Chapter V

DIRECT CONSTRUCTION OF STEINER TRIPLE SYSTEMS

5.0 Introduction

In Chapter IV we proved that the condition $n \equiv 1$ or $3 \pmod{6}$ is sufficient for the existence of n-STS. In this chapter various methods for direct construction of n-STS for all n with $n \equiv 1$ or $3 \pmod{6}$ are provided. Section 5.1 deals with methods of constructing n-STS for any $n \equiv 1$ or $3 \pmod{6}$ with $n \ge 49$. Material in this section is drawn from $\begin{bmatrix} 4 \\ 1 \end{bmatrix}$. Sections 5.2 and 5.3 give methods for direct construction of n-STS for certain values of n, which include all n such that $7 \le n \le 45$ and $n \equiv 1$ or $3 \pmod{6}$. The method given in Section 5.2 is a generalization of that given in $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$. This method gives construction of n-STS for all $n \equiv 1 \pmod{6}$ for which a finite field of order n exists. Section 5.3 gives method, due to Doyen $\begin{bmatrix} 2 \\ 1 \end{bmatrix}$, for constructing n-STS for all $n \equiv 3 \pmod{6}$ and $n \ge 9$. The last section, Section 5.4, exhibits the existence of STS with Property I and II mentioned in Chapter III.

5.1 Distribution Method for Constructing n-STS

The methods for constructing n-STS in this section will make use of the distribution of certain 2t integers into t pairs with differences 1,2,.., t. Propositions 5.1.1 - 5.1.8 give such dis--tributions needed in our construction. The truth of these propo--sitions can be verified easily. These proofs will be omitted. 5.1.1 <u>Proposition</u>. Let t = 4m and $m \ge 2$. Then the integers 1,2,.. ..,2t can be distributed into t pairs (b_r, a_r) , r = 1, ..., t, such that $b_r - a_r = r$ according to Chart I.

Chart I

r	br	ar	
l	7m + 1	7m	
2m - 1	6m + 1	4m + 2	
4m - 1	6m	2m + 1	
Sk	2m + l + k	2m + 1 - k	$k = 1, 2, \dots, 2m;$
1 + 2k	6m + 1 + k	6m – k	k = 1,2,, m - 2;
2m - 1 + 2k	7m + 1 + k	5m + 2 - k	k = 1,2,,m 1.

5.1.2 <u>Proposition</u>. Let t = 4m + 1 and $m \ge 2$. Then the integers 1,2,..., 2t, can be distributed into t pairs (b_r, a_r) , r = 1,..., t, such that $b_r - a_r = r$ according to Chart II.

Chart II

	r	br				ar		
	1	5m +	+ 3		5m	+ 2		
	2m - 1	8m +	+ 2		6m	+ 3	·	
	4m + 1	6m +	+ 2		2m	+ 1		
	2k	2m +	+ 1	+ k	2m	+ 1 - k	$k = 1, 2, \dots, 2m$;	
	l + 2k	6m +	+ 3	+ k	6m	+ 2 - k	k = 1,2,, m -	2;
2m	- l + 2k	7m -	+ 1	+ k	5m	+ 2 - k	k = 1,2,,m.	

5.1.3 <u>Proposition</u>. Let t = 4m + 2 and $m \ge 2$. Then the integers 1,2,...,2t - 1, 2t + 1 can be distributed into t pairs (b_r, a_r) , $r = 1, \dots, t$, such that $b_r - a_r = r$ according to Chart III.

Chart III

	r	b _r	ar	
	1	7m + 5	7m + 4	
	2m + 3	8m + 5	6m + 2	
	4m + 1	6m + 3	2m + 2	
	2k	2m + 2 + k	2m + 2 - k	k = 1, 2,, 2m + 1;
	1 + 2k	6m + 3 + k	6m + 2 - k	$k = 1, 2, \dots, m;$
2m	+ 3 + 2k	9m + 5 + k	5m + 2 - k	k = 1,2,, m - 2,

5.1.4 <u>Proposition</u>. Let t = 4m + 3 and $m \ge 2$. Then the integers 1.2...., 2t - 1, 2t + 1 can be distributed into t pairs (b_r, a_r) , $r = 1, 2, \dots, t$, such that $b_r - a_r = r$ according to Chart IV.

Chart IV

m 21

br r ar . 5m + 4 5m + 5 1 8m + 7 6m + 6 2m + 1 4m + 3 6m + 5 2m + 22m + 2 + k 2m + 2 - k $k = 1, 2, \dots, 2m + 1;$ 2k 6m + 6 + k 6m + 5 - k $k = 1, 2, \dots, m - 1;$ 1 + 2k7m + 5 + k 5m + 4 - kk = 1,2,..., m. 2m + 1 + 2k

5.1.5 <u>Proposition</u>. Let t = 4m and $m \ge 2$. Then the integers 1,2,...,t, t + 2,...,2t, 2t + 1 can be distributed into t pairs $(d_r, c_r), r = 1,...,t$ such that $d_r - c_r = r$ according to Chart V.

M1-		L T	T
Ch	ar	C I	1

	r	dr	cr	
	l	7m + 2	7m + 1	
	2m + 1	6m + 1	4m	
	4m	6m	2m	
	2k	2m + k	2m - k	k = 1,2,,2m - 1;
	l + 2k	6m + 1 + k	6m - k	$k = 1, 2, \dots, m - 1;$
2	m + l + 2k	7m + 2 + k	5m + 1 - k	$k = 1, 2, \dots, m - 1.$

5.1.6 <u>Proposition</u>. Let t = 4m + 3 and $m \ge 2$. Then the integers 1,...,t, t + 2,...,2t, 2t + 1 can be distributed into t pairs $(d_r, c_r), r = 1,...,t$, such that $d_r - c_r = r$ according to Chart VI. $m \ge 0$

Chart VI

r		d	•				°,	c						
1	7m	+	7			7m	+	6						
2m + 3	8m	+	7			6m	+	4				m	≥ /	
4m + 3	6m	+	5			2m	+	2						
2k	2m	+	2	+	k	2m	+	2	6.14	k	k	11	1,2,,2m + 1;	
l + 2k	6m	+	5	+	k	6m	+	4	NG4	k	k	=	l,2,,m ;	
2m + 3 + 2k	7m	+	7	+	k	5m	+	4	dina.	k	k	=	1,2,,m - 1.	

5.1.7 <u>Proposition</u>. Let t = 4m + 1 and $m \ge 2$. Then the integers 1,...,t, t + 2,...,2t, 2t + 2 can be distributed into t pairs (d_r, c_r) , r = 1,...,t, such that $d_r - c_r = r$ according to Chart VII.

Chart VII

r		^d r			c	c				
1	7	m +	4		7m -	+ 3				
2m +	3 8	m +	4		6m -	+ 1				
4m +	1 6	m +	2		2m -	+ 1				
2k	2	m +	1 +	k	2m -	+ 1	-]	k.	k =	1,2,,2m;
· 1 + 2	2k 6	m +	2 +	k ·	6m -	+ 1	-]	к.	k =	1,2,, m;
2m + 3 +	- 2k 7	m +	4 +	k	5m +	+ 1	- 1	£	k =	1,2,,m - 2.

5.1.8 <u>Proposition</u>. Let t = 4m + 2 and $m \ge 2$. Then the integers 1,...,t, t + 2,...,2t, 2t + 2 can be distributed into t pairs $(d_r, c_r), r = 1,...,t$, such that $d_r - c_r = r$ according to Chart VIII

Chart VIII

	r	d _r	c _r
	l	7m + 5	7m + 4
	2m + 3	8m + 6	6m + 3
	4m + 1	6m + 2	2m + 1
	4m + 2	8m + 4	4m + 2
	2k	2m + l + k	2m + 1 - k $k = 1, 2,, 2m;$
	1 + 2k	6m + 3 + k	$6m + 2 \sim k$ $k = 1, 2, \dots, m;$
2m	+ 3 + 2k	7m + 5 + k	$5m + 2 - k$ $k = 1, 2, \dots, m - 2.$

5.1.9 Lemma. For any positive integer t, let x and y be distinct numbers from 1 to 6t + 1. Then

(i) x - y or y - x is congruent modulo 6t + 1 to one of the integers 1,2,..., 3t.

(ii) x - y or y - x is congruent modulo 6t + 1 to one of the integers $1, 2, \dots, 3t - 1, 3t + 1$.

<u>Proof</u>: We shall show by cases that x - y or y - x is congruent modulo 6t + 1 to one of 1,2,...,3t.

case 1. $1 \leq x, y \leq 3t + 1$.

We may assume that x > y. Hence $1 \le x - y \le 3t$. Therefore x - y is congruent modulo 6t + 1 to one of 1,2,..., 3t.

case 2. 3t + 1 < x, $y \leq 6t + 1$.

We may assume that x > y. Hence $l \le x - y < 3t$. Therefore x - y is congruent modulo 6t + l to one of $l, \dots, 3t - l$.

case 3. $1 \le x \le 3t + 1$, $3t + 1 \le y \le 6t + 1$.

Then $1 \leq y - x \leq 6t$. If $1 \leq y - x \leq 3t$, then y - x is congruent modulo 6t + 1 to one of 1,..., 3t. In case $3t \leq y - x \leq 6t$ we have $-(6t) \leq x - y < -(3t)$. Hence $1 \leq x - y + 6t + 1 < 3t + 1$ so that x - y is congruent modulo 6t + 1 to one of 1,..., 3t.

case 4. $1 \le y \le 3t + 1$, $3t + 1 \le x \le 6t + 1$.

Similarly to case 3 we can show that x - y or y - x is congruent modulo 6t + 1 to one of 1,..., 3t.

Thus (i) is proved. To prove (ii) we observe from (i) that x - y or y - x is congruent modulo 6t + 1 to one of $1, \dots, 3t$. Assume that x - y is congruent modulo 6t + 1 to one of $1, \dots, 3t$. If x - yis congruent modulo 6t + 1 to one of $1, 2, \dots, 3t - 1$, then (ii) is proved. In case that x - y is congruent to 3t modulo 6t + 1 we have y - x = -3t = -(6t + 1) + (3t + 1). Therefore y - x is congruent to 3t + 1 modulo 6t + 1. Thus (ii) is proved.

5.1.10 <u>Theorem</u>. Let n = 6t + 1 and $t \ge 8$. For r = 1, ..., t, let (b_r, a_r) be defined as in Propositions 5.1.1 - 5.1.4 depending on the residue of t modulo 4. Let $C = \{1, 2, ..., 6t + 1\}$ and S(C) be the family of the following 3-subsets of C:

 $\{p, p + r, p + t + b_r\}$, $p \in C$, $r \in \{1, 2, \dots, t\}$, where each number is taken modulo 6t + 1.

Then (C,S(C) is n-STS.

<u>Proof</u>: The total number of 3-subsets in S(C) is at most $t(6t + 1) = \frac{1}{6}n(n - 1)$. Thus to show that (C,S(C)) is n-STS, it suffices to show that for any 2-subset T of C there exists a 3-subset H in S(C) such that $T \subset H$. Let $T = \{x,y\}$ be any 2-subset of C. In this proof the addition is the addition in the residue class ring modulo 6t + 1.

case 1. $t \equiv 0 \text{ or } 1 \pmod{4}$.

By the construction of (b_r, a_r) we have $\{1, 2, \dots, 3t\} = \{1, \dots, t + b_1, \dots, t + b_t, t + a_1, \dots, t + a_t\}$. By Lemma 5.1.9(i) we may assume that y - x is congruent modulo 6t + 1 to one of $1, 2, \dots, 3t$. Thus y - x = r or $y - x = t + b_r$ or $y - x = t + a_r$ for some $r, 1 \leq r \leq t$.

case l(a) y - x = r. Let $H = \{x, x + r, x + t + b_r\}$. Then $H \in S(C)$ and $T \subset H$. case l(b) $y - x = t + b_r$. Let $H = \{x, x + r, x + t + b_r\}$. Then $H \in S(C)$ and $T \subset H$. case l(c) $y - x = t + a_r$.

Let $p = y - t - b_r$. Hence $p + r = y - t - b_r + r = y - t - a_r = x$ and $p + t + b_r = y - t - b_r + t + b_r = y$. Let $H = \{p, p + r, p + r + b_r\}$ Then $H \notin S(C)$ and $T \subset H$.

case 2. $t \equiv 2 \text{ or } 3 \pmod{4}$.

By the construction of (b_r, a_r) we have $\{1, \dots, 3t - 1, 3t + 1\} = \{1, \dots, t, t + b_1, \dots, t + b_t, t + a_1, \dots, t + a_t\}$. By Lemma 5.1.9(ii) we may assume that y - x is congruent modulo 6t + 1 to one of $1, \dots, 3t - 1, 3t + 1$. Thus y - x = r or $y - x = t + b_r$ or $y - x = t + a_r$ for some $r, 1 \leq r \leq t$. Similarly to case 1 we can prove that there exists H in S(C) such that $T \subset H$.

Hence (C,S(C)) is n - STS.

5.1.11 Lemma. For each positive integer t let x and y be distinct numbers from 1 to 6t + 3 such that neither x - y nor y - x is congruent to 2t + 1 modulo 6t + 3. Then

(i) x - y or y - x is congruent modulo 6t + 3 to one of 1,...,
2t, 2t + 2,..., 3t, 3t + 1.

(ii) x - y or y - x is congruent modulo 6t + 3 to one of 1,...,
2t, 2t + 2,..., 3t, 3t + 2.

<u>Proof</u>: We shall show by cases that x - y or y - x is congruent modulo 6t + 3 to one of 1,..., 2t, 2t + 2,..., 3t, 3t + 1.

case 1. $1 \le x, y \le 3t + 2$.

We may assume that x > y. Hence $1 \le x - y \le 3t + 1$. Therefore x - y is congruent modulo 6t + 3 to one of 1,..., 2t, 2t + 2,..., 3t, 3t+1. case 2. $3t + 2 \le x, y \le 6t + 31$

We may assume that $x \ge y$. Hence $1 \le x = y \le 3t + 1$ so that x = y is congruent modulo 6t + 3 to one of 1,..., 2t, 2t + 2,..., 3t case 3. $1 \le x \le 3t + 2$, $3t + 2 \le y \le 6t + 3$,

Then $1 \leq y - x \leq 6t + 2$, If $1 \leq y - x \leq 3t + 1$, then y - xis congruent modulo 6t + 3 to one of $1, \dots, 2t, 2t + 2, \dots, 3t, 3t + 1$. In case $3t + 1 \leq y - x \leq 6t + 2$ we have $-(6t + 2) \leq x - y \leq$ -(3t + 1). Hence $1 \leq x - y + 6t + 3 \leq 3t+1$ so that x - y is con--gruent modulo 6t + 3 to one of $1, \dots, 2t, 2t + 2, \dots, 3t + 1$.

case 4. $1 \angle y \angle 3t + 2$, $3t + 2 \angle x \angle 6t + 3$.

Similarly to case 3 we can show that x - y or y - x must be congruent modulo 6t + 3 to one of 1,..., 2t, 2t + 2,..., 3t, 3t + 1.

Thus (i) is proved. To prove (ii) we observe from (i) that x - y or y - x is congruent modulo 6t + 3 to one of $1, \dots, 2t, 2t + 2, \dots, 3t$, 3t + 1. Assume that x - y is congruent modulo 6t + 3 to one of $1, \dots, 2t, 2t + 2, \dots, 3t, 3t + 1$. If x - y is congruent modulo 6t + 3 to one of $1, \dots, 2t, 2t + 2, \dots, 3t$, then (ii) is proved. Suppose that x - y is congruent to 3t + 1 modulo 6t + 3. Hence y - x = -(3t + 1) = -(6t + 3) + 3t + 2 so that y - x is congruent modulo 6t + 3 to 3t + 2. Thus (ii) is proved.

5.1.12 <u>Theorem</u>. Let n = 6t + 3 and $t \ge 8$. For r = 1, ..., t, let (d_r, c_r) be defined as in Propositions 5.1.5 - 5.1.8 depending on the residue of t modulo 4. Let $C = \{1, 2, ..., 6t + 3\}$ and S(C) be the family of the following 3-subsets of C:

59

(i)
$$\{p, p + r, p + t + d_r\}, r \in \{1, 2, ..., t\} p \in C,$$

(ii) $\{p, p + 2t + 1, p + 4t + 2\}, p \in \{1, 2, ..., 2t + 1\},$

where each number in 3-subsets in S(C) is taken modulo 6t + 3. Then (C,S(C)) is n-STS.

<u>Proof</u>: It can be seen that the total number of 3-subsets in S(C)is at most $(t)(6t + 3) + 2t + 1 = \frac{1}{6}(6t + 2)(6t + 3) = \frac{1}{6}n(n - 1)$. Thus to show that (C,S(C)) is n-STS, it suffices to show that for any 2-subset T of C there exists a 3-subset H in S(C) such that TC H. Let T = $\{x,y\}$ be any 2-subset of C. In this proof the addition is the addition in the residue class ring modulo 6t + 3.

First we assume that neither x - y nor y - x is congruent modulo 6t + 3 to 2t + 1.

case 1. $t \equiv 0 \text{ or } 3 \pmod{4}$.

By the construction of (d_r, c_r) we have $\{1, \dots, 2t, 2t + 2, \dots, 3t, 3t + 1\} = \{1, \dots, t, t + d_1, \dots, t + d_t, t + c_1, \dots, t + c_t\}$. By Lemma 5.1.11 (i) we may assume that y - x is congruent modulo 6t + 3 to one of $1, \dots, 2t, 2t + 2, \dots, 3t, 3t + 1$. Thus y - x = r or $y - x = t + d_r$ or $y - x = t + c_r$ for some $r, 1 \leq r \leq t$.

case l(a) y - x = r.

Let $H = \{x, x + r, x + t + d_r\}$. Then $H \in S(C)$ and $T \leq H$. case 1(b) $y - x = t + d_r$.

Let $H = \{x, x + r, x + t + d_r\}$. Then $H \in S(C)$ and $T \subset H$. case l(c) $y - x = t + c_r$.

Let $p = y - t - d_r$. Hence $p + r = y - t - d_r + r = y - t - c_r^{=}$ x and $p + t + d_r^{=} y - t - d_r^{+} t + d_r^{=} y$. Let $H = \{p, p + r, p + t + d_r\}$. Then $H \in S(C)$ and $T \subseteq H$.

61

case 2 t == 2 or 3 (mod 6)

By the construction of (d_{r}, c_{r}) we have $\{1, \dots, 2t, 2t + 2, \dots, 3t, 3t + 2\} = \{1, \dots, t, t + c_{1}, \dots, t + c_{t}, t + d_{1}, \dots, t + d_{t}\}$. By Lemma 5.1.11(ii) we may assume that y - x is congruent modulo 6t + 3 to one of $1, \dots, 2t$, $2t + 2, \dots, 3t, 3t + 2$. Thus y - x = r or $y - x = t + d_{r}$ or $y - x = t + d_{r}$ for some r, $1 \leq r \leq t$. Similarly to case 1 we can show that there exists H in S(C) such that $T \subset H$.

Next we assume that y - x or x - y is congruent to 2t + 1modulo 6t + 3. We shall assume that x - y is congruent to 2t + 1modulo 6t + 3.

case 1. x > y.

In this case we have x - y = 2t + 1 and $1 \leq y \leq 4t + 2$. Hence x = y + 2t + 1. If $1 \leq y \leq 2t + 1$, let $H = \{y, y + 2t + 1, y + 4t + 2\}$. Then $H \in S(C)$ and $T \subset H$. In case $2t + 2 \leq y \leq 4t + 2$, let z = y - (2t + 1). Thus $1 \leq z \leq 2t + 1$. Let $H = \{z, z + 2t + 1, z + 4t + 2\}$. Then $H \in S(C)$ and $tT \subset H$.

case 2. x < y

Since $l \leq x, y \leq 6t + 3$, hence x - y = -(6t+3)+2t+1 = -(4t+2). Thus $l \leq x \leq 2t + 1$. Let $H = \{x, x + 2t + 1, x + 4t + 2\}$. Then $H \in S(C)$ and T = H.

Therefore (C,S(C)) is n.STS.

5.2 Construction of n-STS, where $n = p^{m} = 6t+1$, p Is a Prime Number

Given any positive integer n of the form $n = p^m = 6t + 1$, where p is a prime number. We know that a field of p^m elements, $GF(p^m)$, exists and in fact the multiplicative group of such a field is cyclic. We can construct n-STS from $GF(p^m)$ as in the following theorem.

5.1.1 <u>Theorem</u>. Given any positive integer n of the form $n = p^m = 6t + 1$, where p is a prime number. Let g be a generator of the multiplicative group of $F = GF(p^m)$. Let S(F) be the family of the following 3-subsets of F :

 $\{k, k+g^r, k+g^{t+r}\}, where k \in F, r \in \{0, 1, \dots, t-1\}.$ Then (F, S(F)) is n-STS.

<u>Proof</u>: The total number of 3-subsets in S(F) is at most nt = $\frac{1}{6}$ n(n - 1). Thus to prove that (F,S(F)) is n-STS, it suffices to show that for any 2-subset T of F there exists a 3-subset H in S(F) such that T \subset H.

First we shall show that for any 2-subset T of F that contains O there exists a 3-subset H in S(F) such that $T \subset H$. Let $T = \{ 0, g^i \}$ be any 2-subset of F that contains O. We shall show by cases that there exists a 3-subset H in S(F) such that $T \subset H$.

case 1. $0 \le i \le t - 1$. Let $H = \{0, g^i, g^{t+i}\}$. Then $H \notin S(F)$ and $T \subset H$. case 2. $t \le i \le 2t - 1$

Hence i = t + r, where $0 \leq r \leq t - 1$. Let $H = \{0, g^r, g^{t+r}\}$. Then $H \in S(F)$ and $T \subseteq H$.

case 3. 2t 4 i 4 3t - 1.

Hence i = 2t + r, where $0 \leq r \leq t - 1$. Let $H = \{-g^r, -g^r + g^r, -g^r + g^{t+r}\}$. Thus $H \in S(F)$. We shall show that $T \subseteq H$. Since $g^{3t} \neq 1$ while $g^{6t} = 1$, hence $g^{3t} + 1 = 0$. Since $g^{3t} + 1 = (g^t + 1)(g^{2t} - g^t + 1)$, hence $(g^t + 1)(g^{2t} - g^t + 1) = 0$. But $g^t + 1 \neq 0$, therefore $g^{2t} - g^t + 1 = 0$ so that $g^{2t} = g^t - 1$. Hence $-g^r$ and $-g^r + g^{t+r}$ can be written as $-g^r = (-1)g^r = (g^{3t})(g^r) = g^{3t+r}$ and $-g^r + g^{t+r} = (g^t - 1)(g^r) = (g^{2t})(g^r) = g^{2t+r}$. Thus $H = \{g^{3t+r}, 0, g^{2t+r}\}$ and $T \subseteq H$.

case 4, 3t ≤ i ≤ 4t - 1

Hence i = 3t + r, where $0 \le r \le t - 1$. Let $H = \left\{ -g^r, -g^r + g^r, -g^r + g^r, -g^r + g^r + g^r \right\}$. By the same argument as in case 3 we have $H \in S(F)$ and $T \subseteq H$.

case 5. 4t ≤ i ≤ 5t - 1

Hence $\mathbf{i} = 4\mathbf{t} + \mathbf{r}$, where $0 \leq \mathbf{r} \leq \mathbf{t} = 1$. Let $\mathbf{H} = \left\{ \begin{array}{c} -\mathbf{g}^{\mathbf{t}+\mathbf{r}} \\ -\mathbf{g}^{\mathbf{t}+\mathbf{r}} + \mathbf{g}^{\mathbf{r}}, -\mathbf{g}^{\mathbf{t}+\mathbf{r}} + \mathbf{g}^{\mathbf{t}+\mathbf{r}} \\ \end{array} \right\}$. Thus $\mathbf{H} \in S(\mathbf{F})$. Observe that $-\mathbf{g}^{\mathbf{t}+\mathbf{r}} = (-1)(\mathbf{g}^{\mathbf{t}+\mathbf{r}}) = (\mathbf{g}^{3\mathbf{t}})(\mathbf{g}^{\mathbf{t}+\mathbf{r}}) = \mathbf{g}^{4\mathbf{t}+\mathbf{r}}$ and $\mathbf{g}^{\mathbf{r}} - \mathbf{g}^{\mathbf{t}+\mathbf{r}} = (-1)(\mathbf{g}^{\mathbf{r}})(\mathbf{g}^{\mathbf{t}} - 1) = (\mathbf{g}^{3\mathbf{t}})(\mathbf{g}^{\mathbf{r}})(\mathbf{g}^{2\mathbf{t}}) = \mathbf{g}^{5\mathbf{t}+\mathbf{r}}$. Thus $\mathbf{H} = \left\{ \mathbf{g}^{4\mathbf{t}+\mathbf{r}}, \mathbf{g}^{5\mathbf{t}+\mathbf{r}}, \mathbf{0} \right\}$ and $\mathbf{T} \subset \mathbf{H}$ case 6. $5\mathbf{t} \leq \mathbf{i} \leq 6\mathbf{t} - 1$

Hence i = 5t + r, where $0 \le r \le t - 1$, Let $H = \left\{ -g^{t+r}, -g^{t+r} + g^{r}, -g^{t+r} + g^{t+r} \right\}$. By the same argument as in case 5 we have $H \le S(F)$ and $T \subset H$.

Next we shall show that for any 2-subset T of F that does not contain 0 there exists a 3-subset H in S(F) such that $T \subset H$. Let $T = \{x,y\}$ be any 2-subset of F such that $x \neq 0$, $y \neq 0$. Let $T_1 = \{x - x, y - x\} = \{0, y - x\}$. Since $x \neq y$, hence $y - x \pm 0$. Thus T_1 is a 2-subset of F that contains O. Therefore there exists a 3-subset H_1 in S(F) such that $T_1 \subset H_1$. By definition of S(F) we must have $H_1 = \begin{cases} k_1, k_1 + g^{-1}, k_1 + g^{-1} \end{cases}$, where $k_1 \notin F$, $0 \leq r_1 \leq t - 1$. Since $\begin{cases} 0, y - x \\ 0 + x, y - x + x \end{cases} \leq \begin{cases} k_1, k_1 + g^{-1}, k_1 + g^{-1} \\ k_1 + x, k_1 + x + g^{-1} \end{cases}$, hence $\begin{cases} 0 + x, y - x + x \\ 1 + x + g^{-1} \end{cases}$. Let $H = \begin{cases} k_1 + x, k_1 + x + g^{-1} \\ k_1 + x + g^{-1} \end{cases}$. Hence $H \notin S(F)$ and $T \subset H$.

Therefore (F,S(F)) is n-STS.

5.3 Construction of 6t + 3-STS from Cyclic Group of Order 2t + 1

5.3.1 Lemma. Let F be a cyclic group of order 2t + 1. Let g be a generator of F. Then

(i) If $g^{2r} = g^{2s}$, where $0 \leq r, s \leq 2t + 1$, then $g^{r} = g^{s}$.

(ii) for any distinct elements a, b in F, there exists a unique element c in F such that $ab = c^2$.

(iii) If a and b are distinct elements of F, then $a^{-1}b^2$ and $b^{-1}a^2$ are distinct from a and b respectively. <u>Proof</u>: (i) From $g^{2r} = g^{2s}$ we have 2r + 2s = q(2t + 1) for some integer q. Since 2/2r + 2s, hence 2/q(2t + 1). But 2/2t + 1, therefore 2/q. Thus q = 2q' for some integer q. Hence r + s = q'(2t + 1) so that $g^r = g^s$.

(ii) Let a, b be any distinct elements of F. Hence $a = g^m$, b = g^n for some distinct integers m , n , $0 \leq m, n \leq 2t$. If m + n is even, then there exists a unique positive integer r such that m + n = 2r. Since $0 \le m$, $n \le 2t$, hence $0 \le r \le 2t$. Let $c = g^r$. Therefore $c \notin F$ and $ab = c^2$. Suppose that there exists $d = g^s$, $0 \le s \le 2t + 1$, in F such that $ab = d^2$. Hence $d^2 = c^2$ so that $g^{2s} = g^{2r}$. By (i) we have $g^s = g^r$. Thus d = c. In case that m + n is odd we see that (2t + 1) + (m + n) is even. Let rbe the integer such that 2r = (2t + 1) + (m + n). Choose integers k and s such that r = k(2t + 1) + s, where $0 \le s \le 2t$. Let $c = g^s$. Hence $c \notin F$. Now $ab = g^{m+n} = g^{2t+1+m+n} = g^{2r} = g^{2k(2t+1)+2s} = g^{2s} = c^2$. The uniqueness of c follows by repeating the same argument as in case that m + n is even.

(iii) Let a, b be distinct elements in F. Hence $a = g^{m}$, b = g^{n} , for some distinct integers m,n, $0 \le m,n \le 2t$. Suppose that $a^{-1}b^{2} = a$. Therefore $b^{2} = a^{2}$ so that $g^{2n} = g^{2m}$. It follows from (i) that $g^{m} = g^{n}$. Hence m = n which is a contradiction. Thus $a^{-1}b^{2} \ne a$. Similarly we can show that $b^{-1}a^{2} \ne b$.

5.3.2 <u>Theorem</u>. Let F be a cyclic group of order 2t + 1, $t \ge 1$. Let $A = F \times \{0, 1, 2\}$ and let S(A) be the family of the following 3-subsets of A:

(1) $\{a_0, a_1, a_2\}$, where $a \in \mathbb{F}$,

(2) $\{a_0, b_0, c_1\}, \{a_1, b_1, c_2\}, \{a_2, b_2, c_0\}, \text{ where } a \neq b$ and $ab = c^2$.

Then (A, S(A)) is 6t + 3 - STS.

<u>Proof</u>: Let n = 6t + 3. The total number of 3-subsets in S(A) of the form (1) is 2t + 1. For any 2-subset $T = \begin{cases} x, y \\ 0 \end{cases}$ of F, there exists a unique element z in F such that $xy = z^2$. Hence we can form exactly 3 3-subsets in S(A) of the form (2) from T; namely, $\left\{ \begin{array}{c} x_{0}, y_{0}, z_{1} \end{array}\right\}$, $\left\{ \begin{array}{c} x_{1}, y_{1}, z_{2} \end{array}\right\}$, $\left\{ \begin{array}{c} x_{2}, y_{2}, z_{0} \end{array}\right\}$. Since there are $\begin{pmatrix} 2t + 1 \\ 2 \end{pmatrix}$ 2-subsets of F, hence the total number of 3-subsets in S(A) of the form (2) is at most $\begin{pmatrix} 2t + 1 \\ 2 \end{pmatrix}$ 3. Therefore the total number of 3-subsets in S(A) is at most $2t + 1 + \begin{pmatrix} 2t + 1 \\ 2 \end{pmatrix}$ 3 = $\frac{1}{6}$ (6t + 3)(6t + 2) = $\frac{1}{6}$ n(n - 1). Thus to prove that (A,S(A)) is 6t + 3 - STS, it suffices to show that for any 2-subset T of A there exists a 3-subset H in S(A) such that T \subset H. Let T = $\left\{ \begin{array}{c} a_{1}, b_{j} \right\}$ be any 2-subset of A, We shall show by cases that there exists a 3-subset H in S(A) such that T \subset H.

case 1. a = b, i **‡** j.

Let $H = \{a_0, a_1, a_2\}$. Then $H \notin S(A)$ and $T = \{a_i, a_j\} \notin H$. case 2. $a \neq b$, i = j.

By Lemma 5.3.1 (ii) there exists c in F such that $ab = c^2$. Observe that the 3-subsets in S(A) of the form (2) have two elements in the same $G_i = G \times \{i\}$ and the third element in G_{i+1} . Let $H = \{a_i, b_i, c_{i+1}\}$. Then $H \in S(A)$ and $T \subseteq H$. case 3. $a \neq b$, $i \neq j$.

Since i, j $\in \{0, 1, 2\}$ and i $\neq j$, hence either $j \equiv i + 1 \pmod{3}$ or $i \equiv j + 1 \pmod{3}$. If $j \equiv i + 1 \pmod{3}$, let $c = a^{-1}b^2$. Therefore by Lemma 5.3.1 (iii) $c \neq a$ and $ac = b^2$. Let $H = \{a_i, c_i, b_j\}$. Then $H \in S(A)$ and $T \subseteq H$. In case $i \equiv j + 1 \pmod{3}$, let $d = b^{-1}a^2$. By Lemma 5.3.1(iii), $d \neq b$ and $bd = a^2$. Let $H = \{b_j, d_j, a_i\}$. Then $H \notin S(A)$ and $T \subseteq H$.

Hence (A,S(A)) is 6t + 3 - STS.

5.3.3 <u>Remark</u>. The construction given in Theorem 5.3.2 make use of properties (ii), (iii) in Lemma 5.3.1 only. Any group F of order 2t + 1 with properties (ii),(iii), if exists, can be used in the above construction also.

5.4 Existence of STS with Property I and II

The notion of STS with Property I and STS with Property II has been introduced in Chapter III. Yet their existence is not known. In this section we shall show that the STS of order n $= 3 \pmod{6}$ constructed as in Theorem 5.3.2 are STS with Property I and II.

5.4.1 Lemma. Let (A,S(A)) and F be defined as in Theorem 5.3.2. Let g be a generator of F. For any positive integer $r \in \{1,2,\ldots, 2t+1\}$, let f be a mapping defined on A by f $(a_i) = (g^r a)_i$ for any a \in F, and i = 0,1,2. Let f be a mapping defined on A by $f(a_i) = a_{i+1}$ for any a \in F and i = c,1,2. Then

(i) f and f are automorphisms of (A,S(A)).

(ii) Let G be the subgroup of the automorphism group of (A,S(A)) generated by f_g and f. Then G is transitive and abelian. <u>Proof</u>: (i) It can be verified directly that f_r and f are both g^r permutations on A. Let H be any triple in S(A). We shall show by cases that f(H) and $f_r(H)$ belong to S(A).

case 1. H is a triple in S(A) of the form (1). Thus H = $\{x_0, x_1, x_2\}$ for some x \in F. Hence $f(x_0) = x_1$, $f(x_1) = x_2$, $f(x_2) = x_0$ so that $f(H) = \{x_0, x_1, x_2\} = H \in S(A)$. Let $y = g^r x$. Then $y \in F$. Thus $f_{gr}(x_0) = y_0$, $f_{gr}(x_1) = y_1$, $f_{gr}(x_2) = y_2$ so that $f_{gr}(H) = \{y_0, y_1, y_2\} \in S(A).$

case 2. H is a triple in S(A) of the form (2). Hence there exist distinct a,b,c in F with $ab = c^2$ and there exists an i in $\{0,1,2\}$ such that $H = \{a_i, b_i, c_{i+1}\}$. Hence $f(H) = \{a_{i+1}, b_{i+1}, c_{i+2}\}$ is in S(A).Let $x = g^r a$, $y = g^r b$, $z = g^r c$. Then x,y,z are members of F. Since $ab = c^2$, hence $xy = (g^r a)(g^r b) = g^{2r} ab = g^{2r} c^2 = (g^r c)^2 = z^2$. It follows that $f_{g^r}(H) = \{x_i, y_i, z_{i+1}\} \in S(A)$.

(ii) To show that G is transitive let x_i, y_j be any elements of A. We shall show by cases that there exists an automorphism h in G such that $h(x_i) = y_j$.

case 1. x = y.

Thus $i \neq j$. Since $i, j \in \{0, 1, 2\}$ and $i \neq j$, hence either $j \equiv i + 1 \pmod{3}$ or $i \equiv j + 1 \pmod{3}$. If $j \equiv i + 1 \pmod{3}$, we have $f(x_i) = x_j$. In case $i \equiv j + 1 \pmod{3}$ consider the mapping f^{-1} defined on A by $f^{-1}(x_{i+1}) = x_i$ for any $x \notin F$ and i = 0, 1, 2. We can verify that f^{-1} is an automorphism of (A, S(A)) such that f^{-1} is the inverse of f. Hence $f^{-1}(x_i) = y_j$.

case 2. $x \pm y$, i = j.

In this case there exist distinct integers $m,n,l \leq m,n \leq 2t+l$, such that $x = g^m$, $y = g^n$. Let r = (2t + 1) + (n - m). Then $r \in \{1,2,\ldots,2t+l\}$, and $f_{g^r}(x_i) = (g^{2t+l+n-m} \cdot g^m)_i = (g^n)_i = y_i$. case 3. $x \neq y$, $i \neq j$.

By case 2 there exists an automorphism h in G such that $h(x_i) = y_i$. Since $i, j \in \{0, 1, 2\}$ and $i \neq j$, hence we have either

69

i = j + l(mod 3) or j = i + l(mod 3). then $f^{-1}h(x_i) = f^{-1}(y_i) = y_j$. In case j = i + l(mod 3) we see that $f h(x_i) = f(y_i) = y_j$.

Hence G is transitive. To show that G is abelian it suffices to show that $ff_g = f_g f$. Let a be any element of A. Thus there exist $x \in F$ and $i \in \{0,1,2\}$ such that $a = x_i$. Hence $ff_g(a) = f((gx)_i) = (gx)_{i+1} = f_g(x_{i+1}) = f_g(a)$. Therefore $ff_g = f_g f$.

5.4.2 Lemma. Let G be defined as in Lemma 5.4.1. Then |G| = 6t + 3. <u>Proof</u>: Let $S = \{I, f, f^{-1}\}$, where I is the identity mapping, f is defined as in Lemma 5.4.1 and f^{-1} is the inverse of f. Then S is a subgroup of the automorphism group of (A,S(A)). Observe that $f_{gr} \in S$ only when $f_{gr} = I$. Since g has order 2t + 1, hence $f_{gr} \notin S$ as long as $1 \leq r < 2t + 1$ but $f_{g2t+1} = I \notin S$. Observe that G is generated by f_{g} and S. It follows from Theorem X of [1], p 51, that |G| = 6t + 3.

5.4.3 <u>Lemma</u>. Let (A,S(A)), g, G be defined as in Lemma 5.4.1. Let $A_0 = \left\{ (g^{2t+1})_0, g_0, (g^{t+1})_1 \right\}$ and $\mathcal{F}^{\ell} = \left\{ g(A_0) \mid g \in G \right\}$. Then $\left| \mathcal{F}^{\ell} \right| = 6t + 3$.

<u>Proof</u>: We shall show that distinct elements of G maps A_0 into distinct triples. Let g_1, g_2 be elements of G such that $g_1(A_0) = g_2(A_0)$. Let S be defined as in the proof of Lemma 5.4.2 and let D = $\begin{cases} f_{gr} / r = 1, 2, \dots, 2t + 1 \\ g^{r} / r = 1, 2, \dots, 2t + 1 \end{cases}$. It can be seen that $g_1 = s_1 f_{gr} r_1$, $g_2 = s_2 f_{gr} r_2$ for some s_1, s_2 in S and $f_{gr} r_1, f_{gr} r_2$ in D. Hence $s_1 f_{gr} r_1(A_0) = s_2 f_{gr} r_2(A_0)$ so that $s_2^{-1} s_1 (f_{gr} r_1(A_0) = f_{gr} r_2(A_0)$. Note

that
$$s_2^{-1}s_1$$
 ($f_gr_1(A_o) = s_2^{-1}s_1(\left\{ (g^{r_1})_o, (g^{r_1+1})_o, (g^{r_1+1})_1 \right\})$ is
of the form $\left\{ x_o, y_o, z_1 \right\}$ when $s_2^{-1}s_1 = I$ and is of the form $\left\{ x_1, y_1, z_2 \right\}$
when $s_2^{-1}s_1 = f$, and is of the form $\left\{ x_2, y_2, z_o \right\}$ when $s_2^{-1}s_1 = f^{-1}$.
But $f_gr_2(A_o) = \left\{ (g^{r_2})_o, (g^{r_2+1})_o, (g^{r_2+1})_1 \right\}$ is of the form
 $\left\{ x_o, y_o, z_1 \right\}$. Hence we must have $s_2^{-1}s_1 = I$ so that $s_1 = s_2$. Thus
 $f_gr_1(A_o) = f_gr_2(A_o)$. But $f_gr_1(A_o) = \left\{ (g^{r_1})_o, (g^{r_1+1})_o, (g^{r_1+1})_1 \right\}$
and $f_gr_2(A_o) = \left\{ (g^{r_2})_o, (g^{r_2+1})_o, (g^{r_1+r_2+1})_1 \right\}$. Therefore
 $t+r_1+1 = g^{r_1+r_2+1}$ so that $g^{r_1} = g^{r_2}$. Hence $f_gr_1 = f_gr_2$ so that
 $g_1 = s_1f_gr_1 = s_2f_gr_2 = g_2$. Thus distinct elements of G maps A_o into

70

distinct triples. Consequently we have $|\mathcal{F}| = |G| = 6t + 3$.

5.4.3 Lemma. Let (A,S(A)) and g be defined as in Lemma 5.4.1. Let \mathcal{P} be defined as in Lemma 5.4.2. Then g_0 is contained in exactly 3 triples in \mathcal{P} . <u>Proof</u>: Observe that $A_0 = \{(g^{2t+1})_0, g_0, (g^{t+1})_1\}, f_g(A_0) = \{g_0, (g_0^2), (g^{t+2})_1\}, f^{-1}f_{g^{t+1}}(A_0) = \{(g^{t+1})_2, (g^{t+2})_0, g_0\}, are$ 3 distinct triples in \mathcal{P} that contain g_0 . Let H be a triples in \mathcal{P} that contains g_0 . Thus there exists $s \in \{I, f, f^{-1}\}$ and $i \in \{1, 2, \dots, 2t + 1\}$ such that $H = sf_1(A_0)$. We shall show that $sf_g i \in \{I, f_g, f^{-1}, f_{g^{t+1}}\}$. Suppose that s = f. Thus $sf_g(A_0) = f(g^1)_1, (g^{t+1})_1, (g^{t+i+1})_2\}$ so that $g_0 \notin sf_{g^1}(A_0)$. Therefore s = I or f^{-1} .

If
$$f = I$$
 we have $sf_{g^{i}}(A_{o}) = f_{g^{i}}(A_{o}) = \left\{ (g^{i})_{o}, (g^{i+1})_{o}, (g^{t+i+1})_{1} \right\}.$

Since $g_0 \in sf_{g^i}(A_0)$, hence either $g_0 = (g^i)_0$ or $g_0 = (g^{i+1})_0$. When $g_0 = (g^i)_0$ we have i = 1. Thus $sf_{g^i} = f_g$. In case $g_0 = (g^{i+1})_0$ we

have i = 0. Hence $sf_i = I$.

If $s = f^{-1}$ we have $sf_{g^{i}}(A_{c}) = \left\{ (g^{i})_{2}, (g^{i+1})_{2}, (g^{t+i+1})_{0} \right\}$. Since $g_{o} \notin sf_{g^{i}}(A_{o})$, hence $g_{o} = (g^{t+i+1})_{o}$ so that $g^{i} = g^{t+1}$. Thus $f_{g^{i}} = f_{g^{t+1}}$. Therefore $sf_{i} = f^{-1}f_{g^{t+1}}$.

Hence g_0 is contained in exactly 3 triples in \mathcal{F} .

5.4.5 <u>Theorem</u>. The STS (A,S(A)) constructed as in Theorem 5.3.2 is a STS with Property I and II.

<u>Proof</u>: To see that (A,S(A)) is a STS with Property I and II, let $A_i = F \times \{i\}, i = 0,1,2, and \mathcal{F} = \{\{a_0,a_1,a_2\}/a \in F\}$. Then A_0,A_1,A_2 and \mathcal{F} satisfy Property I with respect to (A,S(A)) so that (A,S(A)) is a STS with Property I. Let G, g be defined as in Lemma 5.4.1 and let A_0, \mathcal{F} be defined as in Lemma 5.4.3. Then G, A_0, \mathcal{F} and g_0 satisfy Property II with respect to (A,S(A)) so that (A,S(A)) is a STS with Property II.