CHAPTER II
PRELIMINARIES

In this chapter, we will recall some definitions and theorems

from topology, real and functional analysis.

The materials of this chapter are drawn from references [1 1,

2L BLis) (7] [e], o], [12] .

2.1 Topological Vector Spaces

24161 Definition. Let X be a scalar field with elements

ol s P seeey With zero element O and identity element 1.

A vector space over K (or linear space over K) is a set X

with element x, ¥,2,es., which has the following properties :
(i) TFor every two ~elements x, y£€ X a sum x+y is defined
in X ; under this addition, X is an abelian group, i.e. for all

Xy ¥y z&€ ¥ we have
(a) =x+y = y+x
\(b) x+(y+z) = (x+y)+z
(c) there exists O € X with x+0 = x for all x€ X

(d) there exists for each x € X an x/e X with

(ii) For every X € K and every x & X the product X x = %
of X with x is defined as an element of Xy and all x, YE X, &,

’}36. K we have



(e) =x(ix +P)

= xpt +xPB
(£) (x+y)X = xx + xp
(g) x(a,{{a) = (xo )]3
{B) %1 .2 %X,

If K is the field R of real numbers, then X is called a real vector

space.

A subset F of elements of a vector space X is a vector space

provided that whenever it contains x and y it also contains X x + F;y

-

for arbitrary m.,l3 in K. F is called a linear subspace (or simply

subspace) of .
2.1.2 Definition. Let X be a nonempty set and let { be a family
of subsets of X having the properties :

(i) The empty set @ and X itself belong to

(ii) The intersection of any finite collection of sets in '

is a set in Z
(iii) The union of any collection of sets in 7 is in ‘[ .

The collection { is said to be a topology for X. Also, X together

with'z, is said to be a topological space, which we denote by (K,Z.).

The members of [ are called the open sets for this topologye.
A set S € F is closed if its complement is open.

A neighborhood of a point p € X is any open set that contains p.

/ ‘
A collection L€ 7 is a base for L if every member of ol
7

(that is, every open set) is a union of members of C .



A collection ¥ of neighborhoods of a point p & X is a local

base at p if every neighborhood of p contains a member of ¥ .

2e1¢3 Notatione. Let X be a vector space over K, ACK, BEX, x& XL

” X + A = {'x +a:ae A%
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In particular (taking 2 = =1) =A denotes the set of all additive

inverse of members of A,
2¢144 Definition. Suppose { is a topology on a vector space X
such that

(i) every point of X is a closed set

(ii) the vector space operation are continuous with respect
to 7 4 i.e.,the mapping (x,y)+——> x + y of cartesian product X %X X

into X and (& yX)—> Xx of K X X into X are continuous.

Under these conditions, Z is said to be a v&tor topology on X

and X is a topological vector space.

2+71.5 Remark,
(i) Every topological vector space is a Hausdorff space.

(ii) Every Banach space is a topological vector space.



2.1.6 Lemma. - If W is a neighborhood of O in X, then there is a
neighborhood U of O which is symmetric (in the sense that U = =U)

"and which satisfies U + U& W.

Proof : Note that the mapping (x,y)+»— x+y is continuous at (0,0).
Since W is a neighboi‘hood of O = 0 + O, we can find neighborhood

V,], V. of O such that V1+ vzc. W

2

— (‘ E e
Take U o= NS vq)fi( V,)

Since O€& V 23

Hence U + UCV1+ VZR. W

1 1
neighborhood of O and UL V,[ y UEV

0 € (‘V’I) and since O € V o€ (—Vz). So U is a

2‘
Note that if we apply this lemma twice we can find a symmetric

neighborhood U of O such that U+U+U+U & W,

2.1.7 Theorem. Suppose K and C are subsets of a topological vector
space X, K is compact, C is closed, and K/1C = . Then O has a

neighborhood V such that (K+V) I} (C+V) = @.

Proof : If K = @, then K+V = # and the conclusion of the theorem is
obvious. We therefore assume that K % @ and consider a point x & K.
Since KNC = &, x% Cy le.x € Cc(complement of C). 8ince C is closed,
c® is open. | Therefore, there exists a neighborhood Wx of O such that
x + W 0T ¢®. By 2.1.6, O has a neighborhood V_ such that |

. c
x+Vx+VX+VX+VXC x+WXC_C '

1 " c
x+ Vot V o+ V C x+W_C C

; ; -
i.e. /x+Vx+'\x+VxﬁC.-¢.



The symmetric property of VX shows that

(1) (x+Vx+Vx)ﬂ (c+v) = @.

cwince K is compact, there are finitely many points Xy9Xogeeey X

in ¥ such that

n
K C U (xg+ Vx.) .
i=1 "

n
Put V = [} Vo  # Then

i=1 X3

: = .
K+ VvV C U o (xg+ vV, + V)
32/ //Fal 88

n
P{A AXGEALY , \+ V. I
i=4 BOR AN

and no term in this last union intersects C+V, by (1). This complete:

the proof.
2.1.8 Definition. A set C( X is said to be convex if
tc + (1=-t)c C C for 0<£ t < 1.

2.1¢9 Remark. Every convex set in W{ ie an interval.

261610 Definition. A set BCY is said to be balanced if X B C B

for all X € scalar field K with || £
2.1.11 Remark. If £ is balanced, then sE € tE for 8Lt,8>0,tH0

2.1.12 Theorem. If B is a balanced subset of a topological vector

space X and O B® (interior of B) then B® is balanced.



Proof : If 0& |«| é} , then B® = (& B)o,'sinc‘e X F—s XX
is a hor{leorrﬁorphism. Hence & BOC o B & B, since B is balancede.
But & B is open., S0 X Bo C: Bo. ids B% contains the origin, then

o('BOC’ B® even ® = 0. Thus B° is balanced.

2.1.13 Theorem. In a topological vector space X,

(i) every neighborhood of O containsa balanced neighborhood

of O and

(ii) every convex neighborhood of O contains a balanced convex .

neighborhood of O,

Proof : (i) TLet U be a neighborhood of O in X. Since the mapping
(X 9X) 3 & x 1is continuous, there is a $> 0 and there is a

neighborhood V of O in X such that ®& V C U whenever |x|( §

Take - 1 pe v
lxl<d

Since for any B with ”3‘51 and for any wé€W, B ws= Po( v
for some & , v such that |x]< & and v €& V. Since H’so{\ S

!3 we We So we have P‘fi C We. Thus W is balanced and W U.

(ii) Let U be a convex ne’igiqb:orhood of O in X. Take A = Iﬂl?f  : B
Choose W as in part (i). Since W is balanced, o("w = W when ‘IO:T; T 3
hence W C%U. Thus W € A which implies that the interior A of A
is a neighborhood of O, Clearly Aoc; U. DBeing an intersection of
convex set A is convex; hence so is Ao. To prove that Ao is a
neighborhood with desired properties, we have to show that Ao is

balanced; for this its suffices tb prove that A is balance. Choose ¥

andP so that 0 £ % £ 1, 1"3( = Ts Thén



¥pA = N Tpul < N PXUT = A
et =1 ”50(];{

This completesthe proof.

2+¢1.14% Theorem. Suppose V is a neighborhood of O in a topological

vector space X. If 0K r, < r, < see and &, —— 3 00 a5 Nn—> 00 ,

)
ther % 2 Lb v ¥
n

1'1:1

Proof : Fix x € X. By continuity of & H>x x at 0, we can find

D> O such that & x%€ V whenever [o <& e« BSince !-:]-- = 0
) n

as n —> o0, there exists N such that . {5 . Hence l—- x € ¥,
y/ N TN

.oc : ] h X= . e
1epx€1;1V Thus g1rnv

2.1.15 Definition. A subset A of a topological vector space ¥ is
said to be absorbing if for any x & X, then exists a positive number

t = t(x) such that x & thA,

2+1.16 Remark.

(i) Every neighborhood of O in a topological vector space
is absorbing

(ii) Every absorbing set contains O

00

Proof : (i) Let V be a neighborhood of O. By 2.1.%, X = [ r V
' n="

where O < rg<irs eeey and r,—> 00 as n—> 00, For each x & X,

there exists r, suc_h that x & rrV. Thus V is absorbing.

(ii) It is obvious.



2.2 Linear Mapping

2e2¢1 Definition., Let X and ¥ be a vector spaces over‘? ol
A linear map of X into Y is simply a function f of X into Y such
that

Flox + l’-}y) = o £(x) + B£(y)

for all x, y€ X and all & , p € R » In the special casc in which

Y = R, we speak of a lincar functional on X.

s
]

2.2.2 Definition, Let X be a topological space. The space X ,

called the dual space of X, is the set of all crntinuous linear

functionals of X.

2.2.35 Remark. Let _A. be a linear functional on a topological

vector space X.
(1) No-=0
(i1) if A is convex set, JL(A) is convex

(iii) 4if A is subspace of X, A (A) is subspace of [K .

2.2.4 Theorem. vLet ¥ and ¥ be a topological vector spaces.

If A : X—>Y is a linear and continuous at O, then /. is
continuous., In fact, /\. is uniformly continuous in the following
sense : To .each neighborhood W of O in Y corresponds a neighborhood V

of O in X such that y ~ x € V implies -A-y - /L x & w.
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Proof : Given a neighborhood W of O in Y, by continuity of J et 0,
we can find a neighborhood V of O in X such that A x& W whenever

x& Ve If naw y - x& V, the linearity of 2 shows that

A y - Ax = A (y-x) & W. Thus A maps the neighborhood
x + V of x into the preassigned 'neighborhood Ax + W of N X,

which says that _A_ is continuous at x.

2¢2¢5 Theorem. Let J\ be a linear functional on a topblogical vector

space X. Assume A x £Z O for some x& X.

(i) ,_/L is a continuous implies the null space JVJ(_/L)

is closed.

(i1) A is bounded in some neighborhood V of O implics A

is continuous.

. =
Proof : (i) Since ﬂ(]\) = _A ({O%) and § O% is closecd subset of [R.
By continuity of A. , we have ,j\,-'](iot) is closed. Thus \/V)(J\,) is

closed sete.

(ii) There existes a real number M > O and a neighborhood V

of O such that L/\.x‘ { M for xin V., If €¢> O and if W £ %V 4
then f./fo ¢ &€ for every x in W. Hence A is continuous at O,

By 2«2.4, the proof is complete.
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2.3 Seminorms and Local Convexity

2.3.1 Definition. A seminorm on a vector space I is a real valued

function p on ¥ such that
(1) p(x+y) £ p(x)+ p(y)
(ii) p(& x) = [x[ p(x)

for all x, vy & X and all scalars X .

Property (i) is called subadditivity. A seminorm is a norm

if it is satisfies
(iii) p(x) £Z 0 4f x # 0,

€79
A family \/ of seminorms on X is said to be separating if to

7% B
each x # 0 corresponds at least onc p e-J with p(x) # O.

Next, consider a set A C X which is absorbing. The Minkowski

functionall/b% of A is defined by

a

/A{A(x) = inf{‘t >0 : x££ t A é for all x in X.

Note that,/“A(x) £ oo for all x &€ X, since A is absorbing. The
seminorms of ¥ will turn out to be precisely the Minkowski functionals
of balanced convex absorbing sets.
2e%e2 Theorem. Suppose p is a seminorm on a vector space X. Then
(i) p(0) = O
(ii) px~y) = ply-x)

(i11) | p(x) = p(y) | £ plx=¥)
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Proof : (i) By definition of a seminorm, we have p(dk x) =[] p(x).

Let ¢ = 0, Thus p(0) = O.

(i1) plx=y) = p(«1(y=x)) = |<1] p(y=x) = p(y-x)

(i1i) Since p(x) = p(x~y+y) and p(y) = p(y-x+x). By 2.3.1
we have p(x) < plx-y) + p(y) and
p(y) £ ply=x) + p(x) .
So p(x) = p(y) £ plx-y)
p(y) = p(x) £ plyex) = p(x-y) by (ii).

Thus | p(x) - p(y)‘ & plx=y).

2.3.3 Theorem, Let p be a seminorm on a vector space X such that p

is continuous at O, Then p is continuous on X,
2.3.4 Remark, it /M.gr)( ¢ then x € O¢ A,

2.3.5 Definition. A set E in a topological vector space X is said
to be bounded if for any neighborhood V of O there exists scalar &

such that & C & V.

2.3.6 Definition. A topological vector space X is said to be locally

convex if there is a local baseffg whose members are conveX.

)
2.3,7 Theorem., Suppose t/ is a separating family of seminorm on a

vector space X.' Associate to each » E_{F) and to each positive

integer n the set

V(pyn) = 5" : plx) £ i §

n
Let énge the collection of all finite intersections of the sets V(p,n)e.
Then Jv:is a convex balanced local base for a topology on X which

turns ¥ into a locally convex space such that
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(i) every p€e (ga is continuous, and

(ii) a set EC X is bounded if and only if every pe gpis

bounded on Ii.

Proof : Let Z be the collection of all subset of X such that each

of which is a union of translation of member of?/? . Then ; is a
topology on X § each member of\/g is convex and balanced, and Jé’; is

a local base for T, "

Suppose x & X, x # C. Then, by separating property of 179, p(x) >0
for some p € {P; hence there exists an n such that p(x) > ;1- « 'That
is X# V(pyn). Since p(x) = p(~x), V(p,n) = =V(p,n). So we have

- xell_ V(p,n) and O é V(p,n) +# x4 which is a neighborhood of x. Thus
V(p,n) + x C{Of - (complement of {Of). This say that {O{c is open,
= SO% is closed set, and since [ is translation invarient

topology, every point of X is closed set,

Next weé show that addition and scalar multiplication are
continuous. Let U be a neighborhood of O in X., Then, there exists

Pgar Poreces By of Q(F) and positive integer fug Dogeeey n such that

(1) V(P1 'n,])n V(Pzgna)ﬂ Ty (] V(pm’nm> C Ue Put

(&) vV = V(p1,2n,1) 1§ JTTE V(pm,an). Since every p & g) is

subadditive, V + VC U. This shows that the mapping (x,y) —> x + ¥

is continuous at (0,0) and hence, it is continuous at every point of X.

Suppose now that x € X, X is a scalar, and U and V are as above.

Let py(x) = Q; where X, 3 O for 1 €ig m, Then p, ( &’E-). L
‘ i

pi( % . de S Hence xe BniOLi V(pi, Zni).
Snghy 2y
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Pake L= max,{ jn1a_1, 3n20(.2, .“,’ BanCmg.
Then t » O. Since V(pi? Zni) is balanced, x € t V(pi, Zni) for all

1< i 4 p. Thus x€ tV, i.e. there exists t > O such that x€ tV.

Put* s = t/(1 + |x|{t)e If y€ x + sV .and ‘;3 -0 | < % , then

pY-Otx=[3>(y-x)+(F3-—O()x
which lies in .
}'plsVa,(p-a( tVC V+VC U

since fp\s €1 and V is balanced. This proves that scalar

multiplication is continuous.

Thus X is a locally convex space. The definition of V(pyn)
shows that every p € ‘CP is continuous at O. Hence p is continuous

or X, by 2.3-3 .

Finally, supposc Ef& X is b_ounded 2 P pe{P. Since V(p,1)
is a neighborhood of 0, B k¥(p,1) for some k Laop. Hence p(x) < k

for every x € E. It follows that pe S,P is bounded on E.

Conversely, suppose U is a neighkborhood of O, and (1) holds.
Since each p € QD is bounded on I, there are number Mi & oo such that
1)314Mi oo & for 1 £ i& m. If n> Mo, for é'ié m, it follows

that EC. n U, so that I is bounded.
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2.4 Function of bounded variation ¢

52.4.1 Definition. Let f be a real-valued function on [a, p].

Partition [a,b] such that

L]
a:xo< x1<x2<...<xn=b and form the sum
nel
¥ & i f(xk 1) - f(x )(. The total variation of f on [a,b] is
k=0 + k

defined by ' : 84268?
b X 3
V(£) = sup% v%
a r
' b
where the supremum is taken over all partition of [a,b]. e ¥ (£) < 064

f is said to be of bounded variation on Ea,b:l Denote the space

of bounded variation functionson [é,b] by BV [a,b].
1f addition and scaler multiplication are defined by

(f + gi(%)

"

£7(t) + glt),

i

k£(t) f(xt)

where f, g € BV [a,b], X is scalar and téj[fa,b]. Then BV[é,b] is
vector space over scalar field [ .
1f we define the norm of fe& BV [a,b] by
h
heff = [f)f + 7 (0
Then BV [a,bl is a Banach space.
2.4,2 Theoreme If £ : [a,b}-——> ﬁZ is a non-decreasing function.

Then £ is of bounded variation on [a,b].

117521 04 %
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2.4.3 Theorem, If f is a continuous function on the interval [a,b}

b ,
and g is bounded variation function on [a,b], then - [ £(x) dg(x)

. a

b b
exists and f f(x) dg(x)} £ M V (g) a where M = sup ?{f(x)’ %
. = a 4 e[a,b}

2.4,4 Remark. If f, f , f, are continuous functions on [,a,b]

2

g1 841 8, are bounded variation functions on Ea,b] and k, 1 are

real numbers. Then

b b b
(1) f 2+ £,)Gdg(x) SEACLEICI ML R
a a

a
b ' b b
@ [ sl g = [ 20ag, () « [ gy,
a g a
b b
{3 Skf(x)d(lg)(x) = k1 S f(x)ag(x) ,
a a
b b
(%) j g(x)df(x) exists == 5 f(x)dg(x) ecxists.
a a

2.4.5 Remark. Let £ be a continuous real—valu‘ed function of x and ¥y
in a< x £b, afy<h, VWecan define a linear bounded mapping

F on BV [a',b] by the equation

Fg = 91 where
b
({J(y) = 5 £f(x,y)dg(x) (x €[a,b}, s8¢ BV [a,b]).
& &

By 2.4.3 gnd 2.4.4, we can see that for each g, Fg & C [a,b].‘
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2.5 Measure Theory

2+5¢1 Definition. A collection Q/Wp of subsets of a set X is said

to be a b’ -algebra in X 1if n/% has the following three properties
) xe b

(2) 1If A€ /./é, then Ae (A/L where AC® is the complement

of A relative to X.

=3

(3) If A =

then A C \A/Za'.

1 !
ik Jb{o is a § -algebra in X, then X is called a measurable

An and if A.né (M fOI‘ n = '1,2,0'0,

i

n=1

space, and the members of L/%are called the measurable sets in Xo

2+.5.2 Definition. If X is a measurable space, ¥ is a topological

space, and f is a mapping of X into ¥, then f is said to be measurablc

provided that f-1 (V) is a measurable set in X for every open set V in ¥,

2.5.3 Theorens I \y“is any collection of subsets of X. There exists
* * *
a smallest (7} -algebra (/[/é in ¥ such that U{C LM’, ¢ 'Thisg ‘/{4) is

sometimes called the Gj-algebra generated by @’t‘l.

Proof : Let .0 be the family of all &’ -algebras M 1n x whien

contain y"’. Sinc~ the collection of all subsets of X is such a

Y -;algebra, X)L is not exﬁpty. Let ﬂ'f; be the intersection of all
JM«; € L. It is clear that J‘C l/U: and that \/M,* lies in every
4’ -algebra in X which contains J‘. To complete the proof, we have

to show that (A/l; is itself a U)-algebra.
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& :
If A E JM, for n = 142404+ and if (ﬂ/ééﬂ » then A € JVp,

so U Ané \/%g , Ssince c/%,is (T)-algebra. Since UAn€ ﬂ/é for every
n n

%
(/% € {2 we conclude that UAnE ﬂ’(lp . The other two properties of
n

a (Y) ~algebra are verified in the same manner.

2+5.4 Definition. Let X be a topological space. By 2.5.3, there
exists a smallest y-algebra ﬁ in ¥ such that every open set in X

belongs t»o @ « The members of /& are called the Borel sect,

2+45.5 Roemark. If £ : X—> Y is a continuous function of X, where Y
is any topological space, then it is evident from the definition that
f”q (V) € [& for every open set V in Y. 1In other words, every continuous

mapping of X is Borel measurable.

24546 _I_)__gfinition. A‘Borel measure At is an extended real-valued

function on ﬁ) such that

(1) Mg =0

(2) if ALy Aogeee & ok thab A A, =@ for i £ 3,
_ 4 B i )

e kg
U ay = 2 ).
j=1 I §=1 J

A Borel measure is said to be bounded if/“ (A) £ 0o for Aeﬂ .

2¢5¢7 Definition. T,et B be collection of bounded. Borel measures.

1f we define addition and scalar multiplication by

SM(E) + 6)(1«:)
c/(/‘('E)

(A + 0 )(E)
(e A (E)

1

1
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where /a " 5) & B, ¢ is a scalar and EE ﬂ. Then B is a vector

space over scalar field K .

245,68 Definitic)_r_l_. Let/éﬁ be a bounded Borel measure., The set

function ,/Mf on /2) defined by

00 gic:
| |z = sup izzq[/»(mi)l (E-e.[&),

the supremum being taken over all partitions gElX of E, is called

the total variation of 4 .
7

2+.5.9 Remark. Let B be a collection of bounded Borel measures in

a set X. Define

Ll = Al cxy

Then (B, || || ) is a Banach space.

Proof : First, we have to show that B is a normed linear space.
(1) It is clear that H/odl P X

(2) It is obvious that if M = 0, {ull = O. Conversely

it flull = 0, sl (@) = 0. simce for T e />
lr@l 4 Juim £ i - o
@] =0 forEe/&.
Thus M@ = 0, that is M= O.
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(3) For each /uE B, scalar &

o il

ft

1l

(4) For/u,l,/u_a
“ At fo || =

1~

IN

Thus “/{11 +/{,{2” £

(oa/,cf(X)
. |
(e MBI 2 L) B, = xf
suP% izﬂl e ) (5,) | % i

00

| | sup .5 | Li*rl = X §

ri=1

\OCH//LI(:-:)
muwu .

E B,

| Ot )| GO

sup {Z[ A+ @) 2 U B, = v%
o 3

i
>
N

sup% Z f//‘1(Ei)+/4‘2(Ei)‘ :l U E, =

§up% ?l/a'l(Ei)l+’/M2(Ei)’: ({ E; = X %
sup{%}/b(,l(ﬁi)[: (iEi=X}+
sup { Z:l/az('ﬂi)‘: (f Ei = X%

fees Mg+ M) 2 WA A -

—

Let be a sequence in B, Given £
14a1

an N such that for all n, m 7 N,

WA= ol de v teey [ M- pf (0 e

Since for E € l??

O,

There exists
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| - pom | & - | < ‘\%-ﬁl*x){ |
| {(/An-/um)(m)\,( 6 for all m, n' > N ,
i.e, \/44n(E)-/AE(E)\ (s  for all m, n 77 N.
Thus §/44n(E) % is & cauchy sequence in )R which is complete.

So /un(E) converges uniformly to /t(E). That is, there axists N,

such that for all n 7 NO and for all'E & ﬂ

| g = @ [ L) e
) 0o

For all Ei € dz such that U Ei = X, we have
i=1

\/“n(Ei) g /‘“Ei)l N A
o0

XX, 27t - €

i=1

W3
n
i
i—l
i
o

o0
therefore 12;1 \/b_in(Ei) -/4 (Ei

Hence supg %] (/(xn-/u.)(Ei)‘ : &)ul - B %ée_ :
. 46,y ”/(,(n - M “ (¢ « This completes the proof.

20m10 ggfinition. 1edlifibeds measura_uble function on R £ Am =7

to be simple if £(A) is countable, i.e, £(A) = iyq,yz,...§ }

2.5.11 Definition. Let f be a simple function. We define the

integral of I ovér a set A by
£

§ oy 1
Af(x)d//( = yn/m(&n)

where An = %x i x € A, £(x) = yn} . The integral of f exists it

o
- /4 (An) is absolutely convergent, and we say that f is
n=1 _

int eg_lj_fabl €.
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2.5.12 Lemma., Given a simple function f defined on a set A, suppose
A is a union
A= U B
: * k

of pairwise disjoint set Bk such that f takes only one value C) on Bk'

Then f is integrable on A if and only if the series S;.Ck/AL(Bk) is
® k e

" absolutely convergent, in which case

‘j f(x) %/L = 2% ck/AA(Bk).

A

Proof : TFach set

An = ix s ¥ & AEES) = ynk
is the union of the sets Bk for which C = Fpe Therefore
¥ "
Ty ) = Tyl 2 adpy)
n n ck= yn

L}

% ck/bL(Bk).

Moreover, since//i is non-negative, we have

Z fra ) = Z vl Zam0) = Z o g,

f:kzyn k

so that if one series is absolutely convergent, so is the other.

25413 Theorem. Let f and g be simple functions integrable on a

set A, and let k €.ﬂ2 . Then f+g and kf are integrable over A and

i

S' f(x)aum + S g(x) '
o o) s

A

gfﬂx) + g(x)] aju

jr kf(x)d k f—f( )a .
X /pL ) x /p&

A
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Proof : Suppose that

Fy = g X i XE A gnd £(x) = Y3 g an@

[]
i}

% x : x€ A and g(x) = Zj S

where i, j = 1, 2y« Then

A
(**) ,2 g(x) 3/L = j% zj/;L(Gj).

Clearly, f+g takes the values cij= I+ zj (not neccessarily distinct)

on the pairwise disjoint sets Bij = Fir\ Gj' It follows from

) = jZ/M(I"iﬂ Gj)./L(Gj) =§ (F; N Gy
and the absolute convergence of the series (*) and (**) the series
Zi ? cij/u(Bij) = ? ?(yf ) JA(F; N Gy)

is absolutely convergent. lience by lemma 2.5.11 f+g is integrable

on A and

§[f(><)+ 8(x)]d/x = ? JZ(Y + 2, )/U(F AR
iR
? yi/u(Fi) + Z zj/A(Gj)

= j f(x)d/A _(g(x)d/m
5kf(x)d/~ | Zky/u(l’)

A

) [P k %yi/'((l?i)
5k yf(x)d/u

a.



2k

2.5.14 Definition. A measurable function f is said to be integrable
on a set A if there exists a sequence {fn% of integrable simple
functions converging uniformly to f on A. e shall then say that

lim 5 fn(x)d/u. = jf(x)d/& .

n-->ps5 A A

2+5.15 Theorem. iIff, g ¢t A—> ‘R are integrable function on A

and k€ R . Then f+g and kf are also integrable and

i}

; (f+g)(x)<y/t { f(x)d/u + SAg(x)t}u ¥

]

S kf(x)d/u. k Sf(x)%w .

A A

Proof : There exists sequences of simple integrable function %fn](

/

and %gnx such that fn—————a f and e g uniformly on A and

S f_(X)d/"’ ’

A

lim 5 fn(x)(}“

N X

lim ‘S- gn(x)d/u _,( g(x)% .

n——»p0 A

i

Thus fn+ B f+g uniformly on Aj; hence f+g is integrable

and

1}

1im S fn(x)d/u + i

Rl G

Sf(x)a 3 j g(x)d .
A /"L A /A

lim S(f+g)(x)d im gg(x)d ’
B o SREL to ) el

S0 j (f+g)(ﬁx)d
d /"

Also kfn---) kf uniformly on A. Thereforekf is integrable on A and
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]
Ll

lim j kfn(x)c}q I]f—foq k J fn(x)d/u

o A

S‘kf(x)d/*

A

A
k lim gfn(x)d/a

n—sw ;
= k u{ f(X)%}L .
A

2.5.16 Theorem., 1% i (P is non—négative and integrabie function on A
and j.f a measurable function f is bounded by @ almbst everywhere.
Then f is integrable and l 5f(x)d/u t £ j Q (i)c/i,u %

: -, A j
_f_’f_g_g_:_f_ ¢ If £ and 49 aré simple functions, then, by substracting a set

) o s
of measure zero from A, we get a set A which can be represented as a

finite or countable union

A/ = U An
n

/
of subset An L A such that

£f(x) = a )~ (x) = b

n

for all x € An and

I~

‘ an‘ bn (n = 1,2,..0).
Since (@ is integrable on A, we have
2 ¥ » T
%lanx/u.(An) < 2;1 bn/A(An) = 5/(0 (x)d/4 = j Q(x)d/A.
A A
Therefore f is also integrable on A and

£(x)a £(x)d 2o ua)
| =] [ rogu] | Zay

A

N

= Z }anl/A(An)

n

j(e (x)dpm .
A

B
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In the case where f and Q are arbitary measurable functions, .
let {fng and {[Zn} be sequences of simple functions converging
uniformly to f and & , respectively. e can choose the sequence

so that ' %y ; .
t fn(x)‘ < @n(X) for all n and for all x € A . Moreover
each [[n is integrable since é is integfable. So each f is

integrable and hence f is integrégble. Also J- [f (x)! % j& («c)gpt s

taking the limit as n-—;; oo we have

{ f(x)c}wl < 5@(::)«1/4

2.5.17 Corollary., 1If f is bounded measurable function on A, then f

is integrable.

Proof : Let & (x) = sup {lf(x)‘} = -M {00 . Apply 2.5.16,
xX /& A

we get the result.

2.5.18 Theorem., Let f be a measurable function such that f is/v(-and

/tzt,]- and/uz- integrable on A 'and k E']R e« ~Then

Sf(::)d( 1+ )
A i

J\f(X)d ' F jf(x)d and
1 2
A A /

1

j 20) & (kp) «

k.jf(x)d
A /L A

Proof : There exists a sequence of integrable simple furctions {fn]s

converging uniformly to f. T'irst, we shall verify that

gi‘n(x)d/M1+ an(x)d 5> = an(x)d( 1+/u2).
A

A ‘ A
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Since { fn(X)bd/"{"l = Zk ykn/_i(Akn) and
£ (Rdu, = 23, M4 )
é " Nl i Faeoe ¥
where Aknz ixr: Q:G A and fn(x) = ykng', So
Cf (x)du .+ | £ (x)d = y (A )+:Z y % Wl
ii o o { ntft2 %E kﬁ/k1 %k kﬁ/A2 ky

]

H

By taking the limit as n-—

it

S f(x)d./u,|+ J f(x)c}u. -
A

A

Similarly we have

i

k an(x)d/«

A

]

Take limit as n— oo « Thus

!

k f f(x)%

A

2 ykn(/"‘ﬁ/“a)(‘%kn)

j fn(x)d( 1 +/¢42) .

A

; we get

j £ o g

A

kak/u(Ak)

k n n
B Geaiih 5

k kn ‘/i kn

j 2, Gx¥aCicu).

A

A



2.5.19 Remark.
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o

Let f be a continuous real-valued function of x

and y in a < x £b, a £y £ b. We can define a linear bounded

mapping M on B by the equation

e

@ (v

({) | where

b
[ sxamam (x & [a,5] e B).
a

i

By 2.16 and 2.18 we can see that for ecach 4 € B, I}W & C [a,b].
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