CHAPTER II

PRELIMINARIES

In this chapter, we will recall some definitions and theorems from topology, real and functional analysis.

The materials of this chapter are drawn from references [1], [2], [4], [5], [7], [8], [10], [12].

2.1 Topological Vector Spaces

2.1.1 <u>Definition</u>. Let K be a scalar field with elements α , β ,..., with zero element 0 and identity element 1.

A vector space over K (or linear space over K) is a set X with element x, y,z,..., which has the following properties :

- (i) For every two elements x, $y \in X$ a sum x+y is defined in X; under this addition, X is an abelian group, i.e. for all x, y, $z \in X$ we have
 - (a) x+y = y+x
 - (b) x+(y+z) = (x+y)+z
 - (c) there exists $0 \in X$ with x+0 = x for all $x \in X$
- (d) there exists for each $x \in X$ an $x' \in X$ with x+x'=0
- (ii) For every $x \in K$ and every $x \in X$ the product $\alpha x = x\alpha$ of αx

(e)
$$x(x+\beta) = x\alpha + x\beta$$

(f)
$$(x+y)\alpha = x\alpha + x\beta$$

(g)
$$x(\alpha\beta) = (x\alpha)\beta$$

(h)
$$x.1 = x$$
.

If K is the field $\mathbb R$ of real numbers, then X is called a real vector space.

A subset F of elements of a vector space X is a vector space provided that whenever it contains x and y it also contains $\alpha x + \beta y$ for arbitrary α , β in K. F is called a <u>linear subspace</u> (or simply subspace) of E.

2.1.2 <u>Definition</u>. Let X be a nonempty set and let Z be a family of subsets of X having the properties:

- (i) The empty set Ø and X itself belong to Z
- (ii) The intersection of any finite collection of sets in Y is a set in 7
- (iii) The union of any collection of sets in Z is in Z.

 The collection Z is said to be a topology for X. Also, X together with Z is said to be a topological space, which we denote by (X,Z).

 The members of Z are called the open sets for this topology.

A set S & E is closed if its complement is open.

A neighborhood of a point p & X is any open set that contains p.

A collection ZCZ is a base for Z if every member of Z (that is, every open set) is a union of members of Z.

A collection $\mathcal T$ of neighborhoods of a point $p \in X$ is a <u>local</u> base at p if every neighborhood of p contains a member of $\mathcal T$.

2.1.3 Notation. Let X be a vector space over K, ACX, BCX, $x \in X$ and $\lambda \in K$.

$$x + A = \left\{ x + a : a \in A \right\}$$

$$x - A = \left\{ x - a : a \in A \right\}$$

$$A + B = \left\{ a + b : a \in A, b \in B \right\} = \bigcup_{a \in A} (a + B) = \bigcup_{b \in B} (A + b)$$

$$\lambda A = \left\{ \lambda a : a \in A \right\}.$$

In particular (taking $\alpha = -1$) -A denotes the set of all additive inverse of members of A.

2.1.4 <u>Definition</u>. Suppose 7 is a topology on a vector space X such that

- (i) every point of X is a closed set
- (ii) the vector space operation are continuous with respect to ζ , i.e., the mapping $(x,y) \longmapsto x + y$ of cartesian product $X \times X$ into X and $(\alpha,x) \longmapsto \alpha x$ of $K \times X$ into X are continuous.

Under these conditions, 7 is said to be a vector topology on X and X is a topological vector space.

2.1.5 Remark.

- (i) Every topological vector space is a Hausdorff space.
- (ii) Every Banach space is a topological vector space.

2.1.6 Lemma. If W is a neighborhood of O in X, then there is a neighborhood U of O which is symmetric (in the sense that U = -U) and which satisfies $U + U \subset W$.

Proof: Note that the mapping $(x,y) \mapsto x+y$ is continuous at (0,0). Since W is a neighborhood of 0 = 0 + 0, we can find neighborhood V_1, V_2 of 0 such that $V_1 + V_2 \subset W$

Take
$$U = V_1 \cap V_2 \cap (-V_1) \cap (-V_2)$$

Since $0 \in V_1$, $0 \in (-V_1)$ and since $0 \in V_2$, $0 \in (-V_2)$. So U is a neighborhood of O and UCV₁, UCV₂. Hence U + UCV₁+ V₂ W.

Note that if we apply this lemma twice we can find a symmetric neighborhood U of O such that U+U+U+U \subset W.

2.1.7 Theorem. Suppose K and C are subsets of a topological vector space X, K is compact, C is closed, and K \cap C = \emptyset . Then O has a neighborhood V such that $(K+V)\cap (C+V) = \emptyset$.

<u>Proof</u>: If $K = \emptyset$, then $K+V = \emptyset$ and the conclusion of the theorem is obvious. We therefore assume that $K \neq \emptyset$ and consider a point $x \in K$. Since $K \cap C = \emptyset$, $x \notin C$, i.e. $x \in C^{C}$ (complement of C). Since C is closed, C^{C} is open. Therefore, there exists a neighborhood W_{X} of O such that $X + W_{X} \subset C^{C}$. By 2.1.6, O has a neighborhood V_{X} such that

$$x + V_x + V_x + V_x + V_x \subset x + W_x \subset C^c$$
,
 $x + V_x + V_x + V_x \subset x + W_x \subset C^c$,

i.e.
$$x + V_x + V_x + V_x \cap C = \emptyset$$
.

The symmetric property of V_X shows that

(1)
$$(x + V_x + V_x) \cap (C + V_x) = \emptyset.$$

Since K is compact, there are finitely many points x_1, x_2, \cdots, x_n in K such that

$$K \subset \bigcup_{i=1}^{n} (x_i + V_{x_i})$$
.

Put $V = \bigcap_{i=1}^{n} V_{x_i}$. Then

$$K + V \subset \bigcup_{i=1}^{n} (x_i + V_{x_i} + V)$$

$$C \bigcup_{i=1}^{n} (x_i + V_{x_i} + V_{x_i})$$
,

and no term in this last union intersects C+V, by (1). This completes the proof.

2.1.8 <u>Definition</u>. A set $C \subset X$ is said to be <u>convex</u> if $tC + (1-t)C \subset C$ for $0 \le t \le 1$.

2.1.9 Remark. Every convex set in $\mathbb R$ is an interval.

2.1.10 Definition. A set BCX is said to be balanced if α B C B for all $\alpha \in \beta$ scalar field K with $|\alpha| \leq 1$

2.1.11 Remark. If E is balanced, then sE C tE for s < t, s > 0, t > 0

2.1.12 Theorem. If B is a balanced subset of a topological vector space X and $0 \in B^0$ (interior of B) then B^0 is balanced.

Proof: If $0 < |\alpha| < 1$, then $\alpha B^{\circ} = (\alpha B)^{\circ}$, since $x \mapsto \alpha x$ is a homeormorphism. Hence $\alpha B^{\circ} \subset \alpha B \subset B$, since B is balanced. But αB° is open. So $\alpha B^{\circ} \subset B^{\circ}$. If B° contains the origin, then $\alpha B^{\circ} \subset B^{\circ}$ even $\alpha B^{\circ} \subset B^{\circ}$ is balanced.

2.1.13 Theorem. In a topological vector space X,

- (i) every neighborhood of O contains a balanced neighborhood of O and
- (ii) every convex neighborhood of O contains a balanced convex neighborhood of O.
- Proof: (i) Let U be a neighborhood of O in X. Since the mapping $(x,x) \longmapsto \alpha x$ is continuous, there is a $\delta > 0$ and there is a neighborhood V of O in X such that $\alpha \in V \subset U$ whenever $|\alpha| < \delta$

Take
$$W = \bigcup_{|\alpha| < \delta} \alpha V$$
.

Since for any β with $|\beta| \le 1$ and for any $w \in W$, $\beta w = \beta \times V$ for some α , v such that $|\alpha| < \delta$ and $v \in V$. Since $|\beta \alpha| < \delta$. $\beta w \in W$. So we have $\beta W \subset W$. Thus W is balanced and $W \subset U$.

(ii) Let U be a convex neighborhood of O in X. Take $A = \bigcap X U$. Choose W as in part (i). Since W is balanced, X = W when |X| = 1; hence W CXU. Thus W C A which implies that the interior A° of A is a neighborhood of O. Clearly A° C. U. Being an intersection of convex set A is convex; hence so is A° . To prove that A° is a neighborhood with desired properties, we have to show that A° is balanced; for this its suffices to prove that A is balance. Choose X and β so that $0 \le X \le 1$, $|\beta| = 1$. Then

$$\delta \beta A = \bigcap_{|\alpha|=1} \delta \beta \alpha \psi \subset \bigcap_{|\beta \alpha|=1} \beta \alpha \psi = A$$

This completes the proof.

2.1.14 Theorem. Suppose V is a neighborhood of O in a topological vector space X. If $0 < r_1 < r_2 < \cdots$ and $r_n \longrightarrow \infty$ as $n \longrightarrow \infty$, then $X = \bigcup_{n=1}^\infty r_n V$

Proof: Fix $x \in X$. By continuity of $\alpha \mapsto \alpha \times$ at 0, we can find $\delta > 0$ such that $\alpha \times \epsilon \vee \alpha \times \epsilon \vee \alpha \times \epsilon = 0$ whenever $|\alpha| < \delta$. Since $\frac{1}{r_n} \to 0$ as $n \to \infty$, there exists N such that $\frac{1}{r_N} < \delta$. Hence $\frac{1}{r_N} \times \epsilon \vee \alpha \times \epsilon = 0$ i.e., $\alpha \in r_N$. Thus $\alpha \in r_N$.

2.1.15 Definition. A subset A of a topological vector space X is said to be absorbing if for any $x \in X$, then exists a positive number t = t(x) such that $x \in tA$.

2.1.16 Remark.

- (i) Every neighborhood of 0 in a topological vector space is absorbing
 - (ii) Every absorbing set contains 0
- Proof: (i) Let V be a neighborhood of O. By 2.1.4, $X = \bigcup_{n=1}^{\infty} r_n V$ where $0 < r_1 < r_2$..., and $r_n \to \infty$ as $n \to \infty$. For each $x \in X$, there exists r_n such that $x \in r_n V$. Thus V is absorbing.
 - (ii) It is obvious.

2.2 Linear Mapping

2.2.1 <u>Definition</u>. Let X and Y be a vector spaces over R.

A <u>linear map</u> of X into Y is simply a function f of X into Y such that

$$f(\alpha x + \beta y) = \alpha f(x) + \beta f(y)$$

for all x, y \in X and all α , $\beta \in \mathbb{R}$. In the special case in which $Y = \mathbb{R}$, we speak of a <u>linear functional</u> on X.

2.2.2 <u>Definition</u>. Let X be a topological space. The space X*, called the <u>dual space of X</u>, is the set of all continuous linear functionals of X.

2.2.3 Remark. Let A be a linear functional on a topological vector space X.

- (i) $\Lambda 0 = 0$
- (ii) if A is convex set, Λ (A) is convex
- (iii) if A is subspace of X, \bigwedge (A) is subspace of $\mathbb R$.

2.2.4 Theorem. Let X and Y be a topological vector spaces. If $\Lambda: X \to Y$ is a linear and continuous at 0, then Λ is continuous. In fact, Λ is uniformly continuous in the following sense: To each neighborhood W of 0 in Y corresponds a neighborhood V of 0 in X such that $y - x \in V$ implies $\Lambda - y - \Lambda \times E$ W.

Proof: Given a neighborhood W of O in Y, by continuity of Λ at O, we can find a neighborhood V of O in X such that $\Lambda x \in W$ whenever $x \in V$. If now $y - x \in V$, the linearity of Λ shows that

 $\Lambda_y - \Lambda_x = \Lambda_y = \Lambda_y$

2.2.5 Theorem. Let Λ be a linear functional on a topological vector space X. Assume $\Lambda x \neq 0$ for some $x \in X$.

- (i) Λ is a continuous implies the null space $\mathcal{N}(\Lambda)$ is closed.
- (ii) Λ is bounded in some neighborhood V of O implies Λ is continuous.
- Proof: (i) Since $\mathcal{N}(\Lambda) = \Lambda^{-1}(\{0\})$ and $\{0\}$ is closed subset of \mathbb{R} . By continuity of Λ , we have $\Lambda^{-1}(\{0\})$ is closed. Thus $\mathcal{N}(\Lambda)$ is closed set.
- (ii) There exists a real number M > 0 and a neighborhood V of O such that $|\Lambda x| \leq M$ for x in V. If ϵ > 0 and if W = $\frac{\epsilon}{M}$ V, then $|\Lambda x| < \epsilon$ for every x in W. Hence Λ is continuous at O. By 2.2.4, the proof is complete.

2.3 Seminorms and Local Convexity

2.3.1 Definition. A seminorm on a vector space X is a real valued function p on X such that

(i)
$$p(x+y) \leq p(x) + p(y)$$

(ii)
$$p(\alpha x) = |\alpha| p(x)$$

for all x, $y \in X$ and all scalars X.

Property (i) is called <u>subadditivity</u>. A seminorm is a norm if it is satisfies

(iii) $p(x) \neq 0$ if $x \neq 0$.

A family \mathcal{G} of seminorms on X is said to be <u>separating</u> if to each $x \neq 0$ corresponds at least one $p \in \mathcal{G}$ with $p(x) \neq 0$.

Next, consider a set $A \subset X$ which is absorbing. The Minkowski functional \mathcal{M}_A of A is defined by

$$\mathcal{M}_{A}(x) = \inf\{t > 0 : x \in t A\}$$
 for all x in X.

Note that $\mathcal{M}_{\Lambda}(x) \subset \infty$ for all $x \in X$, since A is absorbing. The seminorms of X will turn out to be precisely the Minkowski functionals of balanced convex absorbing sets.

2.3.2 Theorem. Suppose p is a seminorm on a vector space X. Then

(i)
$$p(0) = 0$$

(ii)
$$p(x-y) = p(y-x)$$

(iii)
$$| p(x) - p(y) | \leq p(x-y)$$

Proof: (i) By definition of a seminorm, we have p(x) = |x| p(x). Let x = 0. Thus p(0) = 0.

(ii)
$$p(x-y) = p(-1(y-x)) = |-1| p(y-x) = p(y-x)$$

(iii) Since p(x) = p(x-y+y) and p(y) = p(y-x+x). By 2.3.1

we have $p(x) \leq p(x-y) + p(y)$ and

 $p(y) \leq p(y-x) + p(x)$.

so $p(x) - p(y) \le p(x-y)$

 $p(y) - p(x) \le p(y-x) = p(x-y)$ by (ii).

Thus $|p(x) - p(y)| \leq p(x-y)$.

2.3.3 Theorem. Let p be a seminorm on a vector space X such that p is continuous at 0. Then p is continuous on X.

2.3.4 Remark. If MXX & then x & & A.

2.3.5 <u>Definition</u>. A set E in a topological vector space X is said to be <u>bounded</u> if for any neighborhood V of O there exists scalar α such that E $\subset \alpha$ V.

2.3.6 <u>Definition</u>. A topological vector space X is said to be <u>locally</u> convex if there is a local base $\widehat{\mathcal{B}}$ whose members are convex.

2.3.7 Theorem. Suppose Γ is a separating family of seminorm on a vector space X. Associate to each p ϵ Γ and to each positive integer n the set

$$V(p,n) = \left\{ x : p(x) \angle \frac{1}{n} \right\}.$$

Let \mathcal{B} be the collection of all finite intersections of the sets V(p,n). Then \mathcal{B} is a convex balanced local base for a topology on X which turns X into a locally convex space such that

- (i) every p∈ P is continuous, and
- (ii) a set $E \subset X$ is bounded if and only if every $p \in \mathcal{J}^{O}$ is bounded on E.

Proof: Let $\mathcal T$ be the collection of all subset of $\mathbb X$ such that each of which is a union of translation of member of $\mathcal B$. Then $\mathcal T$ is a topology on $\mathbb X$; each member of $\mathcal B$ is convex and balanced, and $\mathcal B$ is a local base for $\mathcal T$.

Suppose $x \in X$, $x \neq 0$. Then, by separating property of \mathcal{T} , p(x) > 0 for some $p \in \mathcal{T}$; hence there exists an n such that $p(x) > \frac{1}{n}$. That is $\chi \notin V(p,n)$. Since p(x) = p(-x), V(p,n) = -V(p,n). So we have $-x \notin V(p,n)$ and $0 \notin V(p,n) + x$, which is a neighborhood of x. Thus $V(p,n) + x \subset \{0\}^{C}$ (complement of $\{0\}$). This say that $\{0\}^{C}$ is open, i.e. $\{0\}$ is closed set, and since \mathbb{Z} is translation invarient topology, every point of \mathbb{X} is closed set.

Next we show that addition and scalar multiplication are continuous. Let U be a neighborhood of O in X. Then, there exists p_1, p_2, \ldots, p_m of \mathcal{D} and positive integer n_1, n_2, \ldots, n_m such that

- (1) $V(p_1,n_1) \cap V(p_2,n_2) \cap \dots \cap V(p_m,n_m) \subset U$. Put
- (2) $V = V(p_1, 2n_1) \cap \dots \cap V(p_m, 2n_m)$. Since every $p \in \mathcal{G}$ is subadditive, $V + V \subset U$. This shows that the mapping $(x,y) \mapsto x + y$ is continuous at (0,0) and hence, it is continuous at every point of X.

Suppose now that $x \in X$, α is a scalar, and U and V are as above. Let $p_i(x) = \alpha_i$ where $\alpha_i \geqslant 0$ for $1 \le i \le m$. Then $p_i(\frac{x}{\alpha_i}) = 1$, $p_i(\frac{x}{3n_i\alpha_i}) \le \frac{1}{2n_i}$. Hence $x \in 3n_i\alpha_i$ $V(p_i, 2n_i)$.

Take $t = \max \left\{ 3n_1 \alpha_1, 3n_2 \alpha_2, \dots, 3n_m \alpha_m \right\}$.

Then t > 0. Since $V(p_i, 2n_i)$ is balanced, $x \in t \ V(p_i, 2n_i)$ for all $1 \le i \le m$. Thus $x \in tV$, i.e. there exists t > 0 such that $x \in tV$. Put $s = t/(1 + |\alpha|t)$. If $y \in x + sV$ and $|\beta - \alpha| < \frac{1}{t}$, then

$$\beta y - \alpha x = \beta (y - x) + (\beta - \alpha)x$$

which lies in

since | | | s | 1 and V is balanced. This proves that scalar multiplication is continuous.

Thus X is a locally convex space. The definition of V(p,n) shows that every $p \in \mathcal{F}$ is continuous at 0. Hence p is continuous on X, by 2.3.3.

Finally, suppose $E \subset X$ is bounded: Fix $p \in \mathcal{G}$. Since V(p,1) is a neighborhood of 0, $E \subset kV(p,1)$ for some $k < \infty$. Hence p(x) < k for every $x \in E$. It follows that $p \in \mathcal{G}$ is bounded on E.

Conversely, suppose U is a neighborhood of O, and (1) holds. Since each $p \in \mathbb{F}$ is bounded on E, there are number $M_i < \infty$ such that $p_i < M_i$ or E for $1 \le i \le m$. If $n > M_i n_i$ for $1 \le i \le m$, it follows that E \subseteq n U, so that E is bounded.

2.4 Function of bounded variation

2.4.1 <u>Definition</u>. Let f be a real-valued function on [a, b].

Partition [a,b] such that

 $a = x_0 < x_1 < x_2 < \dots < x_n = b \text{ and form the sum}$ $V = \sum_{k=0}^{n-1} \left| f(x_{k+1}) - f(x_k) \right|. \text{ The total variation of f on } [a,b] \text{ is}$

defined by

004667

$$\begin{array}{ll} b \\ V (f) & = & \sup \left\{ V \right\} \end{array}$$

where the supremum is taken over all partition of [a,b]. If v (f) $< \infty$, f is said to be of bounded variation on [a,b]. Denote the space of bounded variation functions on [a,b] by BV [a,b].

If addition and scalar multiplication are defined by

$$(f + g)(t) = f(t) + g(t),$$

$$\chi f(t) = f(\alpha t)$$

where f, g \in BV [a,b], α is scalar and t \in [a,b]. Then BV[a,b] is vector space over scalar field k.

If we define the norm of $f \in BV[a,b]$ by ||f|| = |f(a)| + V(f).

Then BV [a,b] is a Banach space.

2.4.2 Theorem. If $f:[a,b] \longrightarrow \mathbb{R}$ is a non-decreasing function. Then f is of bounded variation on [a,b].

2.4.3 Theorem. If f is a continuous function on the interval [a,b] and g is bounded variation function on [a,b], then $\int_a^b f(x) dg(x)$

exists and $\int_{a}^{b} f(x) dg(x) \le \int_{a}^{b} f(x) dg(x) \le \int_{a}^{b} f(x) dg(x) \le \int_{a}^{b} f(x) dg(x) dg(x) \le \int_{a}^{b} f(x) dg(x) dg(x)$

2.4.4 Remark. If f, f₁, f₂ are continuous functions on [a,b] g, g₁, g₂ are bounded variation functions on [a,b] and k, l are real numbers. Then

(1)
$$\int_{a}^{b} (f_1 + f_2)(x) dg(x) = \int_{a}^{b} f_1(x) dg(x) + \int_{a}^{b} f_2(x) dg(x),$$

(2)
$$\int_{a}^{b} f(x)d(g_1 + g_2)(x) = \int_{a}^{b} f(x)dg_1(x) + \int_{a}^{b} f(x)dg_2(x),$$

(3)
$$\int_{a}^{b} kf(x)d(lg)(x) = kl \int_{a}^{b} f(x)dg(x) ,$$

(4)
$$\int_{a}^{b} g(x)df(x) \text{ exists} \implies \int_{a}^{b} f(x)dg(x) \text{ exists.}$$

2.4.5 Remark. Let f be a continuous real-valued function of x and y in a $\leq x \leq b$, a $\leq y \leq b$. We can define a linear bounded mapping F on BV [a,b] by the equation

Fg =
$$\psi$$
 where
$$\psi(y) = \int_a^b f(x,y)dg(x) \quad (x \in [a,b], g \in BV [a,b]).$$

By 2.4.3 and 2.4.4, we can see that for each g, Fg & C [a,b].

2.5 Measure Theory

- 2.5.1 <u>Definition</u>. A collection \mathcal{M}_0 of subsets of a set X is said to be a 0-algebra in X if \mathcal{M}_0 has the following three properties:
 - (1) x & M
- (2) If $A \in \mathcal{M}$, then $A^{\mathbf{c}} \in \mathcal{M}$ where $A^{\mathbf{c}}$ is the complement of A relative to X.
- (3) If $A = \bigcup_{n=1}^{\infty} A_n$ and if $A_n \in \mathcal{M}$ for $n = 1, 2, \dots$, then $A \in \mathcal{M}$.

If Mb is a 8-algebra in X, then X is called a measurable space, and the members of Mare called the measurable sets in X.

- 2.5.2 <u>Definition</u>. If X is a measurable space, Y is a topological space, and f is a mapping of X into Y, then f is said to be <u>measurable</u> provided that $f^{-1}(V)$ is a measurable set in X for every open set V in Y.
- 2.5.3 Theorem. If $\mathcal{J}e$ is any collection of subsets of X. There exists a smallest \mathcal{V} -algebra \mathcal{M}^* in X such that $\mathcal{J}e \subset \mathcal{M}^*$. This \mathcal{M}^* is sometimes called the \mathcal{V} -algebra generated by $\mathcal{J}e$.

Proof: Let Ω be the family of all $\mathcal C$ -algebras $\mathcal M$ in X which contain $\mathcal F$. Since the collection of all subsets of X is such a $\mathcal C$ -algebra, Ω is not empty. Let $\mathcal M^*$ be the intersection of all $\mathcal M \in \Omega$. It is clear that $\mathcal F \subset \mathcal M^*$ and that $\mathcal M^*$ lies in every $\mathcal C$ -algebra in X which contains $\mathcal F$. To complete the proof, we have to show that $\mathcal M^*$ is itself a $\mathcal C$ -algebra.

If $A_n \in \mathcal{M}$ for $n = 1, 2, \ldots$, and if $\mathcal{M} \in \Omega$, then $A_n \in \mathcal{M}$, so $\bigcup_{n \in \mathbb{N}} A_n \in \mathcal{M}$, since \mathcal{M} is \mathcal{C} -algebra. Since $\bigcup_{n \in \mathbb{N}} A_n \in \mathcal{M}$ for every $\mathcal{M} \in \Omega$ we conclude that $\bigcup_{n \in \mathbb{N}} A_n \in \mathcal{M}^*$. The other two properties of a \mathcal{C} -algebra are verified in the same manner.

2.5.4 <u>Definition</u>. Let X be a topological space. By 2.5.3, there exists a smallest \mathcal{C} -algebra \mathcal{B} in X such that every open set in X belongs to \mathcal{B} . The members of \mathcal{C} are called the <u>Borel set</u>.

2.5.5 Remark. If $f: X \longrightarrow Y$ is a continuous function of X, where Y is any topological space, then it is evident from the definition that $f^{-1}(V) \in \mathbb{Q}$ for every open set V in Y. In other words, every continuous mapping of X is Borel measurable.

2.5.6 <u>Definition</u>. A Borel measure \mathcal{M} is an extended real-valued function on $\mathcal{P}_{\mathcal{S}}$ such that

(1)
$$\mu(\emptyset) = 0$$

(2) if $A_1, A_2, \dots \in \mathcal{B}$ such that $A_i \cap A_j = \emptyset$ for $i \neq j$, $\mathcal{U}(\bigcup_{i=1}^{M} A_j) = \sum_{j=1}^{M} \mathcal{U}(A_j).$

A Borel measure is said to be bounded if $\mu(A) < \infty$ for $A \in \beta$.

2.5.7 <u>Definition</u>. Let B be collection of bounded. Borel measures.

If we define addition and scalar multiplication by

$$(\alpha + \beta)(E) = \alpha(E) + \beta(E)$$

where μ , $\beta \in B$, c is a scalar and $E \in \mathcal{B}$. Then B is a vector space over scalar field K.

2.5.8 <u>Definition</u>. Let μ be a bounded Borel measure. The set function $|\mu|$ on β defined by

$$|\mu|(E) = \sup_{i=1}^{\infty} |\mu(E_i)|$$
 (E $\in \mathcal{B}$),

the supremum being taken over all partitions $\{E_i\}$ of E, is called the total variation of μ .

2.5.9 Remark. Let B be a collection of bounded Borel measures in a set X. Define

$$||u|| = |u|(x).$$

Then (B, | | |) is a Banach space.

Proof: First, we have to show that B is a normed linear space.

- (1) It is clear that || || 7,0.
- (2) It is obvious that if M = 0, $\|M\| = 0$. Conversely if $\|M\| = 0$, $\|M\| = 0$. Since for $E \in \mathcal{B}$

$$|\mu(E)| \leq |\mu(E)| \leq |\mu(X)| = 0.$$

$$|\mu(E)| = 0 \quad \text{for } E \in \mathcal{B}.$$

Thus M(E) = 0, that is M=0.

(3) For each
$$M \in B$$
, scalar α

$$\|\alpha M\| = |\alpha M|(X)$$

$$= \sup \left\{ \sum_{i=1}^{\infty} |(\alpha_{\mathcal{U}})(\mathbb{E}_{i})| : \bigcup_{i} \mathbb{E}_{i} = \mathbb{X} \right\}$$

$$= |\alpha|\sup \left\{ \sum_{i=1}^{\infty} |(\alpha_{\mathcal{U}})(\mathbb{E}_{i})| : \bigcup_{i} \mathbb{E}_{i} = \mathbb{X} \right\}$$

$$= |\alpha||\mu|(\mathbb{X})$$

$$= |\alpha||\mu|.$$

$$\| \mathcal{M}_{1} + \mathcal{M}_{2} \| = \| (\mathcal{M}_{1} + \mathcal{M}_{2}) (X)$$

$$= \sup \left\{ \sum_{i} | (\mathcal{M}_{1} + \mathcal{M}_{2}) (E_{i}) | : \bigcup_{i} E_{i} = X \right\}$$

$$= \sup \left\{ \sum_{i} | \mathcal{M}_{1} (E_{i}) + \mathcal{M}_{2} (E_{i}) | : \bigcup_{i} E_{i} = X \right\}$$

$$\leq \sup \left\{ \sum_{i} | \mathcal{M}_{1} (E_{i}) | + | \mathcal{M}_{2} (E_{i}) | : \bigcup_{i} E_{i} = X \right\}$$

$$\leq \sup \left\{ \sum_{i} | \mathcal{M}_{1} (E_{i}) | : \bigcup_{i} E_{i} = X \right\} +$$

$$\sup \left\{ \sum_{i} | \mathcal{M}_{2} (E_{i}) | : \bigcup_{i} E_{i} = X \right\}$$

Thus $\| \mu_1 + \mu_2 \| \le \| \mu_1 \|(x) + \| \mu_2 \|(x)$,

i.e, | M1 + M2 | < | M1 | + | M2 | .

Let $\{M_n\}$ be a sequence in B. Given E>0. There exists an N such that for all n, m \nearrow N,

$$\| \mathcal{M}_{n} - \mathcal{M}_{m} \| \langle \mathcal{E}, i.e., | \mathcal{M}_{n} - \mathcal{M}_{m} | (X) \langle \mathcal{E}.$$
 Since for $E \in \mathcal{P}_{0}$

$$|(\mu_n - \mu_m)(E)| \leq |\mu_n - \mu_m|(E) \leq |\mu_n - \mu_m|(X),$$

 $|(\mu_n - \mu_m)(E)| \leq \epsilon \text{ for all } m, n > N,$

i.e, $|\mu_n(E) - \mu_m(E)| \leq \epsilon$ for all m, n π N.

Thus $\{\mathcal{M}_n(\mathbb{E})\}$ is a cauchy sequence in \mathbb{R} which is complete. So $\mathcal{M}_n(\mathbb{E})$ converges uniformly to $\mathcal{M}(\mathbb{E})$. That is, there axists \mathbb{N}_0 such that for all $n \gg \mathbb{N}_0$ and for all $\mathbb{E} \in \mathcal{D}$

For all $E_i \in \mathcal{D}$ such that $\bigcup_{i=1}^{\infty} E_i = X$, we have

$$|\mathcal{M}_{n}(E_{i}) - \mathcal{M}(E_{i})| \leq 2^{-i} \epsilon$$
,

therefore $\sum_{i=1}^{\infty} \left| \mu_{n}(\mathbb{E}_{i}) - \mu(\mathbb{E}_{i}) \right| \left\langle \sum_{i=1}^{\infty} 2^{-i} \mathcal{E} = \mathcal{E} \sum_{i=1}^{\infty} 2^{-i} = \mathcal{E} \right.$

Hence $\sup \left\{ \sum_{i} \left(\mu_{n} - \mu_{i} \right) (\mathbb{E}_{i}) \mid : \bigcup_{i} \mathbb{E}_{i} = X \right\} \langle \mathcal{E},$

i.e, $||\mu_n - \mu|| \leq \epsilon$. This completes the proof.

2.5.10 <u>Definition</u>. Let f be a measurable function on A. f is to be <u>simple</u> if f(A) is countable, i.e, $f(A) = \{y_1, y_2, \dots\}$.

2.5.11 <u>Definition</u>. Let f be a simple function. We define the integral of f over a set A by

$$\int_{A} f(x) d\mu = \sum_{n=1}^{\infty} y_n \mu(A_n)$$

where $A_n = \{x : x \in A, f(x) = y_n \}$. The integral of f exists if $\sum_{n=1}^{\infty} y_n \mu(A_n)$ is absolutely convergent, and we say that f is

integrable.

2.5.12 Lemma. Given a simple function f defined on a set A, suppose A is a union

$$A = \bigcup_{k} B_{k}$$

of pairwise disjoint set B_k such that f takes only one value c_k on B_k . Then f is integrable on A if and only if the series $\sum_k c_k \mu(B_k)$ is absolutely convergent, in which case

$$\int_{A} f(x) d\mu = \sum_{k} c_{k} \mu(B_{k}).$$

Proof : Each set

$$A_n = \{x : x \in A, f(x) = y_n\}$$

is the union of the sets Bk for which ck = yn. Therefore

$$\sum_{n} y_{n} \mu(A_{n}) = \sum_{n} y_{n} \left(\sum_{c_{k} = y_{n}} \mu(B_{k}) \right)$$

$$= \sum_{\ell} c_{k} \mu(B_{k}).$$

Moreover, since M is non-negative, we have

$$\sum_{n} |y_{n}| \mu(A_{n}) = \sum_{n} |y_{n}| (\sum_{c_{k}=y_{n}} \mu(B_{k})) = \sum_{k} c_{k} \mu(B_{k}),$$

so that if one series is absolutely convergent, so is the other.

2.5.13 Theorem. Let f and g be simple functions integrable on a set A, and let $k \in \mathbb{R}$. Then f+g and kf are integrable over A and

$$\int_{A} [f(x) + g(x)] d\mu = \int_{A} f(x)d\mu + \int_{A} g(x)d\mu,$$

$$\int_{A} kf(x)d\mu = k \int_{A} f(x)d\mu.$$

Proof : Suppose that

$$F_i = \{ x : x \in A \text{ and } f(x) = y_i \}$$
 and $G_j = \{ x : x \in A \text{ and } g(x) = z_j \}$

where $i, j = 1, 2, \dots$ Then

(*)
$$\int_{A} f(x) d\mu = \sum_{i} y_{i} \mu(F_{i})$$

(**)
$$\int_{A} g(x) d\mu = \sum_{j} z_{j} \mu(G_{j}).$$

Clearly, f+g takes the values $c_{ij} = y_i + z_j$ (not necessarily distinct) on the pairwise disjoint sets $B_{ij} = F_i \cap G_j$. It follows from

$$\mu(\mathbf{F_i}) = \sum_{\mathbf{j}} \mu(\mathbf{F_i} \cap \mathbf{G_j}), \mu(\mathbf{G_j}) = \sum_{\mathbf{j}} (\mathbf{F_i} \cap \mathbf{G_j})$$

and the absolute convergence of the series (*) and (**) the series

$$\sum_{i \neq j} c_{ij} \mu(B_{ij}) = \sum_{i \neq j} \sum_{j} (y_i + z_j) \mu(F_i \cap G_j)$$

is absolutely convergent. Hence by lemma 2.5.11 f+g is integrable on A and

$$\int_{A} [f(x) + g(x)] d\mu = \sum_{i} \sum_{j} (y_{j} + z_{j}) \mu(F_{i} \cap G_{j})$$

$$= \sum_{i} y_{i} \mu(F_{i}) + \sum_{j} z_{j} \mu(G_{j})$$

$$= \int_{A} f(x) d\mu + \int_{A} g(x) d\mu \cdot$$

$$= \sum_{i} k y_{i} \mu(F_{i})$$

$$= k \sum_{i} y_{i} \mu(F_{i})$$

$$= k \int_{A} f(x) d\mu \cdot$$

2.5.14 <u>Definition</u>. A measurable function f is said to be <u>integrable</u> on a set A if there exists a sequence $\{f_n\}$ of integrable simple functions converging uniformly to f on A. We shall then say that

$$\lim_{n\to\infty} \int_A f_n(x) d\mu = \int_A f(x) d\mu .$$

2.5.15 Theorem. If f, g: $A \longrightarrow \mathbb{R}$ are integrable function on A and $k \in \mathbb{R}$. Then f+g and kf are also integrable and

$$\int_{A} (f+g)(x)d\mu = \int_{A} f(x)d\mu + \int_{A} g(x)d\mu,$$

$$\int_{A} kf(x)d\mu = k \int_{A} f(x)d\mu.$$

Proof: There exists sequences of simple integrable function $\{f_n\}$ and $\{g_n\}$ such that $f_n \longrightarrow f$ and $g_n \longrightarrow g$ uniformly on A and

$$\lim_{n\to\infty} \int_A f_n(x) d\mu = \int_A f(x) d\mu,$$

$$\lim_{n\to\infty} \int_A g_n(x) d\mu = \int_A g(x) d\mu.$$

Thus $f_n + g_n \longrightarrow f + g$ uniformly on A; hence f + g is integrable and

$$\lim_{n\to\infty} \int_{A} (f_n + g_n)(x) d\mu = \lim_{n\to\infty} \int_{A} f_n(x) d\mu + \lim_{n\to\infty} \int_{A} g_n(x) d\mu.$$
So
$$\int_{A} (f+g)(x) d\mu = \int_{A} f(x) d\mu + \int_{A} g(x) d\mu.$$

Also $kf_n \longrightarrow kf$ uniformly on A. Therefore kf is integrable on A and

$$\int_{A} kf(x)d\mu = \lim_{n \to \infty} \int_{A} kf_{n}(x)d\mu = \lim_{n \to \infty} \int_{A} f_{n}(x)d\mu$$

$$= k \lim_{n \to \infty} \int_{A} f_{n}(x)d\mu$$

$$= k \int_{A} f(x)d\mu.$$

2.5.16 Theorem. If $\mathscr Q$ is non-negative and integrable function on A and if a measurable function f is bounded by $\mathscr Q$ almost everywhere. Then f is integrable and $\left|\int\limits_A f(x) d\mu\right| \leq \int\limits_A \mathscr Q(x) d\mu$.

<u>Proof</u>: If f and \mathscr{C} are simple functions, then, by substracting a set of measure zero from A, we get a set A which can be represented as a finite or countable union

$$A' = \bigcup_{n} A_{n}$$

of subset An CA such that

$$f(x) = a_n$$
, $(x) = b_n$

for all $x \in A_n$ and

$$|a_n| \le b_n$$
 $(n = 1, 2, ...).$

Since Q is integrable on A, we have

$$\sum_{n} |a_{n}| \mu(A_{n}) \leq \sum_{n} b_{n} \mu(A_{n}) = \int_{A} (e(x)d\mu = \int_{A} (e(x)d\mu.$$

Therefore f is also integrable on A and

$$\left| \int_{A} f(x) d\mu \right| = \left| \int_{A} f(x) d\mu \right| = \left| \sum_{n} a_{n} \mu(A_{n}) \right| \leq \sum_{n} |a_{n}| \mu(A_{n})$$

$$\leq \int_{A} (e(x) d\mu.$$

In the case where f and ℓ are arbitary measurable functions, let $\{f_n\}$ and $\{\ell_n\}$ be sequences of simple functions converging uniformly to f and ℓ , respectively. We can choose the sequence so that

 $\left|f_{n}(x)\right| \leq \mathcal{Q}_{n}(x) \text{ for all n and for all } x \in A \text{. Moreover}$ each \mathcal{Q}_{n} is integrable since \mathcal{Q} is integrable. So each f_{n} is integrable and hence f is integrable. Also $\int_{A} \left|f_{n}(x)\right| d\mu \leq \int_{n} (x) d\mu,$ taking the limit as $n \to \infty$ we have $\left|\int_{A} f(x) d\mu\right| \leq \int_{A} \mathcal{Q}(x) d\mu.$

2.5.17 Corollary. If f is bounded measurable function on A, then f is integrable.

Proof: Let $\mathscr{Q}(x) = \sup_{x \in A} \{|f(x)|\} = M < \infty$. Apply 2.5.16, we get the result.

2.5.18 Theorem. Let f be a measurable function such that f is μ -and μ_{γ} - and μ_{γ} - integrable on A and $k \in \mathbb{R}$. Then

$$\int_{A} f(x) d (\mu_1 + \mu_2) = \int_{A} f(x) d \mu_1 + \int_{A} f(x) d \mu_2 \quad \text{and}$$

$$k \int_{A} f(x) d \mu = \int_{A} f(x) d (k \mu).$$

 \underline{Proof} : There exists a sequence of integrable simple functions $\{f_n\}$ converging uniformly to f. First, we shall verify that

$$\int_{A} f_{n}(x) d\mu_{1} + \int_{A} f_{n}(x) d\mu_{2} = \int_{A} f_{n}(x) d(\mu_{1} + \mu_{2}).$$

Since
$$\int_{A} f_{n}(x)d\mu_{1} = \sum_{k} y_{k_{n}} \mu(A_{k_{n}}) \quad \text{and}$$

$$\int_{A} f_{n}(x)d\mu_{2} = \sum_{k} y_{k_{n}} \mu(A_{k_{n}})$$

where
$$A_{k_n} = \{x : x \in A \text{ and } f_n(x) = y_{k_n} \}$$
. So

$$\int_{A} f_{n}(x) d\mu_{1} + \int_{A} f_{n}(x) d\mu_{2} = \sum_{k} y_{k_{n}} \mu_{1}(A_{k_{n}}) + \sum_{k} y_{k_{n}} \mu_{2}(A_{k_{n}})$$

$$= \sum_{k} y_{k_{n}} (\mu_{1} + \mu_{2})(A_{k_{n}})$$

$$= \int_{A} f_{n}(x) d(\mu_{1} + \mu_{2}) \cdot A$$

By taking the limit as $n \longrightarrow \infty$, we get

$$\int_{A} f(x) d\mu_{1} + \int_{A} f(x) d\mu_{2} = \int_{A} f(x) d(\mu_{1} + \mu_{2}).$$

Similarly we have

$$k \int f_{n}(x) d\mu = k \sum_{k} y_{k} \mu (A_{k})$$

$$= \sum_{k} y_{k} (k \mu) (A_{k})$$

$$= \int f_{n}(x) d(k \mu).$$

Take limit as $n \longrightarrow \infty$. Thus

$$k \int_{A} f(x)du = \int_{A} f(x)d(k\mu).$$

2.5.19 Remark. Let f be a continuous real-valued function of x and y in a $\le x \le b$, a $\le y \le b$. We can define a linear bounded mapping M on B by the equation

M_M =
$$\psi$$
 where

$$\psi(y) = \int_{a}^{b} f(x,y)d\mu(x) \qquad (x \in [a,b], \mu \in B).$$

By 2.16 and 2.18 we can see that for each $\mu \in B$, $M_{\mu} \in C[a,b]$.