Chapter V

DIRECT CONSTRUCTION OF STEINER TRIPLE SXS@EM&
./’/ a o )ﬁx

5.0 Introduction

is sufficient for the existence of n-3TS., In this chapter various
methods for direct construction of n~STS for all n with n= 1 or

3 (mod 6) are provided. Section 5.1 deals with methods of
constructing n-STS for any n = 1 or 3 (mod 6) with n 2> 49. Material
in this section is drawn fromi# J.Sections 5.2 and 5.3 give methods
for direct construction of n-8$13 for certain values of n, which
jnclude all n such that 7 £ n % 45 and n= 1 or 3 (mod 6). The
methcd given in Section 5.2 is a generalization of that given in
[1.]. This method gives construction of n=STS for all n= 1 (mod 6)
for which a finite fiéld of order n exists. Section 5.3 gives
method, due to Doyen [2] , for constructing n-5T7S5 for all

n=3(mod 6) and n 9. The last section, Section 5.4, exhibits

the existence of 8TS with Property I and IT mentioned in Chapter ITI.

5.1 Distribution Method for Constructing n--STS

The methods for constructing n-STS in this section will make
use of the distribution of certain 2t integers into t pairs with
differences 1,2,.., t. Propositions 5.1.1 - 5.1.8 give such dis-
~tributions needed in our construction., The truth of these propo-

-sitions can be verified easily. These proofs will be omitted.
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5.1.1 Proposition. Let t = 4m and m 2 2. Then the integers 1,2,..

+. 32t can be distributed into t pairs (br'ar)’ r = l,000,8, such

that br~ a, =r according to Chart I,

Chart I

r br a.

it 7m + 1 7
2m - 1 bm + 1 by 4+ 2
bm - 1 6m 2+ 1

2k 2m + 1 + k 2m + 1 - k kK2 142,00 09205
1+ 2k bm + 1 + k bm - k ks 1y2gsine @ = 23
2m - 1 + 2k 7m + 1 /+/k S+ 2 - k k = 1,240e0qyme~ 1.

5.1.2 Proposition. Let t = 4m + 1 and m 2 2. Then the integers

1,240004 2t, can be distributed into ¢ paixs (br,ar), B B L ey

such that br -8, =T according to Chart IT.

Chart 1II
2 b a
r r
1 S5m + 3 5m + 2
2m - 1 8m + 2 bm + 3
by + 1 ébm + 2 2m + 1
2k 2m + 1 + k 2m + 1 - k kK= L,2yn0eq2l §
1+ 2k bm + 3 + k bm + 2 - k k= 1250059 @ = 23

2m = 1 + 2k mn o+ 1 + k 5m +

no
i
=
w
i}

= 1,2,---,0’1.



5¢1.3 Proposition.

Let t =
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bm + 2 and m 2 2. Then the integers

1925000526 = 1, 2t + 1 can be distributed into t pairs (b ,a ),

* = 1,.ia,t; such that b_- a
‘ ; 3o r r

F

-
2m + 3
bm + 1

2k
1+ 2k

Zm + 3 + 2k

7m + 5

8m
ém
2m
o

Fm

o4
+

o

+

+

2
3
a+ k
Y/ K

5+ kK

= r according to Chart III.

Chart III

om o+ b4

bm + 2

2m + 2 = k K= 32,500,280 + 13
Gm

5m + 2 = k k

2 =~ k k

+

il

1,2'00’,m5

K

1,24p00y m = 2,

Selolt Proposition, Let & = bm + 3 and m 2 2, Then the integers

142490042t ~ 1, 2t + 1 can be distributed into t pairs (br’ ar),

r=1,2ys04,t, such that br— Q= T agecopding to Chart IV,

o

4
2m + 1
hm + 3

2k
1+ 2k

2m + 1 + 2k

Bm + B

8m
6m
2m
6m

7m

+

+

2 + k
6 + k

5 + k

Chgyt v - m2/
“p
5m + L
6bm + 6
2 + 2
2n + 2 = k k2 33250 0ny 2m '+ 13
bra + 5 - k = 1yPising B~ 13
5m + 4 - k kB 2 lsliswnyg s
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5.1.5 Proposition. Let t = 4m and m 2> 2. Then the integers

142400063ty t + 2,000,2t, 2t + 1 can be ‘distributed into t pairs

(dr, cr), r = 1,...,t such that d - c = r according to Chart V.

Chart V
r dr e,
X 7m o+ 2 m + 1
2m + 1 bm + 1 by
Lm 6m 2m
2k 2m + k 2m - k kE = 124006320 = 13
1+ 2k bm + 1 + k bm - k E = JyPronsall = 33
2m + 1 + 2k m + 2 + k 5m '+ 1 - k = Ledgvaayti = 1y

~

5.1.6 Proposition. Let t £ &4m + 3 and m = 2. Then the integers

liceagty t + 2,000,2t, 2t +Floan Wedistributed into t pairs

(dr’ cr), r = 1l,.e.,t, such that d - ¢ = r according to Chart VI.

Chart VI

r dr B,

1 m + 7 7m + 6
2m + 3 8m + 7 6m + 4 m 2/
bm + 3 bm + 5 2m + 2

2k 2m -+ 2 + k em + 2 - k k 2 Ly2issepem + 13
1+ 2k bm + 5 + k bm + 4 - k B e RiyPygnnilt §

2m + 3 + 2k 7m + 7 + k Sm + 4 - k k & J1e2yenssn ~ Ly
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5:1.7 Proposition. Let t = 4m + 1 and m > 2. Then the integers

lyisegty t + 2,.04,2t, 2t + 2 can be distributed into t pairs (dr,cr),

Tz lyseest, such that dr- B = ¥ according to Chart VII.

Chart VII
r dr S0
1 7m o+ b4 m + 3
2m + 3 8m + 4 6m '+ 1
bm + 1 bm + 2 2m + 1
2k 2m + 1 + k 2m + 1 -~ k e s l,2,...,2m;
1+ 2k bm + 2 + k - 6m + 1 -k R = R 2ienny 1
2m + 3 + 2k 7m o+ 4o+ K 5m + 1 - k k = 1,2,00a4 = 2,

Bl Proposition. Let t = 4m + 2 and m 2 2, Then the integers

Lysoogty t + 2,040,2t, 2t +Z0em e OIstributed into t pairs

(dr, Cr)’ T = lyeseysty, st@h_that dr- C. = f accerding to Chart VIII

Chart VIII

r d (o
r r

5 ] 7m + 5 7m o+ 4
2y + 3 8m + 6 6bmn + 3
b + 1 6m + 2 2m + 1
by + 2 8m + 4 by 4+ 2

2k 2m+ l+k 2m+l"k k: l,?.,..i’am;
1+ 2k bm + 3 + k 6m + 2 = k E = 1y vneslls

2m + 3 + 2k 7m o+ 5 + k 5m + 2 - k k Lo P = 25

1]
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5.1.9 Lemma. For any positive integer t, let x and y be distinct
numbers from 1 to 6t + 1. Then

(i) x = y or y = x is congruent modulo 6t + 1 to one of the
integers 1,2,¢004 3t

(ii) x - y or ¥y = x is congruent modulc 6t + 1 to one of the
integers 1,2440e33t - 1, 3t + 1,
Proof : We shall show by cases that x = y or y = x is congruent
modulo 6t + 1 to one of 1,2,.40443t

case 1. 1£& %7 XM=

We may assume that x > ve Hence 1 &£ x - y £ 3t. Therefore
X - y is congruent modulo 6t + 1 to one of 1,2,..., 3t.

case 2. 3t + 1 L x ,/y/ 4L Oy 1.

We may assume that x > y. Hence 1 £ x - y < 3t., Therefore
X = ¥y is congruent modulo 6t + 1 to one of l,..., 5t - 1.

case 3. 14 x £ 3 ELSt+-31<C5 &bt + 1.

LB —Trr< v - ML 3t, then y - x is

~

Then 1 £ y - x
congruent modulo 6t + 1 to"one of 1,.ss43t. In case 3t { y - x £ 6t
we have —.(61;)\(“ Xx -y & -~ (3t). Hence 1 x~y + 6t + 1{3t + 1
so that x - y is congruent modulo 6t + 1 to one of l,eee,3t,

case bk, lﬂy_é3t+l,3t+l<x$6t+l.
Similarly to case 3 we can show that x - yor y - xis
congruent modulo 6t + 1 to one of l,.se4y3te

Thus (i) is proved. To prove (ii) we abserve from (i) that
X =y or y = x is congruent modulo 6t + 1 to one of l,...,3t. Assume
that x « y is congruent modulo 6t + 1 to one of l,s0e43te If X = ¥

is congruent modulo 6t + 1 to one of 1,2,.4.,3t = 1, then (ii) is
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proved., In case that x - y is congruent to 3t modulo 6t + 1 we
have y = x = = 3t = - (6t + 1) + (3t + 1), Therefore y -~ x is

congruent to 3t + 1 modulce 6t + 1. Thus (ii) is proved.

5.1.10 Theorem. Let n = 6t + 1 and t » 8. For r = 1,...;%, let
(br’ ar) be defined as in Propositions 5.1,1 - 5.1.4 deperding on
the residue of t modulo 4, Let C = é ; B ST 6t + l'} and 3(C)
be the family of the following 3-subsets of 'C':

ip,p+r,p+t+br}2_ sy B € C,rézl,?-»---,t

N
-

where each number is taken modulo 6t + 1.
Then (C,S8(C) is n-STS.
Proof : The total number of 3-subsets in S(C) is at most t(6t + 1) =
% n(n - 1). Thus to show that (£,8(C)) is n=5T8, it suffices fo
show that for any 2-subset T of C there exists a >-subset H in 8(C)
such that T H. Let T = i'x,y } te any 2-suﬁset of Cs 1In this
prdof the additién is“the addition in the residue class ring mcdulo
6t + 1L,

case 1o t=0 or 1 (mod 4).

By the construction of (br’ ar) we-have {1,2,,.:, 3t§ =

{1..;.,t t + b b+ byt o+ Bgeeey B oAy }. By Lenma 5,1.9(i)

RRRRE)
we may assume that y - x is congruent modulo 6t + 1 to one of
1;250s0308 Thib ¥ « X = 1 O ¥ = X = ¢ '+ br or y = x =1t + a,
for- some Py 1 & v -L %

case 1(a) y - x = r.

Let H = f Xg X+ Ty X+t + b }. Then H € S(C) and T H.

case 1(b) y-x = t + b4
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Let H = {x,x-fr, x+t+br}. Then H €& 8(C) and T < H.
case 1(¢) y - x =t + a,
Let p =y -t - br' Hence p + r =y = t = br +r =y -t - a =
x and p + t + br= y -t - br+ t o+ br= ye Let H = { p;p + Typ + T +bri
Then H € S(C) and T < H. | |
case Z¢ 't = 2 or 3 (mod 4).

{

By the construction of (br’ ar) we have % lyeeey3t = 1, 3t + 1=
r ' X e
il"f"t’ t +-bl,.,.,t + bt’ t o+ Apyeecs t + at} o By Lemmg 5yl.9(ii)
we may assume that y - x is congrucnt modulc 6t + 1 to one of .ly...,
3t = 1, 3t + 1o Thus y =X %/)r| o Je= X = t + br or y-x=1t + a,

for some ry, L £ r £ t. Similarly to case 1 we can prove that there

exists H in S(C) such that T & H.

Hence (C,S(C)) is n ~/STS.

5.1.11 Lemma. For each positive integer t let x and y be distinct
numbers from 1 to 6t + 3 such that neither x - y nor y - x is
congruent to 2t + 1 modulo 6t + 3. Then

(i) x = y or ¥ = x is congruent modulo 6t + 3 to one of 1l,...,
2, 2t +24nse eIty € + L

(ii) x = y or y = x is congruent modulo 6t + 3 to one of l,..s,
2t, 2t + 25069 ,5t, 3t + 2.
Proof : We shall show by cases that x - y or y - x is congruent
modulds Bt + 3 to one of lyeeegely 28 # 2yeeey Fby 3t + 1s

case l. 1éx,y\4 3t + Zo

We may assume that x } Ve \Hence 1L 2» ¥ ( 3t + 1. Therefore

x - y is congruent modulo 6t + 3 to one of 1l,.ee,2t,2t + 25404,3t,30+1,



dase 2. 3t + 2 £ x,y £ 6t + 34
We may assume that x > ye Hence 1 { x = y £ 3t + 1 so that

x = y is congruent modulo 6t # 3 to one of ljeesy2t42F + 2,004y 3b¢

Q
o
[53]
(&)
L63)
-
f——l
/If\‘\
¥
I\

36 4 2, 3t + 2.4 7 & 6% +5)
Thon 14 y -~ x § 6t + 24 I£f 1 y=-x { 3t + 1, then y = x
is congruent modulc 6t + 3 to one of l,,.e42t, 2t + 2eevs sty 3t + 1o
In ease 3t + 1 { y - x 4 6t + 2 we have « (6t + 2)£; x =y £
~ (3t + 1), %ence 1L x =y + 684 3 {3t+1 so that x - y is gon-
-gruent modulé 6t + 3 toome of Limma2ty 2t + 2,444 3t ¢‘1.
c#se#. l(:f_é?t+2,3t-.=2<xé6t‘+3.
Similarly to case 3 we can show that x - y oxr y : i'must be
congruent modulo 6t + 3/to one 0f 1l,..s,2t, 2t + 2;..m,"3£,3t + L
Thus (i) is proved. To prove (ii) we observe from (i) that
X =y or ¥ -~ x is congrment modulko 6t + 3 to one of l,ees 2t,2t + 2,.
esey3ty, 3t + 1, Assume that x - y is congruent modulo 5t + 3 to ome
0f l,seegl2ty 2t + 2,5, %3ty S T L, It - y is congruent modulo
6t + 3 to one of 1,504,208, 287°% 2,..0045t “then (ii) is proved.
Suppose that x - y is congruent to 3t + 1 modulo 6t + Se Hence
v ex == (3t +1) =« (6t + 3) + 3t + 2 s0o that y =~ x is congruent

modulo 6t + 3 to 3t + 2, Thus (ii) is(proved.

541,12 Theorem. Let n =6t + 3 and t 2 8. For r = 1,..4,t, det

(dr’ c,.) be defined as in Propositions 5.1.5 = 5.1.8 depending on

the residuc of t modulc 4. Let C = § 1240003t +°3 } and 3(C) be
]‘ ' 3

the family of the following 3-subsets of Cb
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3

) ip,p+—r,;)+ t+—dr}, r € zl,2”..,t3 p € C,
(ii) { Py, P+ 2t +1, p + 4t + 2} , D€ {l,Z,...,Zt + l} "

where each number in 3-subsets in S(C) is taken modulo 6t + 3.
Then (C,S8(C)) is n-STS.
Proof : It can beseen that the total number of 3-subsets in S(C)

18 at most (£)(6t + 3) + 2t + 1 = % (6t + 2)(6t + 3) = . n(n - 1),

6

Thus to show that (C,S(C)) is n-STS, it suffices to show that for
any 2-subset T of C there exists @ 3-subset H in S(C) suck that
TC He Let T = {'x,y } be any 2-subset of C. In this proof the
addition is the addition in the residue class ring modulo 6t + 3(

J'irst we assume that neither x - ymery - x is congruent
modulo 6t + 3 to 2t + lf

case 1. t = O or 3.(mod 4).

By the construction of (dr, cr) we have { Ywavn@badt 4 v
sanmydtyr Bt + 1 i = {1,...,t, t o+ dl""t + dt' t + Cprecey t + ctf.
By Lemma 5.1.11 (i) we may assume that y - x is congruent modulo
6t + 3 to one of Payensalbe 28 + 2amea Bty 3t + 1, Thus ¥ = X = r or
y-x=t+d ory-x=t +c for somer, 1L r £ &

case 1(a) y - x = r.

Let H = i Xy X + Ty X +t + drj . Then H € S(C) and T € H.

case 1(b) y - x =t + d..

Let H = { X, X+ Ty X+t + dr,}' Then H € S(C) and T & H.
case 1(c) y - x =t + Cpe
Let p =y -t - dr' Hence p + r = y = t = dr+ r=y -1t - c.=

x and p + t + dr= y -t - dr+ t + dr= yo Let H = ip, P+ T,

p+t+dr}. Then H &€ S(C) and T & H.



case 2 t == 2 or 3 (mod 6)

By the construction of (ﬂfv Cf) we have

t

? 1,.0.,2t,2t L o 2,0’0.,.3‘t’3t -+ 2 }:‘1 {1'._¢c,t,t + C t+ct’t+(11.,...,t+dt}‘

l’lﬂ.’ ]
By Lemma 5.1.11(ii) we may assume that vy - X is éongruent modulc
6t + 3 to one of 1,.;.,25; 2t42 pane 3t 330420 Thus y = ¥ = » or

y<x=1t+ d, ory~x=%t + 8  for some r, 14£ r {t. Similarly

to case 1 we can show that there exists H in 8(C) such thet T< H.
Next we assume that -y =~ x or-5 - 3 is congruent to 2t + 1
quulo 6t + 3. We éha113§$sume that x -~ y is congruent to 2t + 1
modulo 6t + 3. |
case 1. :x.> y.

In this case we have '®xt = ¥'¢ 2t + 1 and 1 { ¥ é “t + 2, Hence

X =y +2t + 1. If 1.4 ¥y ‘ B deccllyy 1ot H ;i ¥5¥ +2% + 1.5 + Lt + 2},

—

Then H € 5(C) and T ¢ H, In cdse 2t + 27 v (£ Lt + 2, let =z =

y+ (2t +1)s Thuys Lz £ 2t + 1,—het H = } Zy7 + 2t + l,z+4t+2},

—

Then H € 8(C) and $T& H,

case 2. x ¥ |
Since.i.gfx!y‘é 6t + 3, henge x ~ v = =(6t+r)+2t+1 = =(L4t+2).
Thus l_é x {2t + 1, Let H = ix,g # 26 % 1L, x + by + 2 }. Then
H € 3(C) and T < H,

Therefore (G,S(C)) is neSTS,
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5.2 Construction of n-3TS, where n = pm=,6t+L, p Is a Prime Number

Given any positive integer n of the form n = pm= 6t + 1, where
p is a prime number. We know that a field of p" elements, GFr(p™),
exists and in fact the multiplicative group of such a field 1s gyclics:

We can construct n-STS from GF(pm)’as in the following theoren.

5.1.1 Theorem. Given any positive integer n of the form n = pm =

6t + 1, where p is a prime number. Let g be a generator of the
multiplicative group of F = GF(p" ). Let S(F) be the family of the
following 3-subsets of F
{.k,k T gt+r f, where k & F, r € i Oylyeeey, t = 1 },
Then (F,S(F)) is n-3TS.
Proof : The total number of 3-subsets in S(F) is at most nt =
é n(n = 1).. Thus to prove that (F,S(F)) is n-STS, it suffices to
show that for any 2-subset T of F there exists a 3-subset H in S(F)
such that T € H,
First we shall show that for any 2-subset T of T that contains

O there exists a d-subset H in S(F): such that T < H, Let T = { O,gi}
be any o.subset of T that contains O. We shall show by cases that
there ecxists a 3-subset H in S(¥") such that T C H.

case 1. 0 £ i { t -1.

Let B = { B o i Then H € S(F) and T & H.

case 2. t £ if2t -1

Hence i =.t + r, where O £ r,é £ - 1. Let H ={ O,gr,gt*r }.

Then H € S(F) and TG H.

case 3. 2t 4 i% 3t - 1.



Henoe i = 2t + r, where O { r ét -
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l. IJet I‘E =

i gy g+ g, - g g“rj') . Thus H & 8(F)i We shall show that
Lo H Since ng* 1 while g(% = 1, hence gg3ﬁ+ 1= 0, §&incge
g3t+ 1= (g£+ 1)(g2t- gt+ 1), hence (gtir l)(gét— gtq- 1) = 0. Bud
gt+ 1 ¥ 0, therefore thL- gt+ 12 0 so that th:___ gﬁ-t 1. Hence
-gf and -=g + €t+r can be written as —gT= (s l)g = (gat)(gl‘) = 35t+r

il wgle a e 4 Lg= 3eTT = (th)(g )

+1r ) :

{ g3t+r,0,32t Fr} and T & H,

case 4y, 3t i {4t -1

Uence i = 3t + r, where 0§ r &t -

t+r ) :
-g + 8 } . By the same argument as in

and T £ M,

case 5, Ut < 1 & Bt/=d

Hence i = 4t + r, where G £ r & ¢t

. Leter
= g 7 .

= f T
1, Let H =f =g ,~g +2 ,

case 3 we have U £ S(F)

g.;, Let H=| =g

" &5, e gt*rf . Thus W € S(#). Obscpve that - g 7' =
N L Li' b o0 420 o
e s (28 (TR Y. (L) (™) (- D) 5
A Y % { E 2 ; ) Sl P
(gjt)(gr)(gat) = gjt*r, Thus 9 = Eglﬁ’ﬂ?, g)tﬂ',o } gnd T< H

case 6, SHMINEAKONTGKAR)

Hence i = 5t + r, where 04 v £ % - 1, Let H = i -3y
t+r r t+r t+r ) 2 ;
=g T g =8 + g 3,, By the same argument as in. case 5 we have

H:€ 3(F) and T € H,

Next we shall chow that for any 2-subset T of F that dees uot

contain O there exists a 3-subset H in S(F) such that T H. Let

~

T = f Xy ¥ ; be any 2-subset of ¥ such that

\

x % O, vy # 0, Let

! ) { i 5
T1=fx- Xy Y = XI = i Cy, ¥y - xf, Since x % y, hence ¥y ~ x = O,
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Thus Tl is a 2-subset of T that contains 0. Therefore there exists

a 3-subset Hl in 8(F) such that 7. Hl. By definition cof S(F) we
) | s |
must have Hl =§ kl,kl+ g ,k1 + 8 },where kl & B, O 4 rlg't - 1.

—

- r, ‘b+rl
Since { 0,y ~ x}c {kl’ kl+ g T ’1;l+ g !, hence

. 3l t-.‘*rl )
iO + Xy ¥ = X + X}, { k1+ % Kl+ X + g kl+ X + g ] » Let
H ={ ky+ X, Kyt X + 8 1, ki+ x + gt e f . Hence H & S(F) and
T Ha

Therefore (F,3(F)) is n-STS.

5.3 Construction of 6t + 3+873 from Cyclic Group of Order 2t + 1

5.3.1 Lemma. Let ¥ be a cyclic group of order 2t + 1. Let g be a

generator of F. Then

o

(1) It ng = gzs, where 0 & r, s € 2t + 1, then gt = g°.

-

(ii) for any distinct elements a, b in F, there exists a

unique element ¢ in F such that ab = 02.

(iii) If a and b are distinct elements of F, then R
b~122 are distinct from a and b respectively.
5 21 28
Proof ¢ (i) From g~ = g we have 2r + 2s = gq(2t + 1) for sonme

integer g. Since 2/'2r + 2s, hence 2'/ g2t + 1). But.272-t+ o
/ /
therefore 2 / ge Thus g = 2q for some integer q. Hence r + s =
2 b3 3
q (2t + 1) so that g = g .
(ii) Let a, b be any distinct elements of F, Hence a = gm,

n - I, .
b = g for some distinct integers m , n , 04 m,n £26 « If

m + n is even, then there exists a unique positive integer r such
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that @ + n = 2r. Since 0 £ m, né 2t, hence O : r\< 2t. Tet

B of - 2 y ‘ .
¢ = g o« Therefore ¢ € F and ab = ¢~. Suppose that therd exists

8 A e 3 2 2 2 2
d =g 4 0 f s < 2t + 1, in P such that ab = 4°, Hence d = ¢ so
24 2r . . 5 r
that g =g« By (i) we have g = g '« Thus d = c. In case

that m + n is odd we see that (26 + 1) + (m + n) is even. Let 1

be the integer such that 2r = (2t + 1) + (m + n). Choose integers

v . s

k and s such that r = k(2t + 1) + 5, where 0§ s £ 2t, Let ¢ = g .
' - T+l 2L +1+m+y 2 k(2t+ 28

ence ¢ € P, Now ab = ¢t g¢t+¢ man o 2r SZ&(;tfl)+@u »

2s : :
g = ¢ o+ The uniqueness of c¢ follows by repeating the same

argument as in case that @ + n/is even.

T AN z il
(iii) Let a, b be digtimct elements in F, Hence a = g,
n s . /e \
b = g, for some distinct/integers myn, O 5 m,;“g 2t. Suppose
-1 2 2 = N\ 2n 2m
that a "b"~ = a. Therefore ¥° =987 so tiat g~ = g. It follows
_ . PO n - Y o : e o
from (1) that g° = g°» Henct-m -=-n-which is a contradicticn. Thus
"'l 2 : . . - Y : ""l 2
a b x a. Similarly wescam—show—that=b—"a % b,
5¢3+.2 Theorem. Let F be a cyckic gmoup of order 2t + 1, t 2 1.

’

Let & = FX [0,1,2 j and let S(A) be the family of the following
3-subgsets of Al

(1) { a_y 2y aaz » where a € ¥,

{23 i ao’bo’cl} ’ { al’b1502f ,f aa’bE’co} , where a == b
and 2b = ¢
Then A ,S(A)) is 6t + 3 = STS.

Proof ¢ Let n = 6t + 3, The total number of 3-subsets in S(A)

of the form (1) is 2t + 1. For any 2-subset T = % - I § of T,

2

there exists a unique element z in ¥ such that xy = z~. Hence we
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can form exactly 3 3-subsets in S(A) of the form (2) from T ;
namely, { X 2V 129 } s ixl,yl,za} 5 éXZ’yE’ZO} « ©Since there are

(Zt i 1l) 2-subsets of F, hence the total number of 3~subsets in

2 /
S(A) of the form (2) is at most (Zt ; 1)‘3. Therefore the total
number of 3-subsets in S(A) is at most 2t + 1 + (2t ; 1) s

é (6t + 3)(6t + 2) = % n(n - 1), Thus to prove that (A,S(A)) is
6t + 3 - STS, it suffices to show that for any 2-subset T of A

there exists a 3-subset H in S(A) éuch that T< H. Let T = f ai,bj}

be any 2-subset of A, We shall show by cases that there exists a
3-subset H in S(A) such that Tg H.

case l¢ a = by i PS4

Let H = zao, 8118, } . Then H & 8(A) and T = {ai,aj f€ H.

case 2. a ==b , 1= /.

By Lemma 5.3.1 (ii) there exists ¢ in F such that ab = c“.
Observe that the 3-subsets in S(A) of the form (2) have two elements

in the same G, = G X fl} and the third element in G, .. Let

l.

H = z a.,b. ,C Then H € S(A) and TG H.

1774 7i+1 f'r
case 3. az=kb, i = j.

Since i,j é iO,l,Zf and i :l: j, hence either j = i + 1(mod 3)

or i= j + l(mod 3)s If j = i + 1(mod 3), let ¢ = a"lba._ Therefore

by Lenmma 5.3.1 (iii) ¢ 4+ a and ac = b2. Let H = { ai,ci,bj{ 5

Then I & S(A) and TG He Incase i = j + 1 (mod 3), let 4 = B,
By Lemma 5.3.1(iii),d = b and bd = a°. Let H = f bj,dj,ai} . Then
H €& S(A) and T & H,

Hence (A,S(A)) is 6t + 3 - 8TS.
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5.5¢3 Remark. The construction given in Thecrem 5:3.2 make use of
properties (ii), (iii) in Lemma 5.3.1 only. Any group I of order
2t + 1 with properties (ii),(iii), if exists, can be used in the

above construction also,.

S.4 Existence of STS with Property I and II

The notion of STS with Property I and STS with Property II has
been introduced in Chapter III, Yet their existence is not known.
In this scction we shall show that the STS of order n == 3(mod 6)

constructed as in Theorem S.B.Z'are STS with Property I and II.

5.4,1 Lemma. Let (A,8(A)) and T be defined as in Theoren 5.3.2.

Let ¢ be a generator of F. For any positive integer r € E L2 sy
2t + lé ;s Jdet fgr be a mapping defined on A by fgr(ai) = (gra)i
for any a & F, and @5 = 0,1,2:. Let £ibhe a mapping defined on A

by f(ai) = 8 for any-a € F and-i'= ¢.l,2. ' Then

i+l
(i) ¢ and £ , are automorphisms of B8LAY )

g
(ii) Let G be the subgroup of the automorphism group of

(A,8(4)) generated by fg and fe Then G is transitive and abelian.

Proof : (i) It can be verified directly that f _ and f are both
g
permutations on A, Let H be any triple in S(A). We shall show by

cases that f(H) and r(H) belong to S(A).
g
case 1. H is a triple in S(A) of the form (1). Thus H =
{xo,xl,xz } for some x € F. Hence f(xo) = Xq, f(xl) = X9

f(xz) = x_ so that £(H) = { e } - b R b e
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Ui ] . = = ' =
Then y & F. Thus f‘r(xo) Yor £ r(xl) ¥4 £ r(xz) Y, 80 that
8 £ 8
fgr(H) & { P } € s(p).
case 2. H is a triple in S(A) of the form (2). Hence there

exist distinct a,b,c in F with ab = c2 and there exists an 1 in

iO,l,Z‘} such that H = '{ai’bi’ci+l} « Hence f(H) =f ai+1'bi+1'ci+2 5

J
is in S(a)Let x = gra, ¥ = grb, Z = grc. Then »,y,z are members of
2r 2r 2 r2. 2
¢ .= (g g) g%

F. Since ab = c2, hence xy = (g a)(g™h) = gFap = g

It follows that fgr(H) = i Xi’yi’zi+lﬁ £ S(A).
(ii) To show that G is transitive let xi,YJ be any elements

of A. We shall show by cases that there exists an automorphism h
in G such that h(xi) = yj.

case ls x = P

Thus i &= j. Since i,j¢€ { Q1,2 } and 1 # j, hencc either

J=1i+1(mod 3) ori= j+1(mod3)e If j = i+ 1 (mod 3),

we have f(xi = Xy In case i == j + 1 (mod 3) consider the mapping

1

g defined on A by £~ (x.

1+l) = Xy for any xg F and i = Delds

We can verify that Gt automorphism of (A,3(4)) such that g
is the inverse of f. Hence f”l(xi) A
case 2. x % y, i = J.
In this case there exist distinct integers m,n,1 § m,né 2t+1,
such that x = g, vy = g™, TLet r = (2 + 1) + (n = m). Then
r e { 3y Pyenng2t 4 1 ?, and f r(xi> = (g2t+1+n-m . 5= (gM).= 7..
case B X 4: ¥, i #: j.g

By case 2 there exists an automorphism h in G such that

h(x;) = y,. Since i,jgi o i and i 4 j, hence we have either
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S{» ']
{%i 7 AF\
iz j+ 1{mod 3) or j = i + Ll{mod 3){ZR4¥ 15 + 1 (mod 3),
P " S P T
sl e b o SO B
then f h(xi) = f 1(yi) = ¥y In case j = 1 + Llmod 3) we see

that f h(xi) = f(yi) = ¥y

Hence G is transitive. To show that G is abelian it suffices

to show that ff = fgf. Let a be any element of Ay Thus there

e ’ g ; 2
exist x &€ F and i é.é 0,1,2 } such that a = Xy o Hence

ik

ffg(g) = f((gx)i) =A(gx)i+ i

= f (x%.
@) i

=3

) = £ f(a). Therefore ff = £ f.
g : g g8

5.4,2 Lemma. Let G be defined as in Lemma 5.%.1, Then lal = 6t + 3.

oy ‘ -1 . X y i
Proof 3 Let S = 1 I,f,8 47y where I is the identity mapping, f

is defined as in Lemma 5.4l and fﬁl ®g “the inverse of f, Then 8
is a subgroup of the automorphism group of (A,3(A)). Observe that

fgr € 3 only when f r =/I.” Since g has order 2t + 1, hence fFr € s
& =
as long as 1 £ r { 2t + 1-but-¢ 50.1 = I &€ S. Observe that & is

Q

.
generated by fg and 33 Tt Ffollows from Theorem X of| lJ M
: N ;

that | G| = 6t + 3.

Selie3 Temma. Let (A,SCA) ). . Ghe.Aefined as in Lemma 5.L4,.1.

) & { .
(g2t+l) , B ., (g'b'*‘l) % and d@ zgg(Ac) / z e 3‘}‘ Thel’l

Let 4 = 3
L)

!
‘ g;bl = 6t + 3.

o O 1

Proof : We,shall shew that distinct elements of G maps Av into
2000 . ‘

) =g ([‘ )n

distinct triples. Let £y185 be elements of G such that gl( 85 (A
% & 4

pn
¥
Qo

Let S be defined as in the nroof of Lemma_5.4.2 and let D =

. ‘ .
% £ " /r @ LyPsvuyelt ¥k g. It can ‘be seen that 6q7 Slfmrl 4
L g ! : J O

g, = S2igr2 for some Sy 8, dn S ‘and fgrl’ fgrg in D. Hence

. -1 / X s A )
s, f ry (80 =8 sy (gm0 = £ x,(a ). Note

ngra(AO) so that s
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r.+1 t+r,+1 is
i 1 ;

St B

; r
5 8y (fgrl(Ao) e Sl< { (g l)o,(g

2

-1 - s { - }
of the form{ xo,yo,zl} when 85 8y = I and is of the form [X¥1991025
-1

-1 _ . ) ( -1 _
when s §q = fy, and is of the form i X512 } when s s, = £ 7,

2 _ s By
ry r,+l t+r_+1
)o'(g

But fgra(AO) = { (g B

1.y L _ )1 } is of the form

-1 v ~ ;
{xo,yo,zli » Hence we must have S, 89 = I so #hat S9= S, Thus

ry rl+l t+rl+l j
2ri(A) = £ (A). But £r () ={ (6 Dt ) e b))

{ r, r2+l t+r2+l
and fgr2 (AO) = i(g )o' (g )o' (g %_f . Thg?@fore

t+r1+1 t+r_ +1 ry r2
g = g so that g = g . Hence fgrl = fr}r2 se that

8 = slfgrl = s, gr2 =84-

distinct triples. Consequently we have '§&| = IG | = 6t + 3.

1 Thus distinct elements of G maps AO into

5¢4e3 Lemma. Let (A,5(A)) and g be defined as in Lemma 5.4%.1.

Let 5& be defined as; in Lemma 5.4.2. Then -8 is contained in
e

exactly 3 triples in ., I

,'09

Proof : Observe that A =l(g2t+l)o

t+l
N ) s

' 2 t+2 -1 t+1 t+2
{ 8,1 (8,0, (8 )1f N f1t+1(AO>=2(g iy go}, are
I 6 , ",",
3 distinct triples in H that contain B e Let H be a triples in

Ciy &
<ﬁ£ that contains B, Thus there exists s £ {I,f,f l} and

: 6.{ 142406042t + 1 } such that H = sf i(AO). We shall show
g

l A -—
f t+1f « Suppose that s = f. Thus sf i(AO) =

that sf , € {I,fg,f'
< |

" 1 i+l t+i+1
2,0 = | GGG, | s that g ¢ st (8.

g g

Therefore s = I or ffl.

g
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. - - a2 i+l t4+i+l
If f = I we have sf i(AC) = f i(AO) —i’(g )O,(g )O,(g )

g g
Since g & sf ,(A ), hence either g = (gi) or g = (gi+1) When
‘ >0 gi o”? ) > ‘o o . et
g€ = (g") we have i = 1. Thus sf , = f ., In case g = (gl+l) we
o o ot g o o
have i = O, Hence sf g & I,
g
S ¢ " - i i+l teisl f
If s = £~ we have ngi(“c) = f (g )21(55 )2.(0 )O .
8ince g € sf .(A ), hence g_ = (gt+1+l) so that g’ = gt+l. Thus
(o] i O (»] @]
g
£ . =4 Therefore sf . = £ 1f
3 = 1 .t+lo ereiore 3 1 = t+l.
g g 8 g

o
Hence 8, is contained in exactly 3 triples in d“ .

5.5.5 Theorem. The STS (A,8(A)) constructed as in Theorem 5.3.2
is a STS with Property I and II.

Proof : To see that (4,S(A)) is a STS with Property I and II, let

3 . c‘. 1
Ay =T X {1.}, i=0,1,2, and H = f{ao,al,aa}r/ a & F’i.

Then AO ,Al '

so that (A,S(A)) is a STS with Property I. Let G, g be defined as

-
A, and o satisfy Property I with respect to (4,S(A))

b
in Lemma 5.4.1 and let Ao,dﬂ be defined as in Lemma 5.4.3. Then
GyA_, SR and g, satisfy Property IT with respect to (A,8(A)) so

J

that (A,S(A)) is a STS with Property II.

1f
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