldots, 3t$, then (ii) is proved. Suppose that $x - y$ is congruent to $3t + 1$ modulo $6t + 3$. Hence $y - x = - (3t + 1) = - (6t + 3) + 3t + 2$ so that $y - x$ is congruent modulo $6t + 3t + 2$. Thus (ii) is proved.

Theorem. Let $n = 6t + 3$ and $t \ge 3$. For $r = 1, ...; t$, let $5.1.12$ (d_n, c_n) be defined as in Propositions 5.1.5 - 5.1.8 depending on the residue of t module 4. Let $C = \{1, 2, \ldots, 6t + 3\}$ and $S(C)$ be the family of the following 3-subsets of C:

59

(i)
$$
\{p,p+r, p+t+d_r\}, r \in \{1,2,...,t\} p \in C,
$$

(ii) $\{p, p+2t+1, p+4t+2\}, p \in \{1,2,...,2t+1\},$

where each number in 3-subsets in $S(C)$ is taken modulo 6t + 3. Then $(C,S(C))$ is n-STS.

Proof: It can be seen that the total number of 3-subsets in S(C) is at most (t)(6t + 3) + 2t + 1 = $\frac{1}{6}$ (6t + 2)(6t + 3) = $\frac{1}{6}$ n(n - 1). Thus to show that $(C, S(C))$ is n-STS, it suffices to show that for any 2-subset T of C there exists a 3-subset H in $S(C)$ such that $T \subset H$. Let $T = \{x, y\}$ be any 2-subset of C. In this proof the addition is the addition in the residue class ring modulo $6t + 3$.

First we assume that neither $x - y$ nor $y - x$ is congruent modulo $6t + 3$ to $2t + 1$.

case 1. $t \equiv 0$ or 3 (mod 4).

By the construction of (d_r, c_r) we have $\{1, ..., 2t, 2t + 2, ...$..., 3t, 3t + 1} = {1,..., t, t + d₁,.., t + d_t, t + c₁,..., t + c_t}. By Lemma $5.1.11$ (i) we may assume that $y - x$ is congruent modulo 6t + 3 to one of 1,..., 2t, 2t + 2,..., 3t, 3t + 1. Thus $y - x = r$ or $y - x = t + d_n$ or $y - x = t + c_n$ for some r, $1 \nleq r \nleq t$.

case $1(a)$ $y - x = r$.

Let $H = \{ x, x + r, x + t + d_n \}$. Then $H \in S(C)$ and $T \subseteq H$. case 1(b) $y - x = t + d_n$.

Let $H = \{ x, x + r, x + t + d_n \}$. Then $H \in S(C)$ and $T \subset H$. case 1(c) $y - x = t + c_n$.

Let $p = y - t - d_r$. Hence $p + r = y - t - d_r + r = y - t - c_r =$ x and $p + t + d_r = y - t - d_r + t + d_r = y$. Let $H = \{ p, p + r,$ $p + t + d_r$. Then $H \in S(C)$ and $T \subset H$.

61

case $2t \equiv 2$ or $3 \pmod{6}$

By the construction of $(d_{\psi}, \dot{c}_{\psi})$ we have $\{1,\ldots,2t,2t+2,\ldots,3t,3t+2\}=\{1,\ldots,t,t+6\}$, $t+c_1$, $t+d_1$, $\ldots,t+d_t\}$ By Lemma $5.1.11(ii)$ we may assume that $y - x$ is congruent modulo 6t + 3 to one of 1,..., 2t, 2t+2,..., 3t, 3t+2. Thus $y - x = r$ or $y - x = t + d_n$ or $y - x = t + d_n$ for some r, $1 \le r \le t$. Similarly to case 1 we can show that there exists H in $S(C)$ such that $T \subset H$.

Next we assume that $y - x$ or $x - y$ is congruent to 2t + 1 modulo $6t + 3$. We shall assume that $x - y$ is congruent to $2t + 1$ modulo $6t + 3$.

case 1. x $>$ y .

In this case we have $x - y = 2t + 1$ and $1 \le y \le 4t + 2$. Hence $X = y + 2t + 1$. If $1 \leq y \leq 2t + 1$, let $H = \{y, y + 2t + 1, y + 4t + 2\}$. Then H ξ S(C) and T \subset H. In case 2t + 2 ξ y ξ 4t + 2, let z = $y - (2t + 1)$. Thus $1 \le z \le 2t + 1$. Let $H = \{z, z + 2t + 1, z + 4t + 2\}$. Then $H \in S(C)$ and $\tau T \subset H$.

case $2. x \leq y$

Since $1 \leq x, y \leq 6t + 3$, hence $x - y = -(6t+3)+2t+1 = -(4t+2)$. Thus $1 \le x \le 2t + 1$. Let $H = \{x_1x + 2t + 1, x + 4t + 2\}$. Then $H \in S(G)$ and $T \subset H$.

Therefore (C,S(C)) is neSTS.

5.2 Construction of n-STS, where $n = p^m = 6t+1$, p Is a Prime Number

Given any positive integer n of the form $n = p^m = 6t + 1$, where p is a prime number. We know that a field of p^m elements, $GF(p^m)$, exists and in fact the multiplicative group of such a field is cyclic. We can construct n-STS from GF(p^m) as in the following theorem.

5.1.1 Theorem. Given any positive integer n of the form $n = p^m$ = 6t + 1, where p is a prime number. Let g be a generator of the multiplicative group of F = $GF(p^m)$. Let $S(F)$ be the family of the following 3-subsets of F :

 ${k,k+s^r,k+s^{t+r}}$, where $k \in F, r \in \{0,1,...,t-1\}$. Then $(F,S(F))$ is n-STS.

Proof: The total number of 3-subsets in $S(F)$ is at most nt = $\frac{1}{6}$ n(n - 1). Thus to prove that $(F, S(F))$ is n-STS, it suffices to show that for any 2-subset T of F there exists a 3-subset H in S(F) such that $T \subset H$.

First we shall show that for any 2-subset T of F that contains O there exists a 3-subset H in S(F) such that $T \subset H$. Let $T = \{ 0, \varepsilon^{\frac{1}{2}} \}$ be any 2-subset of F that contains O. We shall show by cases that there exists a 3-subset H in $S(F)$ such that $T \subset H$.

case 1. $0 \leq i \leq t - 1$. Let $H = \{ 0, g^{\frac{1}{2}}, g^{t+1} \}$. Then $H \in S(F)$ and $T \subset H$. case 2. $t \leq i \leq 2t - 1$

Hence $i = t + r$, where $0 \le r \le t - 1$. Let $H = \{0, g^r, g^{t+r}\}$. Then H ϵ S(F) and T \subset H.

case $3.2t \leq i \leq 3t - 1.$

Hence i = 2t + r, where $0 \le r \le t - 1$. Let $H =$ $\{-\varepsilon^r, -\varepsilon^r + \varepsilon^r, -\varepsilon^r + \varepsilon^{t+r}\}$. Thus $H \in S(F)$. We shall show that $T \subset H$. Since g^{3t} + 1 while g^{6t} = 1, hence g^{3t} + 1 = 0. Since $g^{3t} + 1 = (g^{t} + 1)(g^{2t} - g^{t} + 1)$, hence $(g^{t} + 1)(g^{2t} - g^{t} + 1) = 0$. But $g^t + 1 \neq 0$, therefore $g^{2t} - g^{t} + 1 = 0$ so that $g^{2t} = g^{t} - 1$. Hende $-g^{r}$ and $-g^{r}+g^{t+r}$ can be written as $-g^{r}=(11)g^{r}=(g^{3t})(g^{r})=g^{3t+r}$ and $-g^{\overline{r}}+g^{\overline{t}+\overline{r}} = (g^{\overline{t}}-1)(g^{\overline{r}}) = (g^{2\overline{t}})(g^{\overline{r}}) = g^{2\overline{t}+\overline{r}}$. Thus $H =$ $\{g^{3t+r}, 0, g^{2t+r}\}\$ and $T \subset H_r$

case 4. $3t \leq i \leq 4t - 1$

Hence $i = 3t + r$, where $0 \le r \le t - 1$. Let $H = \{-g^r, -g^r + g^r\}$, $-$ g^r+ g^{t+r} }. By the same argument as in ease 3 we have $H \in S(F)$ and $T \subset H$.

case 5. $4t \le i \le 5t - 1$

Hence $i = 4t + r$, where $Q \nleq r \nleq t - 1$, Let $H = \begin{cases} -g^{t+r} \end{cases}$ $-\xi^{t+r} + \xi^r$, $-\xi^{t+r} + \xi^{t+r}$, Thus $H \in S(F)$. Observe that $-\xi^{t+r} =$ $(-1)(g^{t+r}) = (g^{3t})(g^{t+r}) = g^{t+t+r}$ and $g^{r}g^{t+r} = (-1)(g^{r})(g^{t}-1) =$ $(g^{3t})(g^{2t}) = g^{5t}$. Thus $H = \{g^{4t}$, g^{5t+r} , g^{5t+r} , $Q \}$ and $T \subset H$ case 6. 5t \leq i \leq 6t - 1

Hence $i = 5t + r$, where $0 \leq r \leq t - 1$, Let $H = \{-s^{t+r},$ -5.5 $\frac{1}{2}$ + $\frac{1}{2}$ $H \in \mathcal{E}$ $S(F)$ and $T \subset H$.

Next we shall show that for any 2-subset T of F that does not contain O there exists a 3-subset H in S(F) such that $T \subset H$. Let $T = \{ x, y \}$ be any 2-subset of F such that $x \neq 0$, $y \neq 0$. Let $T_1 = \{ x - x, y - x \} = \{ 0, y - x \}$, Since $x \neq y$, hence $y - x \neq 0$.

Thus T_1 is a 2-subset of F that contains 0. Therefore there exists a 3-subset H_1 in $S(F)$ such that $T_1 \subset H_1$. By definition of $S(F)$ we
must have $H_1 = \left\{ k_1, k_1 + g^{-1}, k_1 + g^{-1} \right\}$, where $k_1 \in F$, $0 \leq r_1 \leq t - 1$. Since $\left\{0, y - x\right\} \subset \left\{k_1, k_1 + g^{r_1}, k_1 + g^{r+r_1}\right\}$, hence $\left\{0 + x, y - x + x\right\} \subset \left\{\kappa_1 + x, \kappa_1 + x + g^{r_1}, \kappa_1 + x + g^{t+r_1}\right\}.$ $F_1 = \{k_1 + x, k_1 + x + g^T, k_1 + x + g^t + r_1\}$. Hence $F \in S(F)$ and $T \subsetneq H$.

Therefore (F,S(F)) is n-STS.

5.3 Construction of 6t + 3-STS from Cyclic Group of Order 2t + 1

5.3.1 Lemma. Let F be a cyclic group of order 2t + 1. Let g be a generator of F. Then

(i) If $g^{2r} = g^{2s}$, where $0 \le r$, $s \le 2t + 1$, then $g^{r} = g^{s}$.

(ii) for any distinct elements a, b in F, there exists a unique element c in F such that ab = c^2 .

(iii) If a and b are distinct elements of F , then $a^{-1}b^2$ and $b^{-1}a^2$ are distinct from a and b respectively. Proof: (i) From $g^{2r} = g^{2s}$ we have $2r + 2s = q(2t + 1)$ for some integer q. Since $2/2r + 2s$, hence $2/q(2t + 1)$. But $2/2t + 1$, therefore $2 \int q_0$. Thus $q = 2q$ for some integer q_0 . Hence $r + s =$ $q(2t + 1)$ so that $g^r = g^s$.

(ii) Let a , b be any distinct elements of F . Hence $a = g^m$, $b = gⁿ$ for some distinct integers m, n, 0 \leq m, n \leq 2t. m + n is even, then there exists a unique positive integer r such

that $m + n = 2r$. Since $0 \leq m$, $n \leq 2t$, hence $0 \leq r \leq 2t$. Let $c = g^r$. Therefore $c \in F$ and ab = $c²$. Suppose that there exists $d = g^5$, $0 \le s \le 2t + 1$, in F such that $ab = d^2$. Hence $d^2 = g^2$ so that $g^{2s} = g^{2r}$. By (i) we have $g^{s} = g^{r}$. Thus $d = c$. In case that $m + n$ is odd we see that $(2t + 1) + (m + n)$ is even. Let r be the integer such that $2r = (2t + 1) + (m + n)$. Choose integers k and s such that $r = k(2t + 1) + s$, where $0 \le s \le 2t$. Let $c = g^s$. Hence $c \notin F$. Now ab = $g^{m+n} = g^{2t+1+m+n} = g^{2r} = g^{2k(2t+1)+2s}$ $g^{2s} = c^2$. The uniqueness of c follows by repeating the same argument as in case that m + n is even.

(iii) Let a, b be distinct elements in F. Hence $a = g^m$, $\mathbf{b} = \mathbf{g}^n$, for some distinct integers m,n, $0 \leq m, n \leq 2t$. Suppose that $a^{-1}b^2 = a$. Therefore $b^2 = a^2$ so that $g^{2n} = g^{2m}$. It follows from (i) that $g^m = g^n$. Hence $m = n$ which is a contradiction. Thus $a^{-1}b^2 \neq a$. Similarly we can show that $b^{-1}a^2 \neq b$.

5.3.2 Theorem. Let F be a cyclic group of order 2t + 1, t \geq 1. Let $A = F \times \{ 0, 1, 2 \}$ and let $S(A)$ be the family of the following 3-subsets of A:

(1) $\{a_0, a_1, a_2\}$, where $a \in \mathbb{F}$,

(2) $\{a_0, b_0, c_1\}$, $\{a_1, b_1, c_2\}$, $\{a_2, b_2, c_0\}$, where $a \neq b$ and ab = c^2 .

Then $(A, S(A))$ is $6t + 3$. STS.

Proof: Let $n = 6t + 3$. The total number of 3-subsets in $S(A)$ of the form (1) is 2t + 1. For any 2-subset $T = \begin{cases} x, y \end{cases}$ of F , there exists a unique element z in F such that $xy = z^2$. Hence we

can form exactly 3 3-subsets in $S(A)$ of the form (2) from T; namely, $\{x_0, y_0, z_1\}$, $\{x_1, y_1, z_2\}$, $\{x_2, y_2, z_0\}$. Since there are $\begin{pmatrix} 2t + 1 \\ 2 \end{pmatrix}$ 2-subsets of F, hence the total number of 3-subsets in $S(A)$ of the form (2) is at most $\begin{pmatrix} 2t + 1 \\ 2 \end{pmatrix}$ 3. Therefore the total number of 3-subsets in $S(A)$ is at most $2t + 1 + \begin{pmatrix} 2t + 1 \\ 2t + 1 \end{pmatrix}$ 3 $\frac{1}{6}$ (6t + 3)(6t + 2) = $\frac{1}{6}$ n(n - 1). Thus to prove that (A,S(A)) is $6t + 3 - STS$, it suffices to show that for any 2-subset T of A there exists a 3-subset H in S(A) such that $T \subset H$. Let $T = \{a_i, b_j\}$ be any 2-subset of A. We shall show by cases that there exists a 3-subset H in $S(A)$ such that $T \subsetneq H$.

case 1. $a = b$, i \neq j.

Let $H = \{a_0, a_1, a_2\}$. Then $H \notin S(A)$ and $T = \{a_i, a_j\} \notin H$. case 2. $a \neq b$, i = j.

By Lemma 5.3.1 (ii) there exists c in F such that ab = c^2 . Observe that the 3-subsets in $S(A)$ of the form (2) have two elements in the same $G_i = G_i \times \{ i \}$ and the third element in G_{i+1} . Let . $H = \left\{ a_{i}, b_{i}, c_{i+1} \right\}$. Then $H \in S(A)$ and $T \subseteq H$. case 3. $a \neq b$, $i \neq j$.

Since $i, j \in \{0,1,2\}$ and $i \neq j$, hence either $j \equiv i + 1 \pmod{3}$ or i = j + 1(mod 3). If j = i + 1(mod 3), let c = $a^{-1}b^2$. Therefore by Lemma 5.3.1 (iii) $c \neq a$ and $ac = b^2$. Let $H = \{a_i, c_i, b_j\}$. Then H \leq S(A) and T \leq H. In case i \equiv j + 1 (mod 3), let d = b⁻¹a². By Lemma 5.3.1(iii), $d \neq b$ and $bd = a^2$. Let $H = \{ b_j, d_j, a_i \}$. Then $H \in S(A)$ and $T \subset H$.

 \sim

Hence $(A, S(A))$ is $6t + 3 - STS$.

5.3.3 Remark. The construction given in Theorem 5.3.2 make use of properties (ii), (iii) in Lemma 5.3.1 only. Any group F of order $2t + 1$ with properties (ii), (iii), if exists, can be used in the above construction also.

5.4 Existence of STS with Property I and II

The notion of STS with Property I and STS with Property II has been introduced in Chapter III. Yet their existence is not known. In this section we shall show that the STS of order n \equiv 3(mod 6) constructed as in Theorem 5.3.2 are STS with Property I and II.

5.4.1 Lemma. Let (A,S(A)) and F be defined as in Theorem 5.3.2. Let g be a generator of F. For any positive integer $r \in \{1,2,...,$ 2t + 1}, let f_r be a mapping defined on A by $f_r(a_i) = (g^r a)_i$ for any $a \in F$, and $i = 0,1,2$. Let f be a mapping defined on A by $f(a_i) = a_{i+1}$ for any a \in F and i = c, 1, 2. Then

(i) f and f \int_{σ} are automorphisms of $(A,\mathcal{S}(A))$.

(ii) Let G be the subgroup of the automorphism group of $(A, S(A))$ generated by f_g and f . Then G is transitive and abelian. <u>Proof</u>: (i) It can be verified directly that f_{r} and f are both permutations on A. Let H be any triple in S(A). We shall show by cases that $f(H)$ and $f_{r}(H)$ belong to $S(A)$.

case 1. H is a triple in $S(A)$ of the form (1) . Thus H = $\left\{x_{0}, x_{1}, x_{2}\right\}$ for some $x \in F$. Hence $f(x_{0}) = x_{1}$, $f(x_{1}) = x_{2}$, $f(x_2) = x_0$ so that $f(H) = \left\{ x_0, x_1, x_2 \right\} = H \in S(A)$. Let $y = g^T x$. Then $y \in F$. Thus $f(x_0) = y_0$, $f(x_1) = y_1$, $f(x_2) = y_2$ so that f_{r} (H) = { y_0, y_1, y_2 } $\in S(A)$.

case 2. H is a triple in $S(A)$ of the form (2). Hence there exist distinct a,b,c in F with ab = c^2 and there exists an iin $\{0,1,2\}$ such that $H = \{a_i, b_i, c_{i+1}\}\$. Hence $f(H) = \{a_{i+1}, b_{i+1}, c_{i+2}\}\$ is in $S(\Lambda)$. Let $x = g^{\Gamma}a$, $y = g^{\Gamma}b$, $z = g^{\Gamma}c$. Then x, y, z are members of **F.** Since ab = c^2 , hence $xy = (g^T a)(g^T b) = g^{2r} ab = g^{2r} c^2 = (g^r c)^2 = z^2$. It follows that $f_r(H) = \left\{ x_i, y_i, z_{i+1} \right\} \in S(A)$.

(ii) To show that G is transitive let $x_{i,j}$, y_{j} be any elements of A. We shall show by cases that there exists an automorphism h in G such that $h(x_i) = y_i$.

case $1. x = y.$

Thus i \neq j. Since $i,j \in \{0,1,2\}$ and i $\neq j$, hence either $j \equiv i + 1 \pmod{3}$ or $i \equiv j + 1 \pmod{3}$. If $j \equiv i + 1 \pmod{3}$, we have $f(x_i) = x_i$. In case i = j + 1 (mod 3) consider the mapping f^{-1} defined on A by $f^{-1}(x_{i+1}) = x_i$ for any $x \notin F$ and $i = 0, 1, 2$. We can verify that f^{-1} is an automorphism of $(A, S(A))$ such that f^{-1} is the inverse of f. Hence $f^{-1}(x_i) = y_i$.

case 2. $x \pm y$, i = j.

In this case there exist distinct integers $m_1, n_1 \leq m_1 n \leq 2t+1$, such that $x = g^m$, $y = g^n$. Let $r = (2k + 1) + (n - m)$. Then $r \in \{1,2,...,2t+1\}$, and $f_r(x_i) = (g^{2t+1+n-m} \cdot g^m)_i = (g^n)_i = y_i$. case 3. $x \pm y$, i \pm j.

By case 2 there exists an automorphism h in G such that $h(x_i) = y_i$. Since $i, j \in \{0, 1, 2 \}$ and $i \neq j$, hence we have either

69

 $i = j + 1 \pmod{3}$ or $j = i + 1 \pmod{3}$ $\binom{3}{2} \binom{3}{3} \binom{4}{4} + 1 \pmod{3}$, then $f^{-1}h(x_i) = f^{-1}(y_i) = y_i$. In case $j = i + 1 \pmod{3}$ we see that $f h(x_i) = f(y_i) = y_i$.

Hence G is transitive. To show that G is abelian it suffices to show that $\mathbf{ff}_g = \mathbf{f}_g f$. Let a be any element of A_i . Thus there exist $x \in F$ and $i \in \{0,1,2\}$ such that $a = x_4$. Hence $\mathbf{f} \mathbf{f}_{g}(a) = \mathbf{f}(\mathbf{g} \mathbf{x}) \cdot \mathbf{f}(\mathbf{g} \mathbf{x}) = \mathbf{f}(\mathbf{g} \mathbf{x}) \cdot \mathbf{f}_{g}(x) \cdot \mathbf{f}_{g}(x) = \mathbf{f}_{g}(x) \cdot \mathbf{f}_{g}(x) \cdot \mathbf{f}_{g}(x)$

 $5.4.2$ Lemma. Let G be defined as in Lemma $5.4.1$. Then $|G| = 6t + 3$. **Proof** : Let $S = \{I, f, f^{-1}\}\$, where I is the identity mapping, f is defined as in Lemma 5.4.1 and f^{-1} is the inverse of f. Then S is a subgroup of the automorphism group of $(A, S(A))$. Observe that f_{g} r ϵ S only when f_{g} r = I. Since g has order 2t + 1, hence f_{g} r ϵ S as long as $1 \leq r \leq 2t + 1$ but $f_{2t+1} = I \in S$. Observe that G is generated by f_g and S. It follows from Theorem X of $\left[1\right]$, p 51, that $|G| = 6t + 3$.

 $5.4.3$ Lemma. Let $(A, S(A))$, g , G be defined as in Lemma $5.4.1$. Let $A_{\circ} = \left\{ (g^{2t+1})_{\circ}, g_{\circ}, (g^{t+1})_{1} \right\}$ and $\widetilde{\partial}^{\varrho} = \left\{ g(A_{\circ}) / g \in \mathbb{R} \right\}$. Then $\frac{61}{8} = 6t + 3$

Proof: We shall show that distinct elements of G maps A into distinct triples. Let $s_1 \cdot s_2$ be elements of G such that $g_1(A_0) = g_2(A_0)$. Let S be defined as in the proof of Lemma $5.4.2$ and let $D =$ $\left\{\n\begin{array}{c}\n\mathbf{f} \\
\mathbf{r}\n\end{array}\n\right| \n\mathbf{r} = 1, 2, \ldots, 2t + 1$. It can be seen that $g_1 = s_1 f_g r_1$, $g_2 = g_2 f_2 r_2$ for some g_1 , g_2 in S and $f_g r_1$, $f_g r_2$ in D. Hence $s_1 f_{\mu} r_1(A_0) = s_2 f_{\mu} r_2(A_0)$ so that $s_2^{-1} s_1 (f_{\mu} r_1(A_0) = f_{\mu} r_2(A_0)$. Note

that
$$
s_2^{-1}s_1
$$
 $(f_gr_1(A_o) = s_2^{-1} s_1 (\lbrace (g^{r_1})_o, (g^{r_1+1})_o, (g^{r_1+1}) \rbrace)$ is
\nof the form $\lbrace x_o, y_o, z_1 \rbrace$ when $s_2^{-1} s_1 = I$ and is of the form $\lbrace x_1, y_1, z_2 \rbrace$
\nwhen $s_2^{-1} s_1 = f$, and is of the form $\lbrace x_2, y_2, z_o \rbrace$ when $s_2^{-1} s_1 = f^{-1}$.
\nBut $f_gr_2(A_o) = \lbrace (g^{r_2})_o, (g^{r_2+1})_o, (g^{r_2+1})_1 \rbrace$ is of the form
\n $\lbrace x_o, y_o, z_1 \rbrace$. Hence we must have $s_2^{-1} s_1 = I$ so that $s_1 = s_2$. Thus
\n $f_gr_1(A_o) = f_gr_2(A_o)$. But $f_gr_1(A_o) = \lbrace (g^{r_1})_o, (g^{r_1+1})_o, (g^{r_1+1})_1 \rbrace$
\nand $f_gr_2(A_o) = \lbrace (g^{r_2})_o, (g^{r_2+1})_o, (g^{r_2+1})_1 \rbrace$. Therefore
\n $t+r_1+1 = t+r_2+1$ so that $g^{r_1} = g^{r_2}$. Hence $f_gr_1 = f_gr_2$ so that
\n $g_1 = s_1f_gr_1 = s_2f_gr_2 = g_2$. Thus distinct elements of G maps A_o into

70

distinct triples. Consequently we have $|\mathcal{J}^g| = |G| = 6t + 3$.

 $5.4.3$ Lemma. Let $(A, S(A))$ and g be defined as in Lemma 5.4.1. Let $\mathscr{\widetilde{H}}$ be defined as in Lemma 5.4.2. Then g_0 is contained in exactly $\frac{1}{2}$ triples in $\frac{1}{2}$ Proof: Observe that $A_{\circ} = \left\{ (g^{2t+1})_{\circ}, g_{\circ}, (g^{t+1})_{1} \right\}, f_{\alpha}(A_{\circ}) =$ $\{g_0, (g_0^2), (g^{t+2})_1\}, f^{-1}f_{t+1}({A_0}) = \{(g^{t+1})_2, (g^{t+2})_0, g_0\}, \text{ are }$ 3 distinct triples in \mathfrak{P} that contain g_o . Let H be a triples in \mathcal{H} that contains g_0 . Thus there exists $s \in \{I,f,f^{-1}\}$ and $i \in \{1,2,\ldots,2t+1\}$ such that $H = sf_{i}(A_{0})$. We shall show that $\text{sf}_{\text{st}} \in \left\{ \text{I}, \text{f}_{\text{g}}, \text{f}^{-1} \text{ f}_{\text{st}} \right\}$. Suppose that $\text{st} = \text{f}$. Thus $\text{sf}_{\text{st}}(A_0) =$ $\mathbf{ff}_{i}(\mathbf{A}_{0}) = \left\{ (\mathbf{g}^{i})_{1}, (\mathbf{g}^{i+1})_{1}, (\mathbf{g}^{t+i+1})_{2} \right\}$ so that $\mathbf{g}_{0} \notin \mathbf{sf}_{i}(\mathbf{A}_{0})$. Therefore $s = I$ or f^{-1} .

If f = I we have
$$
sf_{g}i(A_0) = f_{g}i(A_0) = \left\{ (g^{i})_0, (g^{i+1})_0, (g^{t+i+1})_1 \right\}.
$$

Since $s_0 \in st_1(A_0)$, hence either $s_0 = (s^1)$ or $s_0 = (s^{1+1})$. When $g_{\phi} = (g^{\dot{1}})_{\phi}$ we have i = 1. Thus sf_ni = f_g. In case $g_{\phi} = (g^{\dot{1}+1})_{\phi}$ we

have i = 0 . Hence sf₁ = I.

If $s = f^{-1}$ we have $sf_{i}(\mathcal{A}_{c}) = \{ (g^{i})_{2}, (g^{i+1})_{2}, (g^{t+i+1})_{0} \}$. Since $g_0 \n\in sf_{\n\sigma^1}(A_0)$, hence $g_0 = (g^{t+1}+1)_{\n\sigma}$ so that $g^1 = g^{t+1}$. Thus $f_{\sigma}i = f_{\sigma}t+1$. Therefore $sf_{\sigma}i = f^{-1}f_{\sigma}t+1$.

Hence s_{0} is contained in exactly 3 triples in \mathcal{F} .

5.5.5 Theorem. The STS $(A, S(A))$ constructed as in Theorem 5.3.2 is a STS with Property I and II.

Proof: To see that $(A,\mathcal{S}(A))$ is a STS with Property I and II, let $A_i = F \times \{i\}, i = 0,1,2, and \mathcal{F} = \{\{a_0, a_1, a_2\} / a \in F\}.$ Then A_0 , A_1 , A_2 and \widehat{J}^2 satisfy Property I with respect to $(A, S(A))$ so that $(A, S(A))$ is a STS with Property I. Let G, g be defined as in Lemma 5.4.1 and let A_0 , \mathscr{P} be defined as in Lemma 5.4.3. Then $G_{\bullet}A_{\circ}$, $\overline{\mathscr{F}}$ and g_{\circ} satisfy Property II with respect to $(A_{\bullet}S(A))$ so that $(A,\mathcal{S}(A))$ is a STS with Property II.