Chapter II

DEFINITIONS AND SOME PROPERTIES OF STEINER TRIPLE JYSTEMS

2.0 Introduction

In this chapter Steiner triple systems and related concepts
are introduced, A few examples of Steiner triple systems arc also
provided, LElementary properties concerning the structure of

Steiner triple systems are derived for later uses.

2.1 Definitions and Exanples

Uy a p-subset of a set A we mean any subset of A that contains

exacltly p clements,
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2elsl Definition. A Steiner triple system, abbreviated as S7

an ordered pair (A,S(A)), where A is a non-empty finite set, S(A)
is o family of 3-gubsets of A such that for any pair of distinct
elements a,b in A there exists a unique element ¢ in A such that
ba, v, o | € s(a).

| Any element of S(A) will be called a triple of (4A,5(A) and
any 3-subset of A which is not in S(A) will be called a triangle
of (A,8(A)), If A contains n clement we say that (4,3(4)) is a

STS of order ne.

The followingsare examples of STS of orders 1,3%,7.
: .
Example (i)e Let A = fl_; . BCEY = ﬁ) %

Example (ii). Let A

)
s
o
-
A%
-
AN
Cmmiion?
b
~
e
ot
\
e
-t
-
n
-
W
—
M i
.



3

Example (iii). Let A = { Ly By wauy 7} and S(A) consists of

the following 3-subsets of A :

P 1,23 | 2.6 ] {3",4,7}

frest  fesef  }3.5.6]

f1,6,7}

2¢1.2 Definition. By a subsystem of a STS (A,S(A)) we mean any STS
(B,S(B)) such that B < A and S(B)Y < s(aA).

The condition S(B) € S(A) implies that B < A. Therefore, in
order to verify that a STS (B,8(B)) is a subsystem of (A,5(A)) it

suffices to show that S(B) ¢ S(A).

/ /
24143 Definition. Let (A44,SCA)) and (A,5(A )) be STS., Any one to
’ |
one mapping £ from A onto A such that { a, b, ¢ } is a triple of
; y /
(A,S(A)) if and only if { Fret . TLELS f(c)} iz a triple of (4,504 ))
) / /
is called an isomorphism from (A,S(A)) on to (A,S(4A )).

. / /
2.1.% Definition. Steiner triple systems (A,S(A4)) and (A,S(4 )) are

said to be isomorphic if therc exists an isomorphism from (A,S(A))

4 7
onto (A,5(A ).

2+2 Elementary Properties of STS

2.2.1 Proposition. Let (A,S(A)), (B4S(B)) and (C,S(C)) be 5TS. If

(C,8(C)), is a subsystem of (B,3(B)) and (B,8(B)) is a subsystem of

(A,S(A)),‘then (C,s8(C)) is also a subsystem of (4,S(A)).



Proof : Trom the hypothesis

Hence S(C) . S(A). Therefore (C,S(C)) is a suboyotemzéf (4,808 ).

2.2,2 Proposition. Let (A,S(A)) be a STS. TFor any non-enpty subset

B of A let S(B) dencte the family of all triples of (4,S5(4)) which
are subsets of B. If for any distinct elements x,y in B there
exists an element z in B such tlate Xy Fa B j is a triple of
(A,8(A)), then (B,S(B)) is a subsystem of (A,5(A)).

Proof : By definition of S(B) we sece that S(B) is a family of
3=-subsets of B such that S(BY 8(A)s. It is left to be shown that
(B,S(B)) is a STS. Let’x4 /y//belany distinct elements of B. By the
hypothesis there exists an element z in B such that{yx, Y, ZA}ES(A).

Hence i X, ¥, 2 f is a triple of (%,S(A)) which is a subset of B.

’

Therefore ix, T B j £ S(B). Suppose that there cxists an element
t in P such that { x4 y,'t} £ ¢(B). By @efinition of S(B) we have

{x, v, t } £ s(a). since (4,5(4)) is a 8TS, it follows that t = z.

Therefore (B,S(B)) isqa 8T8

2¢2¢3 Proposition. Let (B,S(B)) be any subsystem of a STS (4,8(4)).

If x and y are clements in A - B and B respectively, then the

element z in the triple{.x, ¥ zj of (A,8(A)) belongs to &4 - B,
Proof : Suppose z € B, Then y and z are distinct elements of B

so that therec exists a unique clement t in B such that{ y,z,t}é 808,
Since S(B) ¢ S(4A), it follows that {ygz,t } € S(A) and thus t = x.
Therefore x € B which contradicts the assumption that x £ A - B.

Hence z é_ Bs Therefore z E4 =B,
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2.2.L Definition. Let %% be a family of STS. By the intersection

of the family H we mean the ordered pair (I,S),where

f) { A S CA,8(4)) € 2?’}
N { S(A) / (4,8(8)) & 5}7}
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Observe that elements in S are triples that belong to every
3 c- i
S(A) of the STS in dw . Hence triples in S are subsets of cvery A
P
such that (4,S(4)) € . Therefore S is a family of 3-subsets of
I. From now on we shall write S(I) to stand for 5. In general, an
intersection of a family of ST3 need-not be a 8T8,

(1) ,
2425 Proposition. Let' ¢ be any non-empty subset of a 578 (4,3(4)).

Then the intersection (I,3(I)) of all subsystems of (A,S(A)) that
(L)

contain C is a subsystem of (1,S(A)). Furthermore, (I,8(I)) is
the smallest subsystem of (4,5(A)) that contains C.

Proof : Let gﬁ’ be the family of all subsystems of (4,5(4)) that
‘contain C. Since each STS in 2;? contains C, hence C< I and

S(I) € s(a). We have to show that (I,8(I)), is a STS. Let x,y
be distinct elements of I. Since (4,3(A)) is a STS and x, vy € A4,
it follows that there exists a unique element z in A such that
{x, Yy 2 } € s(n). Let (B,S(B)) be any element of’EP’. Therefore
I< B, Thus x, y are distinct elements of B so that there exists

a unique element z(B) in B such that { x,y,z(B)J & S(B)., B3ince

(1)

When we say that a subsystem (B,S(B)) contains C er: C.:is a
gubset of (B,S(B)) we mean that C & B.



8(B) € 8(4), it follows that{ x,y{z(B)} £ 8(4) so that & = Z(B),
Hence z ¢ U and ix,ygz} é.SkS). Buf B is arbitrary. Héndd
f x,y,z‘}é SCI)s Suppose that t is an elenment 5f 3 ;ﬁg@ fhat
ix,y,t(}é_S(I). Since S(I) &: S(A), hence {x,y,t} é'S(ﬁ) 50 that
t = zs Therefare (I,5(1)) is a subsystem of (A4,S8(4)),

Let (Al,s(Al)).be any'subsystem of (4,8(A)) that contains C.
Thus (Al"(?i(f”l))t 51" and heﬁ.ce; I Al and s(1) E}(_:Xl).
Thercfore (1‘8{135 is the smallegt subsystem of (4,5(A)) that

contains C;

. 24246 Proposition. Let f bé an isomorphism from a STS (4,5(4))

’ v 3
onto a.STS (A;S(A )). For any subsystem (R,S(R)) of (4,5(1)), let
’ : y
R be the image of R under £ and S(R ) be the set of all images of

triples of (R,S(R)) under f j dse.

R

if(x)/xéR}

and N

‘S(R/) { ‘{f(x),f(y) ,f(::)Jz L {x,y,z} € S(R) }

i

oy 7
Then (R,3(R )) is a subsystem of (4,8(a )).

/ Vi V4
Proof : By definition S(R ) < S(4 ) and S(R ) is a family of
/ / /
3-subsets of R . To .show that (R,S(R )) is a STS, let x,y be any
/ 7/ :
distinct elements of R, Since {(R) = R, it follows that there exists

ay b in R such that £(a) = x, f(b) = y. But f is one tc one and

x % v. lence 2y b are distinct elements of R so that there exists
, /
a unique element ¢ in R such that { a,b,c } £ S(R). From R = £(R),

5 , P e
; we have f(¢c) € R, By definition of S(R ) it follows that

= / / LA
“{f(a),f(b),f(c)g € S(R )o Therefore{:x,y,f(c)} € 3(R ).Suppose that
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/ : / /

u is an element of R such that {x,y,u ¢ E 5(R ). Since £(R) = R,
2

hence there exists an element d in R such that £(d) = u. Consequently

ia,b,d} € S(R )e As a result we have d = ¢ so that u = f(c). Hence

/ s/ / v Z /
(R ,8(R )) is a 8TS. Therefore (R,3(R )) is a subsystem of (4,S(A )).
As a consequence of the above proposition, we have

, 7 /
242.7 Corollary, - If (A,S(A)) and (A,5(7A )) are isomorphic STS such
/ /
that (A,S(A)) contains a subsystem of order n, then (4,3(4 )) also

contains a subsystem of order n.

24248 Proposition. Let (4,3(A)) be a STS of order n. Then every

element of A is contained in 23; triples of (4,S(A)),
Proof : Let x be any element of 4 and let

T, = { T & SCA) ,/ x €& T }
Hence x is contained din | T_| triples of (A,8(A)). For any
T = i x,y,z} & TX we can form two 2-subsets of A4 that contain x;
namelyf x,y} and fx,z} « Furthermore, any two triples in Tx have
x as only their common elements. Therefore different triples give
rise to centirecly different 2-subsets of A that contain x. Hence

the total number of 2-subsets of A that contain x formed from the

+ On the other hand, the total

triples in T_ is exactly 2 ‘ T

number of 2-subsets of A that contain x is n - 1. But for any

2-subset B of A that contains x there must exists a unique T &€ TX

such that B& T. Hence 2 I TV } = n - 1 so that l Tv‘ = 3%3 4

5.

Since x is arbitrary, it follows that every element of A is



sontained in Egl—triplesi

2¢249 Propositions The total aumber of triples in any STS of

order n is % n(n = 1)

Procf : Let (4y8(4)) be any 8T8 of order ny Adsume that 5(1L)
contains exactly k tripless Lét 5(1) = { Aliﬁzgatbg Ak ;; Toy
J

any Ai; the total numbet of 2«-szubsets of Ai is 3» Since any 2-subset

of A is a subzet of one apd only one Ai‘ it follows that the total

i

»

number of 2~subsets of Jé A, =/ A is 3ks, On the other hand the

=

total number of 2=subset of .\ i nln - 1), Hence 3k = % n{n « 1)

c.

PoEE

so that k = n(n = 1)5

O\

2e3 Necessary Condition for the LExistence of STS

When a positive integer n is given, we would like to know
whether we can construct a STS of order n. It turns out that STS
of order n do not exist for infinitely many values of n, A necessary
condition for the existence of STS of order n is giVen in the

following theorem.

2e3¢l Theoreme. If a STS of order n exists, then

(2. %el) n=1or 3 (nod 6)

: s P L O D e ST 5
Proof : Sdince —£~7———2 is a positive integer, hence n(n - 1) is
(@]

)

divisible by 3. Therefore n or n = 1 must be divisible by 3.

First , let us suppose that n is divisible by 3« In this case

=~

e
2

positive integer, it follows that n - 1 = 2t for some positive

~

3

5 &

¢

we have n = 3m for some positive integer m. Since



integer t. Therefore 3m - 1 = 2t. Fronm this it follows that m
must'be odds Let m = 28 + l,where s is a positive integer: Hence
n=3nm=3(2s + 1) = 65 + 3.Therefore we have n = 3 (mod 6).

Next, we suppose that n - 1 is divisible by 3. Then n - 1 = 3m

is a positive integer,

for some positive integer m. Since
hence n - 1 = 2t for some positive integer t. Therefore 3m = 2ts
From this it follows that m must be ecven. Let m = 2s where s is a
positive integer. Hence n = 3m + 1 = 3(2s) + 1 = 6s + 1. Thus

we have n == 1 (mod 6).

Therefore n = 1 or 3 (mod 6)

===

In fact this necessary condition is also sufficient, This will

be proved in Chapter IV.
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