CHAPTER 5

VILLE THEOREM ON CONTINUOUS GAME

5.1 Introduction

In this chapter, Ville theorem is extended to continuous two-person zero sum game

Let B_1 and B_2 be Banach spaces and let a set P in B_1 and a set Q in B_2 be sets of distribution functions on [0,1].

Suppose that the payoff function for a continuous game is M which is a continuous function on $[0,1] \times [0,1]$ and suppose that player I chooses x from [0,1] by means of the distribution function $p \in P$ and that player II chooses y from [0,1] by means of the distribution function $q \in Q$

Let A be the mapping from P into B defined by

where
$$\psi(y) = \int_{0}^{1} M(x,y)dp(x)$$
 (y $\in [0,1]$, $p \in P$).

Then the total expectation of player I will be the bilinear form

$$(Ap, q) = \int_{0}^{1} \int_{0}^{1} M(x,y)dp(x)dq(y) \quad \text{for } q \in Q.$$

It is assumed that to each $q \in Q$ there exists a $p \in P$ such that $(Ap,q) \ge 0$. 3.3.7 asserts the existence of a $p_0 \in P$ for which $(Ap_0,q) \ge 0$ for all $q \in Q$ if

(i) The image of P under A is weak - compact and reqularly convex.

(ii) The cone $\bigcup \lambda Q$ is convex and closed . $\lambda \gg 0$ 5.2.2 <u>Remark.</u> Let B be a topological vector space. If E is weakopen in $B_2^* \cap C[0,1]$, then E is open in C[0,1]

<u>Proof</u>: For any $f_0 \in E$, there exists $r_1, r_2, \dots, r_n, x_1, x_2, \dots, x_n$ such that

 $f_{0} \in \left\{ f \in C[0,1] : \left| f(x_{i}) - f_{0}(x_{i}) \right| < r_{i}, i = 1,2,..., n \right\} \subset E$ Let $r = \min \left\{ r_{1}, r_{2}, ..., r_{n} \right\}.$ Then $f_{0} \in \left\{ f \in C[0,1] : \left| f(x) - f_{0}(x) \right| < r, \forall x \in [0,1] \right\} \subset E.$ So E is open in C[0,1].

5.2.3 <u>Remark.</u> If $K \subset B^* \cap C[0,1]$ and K is compact in C[0,1], then K is weak - compact in B^*

T

<u>Proof</u>: Let $\{V_{\lambda}\}$ be an open covering of K where V_{λ} is weak open in B^{*}, i.e., $K \subset \bigcup V_{\lambda}$. Then $K \subset \bigcup (V \cap C[0,1])$ where $V_{\lambda} \cap C[0,1]$ is weak - open in B^{*} $\cap C[0,1]$. By 5.2.2, $V_{\lambda} \cap C[0,1]$ is open in C[0,1]. Since K is compact in C[0,1], $K \subset \bigcup_{i=1}^{n} (V_{\lambda} \cap C[0,1])$. Hence $K \subset \bigcup_{i=1}^{n} V_{\lambda_{i}}$, that is K is weak i=1 n i

5.2.4 <u>Theorem</u>. Let B_1 and B_2 be the spaces of bounded Borel measures on [0,1]. And let $P = \{ \mathcal{M} \in B_1 : \mathcal{M}(E) \ge 0 \text{ for all } E \in Borel algebra M and \mathcal{M}([0,1])=1 \},$ $Q = \{ \mathcal{O} \in B_2 : \mathcal{O}(E) \ge 0 \text{ for all } E \in Borel algebra M and <math>\mathcal{O}([0,1])=1 \}.$ Let K(x,y) be a continuous function on $[0,1] \times [0,1]$ and A be a linear mapping from P into B_2^* defined

111

$$A\mu = \Psi \text{ where}$$

$$\psi(y) = \int_{0}^{1} K(x,y)d\mu(x) \quad (y \in [0,1], \mu \in P).$$

If to each $\mathfrak{G}' \in \mathbb{Q}$ there exists corresponding $\mathcal{M} \in \mathbb{P}$ such that

 $\int_{0}^{1} \int_{0}^{1} K(x,y) d\mu d\theta > 0, \text{ then there exists a fixed } \mu_{0} \in P$ such that

$$\int_{0}^{1} \int_{0}^{1} K(x,y) d\mu_{0} d\theta > 0 \text{ for all } \theta \in \mathbb{Q}.$$

<u>Proof</u> : First, we have to show that A(P) is weak -compact regularly convex . Since K is continuous on a compact set $[0,1] \times [0,1]$, K is uniformly continuous and there exists a real number m such that

$$| K(\mathbf{x}, \mathbf{y}) | \leq \mathbf{m} \quad \text{for } \mathbf{x} \in [0, 1], \quad \mathbf{y} \in [0, 1].$$

Hence $| A \mu(\mathbf{y}) | = | \int_{0}^{1} K(\mathbf{x}, \mathbf{y}) d \mu(\mathbf{x}) | \leq \int_{0}^{1} | K(\mathbf{x}, \mathbf{y}) | d \mu(\mathbf{x}) \leq \mathbf{m}$

for $y \in [0,1]$ and $M \in P$. Thus A(P) is uniformly bounded.

Given $\varepsilon > 0$, by uniform continuity of K, there exists $\delta > 0$ such that

 $|K(x,y_1) - K(x,y_2)| < \varepsilon$ whenever $|y_1 - y_2| < \delta$, and for $x \in [0,1]$, $y_1, y_2 \in [0,1]$.

So
$$|A\mu(y_1) - A\mu(y_2)| = |\int_{0}^{1} (K(x,y_1)d\mu(x) - \int_{0}^{1} K(x,y_2)d\mu(x))|$$

 $\leq \int_{0}^{1} |K(x,y_1) - K(x,y_2)| d\mu(x)$
 $\leq \mathcal{E}$ whenever $|y_1 - y_2| < \mathcal{E}$,

and for all $\mu \in P_{\bullet}$

Thus A(P) is equicontinuous. Since by 2.5.19 $A(P) \subset C[0,1]$, by Ascoli theorem, A(P) is compact. Hence, by 5.2.3, A(P) is weak^{*}-compact in B_2^* .

Let μ_1, μ_2 be any elements in P. For $0 \le t \le 1$, $[t\mu_1 + (1-t)\mu_2](E) = t\mu_1(E) + (1-t)\mu_2(E)$ which is non-negative, since $\mu_1(E)$ and $\mu_2(E)$ are non-negative. And $[t\mu_1 + (1-t)\mu_2]([0,1]) = t\mu_1([0,1]) + (1-t)\mu_2([0,1]) = 1$.

Thus P is convex

Consider $A_{\mathcal{M}_1} \in A(P)$ and $A_{\mathcal{M}_2} \in A(P)$, for $0 \leq t \leq 1$ $tA_{\mathcal{M}_1}(y) + (1-t)A_{\mathcal{M}_2}(y) = t \int_{0}^{1} K(x,y)d_{\mathcal{M}_1}(x) + (1-t) \int_{0}^{1} K(x,y)d_{\mathcal{M}_2}(x)$ for $y \in [0,1]$.

$$\int_{0}^{1} K(x,y)d(t\mu_{1}+(1-t)\mu_{2})(x) \text{ for } y \in [0,1]$$

63

By convexity of P, A(P) is convex. So, by 3.3.2 A(P) is weak - compact regularly convex.

Let $X = \bigcup_{\lambda > 0} \lambda Q$. Since Q is convex, X is a convex cone. And since Q is closed and $0 \notin Q$, by 5.1.1, X is closed in B₂. From the hypothesis to each $\[O'\in\mathbb{Q},\]$ there exists $\[multiplue \[P] \] eqn (x)d\[O'(y) \] eqn (x)d\[O$

$$\int K(x,y)d\mu_0(x)d\theta'(y) > 0 \quad \text{for all} \quad \theta \in \mathbb{C}$$

This completes the proof.

5.2.5 <u>Theorem</u>. Let B_1 and B_2 be the spaces of functions of bounded variation on [0,1]. Let P and Q, in B_1 and B_2 respectively, be the sets of distribution functions, i.e., the sets of non-decreasing functions of total variations 1. Let K(x,y) be a continuous function on $[0,1] \times [0,1]$ and A a linear mapping from P into B_2^* defined by

where $\psi(y) = \int_{0}^{1} K(x,y)dp(x)$ (y $\in [0,1]$, $p \in P$)

If to each $q \in Q$ there exists $p \in P$ such that

64

In this section we shall state and prove the Ville theorem on continuous two-person zero sum game which B_1 and B_2 mentioned in section 5.1 are as follows :

(i) spaces of bounded Borel measures on [0,1],

(ii) spaces of bounded variation functions on [0,1],

(iii) space of bounded variation functions on [0,1], and space of bounded Borel measures on [0,1], respectively.

The proof needs the following remarks.

5.2.1 <u>Remark.</u> If Q is a closed subset of B⁺ (set of positive measure) and $0 \notin Q$, then $A = \bigcup c Q$ is closed subset in B $c \ge 0$

<u>Proof</u>: Let $\{ \alpha_i \}$ be sequence of point in A such that $\alpha_i \longrightarrow \alpha$ in B. We want to show that $\alpha \in A$.

Choose $c_i \ge 0$ and $0'_i \in Q$ such that $\alpha_i = c_i \delta'_i$. We claim that $\lim_{i \to \infty} c_i < +\infty$.

Suppose $\lim_{i \to \infty} c_i = +\infty$. There exists subsequence c_i such that $\lim_{i \to \infty} c_i = +\infty$. Then

 $0 \leq \mathcal{O}_{i} = c_{i}^{-1}(c_{i}\mathcal{O}_{i}) = c_{i}^{-1}\alpha_{i},$

which would entail that $\lim_{i} \delta_{i} = 0$ and so, since Q is closed, i $0 \in Q$. This would contradict our hypothesis. So $\lim_{i} c_{i} < +\infty$. In that case there exists subsequence c_{i} which converges to c, say, and at the same time subsequence δ_{i} converging to δ . Then $c_{i} \delta_{i}$ is convergent, and its limit, $c \delta'$, belongs to cQ. Hence $c \delta' \in A$, i.e., α_{i} converges to $\alpha = c \delta'$ and $\alpha \in A$.

$$\int_{0}^{1} \int_{0}^{1} K(x,y)dp(x)dq(y) \gg 0, \text{ then there exists } p_0 \in P$$

such that
$$\int_{0}^{1} \int_{0}^{1} K(x,y)dp_0(x)dq(y) \gg 0 \text{ for all } q \in Q.$$

<u>Proof</u> : Since K is continuous function on a compact set $[0,1] \times [0,1]$, K is uniformly continuous and there exists a real number m such that

$$|K(\mathbf{x},\mathbf{y})| \leq m \quad \text{for} \quad \mathbf{x} \in [0,1], \quad \mathbf{y} \in [0,1]. \quad \text{Hence}$$
$$|Ap(\mathbf{y})| = \left| \int_{0}^{1} K(\mathbf{x},\mathbf{y})dp(\mathbf{x}) \right| \leq \int_{0}^{1} |K(\mathbf{x},\mathbf{y})| \ dp(\mathbf{x}) \leq m \quad \mathbf{v}^{1}(\mathbf{P}) = m$$

for $p \in P$. Thus A(P) is uniformly bounded. Given $\varepsilon > 0$, by uniform continuity of K, there exists $\delta > 0$ such that for all $x \in [0,1]$

$$| K(x,y_{1}) - K(x,y_{2}) | \leq \varepsilon \quad \text{whenever} \quad |y_{1} - y_{2}| \leq S$$

So $| Ap(y_{1}) - Ap(y_{2}) | = | \int_{0}^{1} K(x,y_{1}) dp(x) - \int_{0}^{1} K(x,y_{2}) dp(x) |$
 $\leq \int_{0}^{1} | K(x,y_{1}) - K(x,y_{2}) | dp(x)$

 4ϵ whenever $|y_1 - y_2| < \delta$.

Thus A(P) is equicontinuous. By Ascoli theorem A(P) is compact in C[0,1] and hence, by 5.2.3, A(P) is weak - compact in B_2^* . Since A(P) is convex, by 3.3.2, A(P) is regularly convex. Let $X = \bigcup_{\lambda \geq 0} \lambda Q$. Then X is closed convex cone. From the hypothesis, to each $q \in Q$ there exists $p \in P$ such that $\int_{\lambda \geq 0} \int_{0}^{1} K(x,y)dp(x)dq(y) > 0$. Therefore to each $Aq \in X$ there exists $p \in P$ such that

$$\int_{0}^{1} \int_{0}^{1} K(x,y)dp(x)d\lambda q(y) = \lambda \int_{0}^{1} \int_{0}^{1} K(x,y)dp(x)dq(y) \gg 0.$$

By 3.3.7, there exists $p_0 \in P$ such that

$$\int_{0}^{1} \int_{K(x,y)dp_{0}(x)d(\lambda q)(y)} 0 \quad \text{for all } q \in \mathbb{Q},$$

$$\int_{0}^{1} \int_{K(x,y)dp_{0}(x)dq(y)} 0 \quad \text{for all } q \in \mathbb{Q},$$

$$\int_{0}^{1} \int_{0}^{1} K(x,y)dp_{0}(x)dq(y) \gg 0 \quad \text{for all } q \in \mathbb{Q},$$
i.e., there exists $p_{0} \in P$ such that

1 1

$$\int \int K(\mathbf{x},\mathbf{y}) dp_0(\mathbf{x}) dq(\mathbf{y}) \gg 0 \quad \text{for all } q \in \mathbb{Q}.$$
0 0

The proof is complete.

5.2.6 <u>Theorem</u>. Let B_1 be a space of functions of bounded variation on [0,1] and B_2 a space of bounded Borel measures. Let P in B_1 be the set of non-decreasing function of total variation 1 and Q in B_2 a set of positive measure such that $\mathcal{M}([0,1]) = 1$. And let K(x,y) be a continuous function on $[0,1] \times [0,1]$, and A be a linear mapping from P into B_2^* defined by where $\psi(y) = \int_{0}^{1} K(x,y)dp(x)$ $(y \in [0,1], p \in P)$

If to each $\mathcal{M} \in \mathbb{Q}$ there exists $p \in P$ such that

 $\int_{0}^{1} \int_{K(x,y)dp(x)d\mu(y)} 0, \text{ then there exists } p_{0} \in P \text{ such}$ $\int_{0}^{1} \int_{0}^{1} K(x,y)dp_{0}(x)d\mu(y) \text{ for all } \mu \in Q.$ $\int_{0}^{1} \int_{0}^{1} K(x,y)dp_{0}(x)d\mu(y) \text{ for all } \mu \in Q.$

<u>Proof</u>: Since K is continuous function on a compact set $[0,1] \times [0,1]$, K is uniformly continuous and there exists a real number m such that

$$|K(x,y)| \leq m \quad \text{for } x \in [0,1], y \in [0,1] \text{. Hence}$$

$$|Ap(y)| = \left| \int_{0}^{1} K(x,y) dp(x) \right| \leq \int_{0}^{1} |K(x,y)| dp(x) \leq m \bigvee_{0}^{1} (P) = m \text{ for } p \in P.$$

$$0$$
Thus $A(P)$ is uniformly bounded

Thus A(P) is uniformly bounded.

Given $\xi > 0$, by uniform continuity of K, there exists $\delta > 0$ such that for all $x \in [0,1]$, $y_1, y_2 \in [0,1]$

$$\begin{vmatrix} K(x,y_1) - K(x,y_2) &| \langle \varepsilon & \text{whenever } | y_1 - y_2 | \langle \delta \\ Ap(y_1) - Ap(y_2) &| = \left| \int_{0}^{1} K(x,y_1) dp(x) - \int_{0}^{1} K(x,y_2) dp(x) \right| \\ \leq & \int_{0}^{1} \left| K(x,y_1) - K(x,y_2) \right| dp(x) \\ \langle \varepsilon & \varepsilon \end{vmatrix}$$

whenever $|y_1 - y_2| < \delta$ and for $p \in P$. Thus A(P) is equicontinuous. By Ascoli theorem A(P) is compact in C[0,1] and hence by 5.2.3, A(P) is weak -compact in B_2^* . Since A(P) is convex, by 3.3.2, A(P) is regularly convex. Let $X = \bigcup \lambda Q$. Then X is closed convex cone. From the hypothesis, to each $\mathcal{M} \in Q$, there exists, $P \in P$ such that $\int \int K(x,y)dp(x)d\mathcal{M}(y) > 0$. Therefore to each $\mathcal{M} \in X$ there exists $Ap \in A(P)$ such that $\int \int K(x,y)dp(x)d\mathcal{M}(y) > 0$ and hence O = O $\int \int K(x,y)dp(x)d\mathcal{M}(y) > 0$. By 3.3.7, there exists

 $Ap_{O} \in A(P)$ such that

$$\int_{0}^{1} \int_{0}^{1} K(x,y) dp_{0}(x) d(x,\mu)(y) \gg 0 \quad \text{for all} \quad \mu \in \mathbb{Q},$$

$$\int_{0}^{1} \int_{0}^{1} K(x,y) dp_{0}(x) d\mu(y) \gg 0 \quad \text{for all} \quad \mu \in \mathbb{Q},$$
i.e., there exists $p_{0} \in P$ such that
$$\int_{0}^{1} \int_{0}^{1} K(x,y) dp_{0}(x) d\mu(y) \gg 0 \quad \text{for all} \quad \mu \in \mathbb{Q}.$$

The proof is complete.