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CHAPTER I  
 

INTRODUCTION 
 
1.1  Background and Statement of Problems 

Three major parts in computer graphics pipeline are modeling, deforming 

and rendering. Firstly, modeling is a general phrase, which is used to define a data 

structure to an object that we want to present. We collect information of the object by 

transforming the object into data structure such as set of points or vertex. Next, 

deforming make the object translated or rotated. Finally, rendering phrase, we 

concern about light, shadow and color that the object receives. There are two main 

types of rendering – photo realistic and non-photo realistic. 

Modeling is one of the major parts in computer graphics pipeline. There are 

many applications for modeling objects are developed. Because the cost of modeling 

is expensive, several techniques have been proposed. However, each technique has 

been developed for some specific objects and usually has some unpredicted drawback 

when used for other objects. 

Modeling in computer graphics usually starts from geometric level, which 

categorizes objects in general way more than presentation level. But both geometric 

level and presentation level cannot preserve some topological properties.  

The problems occur when we try to retrieve some features from the objects, 

because of the lack of correct definition. For example, a wire frame tetrahedron 

modeling consists of six equivalent wires, divided into two types: open wire and 

closed wire, to compose a consistent wire frame tetrahedron. 

When a wire frame tetrahedron with 3 open wires is composed, the meeting 

point at the vertex is missing. So the constructed wire frame tetrahedron has no 

vertex. Moreover, when a wire frame tetrahedron is composed, three meeting points 

at the one vertex are found. Therefore, a wire frame tetrahedron with 3 points at each 

vertex is constructed. 
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Figure 1-1. A tetrahedron composed from different wires; closed and open. 

 

The solution is to use one closed wire and two open wires are proposed. The 

constructed tetrahedron looks correct on the screen, but the equivalence of wires is 

lost. The wire frame tetrahedron is also asymmetric and depends on the directions of 

the tetrahedron. 

The same problem is found when boundary tetrahedron is modeled. A 

boundary tetrahedron is constructed with 4 equivalence triangle planes. The boundary 

tetrahedron has no edge line when open planes are used, while closed planes give 

double lines.  The solution is to use a pair of open and closed planes to compose a 

boundary tetrahedron, but the plane equivalence is still missed. 

 

 
Figure 1-2.  A boundary tetrahedron constructed from different types of plane. 

            

To sum up, in mathematics, a point and a line have no size, thus they cannot 

be displayed in display screen, while in computer graphics, a point and a line are 

defined by a pixel and a series of pixels to make them displayable. Different based-

definitions are used with the same mathematical method to define objects in computer 

graphics, so we need more level of definition for solving the problem described 

above. 

Furthermore, modeling also plays an important role in computer system; for 

example when the model is used in multimedia system, the efficiency of 3D data 

retrieval depends on the object representation. Several techniques for modeling 3D 

objects have been proposed such as polygonal meshes [1, 2], surface modeling such 

as implicit surface [3] [4] and parametric surface [1, 3], NURBS surface, Bézier 
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surface, subdivision surface [1, 2, 4, 5] However, these methods seem to lack of 

topological properties, which is important for similarity estimation.  

 

 
Figure 1-3.  Two similar objects with different geometrical data. 

 

The modeling of Reeb graph is proposed [6, 7] to reserve the topological 

properties. A method for fully automatic similarity estimation of 3D shapes using the 

Multi-resolutional Reeb graphs based on geodesic distance function is then proposed 

[8]. However, this method may not give precise estimation when objects are overly 

deformed in geometry. 

In this research, we present a method for modeling object based on the 

definition level between Topology and Geometry called cellular structure space and 

finding the similarity between them. For modeling, the objects in n-dimensions are 

composed from structure in n-1 dimensions. For example, we composed a tetrahedron 

out of four triangular planes and wire frame tetrahedron as its skeleton. 

 

 
Figure 1-4.  Cellular Structured Space in 0 - 3 dimension for tetrahedron. 
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1.2 Objectives 

The objective of this study is to apply theoretical idea in cellular structured 

space into modeling method in 3D computer graphics by developing a modeling 

application using cellular structured space modeling concept. Once a model has been 

created, we propose a structure of the model by graph representation collected as a 

topological data together with geometrical data called cell properties such as color 

and position. Moreover, in our experiment, we use that structure for similarity 

assessment between two cellular structured space models. 

  

1.3 Scope of the thesis 

1. Apply theoretical idea in cellular structured space into modeling method 

for 3D computer graphics modeling. 

2. Develop the three dimensional modeling system for composing cellular 

structured space model as well as function for finding similarity between 

two cellular structured space models. 

3. This modeling application is applicable for creating object with at least 

one manifold in each dimensions. 

4. Experiment on creating primitive models and develop the algorithm for 

similarity assessment between two cellular structured space models. 

5. Models that can be assessed their similarity in this research are created 

by this modeling system. 

 

1.4 Research Procedure 

This section presents draft of the plan for the thesis. 

1. Literature Review. 

2. Specify the problem and objectives. 

3. Research and study the previous work along with the advantages and 

disadvantages analysis. 

4. Develop the method for modeling object by using cellular structured 

space. 

5. Design experiment. 
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6. Experiment. 

7. Validate and analyze the result from the experiment. 

8. Publish scientific papers from the work and experiment. 

9. Write the thesis. 

10. State the conclusion, discussion and future works. 

 

1.5 Expected Benefit 

Using this modeling method, we can preserve some important topological 

properties of three dimensional objects that lack in other modeling methods and 

models created by using this method are valid shape models which conforms an 

equivalence relation each dimension. This research emphasizes on offering a new 

modeling method and implementing modeling system based on this concept. User can 

apply mathematical knowledge of cellular structured space or CW-complex to model 

three dimensional objects via this modeling application, so one can visualize the 

mathematical idea into screen.     

The model created by this modeling method has two data types; geometrical 

data and topological data. The topological data of the model is represented by graph 

structure and can be used for similarity assessment between cellular structured space 

models and applicable for searching objects in three dimensional databases by using 

their cellular structured as a key for screening promising objects. Moreover, storing 

only the important structure into the database can reduce the size of database and 

reduce the redundant data of the fundamental objects also. In order to find the 

similarity, cellular structured space models are determined by concerning sub-

structure in each dimension. By using graph structure to represent the model, we can 

assess similarity between two models by comparing their structure and award the 

similarity of two models if they have high matching nodes and edges. Moreover we 

concern attribute of arbitrary cell in each dimension, calculating their attribute 

difference is another feature to find their similarity.  
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1.6 Thesis Structure 

This thesis is divided into 6 chapters, which are introduction, theory, related 

works, algorithm, implementation and results, conclusion, discussion and future 

works. 

 First chapter, introduction, provides problem statement, objectives, scope, 

research procedure, benefits, research structure and publications. Chapter 2 gives a 

brief description about related theory and some research on cellular structured space 

and previous model matching techniques are then discussed. In chapter 3, proposed 

modeling method, component of the model, example and similarity assessment 

between two models are presented. The implementation and results is shown in 

chapter 4, follow by the conclusion, discussion and future works in the final chapter. 

 

1.7 Publication 

1. Nat Charussuriyong and Pizzanu Kanongchaiyos. 2004. Modeling 

Object in Computer Graphics using Cellular Structure Space 

Modeling. The 1st Thailand Computer Science Conference (ThCSC 

2004), December, Kasetsart University, Bangkok, Thailand. 

2. Nat Charussuriyong and Pizzanu Kanongchaiyos. 2005. 3D Object 

Modeling Method for Multimedia using Cellular Structured Space. 

The 6th Thailand Computer Science Conference (ICCIMA 2005), 

December, University of Nevada, Las Vegas, USA. 

 

 

 

 

 

 

 

 

 

 
 



CHAPTER II  
 

  THEORETICAL BACKGROUND  
AND RELATED WORKS 

 
 

2.1 Theoretical Background 
This section is divided into 5 parts which are definition of abstraction 

hierarchy of invariant, mathematical background for this thesis, a brief theory about 

object representation, cellular structured space and graph theory.  

 
2.1.1 Abstraction hierarchy of invariant 

Finding the invariants to model the objects in the real world develops 

scientific modeling. In mathematics, the objects are classified into equivalence classes 

as a disjoint union of the subsets of objects by an equivalence relation which 

represents a mathematical invariant. We use the same idea to classify objects in 

computer graphics, and the five level of abstraction are proposed.  

First, a presentation level, in this level objects are classified by a view 

equivalence relation based on personal cognition. Second, a geometry level, objects in 

this level is classified by geometrical data or information model equivalence relation. 

Third, a topology level, topological equivalence relation is used to classify objects. 

Fourth, a set level, in this level objects are classified by a set theoretical equivalence 

relation. Finally, a homotopy level, homotopic function is used. 

Recently, a new level called Cellular structured level has been proposed for 

improving model classification [9]. The abstraction hierarchy based on the 

equivalence relation in mathematics is proposed as following:  

1. Homotopy Level  

2. SET level 

3. Topology level 

4. Cellular structured level 

5. Geometry level 

6. Presentation level 
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2.1.2 Mathematical background 
 

Set Theory 

 We summarize the ideas of set theory, and establish the basic notation and 

terminology using in the following sections [10]. 

A set is a collection of objects. The objects belonging to the set are the elements or 

members of the set. If an object  belongs to a set a A , we express by notation Aa∈ . 

A set with no elements is called an empty set, φ , and all empty set are equal. 

 A set A  is said to be a subset of a set B  if every element of A  is a member 

of B . We use the notation , and also say that BA ⊆ B  is contains A . 

The set whose elements are sets is called a collection of sets. The set of all subsets of 

A  is called the power set of A  and denoted by ( )AΡ  or . It is also called the 

discrete topology of 

A2

A . 

 Given sets A and B , we can perform the set theoretical operations such as the 

union , the intersection , the differenceBAU BAI BA − or , and the 

complement of 

BA \

A , . Given a collection A of sets, the union of the elements of A is 

defined by  

CA

{ AxxA
A

∈=
Α∈

|U for at least one ∈A  A , }

the intersection of the elements of A is defined by 

{ AxxA
A

∈=
Α∈

|I for every ∈A  A , }

If A is an empty collection, then  and ;U  is a universe. φ=
Α∈
U
A

A UA
A

=
Α∈
I

Functions 

 From a common view of function, it is a rule or equation that assigns a unique 

y-value to each possible x-value. It likes the machine that when the certain button is 

pushed the same result always happens. [10, 11]. 

 A rule of assignment is a subset r of the Cartesian product BA× of two sets, 

having the property that each element of A  appears as the first coordinate of at most 

one ordered pair belonging to r . 
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 Given a rule of assignment r , the domain of r  is defined to be the subset of 

A  consisting of all first coordinates of elements of r , and the image set of r is 

defined as the subset of B consisting of all second coordinates of elements of r . 

 A function is a rule of assignment r , together with a set B that contains the 

image set of r . The domain A of the rule r is also called the domain of the 

function ; the image set of f r is also called the image set of ; and the set f B  is 

called the range of . If is a function having domain f f A  and range B , then 

write and if we callBAf →: Aa∈ ( )af  the unique element of B the image of 

under .  a f

 If be a function and . The restriction of  to  is a 

function so that 

BAf →: AA ⊆0 f 0A

BAg →0: ( ) ( )xgxf = for all 0Ax∈ . We will use the 

notation for the restriction of to .  0| Af f 0A

Given a function , there are three basic types of relationships: BAf →:

1. The function is one-to-one f ( ) ( )[ ] [ 212121 ,, xxxfxfAxx =⇒ ]=∈∀⇔ . 

2. The function is onto or surjective f ( )[ ]yxfAxBy =∈∃∈∀⇔ ,, . 

3. The function is invertible or bijective f f⇔ is one-to-one and onto. 

 
Equivalence Relations 

 A relation on a set X is a subset R of the Cartesian product XX × . We 

use  to mean that .  xRy ( ) Ryx ∈,

A relation R is reflexive if xRxXx ,∈∀ , symmetric if yRxxRyXyx ⇒∈∀ ,,  and 

transitive if xRzyRxxRyXzyx ⇒∧∈∀ )(,,, . 

 An equivalence relation on a set X is relation ~ on X having the three 

properties as following: reflexive, symmetric and transitive. 

Given , an equivalence class of Xx∈ x  is defined by . 

Moreover, the set of all equivalence class, called the quotient space or identification 

space of 

{ }yxXyx ~|~/ ∈=

X , is defined by { } xx XxxX 2|2~/~/ ⊆∈∈= . 
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 A partition of a set X  is a collection of disjoint nonempty subset of X whose 

union is all in X . So we can partition a set X  into non-empty and disjoint 

equivalence classes. 

 
 
 
 
 
 

Topology 
 A topological transformation is a continuous transformation that can be 

continuously reversed or undone. 

 The topology is the study of properties of objects that endure when the objects 

are subjected to topological transformations. A topology on the set X  is a collection 

τ  of subsets of X having the following properties. 

1. τ∈X and τφ ∈ . 

2. For an arbitrary index set , . N ⎥
⎦

⎤
⎢
⎣

⎡
∈⇒∈∀

∈
∈ U

Ni
iiNi UU ττ

3. [ ]ττ ∈∩⇒∈∀ ∈ jijiNji UUUU ,, . 

 We call ( )τ,X  a topological space with topology τ . You can see all definition 

in [10]. Two topological space ( )τ,X  and ( )τ,Y  are topological equivalence or 

homeomorphic if there is a topological transformation between them. 

 
 

2.1.3 Object representation 

We summarize existing object representation or modeling method. Many 

representations have been developed for displaying in computer graphics world. In 

object representation, there are wire-frame models, curve and surface models, solid 

models, fractal models, and procedural and grammar-based models. 

 

2.1.3.1 Wire-frame models 
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  Wire-frame models represent objects as a set of significant vertices connected 

by significant edges. The wire-frame models play an important role in many graphics 

application because of its inexpensive cost of drawing using world-to-screen 

rendering techniques. They are convenient for many tasks and could be draw very 

efficiently but they have a very unrealistic appearance.  

  In wire-frame models, the edges are described by specifying two ends points, 

since several edges may share some endpoints. We employ a data structure of wire-

frame models by collecting vertices separately from the edges, which are described as 

two references to proper vertices as shown in Figure 2-2. 

 

 
Figure 2-1.  A simple and a complex wire-frame model. 

 
Figure 2-2.  A data structure for wire-frame model. 

 

2.1.3.2 Curve and surface models 
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 We can use curves and surfaces to model existing and no preexisting objects. 

Thus, Curve and surface modeling is widely used in Computer graphics and 

CAD/CAM. Here, We represent some of the important ideas of the curve and surface 

modeling and briefly categorize this model into polygon meshed, nonparametric 

representation and parametric representation. 

 

 

 

 

Polygon meshes 

With a wire-frame model we specify a set of points in space and we connect 

various pairs of these points to form edges. This representation only suggests the 

actual shape and doesn't really look solid. We need a method to make an object look 

solid and to be able to color it's surface.  

A polygon meshes is a collection of edges, vertices and polygons. An edge 

connects two vertices, and a polygon is a closed sequence of edges. An edge can be 

shared by adjacent polygons, and a vertex is shared by at least two edges. 

 
Figure 2-3. Simple polygon meshes. 

 

Consider a polygon meshes in Figure 13; we have 4 vertices and 4 faces. A 

list of vertices for a polygon is created by looking at the polygon from the outside, 

listing the vertices in a counter-clockwise direction until a complete circle is made. 
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{ }
{ }
{ }
{ }4324

4213

4312

3211

,,
,,
,,
,,

vvvPolygon
vvvPolygon
vvvPolygon
vvvPolygon

=
=
=
=

 

This kind of mesh is known as a polyhedron, which is a closed mesh and all 

the faces are planer. A polyhedron can be used to represent almost any solid, but if 

the solid is highly curved, we must use a large number of faces to achieve the illusion 

of roundness and smoothness. We will discuss polyhedron more in section 2.3.3.3 

There are three main polygon mesh representations in use: Explicit 

representation, Pointer to Vertex List and Pointer to Edge List.  

1. Explicit representation: Each polygon is represented by a list of vertex 

coordinates.  

{ }),,(),...,,,(),,,(),,,( 3332221111 nnn zyxzyxzyxzyxFace =  

The vertices are stored in counter clockwise order. There are edges between each pair 

of vertices and between the first and last vertices. This representation is not space 

efficient, because a shared vertex, will be stored many times. 

2. Pointer to Vertex List: In this representation we have a vertex list, which 

contains all the vertices in the mesh. 

{ }),,(),...,,,(),,,( 22221111 nnnn zyxvzyxvzyxvVertexList ====  

A polygon is defined as a list of indices or pointers into the vertex list. 

 
{ }
{ }345622

6121

,,,,
,,

vvvvvFace
vvvFace

=
=  

Figure 2-4. Example of pointer to vertex list representation. 

 

Each vertex is stored once. But each edge is stored twice and it is difficult to find 

polygons that share an edge. 
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3. Pointer to Edge List: We have a vertex list V, but we also have an edge list E, in 

which each edge occurs just once. Each edge is stored as a pair of pointers into the 

vertex list; each edge also contains pointers to the polygons, which share the edge. 

Polygons are defined as lists of pointer to the edge list. 

 
{ }

{ }
{ }
{ }
{ }
{ }
{ }
{ }

{ }
{ }754322

7611

21627

2616

2655

2544

2433

2322

1211

654321

,,,,
,,
,,,
,,,
,,,
,,,
,,,
,,,

,,,
,,,,,

eeeeePolygon
eeePolygon
PPvvedge

Pvvedge
Pvvedge
Pvvedge
Pvvedge
Pvvedge
Pvvedge

vvvvvvVertexList

=
=

=
=
=
=
=
=
=

=

λ
λ
λ
λ
λ
λ

 

Figure 2-5. Example of pointer to edge list representation. 

 

Specialized graphics hardware often prefers particular arrangement of polygons to 

draw very fast. Many objects can be representation as triangle strips and triangle fans. 

 
Figure 2-6. Triangle fans and strips. 

 

Nonparametric Representation 

The nonparametric representation describes objects in terms of the coordinates 

in the reference frame. We can represent both a surface and a three-dimensional 

curved line in nonparametric form with either of the two Cartesian functions as 

followed. 

( ) 0,, =zyxf  or ( )yxfz ,=  
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The first one is called an implicit function, and the second one is called an 

explicit function. 

Nonparametric representations are useful in describing objects within a given 

reference frame, but they have some disadvantages when used in graphics algorithm. 

The most simple and widely use of nonparametric representations is Quadric 

surfaces. It has the implicit function of the form 

 

( ) 0222222,, 222 =+++++++++= Ckzhygxfxzeyzdxyczbyaxzyxf
  

Nonparametric representation are useful in specialized applications and have 

been integrated into solid modeling system, because they are easy to compute the 

surface normal, test whether a point is on the surface, compute z given x and y and 

calculate intersections of one surface with another. 

On the other hand, there are some disadvantages of nonparametric 

representation. In explicit function, ( )yxfz ,= , it is impossible to get multiple values 

of y for a single x and the definition of an explicit function is not rotationally 

invariant. In implicit function, ( ) 0,, =zyxf , the given equation may have more 

solutions than we want and if two implicit curve segments are joined together, their 

tangent directions may not agree at their join point. 

 

Parametric Representation 

The parametric representation describes objects according to the number of 

parameters needed to identify the objects’ coordinate positions. The parametric 

representation for curves is the following function. 

( ) ( ) ( ) ( )( )uzuyuxuP ,,=  

where each of the Cartesian coordinates is a function of u. In similar way, we 

can represent a surface by this two-parametric function.  

( ) ( ) ( ) ( )( )vuzvuyvuxvuP ,,,,,, =  

 
 



 16

Each of the Cartesian coordinates is a function of u and v. 

One of the most popular method used parametric representation is spline. The 

spline representation is widely used for modeling curves and surfaces in both 

computer graphics and CAD because of the simplicity of their construction, their ease 

and accuracy of evaluation, and their capacity to approximate complex shapes 

through curve fitting and interactive curve design.  

The term "spline" is used to refer to a wide class of functions that are used in 

applications requiring data interpolation. Splines may be used for interpolation or 

smoothing of either one-dimensional or multi-dimensional data.  A spline curve or 

surface is defined with a set of control points and the boundary conditions on the 

spline sections. Lines connecting the sequence of control points form the control 

graph, and all control points are within the convex hull of a spline object. The 

boundary conditions can be specified using parametric or geometric derivatives, and 

most spline representations use parametric boundary conditions.   

We can mathematically describe a curve or a surface with a piecewise cubic 

polynomial function whose first and second derivatives are continuous across the 

various curve sections. The general definition of the spline is presented as following. 

A one-dimensional polynomial spline, S(t), is an example of a piecewise 

function. In its most general form a polynomial spline, defined on an interval [a,b], 

consists of polynomial pieces, P (t)i , with each piece defined on one of a number of 

given subintervals 

 btttta kk =<<<<= −− 1210 ...  

that is, 

( ) ( )
( ) ( )

( ) ( ) 122

211

100

,
...

,
,

−−− <≤=

<≤=
<≤=

kkk ttttPtS

ttttPtS
ttttPtS

 

Moreover, It is required that the polynomial pieces on the subintervals 

 all have degree n; and it is also required that two adjacent 

polynomial pieces 

[ ) 2,...,0,, 1 −=+ kitt ii

( ) [ ) ( ) [ )1111 ,,, +−− ∈∈ iiiii tttPtttP  connect with a specified loss of 
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continuity ji so that  at t( ) 11, +≤≤∈ − njCtS i
jn i i; that is, the two pieces share 

common derivative values from derivative 0 (the function value) up through 

derivative n-ji.  

 All piecewise polynomials Pi(t), on the given interval [a,b], with the given 

subintervals [t0,t1),...,[tk-2,tk-1], having the required degree n, and having the specified 

connectivities given by j1,...,jk-2 at the interior knots t1,...,tk-2 would be splines of a 

common type. 

The given k points ti are called knots. S(ti) is called a knot value and (ti, S(ti)) 

is called an internal control point. (t0,...,tk-1) is called the knot vector. If the knots are 

equidistantly distributed in the interval [a,b] we say the spline is uniform otherwise 

we say it is non-uniform. 

We can categorize the spline representation into two groups: interpolation 

splines and approximation splines. Interpolation splines connect all control points; 

approximation splines do not connect all control points. Interpolation splines include 

the Hermite, cardinal, and Kochanek-Bartels splines. B-splines, which include Bézier 

splines as a special case, are a versatile approximation representation, but they require 

the specification of a knot vector. Beta splines are generalizations of B-splines that 

are specified with geometric boundary conditions. And rational splines are formulated 

as the ratio of two spline representations. Rational splines can be used to describe 

quadrics, and they are invariant with respect to a perspective viewing transformation. 

A rational B-spline with a non-uniform knot vector is commonly known as a NURB. 

In conclusion, modeling using spline representations allows for representing 

highly refined objects. This method provides some degree of experience for the 

models’ creation, however the rendering process can be done in a very efficient and 

simple manner. 

 

2.1.3.3 Solid models 

A solid model is a representation of the geometry of a physical object. Solid 

models are used in many industries, from entertainment to engineering. They play a 

major role in computer-aided design (CAD) systems. The design process is usually 
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incremental. They may select models of simple shapes, such as cubes, spheres, cones 

or cylinders, specify their position, and orientation, and combine them to compose 

complicated solid models. 

 We review the most common schemes for representing solid models: 

primitive instancing, sweep representation, boundary representations, spatial-

partitioning representations, and constructive solid geometry. 

 

Primitive instancing 

A primitive instancing is a parameterized 3D solid shape, which is prior, 

defined. It is usually represented by a type code followed by several properties. For 

example, a solid cone is represented by the 3-tuple (‘cone’, H, R), where the last two 

parameters are real numbers that define the dimensions of the cone, as shown in 

Figure 3.2.1.1. The only way to create a new kind of object is to write the new code 

that defines it. So, the domain of objects is very limited. 

 
Figure 2-7. A primitive cone. 

 

Sweep representations 

Solid objects can be generated by sweeping a cross-section along a curve. For 

example, a cylinder can be considered as a circle swept along a line and a torus is a 

circle swept round a circle. The cross-section may be allowed to change in size as it is 

swept. 

We perform a sweep by moving the shape along a path. At intervals along this 

path, we replicate the shape and draw a set of connecting line in the direction of the 

sweep to obtain the solid model. 
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The simplest form of sweep is that produced by sweeping a two-dimensional 

area along an axis perpendicular to its plane. Another common form of sweep is to 

rotate a two-dimensional profile around an axis. Another form of sweep 

representation sweeps a closed two-dimensional profile along a curve 

Changing the size of the swept profile while it is swept along the curve can 

produce more complex objects. However, there can be difficulties to compose self-

intersection surfaces. Therefore, the domain of objects that can be represented by 

sweeps is limited. 

 
Figure 2-8. Sweep representation. 

 

B-Rep 

A boundary representation, B-Rep, of a solid object represents the object by 

its surface boundary. This representation usually consists of vertices, edges, and 

faces. The faces are typically planar, but may also be curved. 

There are two types of information in a B-rep: topological and geometric. 

Topological information provides the relationships among vertices, edges and faces. 

In addition to connectivity, topological information also includes orientation of edges 

and faces. Geometric information is usually equations of the edges and faces. 

Boundary representations incorporate a variety of data structures, including 

the winged-edge, quad-edge, vertex-edge, and face-edge data structures. Each data 

structure has its benefits and disadvantages, depending on the application. The 

tradeoff is between memory requirements and average access time for geometric data 

of interest.  

One of the most popular methods is the winged-edge data structure. It is based 

on the observation that every edge has exactly one next edge and two previous edges 

in each of the two faces it appears. These are recorded as the wings of the edge. 
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Spatial-Partitioning Representation 

In spatial-partition representation, a solid is decomposed into a collection of 

cells that are primitive than the original solid. There are many methods of 

decomposition. If the original solid is decomposed into identical and fixed-size cells, 

then this method id called spatial-occupancy enumeration. In 2-D, the primitive 

square cells are called pixels, picture elements, and in 3-D, cubical cells are called 

voxels. The decompositions become very large if we need more accuracy. 

Hierarchical decompositions of spatial-occupancy enumeration with cells of 

varying sizes are designed to reduce storage requirements for three-dimensional 

objects, because small cells are used only where required for an accurate 

approximation. In 2D, called quadtrees, they are used image processing. Quadtrees 

are the 2-D analogs of binary search trees, and can be used for spatial search. 

The 3D extension of quadtrees is called octrees. Both quadtrees and octrees 

are special cases of k-d trees, which are studied in the theoretical computational 

geometry. Issues of completeness and validity are trivial for most spatial 

decompositions.  

Octrees recursively divide space into eight at each step with three mutually 

perpendicular planes. On the other hand, A BSP trees, binary space-partitioning trees, 

recursively split space into a binary tree, whose leaves correspond to convex 

polyhedron. A selection of these leaf-cells defines the solid. BSP trees were designed 

originally to speed up hidden-surface removal in graphics. 

 

 

Constructive Solid Geometry 

In CSG objects are built up from primitive objects such as cubes, spheres, 

cylinders, cones etc. and combining them by logical set operations of union, 

intersection and difference. 

A CSG model is described as a tree structure whose terminal nodes are 

primitive objects together with an appropriate transformation and other nodes are 

Boolean Set Operations. 
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Figure 2-9. Constructive Solid Geometry. 

 

2.1.3.4 Fractal Models 

A fractal is a fragmented geometric shape that can be subdivided in parts and 

described by mathematical equation, each of which is a reduced-size copy of the 

whole. Fractals are generally self-similar and independent of scale.   

 There are many mathematical structures that are fractals; e.g. Sierpinski 

triangle, Koch snowflake, Peano curve, Mandelbrot set, and Lorenz attractor. Fractals 

also describe many real-world objects, such as clouds, terrains, mountains, 

turbulence, and coastlines, which do not correspond to simple geometric shapes.     

      
Figure 2-10. Sierpinski triangle and Koch snowflake 

      
Figure 2-11. Peano curve and Mandelbrot set 
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Figure 2-12. Lorenz attractor 

 

2.1.3.5 Procedural and Grammar-based Models 

A procedural model is similar to primitive instancing, but the model 

constructed by procedural does not need to consist of a collection of solids. 

Procedural models are able to interact with their environment, also interobject 

communication used to control the shape of objects defined by procedural. 

A grammer-based model is a model generated from set of production rules 

that describe the shape of objects. This method, usually called L-grammars or 

graftals, is typically used to model plants.  

 
 
2.1.4 Cellular Structured Space 

 
Cellular structured space based on theory of cellular structure or cell 

complexes in algebraic topology [1] are proposed as followed. First, a cell is a 

topological space X  that is topologically equivalent to an, n-dimensional open 

ball, , and called an n-cell, . nIntB ne

  { }1| ≤∈= xRxB Nn , n-dimensional closed ball. 

  { }1| <∈= xRxIntB Nn , n-dimensional open ball. 
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  , a boundary of a n-dimensional closed ball and for a 

topological space

1−=−=∂ Nnnn SIntBBB

X , a continuous function  from F nB  to X  called characteristic 

map. 

We can inductively compose a finite or infinite sequence of cells pX  that are 

sub spaces of X , called a filtration, such that 0X  is a set of point, 0-cell and  

         nX  covers 1−nX . 

U
Zp

pXX
∈

= and . XXXXX pp ⊆⊆⊆⊆⊆⊆ − ...... 110

The skeleton with a dimension at most p is called a p-skeleton. A space 

topologically equivalent to a filtration is called a filtration space. We can decompose 

objects into small parts and collect them in database.  

We can compose a new cellular structured space Y by attaching an open n-

cell, , to the already composed topological spacene X , using a surjective and 

continuous map f called an attaching map.  

For topological space X and Y, we attach X  to Y, via attaching function f. 

   , is a disjoint union. ~/XYXYY ff CC == C

The set of all equivalence class is denoted as X/~, and is called quotient space 

or identification space of X,  

       { }XxxX x ∈∈= |2~/~/  

 It divides the space into a disjoint union of subspace. We showed some 

examples of objects modeled by cellular structured space modeling, starting from 0-

dimension structure called 0X , consisting of 0-cell elements which are points, and 

then attach 1B  to 0X to construct 1X . For pX , we can construct from attaching  

to 

p
ii BC

1−pX via attaching function , so we define our cellular 

structured space model as:  

1: −→∂ pp
ii XBf C

   ( ) ( )( )p
i

p
ii

pp BxxfxBXX ∂∈= − |~/1 CC  
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A cellular structured space for a tetrahedron  

We can construct a wire frame tetrahedron by composing 1X , starting from 

0X  that consists of 0-cell as the elements, via attaching 1-cells to 0X . In this case, 
0X

 
is a set of four vertex points; { },,,, 0

4
0
3

0
2

0
1

0 eeeeX = . 

A tetrahedron has six edges, and we attach  
1
6

1
5

1
4

1
3

1
2

1
1

1 BBBBBBBii CCCCCC =  

 to 0X  via attaching function . 01: XBf ii →∂C

( ) ( )10101
iiiifi eXBXX CCCC == , where .6,5,4,3,2,1=i  

{ }.,: 0
2

0
1

1
11 eeBf →∂  { }.,: 0

3
0
2

1
22 eeBf →∂  { }.,: 0

4
0
3

1
313 eeBf →∂  

{ }.,: 0
1

0
4

1
44 eeBf →∂  { }.,: 0

4
0
2

1
55 eeBf →∂  { }.,: 0

3
0
1

1
66 eeBf →∂  

Since a tetrahedron has four surfaces, a skeleton 2X  can be obtained by 

attaching 4 surfaces, , to 2
4

2
3

2
2

2
1

2 BBBBBii CCCC = 1X  via attaching function 

. 12: XBg ii →∂C

( ) ( )21212
iiiigi eXBXX CCCC == , where .4,3,2,1=i  

{ }.,,: 1
6

1
2

1
1

2
11 eeeBg →∂   { }.,,: 1

5
1
3

1
2

2
22 eeeBg →∂  

{ }.,,: 1
4

1
3

1
1

2
33 eeeBg →∂   { }.,,: 1

4
1
2

1
1

2
44 eeeBg →∂  

Finally, a tetrahedron has one solid body so 3X , consisting of a body and 
2X , is obtained by attaching 3B  to 2X  via attaching function  

23: XBh →∂ ,   a 32323 eXBXX h CC ==

which expresses a solid model of a tetrahedron. 

 

 
                 

Figure 2-13. A cellular structured space for a tetrahedron. 

 

 
 



 25

A cellular structured space for a cone and a cylinder 

We construct a cone, starting from { }0
2

0
1

0 ,eeX = , and a skeleton 

( )101
ii eXX CC= , where 2,1=i , or { }0

2
0
1

0 ,, eeX and we construct { }2
2

2
1

12 ,, eeXX =  

and { }3
1

22 ,eXX =  respectively. 

Next, we construct a cylinder by the same method, which is described as 

following.  

{ }0
2

0
1

0 ,eeX = , { }1
3

1
2

1
1

01 ,,, eeeXX = , { }2
3

2
2

2
1

12 ,,, eeeXX =  and { }3
1

23 ,eXX = . 

 

 
Figure 2-14. A cellular structured for a cone and a cylinder. 

 

2.1.5 Graph Theory 
 

Graph is one of the most abstract and powerful structures for modeling and 

describing structured objects. Its fundamental ideas were introduced by the great 

mathematician Leonard Euler in the eighteen-century. To solve the Königberg bridge 

problem, he started a new field in mathematics called combinatorics. Graph theory is 

widely used in practical research in many fields. For instance, biology uses graph for 

representing complex biological systems. Moreover, problems in chemistry have been 

using graph theory for a long time. In chemistry, chemical compound have an 

intrinsic graph structure, with nodes representing various types of atoms and edges 

representing inter-atomic bonds. In social network, graph theory is used to represent 

relationship among members by different rules. The World Wide Web or WWW is an 

astonishing graph of which edges between nodes represent links between web pages. 

The Web graph provides the statistics and dynamic connectivity used to retrieve 

information from the Web. Furthermore, computer graphics and computer vision has 

long used graph theory to represent data structures. An example of this kind of 

application is the image application software, which can often identify interesting 

features and describe the relationship among these features in two given images.  
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In this research, we represent the structure of cellular structured space models 

by using graph and assess similarity between them by using graph similarity method. 

We define some basic graph terminology and definition in this section. 

 
Figure 2-15. An undirected graph and a directed graph. 

 

Graph 

 A graph is a 4-tuple ( )εν ,,, EVG = , where 

•  is a set of vertices. V

•  is a set of edges. VVE ×⊆

• VLV →:ν  is a function assigning labels to vertices. 

• ELE →:ε  is a function assigning labels to edges. 

A graph may be directed or undirected; in an undirected graph, for  

then 

Vvu ∈,

( ) ( ) EuvEvu ∈⇒∈ ,, . 

 

Subgraph 

A subgraph of ( )εν ,,, EVG =  is a graph ( )SSSS EVS εν ,,,=  such that 

•   VVS ⊆

•   ( )SSS VVEE ×∩⊆

• ( ) ( )
otherwise

Vvif
undefined

v
v S

S

∈

⎩
⎨
⎧

=
ν

ν   

•  ( ) ( )
otherwise

Eeif
undefined

e
e S

S

∈

⎩
⎨
⎧

=
ε

ε
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Adjacency Matrix 

 The adjacency matrix representation of a graph ( )εν ,,, EVG = , denoted by 

, is a zero-one matrix with a 1 as the GA ( )thji. entry if vertices  and  are 

adjacent. 

iV jV

 
Graph isomorphism 

 A one-to-one and onto function VVf ′→:  is a graph isomorphism from a 

graph ( )εν ,,, EVG =  to a graph ( )εν ′′′′=′ ,,, EVG , denoted by , if GG ′≅

1. ( ) ( )( ) Vvvfv ∈∀′=νν  

2. For any edge ( ) Evve ∈= 21,  there exists an edge ( ) ( )( ) Evfvfe ′∈=′ 21 ,  

such that ( ) ( )ee ′′= εε , and for any ( ) Evve ′∈′′=′ 21,  there exists an edge 

( ) ( )( ) Evfvfe ∈= −−
2

1
1

1 , such that ( ) ( )ee εε =′′ . 

Moreover, if an isomorphism exists between two graphs, then they are structurally 

indistinguishable. In practice, if graphs G  and G′  are isomorphic, then there exists a 

permutation matrix, , that will transform the adjacency matrix  into the 

adjacency matrix . 

P GA

T
G PAPB =

 

Subgraph isomorphism 

If  is a graph isomorphism betweenG andVVf ′→: G′ , and G is a subgraph 

of another graph G , then is called a subgraph isomorphism from G  to G . 

′

′′ f ′′

 

Common subgraph and Maximum common subgraph 

A graph  is a common subgraph of two graphs  and  if there exist 

subgraphs  and  such that and . We call  a 

maximum common subgraph of  and , if there exists no other common subgraph 

of  and  that has more modes than . 

Ĝ 1G 2G

11
ˆ GG ⊆ 22

ˆ GG ⊆ 1
ˆˆ GG ≅ 2

ˆˆ GG ≅ Ĝ

1G 2G

1G 2G Ĝ

Maximum common subgraph is a generalization of subgraph isomorphism. 

This measure of graph similarity compares two subject graphs by generating a third. 
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The maximum common subgraph of two graphs is the largest graph contained in both 

subject graphs.  

It is beneficial to have a scalar measurement of the distance between two 

graphs, but graphs do not exist in an trivial metric space. However, the size of the 

maximum common subgraph of two graphs can be used to define a metric distance 

between them 

The maximum common subgraph problem is known to be NP-complete. In 

fact, finding the maximum common subgraph between  and  is equivalent to 

finding a maximum clique in the product graph .  

1G 2G

ABG

 

Bipartite graph 

A graph ( )εν ,,, EVG =  is called bipartite if its vertex set V  can be 

partitioned into two disjoint nonempty sets and such that every edge in the 

graph connects a vertex in and a vertex in . 

1V 2V

1V 2V

 
Figure 2-16. Bipartite graph. 
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2.2 Related Works 

In this research, many related papers have been surveyed and categorized 

into two topics; cellular structured space and model matching. Since J.H.C. 

Whitehead introduced CW-complex on his publication in 1949, cellular structured 

space has not been used in the field outside mathematics because of its obscure 

benefit. Until Kunii recognized its advantages and recommended to use in 

Cyberworld, some researches have been developed in computer science for a few 

decade. Thus, in the next section of this chapter, the development of cellular 

structured space is summarized. Moreover, in the end of this chapter, we also 

summarized various techniques applied to different situations in model matching. We 

survey on a relevant techniques and classify into geometric based and topological 

based method. 

 

 

2.2.1. Cellular Structured Space 

Kunii has proposed on his work [9] about current graphics which lack of 

consistencies and suffer from invalid shape model. Moreover, this paper also point 

out the fundamental problem in shape modeling for computer graphics which has not 

been solved. Then, this work has initiated some issues to overcome the problem such 

as homotopy theoretical modeling. 

In [45], Kunii has proposed an abstraction modeling called homotopy 

modeling for constructing cyberworlds. This paper claim that homotopy modeling 

based on novel space-time modeling with cellular spatial structures is suitable for 

cyberbusiness including electronic financing, electronic commerce, digital contents 

business which is predicted to be the biggest and most crucial business in the 21st 

century. 

In 1999, Kunii [46, 47] proposed a method to design a valid computational 

shape modeling based on cellular structured space modeling. This work shows an 

example of simplest cases to compose higher dimensional cellular spaces inductively 

starting from 0-cells. Moreover, we looked at the case of a tetrahedron at the 
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beginning, let us go back to it as discussed previously to use it as the design 

specification of various shape models of a tetrahedron based on cell attachment  

Kenji and Kunii [48] have introduced new theoretical tools, homotopy and 

cellular structured spaces for visualization. In this paper, they used an example of cup 

lifting to represent the idea of abstraction. 

Hisada and Kunii [49] have done a research on the difficulty of representing 

object attachments in geometric modeling. They assume an assumption that the 

information of object attachment such as gluing and fusing can be represented based 

on the cellular models. Furthermore, they also showed a prototype implementation of 

the computer graphics of these cellular models, and proved that their theory can be 

implemented for computer-aided design and manufacturing. 

In [50], Ohmori and Kunii have discussed the benefit of their model which 

combines homotopy and object-oriented modeling in shape modeling in the internet 

era. In this paper, shape modeling using homotopy is presented, implemented and 

instantiated via the example of tennis ball on flat slope. 

In [51], Kunii has described how topological graphics is important for new 

computer graphics application. With the modern algebraic topology, especially 

homotopy theory and cellular spatial structures, topological graphics is developed and 

lays out the framework to interactive construct cyberworlds. Moreover, this paper 

also propose some design to cover wide ranges of real world application cases such as 

Topographic applications, Financial applications, human mental space modeling. 

In [52], the adjunction space model presented as a Web information model is 

shown to have advantages of its generality overcoming many shortcomings of 

existing data models and Web information models. The researches on the 

implementations are underway quite well. 
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2.2.2. Model Matching 

With recent developments in methods for modeling 3D objects, the need for 

retrieval of objects from large 3D models database has gained importance in graphics 

research. And, with current techniques that make the construction of 3D models much 

easier, we confront with an inundation of 3D models both on specific database and an 

internet. Owning to the popularity and high cost of 3D model creation, though they 

are much easier to create, there is an increasing demand for model sharing which is 

very significant in very different fields.  

Cardone et al. [12] have discussed benefits of 3D model sharing in product 

design and manufacturing application such as cost estimation, group similar object, 

reusing previously design parts [12]. Over the last few years, the widespread of the 

World Wide Web has resulted in merged storage of mass information. To find the 

desired information, a number of different search engines have been established 

which require user to input specific simple text query and then it returns documents 

with matching content (e.g. Google, Yahoo, etc.).  More recently, tools for searching 

3D models have become significant part of some applications, including engineering, 

medical, architecture and entertainment. This moves development on 3D search 

engines [13] and multimedia search and retrieval [14] which cover an important trend 

in the multimedia content description. 

There are a number of techniques to conduct 2D shapes or images search on 

model database. These methods mostly use geometric data such as silhouette or 

contour curve by calculating their shape curvature and Hausdorff distance [15], or 

color, texture and wavelet data of that image [16]. However, these techniques do not 

probably use in 3D models because of the difficulty in extending parameter to higher 

dimension such as boundary of the model.  

As we turn our eye to 3D shapes, various researches for shape matching have 

been developed to perform similarity estimation. The selected surveys on shape 

similarity, for the researcher to get the picture of a current situation, are [12, 17, 18]. 

Recently, many developments have been devoted to the study of 3D models 

matching. They can be approximately categorized into two approaches: geometry-
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based, and topology-based. There are a lot of researches have been done. The 

advantages and disadvantages of each method are as follow. 

 

Geometry-based methods 

Geometry-based methods use geometric properties in order to perform model 

comparison between objects. There are a number of techniques in this category. We 

start with methods using local feature and then discuss some global feature based 

method in the very next paragraph.  

Cass [19] computes a local geometric feature from image data and matches 

3D models in a database. This method has a trade-off between algorithmic 

complexity and geometric consistency, and probabilistic completeness. Another local 

feature based method is proposed by KÖrtgen et al. [20], which apply 3D shape 

contexts for 3D shape retrieval and matching. This method extend from 2D shape 

contexts firstly presented by Belongie et al. [21] with the idea that an equivalence 

class under a group of transformation is incomplete in context of visual system. This 

method is used to recognize 2D image by considering the set of vectors originating 

from a point to all other sample points on a model. The shape context of a point p on 

the shape is defined as a coarse histogram of the relative coordinates of the remaining 

surface points [21]. Local matching and global matching are used to match object. 

However, these techniques are restricted to some application and less efficient with 

respect to the other methods in the same category. 

Keim [22] use the Maximum Included Volume (MIV) and the Minimum 

Surrounding Volume (MSV) to compose the geometry-based similarity search tree 

(GSS-tree) for indexing. The GSS-tree, in his research, is instantiated using two 

different hierarchical approximations: the cuboid similarity search tree (CSS-tree) and 

the octree similarity search tree (OSS-tree). In his experiment, the performance of the 

CSS-tree is better than the OSS-tree’s, however the performance is up to the given 

data set. This method is used for searching similar 3D-volume objects and applicable 

for CAD and medical application. 
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 Zhang and Chen [23] propose methods to calculate physical properties of the 

object known as global features including surface area, volume, moments and Fourier 

transform from a 2D or 3D mesh representation. The proposed method is very 

efficient and often used in mechanics application to find the principal axis of the 

model, but it still need some improvement on computational time if many coefficients 

of Fourier transform are simultaneous used.  

Another method, using Fourier proposed by Vranić [24], converts spatial data 

into frequency data by using a coarse voxelization of 3D model as the input for the 

3D Discrete Fourier Transform. The more efficient on frequency domain features, the 

higher computational complexity. We have to choose between this tradeoff. In fact, if 

the model has more than one major axis, the pose-normalization module may not be 

stable. 

Osada et al. [25, 26] use a global feature as a search key for a 3D objects 

database. The main theme of this method is the idea of using random sampling to 

construct a continuous probability distribution and use it as a descriptor for 3D shape. 

This technique computes shape distributions of models using shape functions, which 

measure global geometric properties of the object, and compares these shape 

distributions, which measure properties based on distance, angle, area and volume 

measurements between random surface points, to find similarity. There are five 

different shape functions: A3, D1, D2, D3, and D4. In their conclusion, the D2 shape 

distribution function is most effective and suitable for representing features of shapes 

due to its robustness and efficiency. However, this type of search key cannot estimate 

local feature. 

Vandeborre et al. [27] use linear combination of curvature index, distance 

index [25] and volume index [23] to compute a similarity between objects. This 

mixing method can improve weakness of the single descriptor methods. This hybrid 

method between local feature and global feature has some geometric transformation 

invariant and robustness to noise, but it also has some limitation in the case of the 

non-regular mesh is used.  
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Although these techniques are very efficient, they cannot perfectly match the 

similar model and are usually applied for model pre-categorization in an object 

recognition system. There are many other methods, using geometric data for model 

comparison. These methods consider surface properties such as: harmonic shape 

image [28] which is usually used in computer vision. Light Field Descriptor is 

proposed by Chen et al. [29], which has the main idea that two models are similar if 

they look similar formal viewing angle. And surface normal vector [30] represented 

by extended Gaussian images. However, these methods will not be reviewed here. 

 

Topology-based methods 

Unlike geometry-based methods, these methods use topological graphs as 

shape descriptors to perform similarity assessment. These methods consider the 

model skeletons for model matching.  Biasotti [31] has summarized the recent 

topological techniques for shape understanding such as Morse theory and Reeb 

graphs. The selected reference papers for Morse theory and Reeb graph are [32, 33] 

and [34] respectively. These papers do not represent the model matching technique 

but they introduce some theoretical background for topological modeling and surface 

coding.  

Sundar et al. [35] present an explicit skeletons matching method. The skeleton 

is used as a shape descriptor to encode geometric and topological information. This 

skeleton is extracted by applying a 3D thinning process after model voxelization. 

Thus, this method, as a result of voxelization, may subject to quantization error and 

high computational cost. Moreover, this method may easily mismatch models which 

represent different objects but have similar skeleton. 

Chuang et al. [36] have discussed a well-known skeleton structure called 

medial axis model. The Medial Axis (MA) is the locus of the center of maximal balls 

contained within the object and the limit points of this locus. The maximal ball within 

an object is a ball contained in the objects but is not a proper subset of any other ball 

in the object. The medial axis transform (MAT) produced the medial axis together 

with the associated radius of the maximal ball around any given point on the medial 
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axis [37]. However, this 3D version of medial axis has a very high computational cost 

and is not robustness. 

The Reeb graph, first defined by Reeb [38] is a structure determined by a 

continuous scalar function defined on an object. Lazarus et al. [39] define the 

geodesic distance from a source point on a surface and constructed the Reeb graph 

called a Level Set Diagram by extracting the isovalued contours. Reeb graphs have 

been used for 3D shape modeling [39], visualization, morphing [40] and terrain 

modeling [41]. Hilaga et al. [8] propose a topological matching method used geodesic 

distance to construct multi-resolution reeb graph (MRG) for articulated objects. Chen 

[42] proposes a 3D model retrieval system based on MRG. This MRG system work 

very effective in many cases, however it may still be easy to mismatch different 

models with similar skeleton and may bebreak down when dealing with high 

complexity object. So, Bespalov et al. [43] introduce an adjustment of Hilaga’s 

method, which computes a scale-space decomposition of 3D models. 

Yu et al. [44] propose a hybrid method to combine topology and geometry 

information for model matching. However, this method cannot handle highly 

deformable object because of the significantly change on the deformed model’s 

center of mass.  

 
 



CHAPTER III  
 

CELLULAR STRUCTURED  
SPACE MODELING (CSS) 

 
In this research, we show how to apply cellular structured space described in 

chapter 2 for modeling 3D objects in computer graphics, and conduct some 

experiment on similarity assessment between them. First, we have to create models 

from this concept by inductively compose form zero dimensional cell which is a set 

of points to three dimensional cell or solid. We collected geometrical data of each cell 

in each dimensions and define graph structure representing attachment between each 

cell to compose entire object as topological data of arbitrary object. Once we have the 

coarse structure, which will be weighted graph-based or some quotient space of 

models, we apply appropriate graph or sub-graph similarity algorithm. The cellular 

structured space model can be created by hand in the specific application which we 

have developed one for this research shown in experiment section or converted from 

B-rep model such as polygonal mesh, but the later method will not be discussed here.   

 

3.1 Component of the model 

In this section, we describe the component of the cellular structured space 

model which is point, line, surface, and volume. Moreover, we collect the attribute of 

each component for representing geometrical data of the model such as color and 

luminosity diffuse. 

3.1.1 Point 

Point is a topological space that is homeomorphic to a zero dimensional open 

ball. It is represented by a 0-cell, . All cellular structured space models are first 

created from zero dimensional skeleton

0e
0X . We define 0X  as a set of points and 0X is 

a basis skeleton in inductive composing method for model construction. Point or 0-

cell  has attributes for representing geometrical data such as color and position. All 

points have no boundary so its child in CSSGraph is NULL. In figure 3-1, 

0e

{ }0
3

0
2

0
1

0
0

0 ,,, eeeeX =  is composed from a set of four points or zero dimensional open 
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ball,  and each points has geometrical data 0e ( )zyx ,,  to represent its position in 3D 

view as well as its color. 

 
Figure 3-1. Set of points. 

3.1.2 Line 

Line is a topological space that is homeomorphic to a one dimensional open 

ball, { 1,1 <ℜ∈= xxIntB }. It is represented by a 1-cell, . All lines have one or two 

boundary points, thus we collect this relation as its topological structure represented 

in CSSGraph by node with one child or two children. In case of two boundary points, 

the line or one dimensional cell is represented by straight line or curve which can be 

implemented by using NURB. 

1e

 

 
Figure 3-2. Lines with two boundary points. 

 
 



 38

 

In the other case, the line has only one boundary point. In this case the line is 

represented by a circle with attribute such as radius. 

 

 
Figure 3-3. Lines with one boundary point. 

 
Figure 3-4. Two types of line used to compose a cylinder. 

 

 We attach lines or 1-cell, , to zero dimensional skeleton 1e 0X  to construct 

{ },...,,, 1
2

1
1

1
0

01 eeeXX =  which is a one dimensional skeleton for the model. The 

geometrical data of lines are collected in attribute of 2-D cell node in CSSGraph such 

as weight and control point (if line is a NURB), curvature and radius. 
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3.1.3 Surface 

Surface is a topological space that is homeomorphic to a two dimensional 

open ball, { }1,22 <ℜ∈= xxIntB . It is represented by a 2-cell, . All surfaces have 

at least one line as its boundary and we collect this relation in term of graph to 

represent its topological data. We can compose surface by attaching two dimensional 

open ball to lines in

2e

1X . Basically, We use surface to construct boundary model or 

two dimensional skeleton 2X of the model, for example, as a tetrahedron has 4 

surfaces, a skeleton 2X can be obtained using 4 surfaces and 1X ; { }2
3

2
0

12 ,...,, eeXX = . 

Moreover, surfaces have properties or attributes for each cell such as color, material, 

texture, and luminosity diffuse. These properties are collected as geometrical data for 

the model. 

 

 
Figure 3-5. Surface attached to 1-D skeleton. 

 

3.1.4 Volume 

Volume or solid is a topological space that is homeomorphic to a three 

dimensional open ball, { }1,33 <ℜ∈= xxIntB . It is represented by a 3-cell, . We 

attach volume to boundary model for constructing solid model.  

3e
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3.2 Object Construction 

We can inductively compose a cellular structured space model X with finite 

sequence of skeleton pX  where and . 
{ }
U

3,2,1,0∈

=
p

pXX XXXXX ⊆⊆⊆⊆ 3210

Using part X and Y to create the model, we have two choices of combining 

these two parts. First, we union X  and Y. This operation is the same as in CSG. The 

other is attaching X  to Y, via attaching function f and attaching operation , where

 , and C is a disjoint union.  

C

~/XYXYY ff CC ==

 
Figure 3-6. Union operation. 

 

 
Figure 3-7. Attaching operation. 

 

We can compose cellular structured space models by starting from 0-

dimension structure called 0X , consisting of 0-cell elements which are points, and 

then attach  which is an attachment of 2-cell or edges 11
1

1 ... mii BBB CCC =

 
 



 41

to { }00
1

0 ,..., neeX = to construct 1X  which is a wire frame model. We use attaching 

function to indicate which cells are attached. 01: XBf ii →∂C

Suppose that the model has exactly surfaces, a skeleton k 2X  can be obtained 

by attaching surfaces, , to 22
1

2 ... kii BBB CCC = 1X  via attaching function 

. 12: XBg ii →∂C

Finally, we assume that the model has one solid body so 3X , consisting of a 

body and 2X , is obtained by attaching 3B  to 2X  via attaching function  
23: XBh →∂ ,    32323 eXBXX h CC ==

3.3 Data Structure of the Model 

Data structure of cellular structured space model is presented in this section. 

The structure of CSS model is straightforward and we implement the structure of the 

abstract model by using the concept of Object Oriented. An object oriented 

programming helps to categorize the same kind of objects, which are homotopically, 

topologically or geometrically equivalent. In an object oriented programming, we first 

create the abstract class that define the overall structure of the object and then create 

the object as an instance of the abstract class.  

To begin with, we define data structure of the cellular structured space model 

by create  for each cell in each dimension.  This table can be 

implemented as a class of object in specific dimension  and the data in that class are 

its properties and boundary information.  

1)( −×∂⊆ kk
i

k
i XBBTable

n

In 0-dimensional cell, it is a point, which has no boundary. This is an initial 

case; hence we created class, namely vertex, collecting data ( ) 3,, ℜ∈zyx ppp  and 

its properties such as color. 

In 1-dimensional cell, it is a line and its boundary is a point or zero 

dimensional cells defined above. Thus, we defined class, called line, to collect its 

two boundary points, which can be the same point, and its line properties such as 

color and curvature. To illustrate, we have 2 boundary cells for each line segment and 

if we have lines, then the table will look like this; for  n )( 1
AiBTable .,...,3,2,1 ni =

Table 3-1. Table for 1-dimensional skeleton. 
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)( 1
iBTable  

1
iB∂  0X  

1x  0
1e  

2x  0
2e  

 

This table is used for instancing the model, where ,  are two end points 

being identified with vertex point.  for

1x 2x
1

21 , iBxx ∂∈ .,...,3,2,1 ni =  

Likewise, surface is concerned as a 2-dimensional cell but its number of 

boundary is not constant. Therefore, we define class for surface, namely surface, 

with the vector of line and it properties, for example, 2-dimensional skeleton of a 

model with two surfaces; one is the triangle, the other is a circle. 

 

Table 3-2. Table for 2-dimensional skeleton. 

)( 2
1BTable  )( 2

2BTable  

2
1B∂  1X  2

2B∂  1X  

1λ  1
1e  1λ  1

1e  

2λ  1
2e    

3λ  1
3e    

 

Finally, we create class collecting its boundary, which is a vector of surface, 

for 3-dimensional cell and we called this class node. When two 3D objects are 

created and attached, we create an edge between their nodes in 3-dimensional cell and 

the edge is a class that has a data such as two pointers to node and weight of this 

edge.  For instance, 3X has three boundaries, thus we create 1 table with 

three rows of boundaries. 

)( 3
ABTable

 

 

Table 3-3. Table for 3-dimensional skeleton. 
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)( 3BTable  

3B∂  2X  

1π  2
1e  

2π  2
2e  

3π  2
3e  

 

We can combine all instance tables represented in each dimension into 1 table, 

namely CB-table. This table is used for showing situation and boundary relation 

between cell in  and  dimension of the model. k 1+k

Now, we have an abstract model in the form of abstract instance table. But, 

the model has some properties such as shape, color and material. To provide these 

properties, instantiating abstract model should be done.  

The abstract model that we created is in topology level which coordinate is 

insignificant. So, firstly, we have to set the coordinate system to the abstract model in 

this case we use Cartesian coordinate system. Then properties such as material, 

weight, color or coordinate are defined. Since each component is a manifold, the cell 

can be instantiated by a smooth parametric function. The following is an example of 

some properties for 0,1-dimensional cell. For finding structural similarity, these 

properties are not concerned as part of the features of two objects. On the other hand, 

if we have to assess geometric similarity, we can easily add these properties as part of 

distance function for finding structural and geometric similarity. 

 

( )10,0,50
1 === zyxeA a   ( )10,0,70

2 === zyxeA a  

( )0,0,40
3 === zyxeA a   ( )0,0,60

4 === zyxeA a  

( )10,5,10,2sin,2cos1
1 <<==== trztrytrxeA ππa  

( )10,7,10,2sin,2cos1
2 <<==== trztrytrxeA ππa  

( )10,10,0,271
3 <<==−= tzytxeA a  
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3.4 CSSGraph 

After we created Cell-Boundary table, CB-table, for each objects, we can 

represent them by graph structure called CSSGraph. The objective of this section is to 

present the graph representation of cellular structured space models and to illustrate 

the attachment between objects. 

Basically, the cellular structured space model begins with defining 0-

dimensional cell or set of points and incremental design is used to define the structure 

in higher dimensions. The 1+k -dimensional skeleton is composed from k -

dimensional skeleton by attaching 1+k -D cell to that skeleton via attaching map 

from boundary of -D cell to -D cell. Consequently, there is always a link or 

edge between  and -D cell; 

1+k k

1+k k { }2,1,0∈k . This hierarchical structure of the 

cellular structured space model is presented. Such structure is often represented as 

directed acyclic graph (DAG), where nodes represent the cell in different dimension 

and edges represent its boundary relation where the terminal node is said to be a 

boundary of the source node. 

We concern the object with one solid part, 3-dimensional cell. For general 

objects, we compose such objects by attaching different model with one solid part 

into complex objects with many solid parts. Thus, the rooted node of the DAG 

represented the cellular structured space model is unique for our model we concerned 

and stand for the 3-dimensional cell of the object. 

3.5 Example 

We have described the cellular structured space for some primitive models 

such as a tetrahedron, a cone and a cylinder. The cell in each dimension has to 

topological equivalent to an open ball in its dimension that is why a cylinder has three 

edges instead of two edges.   

     

Figure 3-8. A cellular structured for a cylinder. 
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In this section, we show how to model and implement the concept of cellular 

structured space by modeling 3 kinds of cups having different shapes and structures. 

First, we start from 0-dimensional structure called 0X , which are points, and we can 

display on screen as a pixel with three-color properties; red, green and blue 

components.  Next, we attach 1B  to 0X to construct 1X , which look like he wire-frame 

model. The 1B  attached with 0X  by attaching function can be implemented by a line 

segment. We can instance this 1-dimensional cell by set the properties such as color, 

equation for this line section. It is trivial in case of a straight line, and we will use B-

spline if the line is curve. In case of 2X and 3X , we use surface model for instancing 
2X  and solid model for 3X . We can inductively compose the skeleton of the model 

up to pX , constructing from attaching  to p
ii BC 1−pX  via attaching 

function . In section 2.1, we define our cellular structured space 

model as: 

1: −→∂ pp
ii XBf C

( ) ( )( )p
i

p
ii

pp BxxfxBXX ∂∈= − |~/1 CC  

In the real world, we cannot recognize objects that have the dimension more 

than three. To represent the object, the maximum p used is three. So we 

have 0X , 1X , 2X  and 3X  structure and geometric data for each cell to represent the 

model in 3D world by convert to polygonal mesh. Next we will model a teacup and 

then model a goblet by attaching two cylinders to teacup model as the example. 

We started from defining set of 0-dimensional cell, namely, . A skeleton 

 of a teacup consists of 4 points, is 

0
1X

0
1X 0

1X { }0
4

0
3

0
2

0
1 ,,, AAAA eeee A skeleton  is obtained 

from ;

1
1X

0
1X ( )10

1
1
1 AiiF BXX

Ai
CC=  , where Ν∈i and  0

1
1: XBF AiiAi →∂C

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
AAAAAAAAii BBBBBBBB CCCCCCC =  

{ }.: 0
1

1
11 AAA eBF →∂    { }.: 0

2
1

22 AAA eBF →∂  

{ }.,: 0
2

0
1

1
33 AAAA eeBF →∂    { }.,: 0

3
0

1
1

44 AAAA eeBF →∂  

{ }.,: 0
4

0
2

1
55 AAAA eeBF →∂    { }.: 0

3
1

66 AAA eBF →∂  

{ }.: 0
4

1
77 AAA eBF →∂  
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Figure 3-9.  and  structure of tea cup. 0
1X 1

1X

 

 A skeleton  is also obtained from  by attaching to , 2
1X 1

1X 2
iB∂ 1

1X

( )21
1

2
1 AiiG BXX

Ai
CC=  , where Ν∈i and  1

1
2: XBG AiiAi →∂C

2
5

2
4

2
3

2
2

2
1

2
AAAAAAii BBBBBB CCCCC =  

{ }.,,: 1
3

1
2

1
1

2
11 AAAAA eeeBG →∂    { }.,,: 1

6
1

4
1

1
2

22 AAAAA eeeBG →∂  

{ }.,,: 1
7

1
5

1
2

2
33 AAAAA eeeBG →∂    { }.: 1

6
2

44 AAA eBG →∂  

{ }.: 1
7

2
55 AAA eBG →∂     

We construct  by attaching 2-cell, , to 
 2

1X 2
ie 1

1X via attaching function . 

Finally, we attach to  for constructing a solid model of a tea cup. 

1AG

3
ie 2

1X

32
1

3
1 AH BXX

A
C=  , where  2

1
3: XBH AA →∂

{ }2
5

2
4

2
3

2
2

2
1

3 ,,,,: AAAAAAA eeeeeBH →∂  

       
(a)                                                              (b) 
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    (c)                                                         (d) 

      
(e)                                                       (f) 

Figure 3-10. Construction of  by attaching surfaces to 2D skeleton and  2
1X 3

1X

structure of a teacup. 

Next, a goblet is also represented by cellular structured space, . In this 

case, we started modeling the goblet from three parts, called A, B and C, and attached 

them together by attaching function to complete the goblet model. This model 

consists of 8 points and we used part A in the goblet from a teacup in the previous 

model. 

2X

{ }0
2

0
1

0
2

0
1

0
4

0
3

0
2

0
1

0
2 ,,,,,,, CCBBAAAA eeeeeeeeX =  

 
( ) ( ) ( )( )1110

2
1
2 CiiBiiAiiF BBBXX

ij
CCCCCC=  , where { }CBAi ,,∈ and 

 0
2

1: XBF ijiij →∂C

Part A: used the same function, and , as the teacup.  654321 ,,,,, AAAAAA FFFFFF 7AF
Part B: { }.: 0

1
1

11 BBB eBF →∂   { }.,: 0
2

0
1

1
22 BBBB eeBF →∂  { }.: 0

2
1

33 BBB eBF →∂  
Part C: { }.: 0

1
1

11 CCC eBF →∂   { }.,: 0
2

0
1

1
22 CCCC eeBF →∂  { }.: 0

2
1

33 CCC eBF →∂  
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Figure 3-11. Modeling the goblet from three parts; A,B and C. 
 

( ) ( ) ( )( )2221
2

2
2 CiiBiiAiiG BBBXX

ij
CCCCCC=  , where { }CBAi ,,∈ and 

 1
2

2: XBG ijiij →∂C

Part A: used the same function, and , as the teacup.  4321 ,,, AAAA GGGG 5AG
Part B: { }.: 1

1
2
11 BBB eBG →∂   { }.,,: 1

3
1

2
1

1
2

22 BBBBB eeeBG →∂  { }.: 1
3

2
33 BBB eBG →∂  

Part C: { }.: 1
1

2
11 CCC eBG →∂   { }.,,: 1

3
1

2
1

1
2

22 CCCCC eeeBG →∂  { }.: 1
3

2
33 CCC eBG →∂  

 
32

2
3
2 AHAA BXX

A
C=  , and  2

2
3: AAA XBH →∂

32
2

3
2 BHBB BXX

B
C=  , and  2

2
3: BBB XBH →∂

32
2

3
2 CHCC BXX

C
C=  , and  2

2
3: CCC XBH →∂

3
2

3
2

3
2

3
2 CBA XXXX CC=  

 
 



 49
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Figure 3-12.  and structure of the goblet. 2
2

1
2

0
2 ,, XXX 3

2X
Then, we combine A, B and C into one goblet by attaching them together via 

setting 0
1

0
4 BA ee =  (the point at the bottom of the teacup, part A, and the point at the top 

of cylinder B) and (the point at the bottom of the cylinder B, and the point at 

the top of cylinder C) 

0
1

0
2 CB ee =

This attaches  together, setting 1
2X 17 BA FF ≅  and 13 CB FF ≅ , thus we will get 

and . 1
1

1
7 BA ee = 1

1
1

3 CB ee =

This also attaches  together, setting 2
2X 15 BA GG ≅  and , therefore 

we have and . 
13 CB GG ≅

2
1

2
5 BA ee = 2

1
2

3 CB ee =

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-13. 
 3

2
3
2

3
2

3
2 CBA XXXX CC=
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3.5.1 Implementation of CSS 

We implement the abstract model for teacup described above. First, we 

implement the teacup designed above by create  for each 

cell in each dimension as proposed in section 3.3.  

3
1X 1)( −×∂⊆ kk

i
k
i XBBTable

In 0-dimensional cell, it is a point, which has no boundary. We have a one 

dimensional skeleton consist of 4 points. 

In 1-dimensional cell, it is a line and its boundary is a point or zero 

dimensional cells defined above. For this teacup, we have 7 tables for each line 

segment; for  )( 1
AiBTable .7,6,5,4,3,2,1=i

 

Table 3-4. Table for 1-dimensional skeleton of the teacup. 

)( 1
1ABTable  )( 1

2ABTable  )( 1
3ABTable  )( 1

4ABTable  

1
1AB∂  0X  1

2AB∂ 0X  1
3AB∂  0X  1

4AB∂  0X  

1x  0
1Ae  1x  0

2Ae  1x  0
1Ae  1x  0

1Ae  

2x  0
1Ae  

 

2x  0
2Ae  

 

2x  0
2Ae  

 

2x  0
3Ae  

)( 1
5ABTable )( 1

6ABTable )( 1
7ABTable   

1
5AB∂  0X  1

6AB∂ 0X  1
7AB∂ 0X  

1x  0
2Ae  1x  0

3Ae  1x  0
4Ae  

2x  0
4Ae  

 

2x  0
3Ae  

 

2x  0
4Ae  

 

These tables are used for instancing the model, where ,  are two end 

points being identified with vertex point.  for

1x 2x
1

21 , AiBxx ∂∈ .7,6,5,4,3,2,1=i  

Likewise, surface is concerned as a 2-dimensional cell but its number of 

boundary is not constant. For , 2-dimensional skeleton of this teacup, we create 5 

tables for each surface; for

2
1X

)( 2
AiBTable .5,4,3,2,1=i   
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Table 3-5. Table for 2-dimensional skeleton of the teacup. 

)( 2
1ABTable   )( 2

2ABTable  )( 2
3ABTable  )( 2

4ABTable   )( 2
5ABTable  

2
1AB∂  1X   2

2AB∂  1X  2
3AB∂  1X  2

4AB∂  1X   2
5AB∂  1X  

1λ  1
1Ae   1λ  1

1Ae  1λ  1
2Ae  1λ  1

6Ae   1λ  1
7Ae  

2λ  1
2Ae   2λ  1

4Ae  2λ  1
5Ae       

3λ  1
3Ae   3λ  1

6Ae  3λ  1
7Ae       

 

Finally, we create table for three dimensional skeleton of this teacup, 

namely, , which has five boundaries. Therefore, we create 1 table . 3
1X )( 3

ABTable

 

Table 3-6. Table for 3-dimensional skeleton of the teacup. 

)( 3
ABTable  

3
AB∂  2X  

1π  2
1Ae  

2π  2
2Ae  

3π  2
3Ae  

4π  2
4Ae  

5π  2
5Ae  

 

We combine all instance tables represented in each dimension to form CB-

table. This table for the teacup is composed of one three-dimensional cell, five two-

dimensional cells, and seven one-dimensional cells as shown in the following table. 
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Table 3-7. Cellular Structured Table for 3D Object. 

Cell Boundary 
3
Ae  2

1Ae  2
2Ae  2

3Ae  2
4Ae  2

5Ae  

2
1Ae  1

1Ae 1
3Ae 1

2Ae   

2
2Ae  1

1Ae  1
4Ae  1

6Ae  

2
3Ae  1

2Ae  1
5Ae  1

7Ae  

2
4Ae  1

6Ae  

2
5Ae  1

7Ae  

1
1Ae  0

1Ae  

1
2Ae  0

2Ae  

1
3Ae  0

1Ae  0
2Ae  

1
4Ae  0

1Ae  0
3Ae  

1
5Ae  0

2Ae  0
4Ae  

1
6Ae  0

3Ae  

1
7Ae  0

4Ae  

 

This table is created from the teacup composed from previous section. 
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Figure 3-14. and  2
1

1
1 , XX 3

1X structure of a tea cup. 

 

3.5.2 Graph Conversion 

Next, we show the graph representation of the cellular structured space model. 

Firstly, we create the rooted node, , which has four boundaries which are surface 

or 2-dimensional cell;  and , and these cell formed nodes in the 

lower level also have edges to their boundaries;  and . 

Other nodes and edges are constructed in the same manner. 

3
Ae
2

4
2

3
2

2
2

1 ,,, AAAA eeee 2
5Ae

1
6

1
5

1
4

1
3

1
2

1
1 ,,,,, AAAAAA eeeeee 1

7Ae
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Cell Boundary 

3
Ae  2

1Ae  2
2Ae  2

3Ae  2
4Ae  2

5Ae  

2
1Ae  1

1Ae 1
3Ae 1

2Ae   

2
2Ae  1

1Ae  1
4Ae  1

6Ae  

2
3Ae  1

2Ae  1
5Ae  1

7Ae  

2
4Ae  1

6Ae  

2
5Ae  1

7Ae  

1
1Ae  0

1Ae  

1
2Ae  0

2Ae  

1
3Ae  0

1Ae  0
2Ae  

1
4Ae  0

1Ae  0
3Ae  

1
5Ae  0

2Ae  0
4Ae  

1
6Ae  0

3Ae  

1
7Ae  0

4Ae  
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Figure 3-15. Graph representation of the cellular structured space for the teacup. 

 

We define a directed graph created from cellular structured space which have 

one three dimensional cell, Three-Dimensional Graph, ( )εν ,,, EVTDG = ; where V  

is set of cells in the model; E  is a set of edges where ( ) ⇒∈∈∀ EvuVvu ,,   is a 

boundary of u . 

v

( ).ν  is a function define value of cell properties. 

  Next, we create graph, called Object Graph, ( )εν ′′′′= ,,, EVOBG  for 

representing the structure of attaching between TDG  to compose objects; V  is a set 

of pointer to rooted node in TDG  which attach to this object; 

′

E ′  is a set of edges 

where  object v  and  are attached to each other; ( ) ⇒′∈′∈∀ EvuVvu ,, u ( ).ε ′  is a 

weight of the edge used for finding number of attaching cell between objects; ( ).ν ′  is 

function to locate cells which attach to the other object. 
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Figure 3-16. Graph representation of the attaching objects. 
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3.5.3 Similarity Assessment using CSS Model 

We compose TDG  to represent individual cellular structured space object 

with one 3D cell. OBG  is a graph of cellular structured space object composed from 

attaching objects with one 3D cell together with edges in this graph shown how 

objects attach to each other. We use these graphs for finding similarity between two 

objects. We assess similarity between twoTDGs andOBGs  by algorithm described in 

the appendix. We match cell in the same dimension by finding the maximum 

cardinality and minimum weight matching in each dimension. The illustration of 

matching is shown below. TDG

 
Figure 3-17. Illustration of the TDG matching algorithm. 

 
 



CHAPTER IV  
 

IMPLEMENTATION AND RESULTS 
 
 

4.1 Environment 

The proposed algorithm has been implemented in C++ with OpenGL library 

and MFC. The tests were performed on a Notebook with: An Intel Pentium4 M 2.0 

GHz processor, RAM 1 GB, and hard disk 100 GB. 

 

4.2 Implementation 

We develop the three dimensional modeling application for composing 

cellular structured space model. This application can be used to model simple objects 

and attach them to form a complex one, and also converting structure of cellular 

structured space model into graph structure described in chapter 4.  

 
Figure 4-1. Nodes are 3D objects and edges are attaching relation. 
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This application composes objects by using concept of cellular structured 

space described in chapter 2. We incrementally construct skeleton in each dimension 

starting from zero dimension. Once we have zero dimension skeleton which is a set of 

points, we select two end points to form a line or a circle. 

 
Figure 4-2. Modeling interface spitted into four views. 

Moreover, we can edit, view, translate and attach objects by graph interface. 

We can select the perspective view or other views and enlarge to full screen. 
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Figure 4-3. Full screen perspective views. 

 
Figure 4-4. Translate 0D cell, which is a point. 

 



 

 
 

62

 
Figure 4-5. Translate 1D cell, which is a line. 

 
Figure 4-6. Define attribute to each cell for similarity assessment. 
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Figure 4-7. TDG for a tetrahedron. 

 
Figure 4-8. A 2D skeleton of cellular structured space cylinder. 
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Figure 4-9. Adjust attribute for this 2D boundary circle such as radius. 

 
Figure 4-10. 2D boundary circle with different radius. 
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Figure 4-11. TDG for a cylinder. 

 After we create objects using this application, we can assess their similarity 

by using algorithm described in appendix. 

 
Figure 4-12. Calculating similarity between two objects. 
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4.3 Results 

We implement the modeling system in the last section and show the validity 

of cellular structured space modeling technique in real world application. In this 

section we compute the similarity between two cellular structured space models 

composed from our system. In order to test the feasibility of the similarity assessment 

algorithm on cellular structured space models, we conducted and tested an experiment 

on the following objects. 

Firstly, we find similarity between set of surface primitives; circle, triangle 

and square. 

 
Figure 4-13. Object (a) is a circular surface. 

 
Figure 4-14. Object (b) is a triangular surface. 
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Figure 4-15. Object (c) is a square surface. 

 

Table 4-1. Result of the first matching experiment; 5.0,,, =cωαβ . 

 a b c 

a 1.00 0.752778 0.724679

b 0.752778 1.00 0.924038

c 0.724679 0.924038 1.00 

 

 The similarity between the same object is always 1 as shown in diagonal line 

of Table 4-1. Triangle is more similar to square than circle.  

Matched nodes between (a) circle and (b) triangle are 4/4 in (a) and 4/8 in (b) , 

so the node similarity is 0.75, and matched edges between (a) and (b) is 3/3 and 3/10 

respectively; the edge similarity is 0.65. Moreover, the degree fraction is 0.611111 

between (a) and (b).  

Matched nodes between (a) circle and (c) square are 4/4 in (a) and 4/10 in (c) , 

so the node similarity is 0.7,  and matched edges between (a) and (c) is 3/3 and 3/13 

respectively; the edge similarity is 0.615385,  and the degree fraction is 0.583333 

between (a) and (c). 

Finally, matched nodes between (b) triangle and (c) square are 8/8 in (b) and 

8/10 in (c), so the node similarity is 0.9, and matched edges between (b) and (c) is 

10/10 and 9/13 respectively; the edge similarity is 0.846154, and the degree fraction 

is 0.95 between (b) and (c). 
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Secondly, we conduct a similarity assessment experiment in the set of three 

dimensional primitives; tetrahedron, cone and cylinder. 

 
Figure 4-16. Object (a) is a tetrahedron. 
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Figure 4-17. Object (b) is a cone. 

 
Figure 4-18. Object (c) is a cylinder. 
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Table 4-2. Result of the second matching experiment; 5.0,,, =cωαβ . 

 a b c 

a 1.00 0.744048 0.78631 

b 0.744048 1.00 0.843056

c 0.78631 0.843056 1.00 

 

 The similarity between the same object is always 1 as shown in diagonal line 

of Table 4-2. Similarity value between cone and cylinder is more than any pairs, 

because its matched nodes and edges are maximum and degree fraction is high. 

Matched nodes between (a) tetrahedron and (b) cone are 7/15 in (a) and 7/7 in 

(b) , so the node similarity is 0.733333, and matched edges between (a) and (b) is 

8/28 and 8/8 respectively; the edge similarity is 0.642857. Moreover, the degree 

fraction is 0.6 between (a) and (b).  

Matched nodes between (a) tetrahedron and (c) cylinder are 9/15 in (a) and 

9/9 in (c) , so the node similarity is 0.8,  and matched edges between (a) and (c) is 

12/28 and 12/12 respectively; the edge similarity is 0.714286,  and the degree fraction 

is 0.630952 between (a) and (c). 

Finally, matched nodes between (b) cone and (c) cylinder are 7/7 in (b) and 

7/9 in (c), so the node similarity is 0.888889, and matched edges between (b) and (c) 

is 8/8 and 6/12 respectively; the edge similarity is 0.75, and the degree fraction is 

0.733333 between (b) and (c). 

Moreover, we calculate the similarity between tetrahedron and cube and the 

result show that tetrahedron is similar to cube more than cone and cylinder. 

Matched nodes between tetrahedron  and cube are 15/15 in tetrahedron and 

15/27 in cube, so the node similarity is 0.777778, and matched edges between 

tetrahedron  and cube is 28/28 and 20/54 respectively; the edge similarity is 

0.685185, and the degree fraction is 0.878788 between tetrahedron  and cube 
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Figure 4-19. Cellular structured space model of a cube. 

 Next, we compare two cylinders with different attribute value in each 

dimensions; the attribute value in this research is uniform, range from 0-4, and 

concerned as a geometrical properties of the arbitrary cell. 

 We set the attribute of all cells in the first object to 4 and the second to 1, thus 

the similarity should be decrease and less than 1. The result shows that all nodes and 

edges are completely matched, degree fraction is also maximum, but the attribute 

difference is is 5.4/9 = 0.6; the attribute similarity is 0.4, and the similarity is 0.85. 

Furthermore, if we set 0=ω , the similarity between the two cylinders with different 

attribute value in each dimensions is 0.7. 



CHAPTER V  
 

CONCLUSION, DISCUSSION  
AND FUTURE WORK 

 
 

This research emphasizes on offering an idea, possibilities, algorithm and the 

experimental results in order to show a validity of using cellular structured space for 

modeling objects in computer graphics and finding their similarity as an example. 

The conclusion and discussion of this research in term of modeling method as well as 

future work are discussed in the following sections. 

 

5.1 Conclusion 

We propose a valid shape modeling using topology features for checking 

validity of the model called cellular structured space, starting from inductively 

compose a finite structure via attaching map. By this method, invariant and some 

topological properties are preserved and used for finding similarity of the 3D objects. 

The experimental result obviously shows that we can compose the object 

using cellular structured space modeling to divide it into smaller cells. We can attach 

or detach the small cells, while topological properties of the model still remain. Then, 

we can easily define the new object using other objects.  

It can reduce the redundancy of geometrical data. Comparing with several 

previous methods, we know that the redundancy is caused by the definition of 

fundamental objects. Therefore, further data collection is necessary to distinguish the 

difference. With the cellular structured space modeling, the structure of the object is 

defined as a collection of non-redundant attached cells in different dimensions.  

Proposed modeling method offers more variety of shape. It can construct both 

fundamental and complicated objects, while other methods such as “Primitive 

instancing” and “sweeps”, restrict the shape of object by types of primitives. 
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Moreover, results of operation to cellular structured are always in cellular structured 

space. This reserves the validity of the model 

We can model three-dimensional objects using cellular structured space 

concept starting from set of points, zero-dimensional cell, and construct a complete 

object by incrementally method via attaching higher dimensional cell to skeleton that 

already composed. Moreover, we have created the modeling application based on 

cellular structured space to show the concept and possibility of modeling object in the 

real world. Furthermore, we also created interface to find similarity between models 

created by this application. 

 The results gave in previous chapter show that the proposed algorithm can 

efficiently assess the similarity between cellular structured space models. However, 

the algorithm still needs improvement in some parts such as model partitioning before 

finding similarity, finding maximum cardinality minimum weight matching, finding 

maximum common subgraph, and determining whether selected lines can form a 

surface. In the experiment, we assume that models are partitioned by user in modeling 

process.  

The similarity measure presented in this research is based on comparing two 

graphs structure created from cellular structured space of models. Using these graphs, 

their similarity is not only computed based on internal structure of graphs but also 

takes into account node and edge attribute and attaching between objects in the graph 

are concerned. In addition, we can set the value of αω, or β   up to specific similarity 

assessment purpose. α  is a parameter in similarity function that weight between 

internal and external structure. If we desire to find only substructure in efficient way, 

we had better set α  to zero and β  to one. ω  is a parameter for finding similarity in 

two TDGs ,and weight between topology and attribute value of the two graphs. 

Using this similarity measure, we achieved exactly what we expected. It is 

possible to compare three-dimensional computer graphic models on the basis of their 

cellular structured space graphs and their attaching graphs. Hence, assumptions about 

the similarity of the model’s global structure can be made. However, the approach 

does not suit for a comparison of geometry features of the models. 
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5.2 Discussion 

 This modeling system can create and edit cellular structured space model; 

together with, displaying and collecting data structure of the composed cellular 

structured space model by using graph structure; TDGs  and OBG . Moreover, we 

assess the similarity between two cellular structured space models by comparing 

these graphs. In this application, there are some limitations in term of the input and 

rendering or displaying three dimensional objects.  

At this time, input objects loaded into program are cellular structured space 

object only. Converting general three dimensional objects to cellular structured space 

objects is our future work. Consequently, for finding similarity between two objects 

by using this proposed method, input objects have to be cellular structured space 

object composed by user either from our modeling application or type in text file and 

load into system. 

Another limitation of our modeling system is rendering the surface. 

Composing surfaces, 2D cells, require more additional work, because we construct 

surface from arbitrary number of lines, 1D skeleton. We have to determine whether 

the set of selected lines can form the surface; thus, the editor neglect displaying 

surface in the editor view. 

The interface of the modeling system is very suit for modeler, because we use 

the same lay out as some famous modeling applications such as Maya. This modeling 

method need some background knowledge about cellular structured space concept to 

model object correctly, however we can overcome this problem by including input 

procedure that convert three dimensional wire frame or mesh objects into cellular 

structured space model. 

This system is applicable for searching and matching models in database by 

using our proposed graph structure of cellular structured space models as a search key 

with some minor changes.    

Our similarity assessment algorithm based on finding similarity of two types 

of graphs. First, we have to assess similarity between two TDGs  which is a 

hierarchical directed graph with four levels. We apply maximum cardinality 

minimum weight matching for bipartite graph to assess their similarity. The other is 
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the similarity between two objects that have object graph structure which show how 

TDGs  are attached to formOBG . In this case, our algorithm is based on finding 

maximum common subgraph of twoOBGs . We will discuss about our proposed 

strategy in this section. 

We can improve the similarity assessment by using different and complex 

algorithm for finding maximum cardinality minimum weight matching in graph. The 

classic method is Edmond’ blossom algorithm which can be implemented by integer 

programming methodology. 

Graph structure in our research is collected as simple array with reference to 

its parent and child. Sometimes we can speed up an algorithm by using an efficient 

data structure that support the primitive operations used by the algorithm. In our case, 

the priority queue may be used. 

Our problem is due to the similarity of graphs, which is generally referred to 

graph matching. Early approaches were restricted to find graph or subgraph 

isomorphism between two graphs. Graph or subgraph isomorphism are beneficial to 

find whether two objects are identical or one object is part of the other. Both graph 

and subgraph isomorphism are limited in their use because real world identical 

objects are usually not exactly match. Consequently, we use the maximum common 

subgraph of two graphs as a main theme for similarity measure. 

Not only maximum common subgraph but also minimum common supergraph 

can be used. Their are some researches showing that finding minimum common 

supergraph is the same as finding maximum common subgraph. Consequently, we 

choose only one of them to represent the similarity. In contrast, we will not use edit 

distance to measure similarity in our research. The main difficulty when applying edit 

distance methods to the three dimensional objects similarity problem, is that there is 

no clear meaning for the edit operations. This problem mean that the similarity 

measure based on graph edit distance will return a value with little physical 

significance. In our case, maximum common subgraph is suitable for being a part of 

similarity assessment for cellular structured space model. 

There are numerous algorithms to determine the maximum common subgraph, 

however, two main algorithms are considered to be the fundamental. All other 
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algorithms follow the same idea, but have minor changes to enhance performance due 

to the specific application field. 

The first algorithm was proposed by McGregor [54], searching for the 

maximum common subgraph by finding all common subgraphs of the two given 

graphs and then choose the graphs with the largest size. The second algorithm by 

Durand and Pasari is well known for reduction of the maximum common subgraph 

problem to maximum clique problem [55]. We follow the first algorithm because our 

OBGs usually have low edge-density which convenient search for maximum common 

subgraph by finding all the subgraphs of he two given graphs. Moreover, we can 

improve performance of our maximum common subgraph algorithm by using 

efficient pruning technique to delete node that no need to traverse.  

Similarity function ( )21 ,TDGTDGSIM  use four parameters to calculate 

similarity between two TDGs ; nodep  and edgep  are used to assess how many nodes 

and edges are matched,  degreep  and attrp  are used to find cell properties and attribute 

similarity. We let user to set ω  to weight between node-edge and attribute similarity. 

In our implementation, we set the node attribute to constant value with range 

four. Consequently, an attribute function are still needed to improve he algorithm by 

defining suitable attribute value to different cell type.  

  Similarity function ( )21 ,OBGOBGOBSim  use exts  and ints  parameters to 

determine similarity between two OBGs . exts  assess the ratio of matched nodes and 

edges to the graph size. ints  calculate the similarity of their matching node compare 

with the node that they should match and the different in attaching function as an 

edge error; where β  is a weight defined by user for arbitrary weight edge or node 

similarity and α  is a weight defined by user for arbitrary weight internal or external 

structure similarity. 
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5.3 Future Work 

The application will be enhanced to convert objects from three dimensional 

mesh to cellular structured space and can edit these objects by this application. The 

presented algorithm could be further improved in the future by making use of; for 

example, a priority queue structure in maximum cardinality minimum weight 

matching. Furthermore, defining the primitive object may be useful for our approach.  

In addition, it would be interesting to consider the distance in geometric space. 

This would increase the performance of the algorithm for simple geometry models. In 

this context, a threshold could be introduced to achieve more exact results. Likewise, 

it would be possible to include line vector methods that could provide a preprocessing 

of the models as a key search in database. In order to achieve results that are similar 

not only in their external structure but also in their surface details, other information 

would have to be included. This could, for example, be achieved by using a suitable 

attribute function. 

The improvement of the maximum common subgraph and maximum 

cardinality minimum weight matching algorithm can be done in the near future 

because these two problems are prevalent in many researches. 
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Maximum cardinality minimum weighted bipartite matching 

Given two graph 1G and 2G , ( )EGGH ,, 21=  is a weighted bipartite graph 

with weight matrix [ ]vuwW ,=  of size 21 GG ×  if, for all edges of the form 

( ) 21 ,,, GvGuEvu ∈∈∈ and ( )vu,  has an associated weight = vuw ,  or [ ]vuW , . Solving 

the maximum cardinality minimum weight matching in H  solves an optimization 

problem which tries to minimize total edge weight on one hand while trying to 

maximize total number of matched nodes in the matching matrix on he other hand.   

The input consists of a undirected graph ( )EGGH ,, 21= . The vertices represent 

nodes or objects in our case, and each edge represents the possibility that its 

endpoints are matched. A matching M  is a subset of the edges such that no two 

edges in M  share a vertex. We first introduce the maximum cardinality matching in 

bipartite graphs. In this problem, the vertices are partitioned into two set, and an edge 

can only join between this two sets. We look for a matching with the maximum 

cardinality. 

Given a matching M  in a bipartite graph ( )EGGH ,, 21= , a simple path in 

H is called a augmenting path with respect to matching M  if its two endpoints are 

both unmatched, and its edge are alternatively in ME − and in M . 

 
Figure A-1. Alternating path. 

A matching M  is not maximum if and only if there exists an augmenting path 

relative to M . The following algorithm use this truth to find a maximum cardinality 

matching for bipartite graphs. 

1. M is an arbitrary matching. All nodes are unlabeled and unscanned. 

2. If no nodes are exposed, a node v  is said to be exposed relative to M  if no edges 

of M  meets v , and unlabeled, the current matching is maximum. Otherwise 

choose an exposed and unlabeled node r . Label it ( )−,E . 
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3. Choose a labeled and unscanned node i . 

3.1. If it is even, let { }ijVjJ  ofnighbor  unlabeledan  is :∈= . Label all Jj∈  

with ( )iO, . Node i  is scanned; go to step 4. 

3.2. If i is odd and exposed, go to step 5. 

3.3. If i  is odd and not exposed, label the node joined to i  by a matching edge 

( )iE, . Node i  is scanned; go to step 4. 

4. If there is a labeled and unscanned node, go to step 3; otherwise go to step 2. 

5. Use the second components of the labels to identify the augmenting path from 

node  r  to i . Remove all labels, update the matching, and return to step 2. 

 

For the matching M . Its total weight of matching M  is defined as 

( ) ( )∑
∈

=
Me

ewMw  

Let M ′  be a set of edges, then an incremental weight M ′Δ  is defined as the 

total weight of the unmatched edges in M ′  minus the total weight of the matched 

edges in M ′ . 

( ) ( )MMwMMwM ∩′−−′=′Δ  

We find the augmenting path p with respect to M , which increase the net 

change in the weight of the matching after augmenting p . 

We can use an algorithm described above to find a maximum cardinality 

minimum weight matching. Initially, we change the minimum weight matching 

problem to maximum weight matching problem by finding the maximum weight 

in max;wM , and set new weight to W  as followed;  

( ) ( )ewwew −=′ max . 
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At each iteration, the matching M  is increased by finding an augmenting path 

of maximum incremental weight. We can search for all possible alternating paths 

from unmatched vertices simultaneously in a breath-first manner. 

Moreover, we can use algorithm for solving assignment problem to find 

maximum weight matching for bipartite graph (also minimum weight matching). This 

algorithm, namely Munkres' Assignment Algorithm or Hungarian Algorithm, 

describes to the manual manipulation of a two-dimensional matrix by starring and 

priming zeros and by covering and uncovering rows and columns. This algorithm is 

an another choice for finding maximum weight matching in graph. 

1. Create an mn×  matrix called the cost matrix in which each element represents 

the cost of assignment.  Rotate the matrix so that there are at least as many rows 

as columns and let ( )mnk ,min= . 

2. For each row of the matrix, find the smallest element and subtract it from every 

element in its row.  Go to Step 3. 

3. Find a zero in the resulting matrix.  If there is no starred zero in its row or column, 

star Z. Repeat for each element in the matrix. Go to Step 4. 

4. Cover each column containing a starred zero.  If K columns are covered, the 

starred zeros describe a complete set of unique assignments.  In this case, Go to 

step 8, otherwise, Go to Step 5.  

5. Find a noncovered zero and prime it.  If there is no starred zero in the row 

containing this primed zero, Go to Step 6.  Otherwise, cover this row and uncover 

the column containing the starred zero. Continue in this manner until there are no 

uncovered zeros left. Save the smallest uncovered value and Go to Step 7.  

6. Construct a series of alternating primed and starred zeros as follows.  Let Z0 

represent the uncovered primed zero found in Step 5.  Let Z1 denote the starred 

zero in the column of Z0. Let Z2 denote the primed zero in the row of Z1.  

Continue until the series terminates at a primed zero that has no starred zero in its 

column.  Unstar each starred zero of the series, star each primed zero of the series, 

erase all primes and uncover every line in the matrix.  Return to Step 4.  
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7. Add the value found in Step 5 to every element of each covered row, and subtract 

it from every element of each uncovered column. Return to Step 5 without 

altering any stars, primes, or covered lines.  

8. Assignment pairs are indicated by the positions of the starred zeros in the cost 

matrix.  If ( )jiC ,  is a starred zero, then the element associated with row i  is 

assigned to the element associated with column j . 

 

Similarity between TDGs 

In this section, we describe an algorithm, which find the similarity between 

twoTDGs ; ( )
11

,,, 111 ev ffEVTDG = and ( )
22

,,, 222 ev ffEVTDG = . The main theme of 

this algorithm is to find a maximum cardinality minimum weight matching between 

vertices of 1TDG and 2TDG  which lie in the same dimension and the similarity 

function, ( )21 ,TDGTDGSIM , which is calculated from a real-valued function, 

mattop simsim , , defined on the set of all partial mappings matrix, M . Our error 

function consists of two main parts with respect to any partial mapping matrix. On 

defining the similarity function, we would like to increase similarity in term of their 

topology and node attribute, and we would like to decrease similarity the more they 

exclude nodes from the two TDGs . 

( ) ( ) mattop simsimTDGTDGSIM ωω −+= 1, 21  

( ) ( ) 2/,2/ deg attrreematedgenodetop ppsimppsim +=+=  
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[ ] ( ) ( )
∑
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where 10 ≤≤ ω  is a weight defined by user for arbitrary weight topology or attribute 

similarity; default value of ω  is 0.5 and M  is partial mappings matrix with 

maximum cardinality, minimum weight matching between 1TDG and 2TDG . We 

define the partial mapping matrix M , between 1TDG and 2TDG , 21 VV × , 

{ }1,0 matrix as follows: 

[ ]
Otherwise

vmatchuTDGvTDGuif
vuM

,,
0
1

, 21 ∈∈

⎩
⎨
⎧

=  

Obviously, in the case of perfect similarity, ( ) 1, 21 =TDGTDGSIM , while 

( ) 0, 21 =TDGTDGSIM  if there is no match. 

nodep  is a ratio of matched nodes to number of node in 1TDG and 2TDG . 

edgep  is a ratio of matched edges to number of edge in 1TDG and 2TDG . 

degreep  is a ratio between degree of matched nodes to in 1TDG and 2TDG . 

attrp  is a ratio of attribute difference value of matched nodes to attribute range 

value in 1TDG and 2TDG  in level i. 

 

Solving for a maximum cardinality, minimum weight matching involves 

choosing a subset of the edges in the bipartite graph which provide a one-to-one 

mapping, whose sum edge weights (distance) is small, and whose cardinality is high 

TDGs  can categorize cells or vertices into 4 levels; 3D cell in level 0, 2D 

cells in level 1, 1D cells in level 2, and 0D cell in level 3.  The similarity between 

TDGs  is determined by the algorithm implemented from the following steps.  

 

1. Match 3D cell at level 0 in 1TDG and 2TDG , namely 0M . 

2. Algorithm starts with the 2-dimensional cells in level 1=i . 

3. In phase i , the algorithm considers the i−3 D cells or vertices in level i . 
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4. Let iU  and iV  is the set of i−3 D cells or vertices of level i  in 1TDG and 2TDG  

respectively. 

5. Construct a weighted bipartite graph ( )EVUG ii ,,=  of which ( )vu,  is an edge of 

G  if they have at least one matched parent in level 1−i ; basically, there is a parent 

( )up  of u  and ( )vp  of v  such that ( ) ( )( ) 1, −∈ iMvpup . 

6. We define weight of the edge ( ) ii VvUuvu ∈∈ ,,  to be ( ) ( )vdud ++ −  + 

( ) ( )vfuf vv 21
−  where ( ).+d  is the number of edge pointed to child node in level 1+i  

and ( ).
jvf  is value of cell properties or attribute in jTDG . Note that if 3=i  

then ( ) 0, =∈∀ + udVUu ii , because vertex has no boundary, and if the weight is equal 

who choose the matching due to the edge ratio, ( )
( ) ( ) ( )vdud
vd
ud ++

+

+

≤, . 

7. We find a maximum cardinality, minimum weight matching iM  in G . 

8. If 3<i , move to next level (go to step 3 and ++i ). The algorithm terminates 

after 3 phases. 

9. We compute the partial mapping M from the union of all iM  values for 3,..,0=i . 

10. Finding similarity between 1TDG and 2TDG  by ( )21 ,TDGTDGSIM  and the partial 

mapping M . 
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Similarity between OBGs 

The similarity between objects after they are already attached can perform by 

determining the maximum common subgraph of two OBGs  with four concerns; 

• Maximum node 

• Edge attribute and minimum degree difference 

• Maximum ( )21 ,TDGTDGSIM  for each TDG  matched 

In this section we present an algorithm to determine the similarity between 

two objects composed from cellular structured space method. Inputs are two objects 

with their OBG  of which node is a pointer to its TDGs  and edge is a number of 

attachment to this node, ( )21 ,OBGOBGOBSim . 

 

1. First, we create matrix S of size 
21 OBGOBG VV ×  where each elements defined as 

follow:  

[ ] ( ) 21 ,,, OBGvOBGuvuSIMvuS ∈∈∀=  

2. Starting from one node from each graph. 

3. We attempt to enlarge the current common subgraph called current state, by 

adding feasible matching pairs, which are connected to the current common subgraph. 

4. If there are multiple feasible pairs exist in the current state, we follow one pair 

and save the decision state for backtracking. 

5. The subgraph detection ends when there is no more pairs are feasible for each 

state, and every state has been backtracked.  

6. We select the common subgraph with the maximum node, maximum SIM value 

between matching node, and minimum edge error respectively. 

7. We call the maximum common subgraph ( )εν ˆ,ˆ,ˆ,ˆˆ EVG =  

8. We calculate the similarity between two OBGs  by concerning external and 

internal structure similarity; 
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8.1. For external structure similarity, we calculate the average ratio between 

number of node and edge in Ĝ  to those in 1OBG  and 2OBG  as followed; 
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( )

( )
( )
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1

ˆ1ˆ

1

ˆ1ˆ

2
1

2211

≤≤
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−+
= c

EcVc

EcVc

EcVc

EcVc
s

OBGOBGOBGOBG
ext  

8.2. For internal structure similarity, we calculate similarity between matching 

node and different in edge attribute. 
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 21 , ff  is the subgraph isomorphism between Ĝ  and 1OBG , and Ĝ  and 2OBG  

respectively. 

 10 ≤≤ β  is a weight defined by user for arbitrary weight edge or node 

similarity; default value of β  is 0.5 

9. Finally, we assess the similarity between two objects by 

 

( ) ( ) 10;1, int21 ≤≤−+= ααα ssOBGOBGOBSim ext  

 where α  is a weight defined by user for arbitrary weight internal or external 

structure similarity; default value of α  is 0.5 

 

Complexity 

The complexity of ( )21 ,TDGTDGSIM  is determined from the following steps. 

Given vTDGuTDG == 21 , . All TDGs  have four levels and the first level have one 

node and always matched. We assume that nodes in each level is equal, so we create 

bipartite graph ( )ETDGTDGH ,, 21=  at each level where number of nodes is ( )
3

vu +  

and number of edges is wE = .  First we compose a bipartite graph at each level and 

finding its weight from its attribute and degree to its children; ⎟
⎠
⎞

⎜
⎝
⎛Θ

9
uv . Next, we find 
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maximum cardinality minimum weight bipartite matching; the complexity is due to 

the implemented algorithm. ( )( )wvu 2+Ο  by using IP, if we implement Edmonds’ 

algorithm, ( ) ( ) ( )( )vuvuvu +++Ο loglog2 , using the scaling algorithms of Gabow, 

Gomans and Williamson. Once we have this matching matrix, we calculate their 

similarity between two graphs. Complexity is ⎟
⎠
⎞

⎜
⎝
⎛Θ

9
uv  for finding reeedgenode ppp deg,, , 

and attrp , ( )1Θ  for ( )21, and , TDGTDGSIMsimsim mattop . Consequently, in this method 

the complexity is bounded by maximum cardinality minimum weight bipartite 

matching procedure. 

 For ( )21 ,OBGOBGOBSim , object similarity, the complexity corresponds to the 

following steps; Given mOBGnOBG == 21 , . First, we create matrix S of size 

21 OBGOBG VV ×  where each elements defined 3D node similarity, ( )21 , TDGTDGSIM , 

thus the complexity is ( )nmΘ . Next, the complexity of finding maximum common 

subgraph is, ( ) ( ) ( ) ( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
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⎛
−

++
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+
+−

+
−

Ο
!1

1...
!2

1
!1

1
!

1!
nmnmnmn

n which can be 

approximated by ( )!ne ⋅Ο , implemented by using stack and state collecting matching 

matrix. For calculating the similarity between two OBGs  by concerning external and 

internal structure similarity, int and ssext , the complexity is ( )nmΘ  and ( )1Θ  for assess 

the similarity between two objects by ( )21 ,OBGOBGOBSim . Obviously, the most 

computing time is dedicated to find maximum common subgraph. Unfortunately, at 

this present, there is no polynomial time algorithm exists. Comparing with the 

complexity if we implement by using maximum clique detection, the complexity is 

( )
( ) ( )!
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!1 nn

mn
n
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