

CHAPTER IV

CONTINUOUS SOLUTIONS OF f(x + y) = g(x)f(y) + g(y)f(x) ON THE SET OF ALL NON-NEGATIVE REAL NUMBERS

In this chapter, we apply the results in the previous chapter to obtain all the continuous functions f, g from R^+U [0] into C such that

(*)
$$f(x + y) = g(x)f(y) + g(y)f(x)$$

holds for all x, y in R+U (0).

DEFINITION 4.1 By a continuous solution of the functional equation

(*)
$$f(x + y) = g(x)f(y) + g(y)f(x)$$

on $\mathbb{R}^+ U \{0\}$ into \mathbb{C} , we mean a solution (f,g) of (*) such that f,g are continuous functions on $\mathbb{R}^+ U \{0\}$ into \mathbb{C} .

We can see that any ordered pair (f,g), where f is identically zero, and g is an arbitrary continuous function on R^+U $\{0\}$ into C, is a continuous trivial solution of (*) on R^+U $\{0\}$. Next, we shall consider the continuous non-trivial solutions on R^+U $\{0\}$ into C.

THEOREM 4.2 Let f, g be functions on R⁺U {0} into C. Then

(f,g) is a continuous non-zero-type solution of

(*)
$$f(x + y) = g(x)f(y) + g(y)f(x)$$

on R U {0} if and only if f, g are of the form

(4.2.1)
$$\begin{cases} f(x) = \beta q^{x}, \\ g(x) = \frac{1}{2} q^{x} \end{cases}$$

for all x in \mathbb{R}^+ \cup {0}, where β , $q \in \mathcal{C}^*$.

PROOF Let (f,g) be a continuous non-zero-type solution of (*) on $\mathbb{R}^+ \cup \{0\}$ into C. By theorem 3.2, then there exists β in C and a homomorphism g on $\mathbb{R}^+ \cup \{0\}$ into C such that

$$(4.2.2) \begin{cases} f(x) = \beta \ddot{g}(x), \\ g(x) = \frac{1}{2} \ddot{g}(x) \end{cases}$$

for all x in $\mathbb{R}^+ \cup \{0\}$. Since g is continuous on $\mathbb{R}^+ \cup \{0\}$ and $\widetilde{g}(x) = 2g(x)$ for all x in $\mathbb{R}^+ \cup \{0\}$, hence \widetilde{g} is a continuous homomorphism on $\mathbb{R}^+ \cup \{0\}$. It follows from theorem 2.16 that (4.2.3) $\widetilde{g}(x) = \widetilde{g}(1)^X$

for all x in $\mathbb{R}^+ \cup \{0\}$. Let q = g(1). From (4.2.2) and (4.2.3), it follows that f, g must be \cup f the form (4.2.1),

Next, assume that f, g are functions on $\mathbb{R}^+ \cup \{0\}$ into \mathbb{C} of the form (4.2.1). It is well-known that f, g are continuous functions on $\mathbb{R}^+ \cup \{0\}$. Observe that for any x, y in $\mathbb{R}^+ \cup \{0\}$,

$$(4.2.4) \quad g(x)f(y) + g(y)f(x) = \frac{1}{2}q^{X} \cdot \beta q^{Y} + \frac{1}{2}q^{Y} \cdot \beta q^{X},$$

$$= \beta q^{X+Y},$$

$$= f(x + y).$$

From (4.2.1), we see that (4.2.5) f(0) = $\beta \neq 0$.

Therefore, (f,g) is a continuous non-zero-type solution of (*) on $\mathbb{R}^+ \cup \{0\}$.

Next, we shall consider the continuous non-trivial zero-type solution of (*) on $\mathbb{R}^+ \cup \{0\}$ into \mathbf{C} . Let $\{a_n\}$ be a sequence of positive real numbers such that $a_n = 2a_{n+1}$ for all n in \mathbf{P} . For any n in \mathbf{P} , Let $S_n = \langle a_n \rangle$ be the cyclic monoid generated by a_n .

We can see that S_n is a subset of S_{n+1} for all n in p and $S = U S_n$ is a dense subset of R^+U {0}. We shall determine a certain class of non-trivial solutions of

(*)
$$f(x + y) = g(x)f(y) + g(y)f(x)$$

on S into C . First, we need the followings lemmas.

LEMMA 4.3 Let S_n and S be as defined above. Let (f,g) be a solution of

(*)
$$f(x + y) = g(x)f(y) + g(y)f(x)$$

on S into c. For each n in p, let f_n , g_n be the restrictions of f, g respectively on S_n . Then

$$(4.3.1) 2g_n(a_n)^2 - g_n(2a_n) = \left[2g_{n+1}(a_{n+1})^2 - g_{n+1}(2a_{n+1})\right]^2$$

and

$$(4.3.2) \quad g_n(a_n)^2 - g_n(2a_n) = 4g_{n+1}(a_{n+1})^2 \left[g_{n+1}(a_{n+1})^2 - g_{n+1}(2a_{n+1}) \right]$$
for all n in p .

PROOF Since g_n is the restriction of g_{n+1} and $a_n = 2a_{n+1}$, hence $2g_n(a_n)^2 - g_n(2a_n) = 2g_{n+1}(2a_{n+1})^2 - g_{n+1}(4a_{n+1})$.

By lemma 3.7, it follows that

$$2g_{n}(a_{n})^{2} - g_{n}(2a_{n}) = 2g_{n+1}(2a_{n+1})^{2} - \left[g_{n+1}(a_{n+1})g_{n+1}(3a_{n+1}) + \left[g_{n+1}(2a_{n+1}) - g_{n+1}(a_{n+1})^{2}\right] \right] \left[g_{n+1}(2a_{n+1}) + 2g_{n+1}(a_{n+1})^{2}\right] \left[g_{n+1}(2a_{n+1}) + 2g_{n+1}(a_{n+1})^{2}\right] \left[g_{n+1}(2a_{n+1})^{2} + 2g_{n+1}(a_{n+1})^{2}g_{n+1}(2a_{n+1}) + 2g_{n+1}(a_{n+1})^{2}g_{n+1}(2a_{n+1}) - 2g_{n+1}(a_{n+1})^{4} + g_{n+1}(a_{n+1})^{2}g_{n+1}(3a_{n+1}) - 2g_{n+1}(a_{n+1})^{4} + g_{n+1}(a_{n+1})^{2}g_{n+1}(3a_{n+1}) \right] \left[g_{n+1}(2a_{n+1})^{2} - g_{n+1}(a_{n+1})^{2}g_{n+1}(2a_{n+1}) + 2g_{n+1}(a_{n+1})^{4} - g_{n+1}(a_{n+1})^{2}g_{n+1}(a_{n+1})^{2}\right] \left[g_{n+1}(a_{n+1})^{2}g_{n+1}(a_{n+1})^{2}\right] \left[g_{n+1}(a_{n+1})^{2}g_{n+1}(a_{n+1})^{$$

$$= g_{n+1}^{(2a_{n+1})^2} - g_{n+1}^{(a_{n+1})^2} g_{n+1}^{(2a_{n+1})} + 2g_{n+1}^{(a_{n+1})^4}$$

$$= g_{n+1}^{(a_{n+1})^2} g_{n+1}^{(2a_{n+1})^2} - 2g_{n+1}^{(a_{n+1})^2} g_{n+1}^{(2a_{n+1})}$$

$$+ 2g_{n+1}^{(a_{n+1})^4} ,$$

$$= g_{n+1}^{(2a_{n+1})^2} - 4g_{n+1}^{(a_{n+1})^2} g_{n+1}^{(2a_{n+1})} + 4g_{n+1}^{(a_{n+1})^4} ,$$

$$= \left[g_{n+1}^{(2a_{n+1})^2} - 2g_{n+1}^{(a_{n+1})^2} \right]_{n+1}^{2} .$$

Therefore, (4.3.1) holds for all n in P.

To prove (4.3.2). Since g_n is the restriction of g_{n+1} and $a_n = 2a_{n+1}$, hence

$$(4.3.3)$$
 $g_n(a_n)^2 = g_{n+1}(2a_{n+1})^2$

and

$$g_{n}^{(2a_{n})} = g_{n+1}^{(4a_{n+1})}$$

By lemma 3.7, we have

$$(4.3.4) \quad g_{n}(2a_{n}) = g_{n+1}(a_{n+1})g_{n+1}(3a_{n+1}) + \left[g_{n+1}(2a_{n+1}) - g_{n+1}(a_{n+1})^{2}\right] \left[g_{n+1}(2a_{n+1}) + 2g_{n+1}(a_{n+1})^{2}\right],$$

$$= g_{n+1}(a_{n+1}) \left[g_{n+1}(a_{n+1})g_{n+1}(2a_{n+1}) + \left[g_{n+1}(2a_{n+1}) - g_{n+1}(a_{n+1})^{2}\right]\right] + \left[g_{n+1}(2a_{n+1}) - g_{n+1}(a_{n+1})^{2}\right] \left[g_{n+1}(2a_{n+1}) - g_{n+1}(2a_{n+1})^{2}\right],$$

$$= g_{n+1}^{(a_{n+1})^2} g_{n+1}^{(2a_{n+1})^2} + 2g_{n+1}^{(a_{n+1})^2} g_{n+1}^{(2a_{n+1})}$$

$$- 2g_{n+1}^{(a_{n+1})^4} + g_{n+1}^{(2a_{n+1})^2}$$

$$+ 2g_{n+1}^{(a_{n+1})^2} g_{n+1}^{(2g_{n+1})^2} - g_{n+1}^{(a_{n+1})^2} g_{n+1}^{(2a_{n+1})^4}$$

$$- 2g_{n+1}^{(a_{n+1})^4},$$

$$= g_{n+1}^{(2a_{n+1})^2} + 4g_{n+1}^{(a_{n+1})^2} g_{n+1}^{(2a_{n+1})}$$

$$- 4g_{n+1}^{(a_{n+1})^4}.$$

It follows from (4.3.3) and (4.3.4) that

$$g_{n}(a_{n})^{2} - g_{n}(2a_{n}) = 4g_{n+1}(a_{n+1})^{4} - 4g_{n+1}(a_{n+1})^{2}g_{n+1}(2a_{n+1}),$$

$$= 4g_{n+1}(a_{n+1})^{2} \left[g_{n+1}(a_{n+1})^{2} - g_{n+1}(2a_{n+1})\right],$$

Therefore, (4.3.2) holds.

LEMMA 4.4 Let S_n, S be as in lemma 4.3. Let (f,g) be a non-trivial zero-type solution of

(*)
$$f(x + y) = g(x)f(y) + g(y)f(x)$$

on S into C. For each n in P, let f_n , g_n be the restrictions of f, g respectively on S_n .

If (f_n, g_n) is also a non-trivial zero-type solution of (*) on s_n for all n in p and there exists an n_0 in p such that (f_n, g_n) is a type I solution of (*) then (f_n, g_n) is

a type I solution of (*) for all n in P and f, g are given by

$$\begin{cases} f(ta_n) = \beta(q_{11}^{\frac{t}{2^{n-1}}} - q_{21}^{\frac{t}{2^{n-1}}}), \\ \frac{t}{g(ta_n)} = \frac{1}{2}(q_{11}^{\frac{t}{2^{n-1}}} - q_{21}^{\frac{t}{2^{n-1}}}) \end{cases}$$

for all t in N, for all n in p, where β , q_{11} , $q_{21} \in C^*$, and $q_{11} \neq q_{21}$, where $q_{ij} = q_{in}$; i, j = 1, 2.

PROOF Let (f,g) be a non-trivial zero-type solution of (#) on g into g such that (f_n, g_n) is also a non-trivial zero-type solution of (#) on S_n for all n in \mathbb{P} .

Let (f_{n_0}, g_{n_0}) be a type I solution of (*) on S_{n_0} . Hence $(4.4.2) \ 2g_{n_0}(a_{n_0})^2 - g_{n_0}(2a_{n_0}) \neq 0$

and

$$(4.4.3)$$
 $g_{n_0}(a_{n_0})^2 \neq g_{n_0}(2a_{n_0}).$

It follows from (4.3.1) in lemma 4.3 that

(4.4.4) $2g_n(a_n)^2 - g_n(2a_n) \neq 0$ iff $2g_{n+1}(a_{n+1})^2 - g_{n+1}(2a_{n+1}) \neq 0$ for all n in \mathbb{P} . By using (4.4.2) and (4.4.4) we can verify, by mathematical induction, that

$$(4.4.5)$$
 $2g_n(a_n)^2 - g_n(2a_n) \neq 0$

for all n in p such that $n \ge n_0$.

Suppose that

$$(4.4.6)$$
 $2g_{k_0}(a_{k_0})^2 - g_{k_0}(2a_{k_0}) = 0$

for some k_0 in p such that $k_0 < n_0$. By using (4.4.4) and (4.4.6), we can verify, by mathematical induction, that

$$(4.4.7)$$
 $2g_k(a_k)^2 - g_k(2a_k) = 0$

for all $k \ge k_0$. But this is contrary to (4.4.2).

Therefore

$$(4.4.8)$$
 $2g_n(a_n)^2 - g_n(2a_n) \neq 0$

for all n in p such that $n < n_0$. From (4.4.5) and (4.4.8), we have

$$(4.4.9)$$
 $2g_n(a_n)^2 - g_n(2a_n) \neq 0$

for all n in P.

It follows from (4.4.3) that

$$(4.4.10)$$
 $g_{n_0}(a_{n_0})^2 - g_{n_0}(2a_{n_0}) \neq 0.$

From (4.3.2) in lemma 4.3, we have

$$(4.4.11)$$
 $g_n(a_n)^2 - g_n(2a_n) = 4g_{n+1}(a_{n+1})^2 \left[g_{n+1}(a_{n+1})^2 - g_{n+1}(2a_{n+1})\right]$

for all n in P • From (4.4.10) and (4.4.11), we can see that if

$$g_{k}(a_{k})^{2} - g_{k}(2a_{k}) \neq 0$$

for any k in p such that $k \ge n_0$, then

$$g_{k+1}(a_{k+1})^2 - g_{k+1}(2a_{k+1}) \neq 0.$$

Hence, by mathematical induction, we can conclude that

$$(4.4.12)$$
 $g_n(a_n)^2 - g_n(2a_n) \neq 0$

for all n in P such that $n \ge n_0$.

Now, suppose that there exists k_0 in p such that $k_0 < n_0$ and (4.4.43) $g_{k_0}(a_{k_0})^2 - g_{k_0}(2a_{k_0}) = 0$.

Assume that

$$(4.4.14)$$
 $g_k(a_k)^2 - g_k(2a_k) = 0$

for any k in \mathbb{P} such that $k \ge k_0$. From (4.4.11) and (4.4.14), it follows that

$$(4.4.15)$$
 $g_{k+1}(a_{k+1}) = 0$ or $g_{k+1}(a_{k+1})^2 - g_{k+1}(2a_{k+1}) = 0$

If

$$(4.4.16)$$
 $g_{k+1}(a_{k+1}) = 0,$

we have

$$f_{k}(a_{k}) = f(a_{k}),$$

$$= f(2a_{k+1}),$$

$$= 2g(a_{k+1})f(a_{k+1}),$$

$$= 2g_{k+1}(a_{k+1}) f_{k+1}(a_{k+1}),$$

$$= 0,$$

which is a contradiction. Hence we must have

$$g_{k+1}(a_{k+1})^2 - g_{k+1}(2a_{k+1}) = 0.$$

Hence, by mathematical induction, we can conclude that

$$(4.4.18)$$
 $g_n(a_n)^2 - g_n(2a_n) = 0$

for all n in \mathbb{P} such that $n \geq k_0$. This is contrary to (4.4.10). Therefore,

$$(4.4.19)$$
 $g_n(a_n)^2 - g_n(2a_n) \neq 0$

for all n in \mathbb{P} such that $n < n_0$. From (4.4.12) and (4.4.19), we have

$$(4.4.20)$$
 $g_n(a_n)^2 - g_n(2a_n) \neq 0$

for all n in P .

From (4.4.9) and (4.4.20), we see that for each n in \mathbb{P} , (f_n, g_n) is a type I solution of (*). Hence, by lemma 3.9, f_n, g_n must be of the form

$$\begin{cases} f_n(ta_n) = \beta_n (q_{1n}^t - q_{2n}^t), \\ \\ g_n(ta_n) = \frac{1}{2} (q_{1n}^t + q_{2n}^t) \end{cases}$$

for all t in \mathbb{N} , where β_n , q_{1n} , $q_{2n} \in \mathbb{C}^*$, $q_{1n} \neq q_{2n}$.

Since (f_n, g_n) , (f_{n+1}, g_{n+1}) are the restrictions of (f, g) and $a_n = 2a_{n+1}$, hence we have

$$(4.4.22)$$
 $g_n(a_n) = g_{n+1}(2a_{n+1})$,

$$(4.4.23)$$
 $g_n(2a_n) = g_{n+1}(4a_{n+1})$,

$$(4.4.24)$$
 $f_n(a_n) = f_{n+1}(2a_{n+1})$.

By applying (4.4.21) to the above identities, we have, respectively,

$$(4.4.25)$$
 $\frac{1}{2}(q_{1n} + q_{2n}) = \frac{1}{2}(q_{1(n+1)}^2 + q_{2(n+1)}^2),$

$$(4.4.26) \quad \frac{1}{2} (q_{1n}^2 + q_{2n}^2) = \frac{1}{2} (q_{1(n+1)}^4 + q_{2(n+1)}^4),$$

$$(4.4.27)$$
 $\beta_n(q_{1n}-q_{2n}) = \beta_{n+1}(q_{1(n+1)}^2 - q_{2(n+1)}^2).$

By multiplying both sides of (4.4.25) and (4.4.26) by 2, we have

$$(4.4.28)$$
 $q_{1n} + q_{2n} = q_{1(n+1)}^2 + q_{2(n+1)}^2$

and

$$(4.4.29)$$
 $q_{1n}^2 + q_{2n}^2 = q_{1(n+1)}^4 + q_{2(n+1)}^4$

respectively. By squaring both sides of (4.4.27) and (4.4.28), we have

$$(4.4.30)$$
 $\beta_n^2 (q_{1n} - q_{2n})^2 = \beta_{n+1}^2 (q_{1(n+1)}^2 - q_{2(n+1)}^2)^2$

and

$$(4.4.31) q_{1n}^2 + 2q_{1n}q_{2n} + q_{2n}^2 = q_{1(n+1)}^4 + 2q_{1(n+1)}^2 q_{2(n+1)}^2 + q_{2(n+1)}^4$$

respectively.

From (4.4.29) and (4.4.31), by substraction, it follows that

$$(4.4.32)$$
 $2q_{1n} q_{2n} = 2q_{1(n+1)}^{2} q_{2(n+1)}^{2}$

From (4.4.29) and (4.4.32), it follows that

$$q_{1n}^2 - 2q_{1n}q_{2n} + q_{2n}^2 = q_{1(n+1)}^4 - 2q_{1(n+1)}^2 q_{2(n+1)}^2 + q_{2(n+1)}^4$$

Hence

$$(4.4.33)$$
 $(q_{1n} - q_{2n})^2 = (q_{1(n+1)}^2 - q_{2(n+1)}^2)^2$.

From (4.4.30), (4.4.33), and the fact that $q_{1n} \neq q_{2n}$, we have

$$(4.4.34)$$
 $\beta_n^2 = \beta_{n+1}^2$

Therefore,

$$(4.4.35)$$
 $\beta_n = \beta_{n+1}$ or $\beta = -\beta_{n+1}$

If $\beta_n = \beta_{n+1}$ then, by (4.4.27) and (4.4.28), it follows that

$$(4.4.36)$$
 $q_{1n} = q_{1(n+1)}^2$ and $q_{2n} = q_{2(n+1)}^2$

Hence, f_{n+1} , g_{n+1} will be of the form

$$\begin{cases} f_{n+1}(ta_{n+1}) = \beta_n (q_{1n}^{\frac{t}{2}} - q_{2n}^{\frac{t}{2}}), \\ \\ g_{n+1}(ta_{n+1}) = \frac{1}{2} (q_{1n}^{\frac{t}{2}} + q_{2n}^{\frac{t}{2}}) \end{cases}$$

for all t in N, where $q_{in}^{\frac{1}{2}}$ is defined to be $q_{i(n+1)}$, i = 1, 2, ...

If $\beta_n = -\beta_{n+1}$ then, by (4.4.27) and (4.4.28), it follows that

(4.4.38) $q_{1n} = q_{2(n+1)}^2$ and $q_{2n} = q_{1(n+1)}^2$

Hence, f_{n+1} , g_{n+1} can be written in the form

$$(4.4.39) \begin{cases} f_{n+1} (t a_{n+1}) = \beta_n (q_{1n}^2 - q_{2n}^2), \\ g_{n+1} (t a_{n+1}) = \frac{1}{2} (q_{1n}^2 + q_{2n}^2) \end{cases}$$

where q_{in} is defined to be $q_{j(n+1)}$; i, j = 1,2 and $i \neq j$.

We can see that in the case $\beta_n = -\beta_{n+1}$, by changing notations $q_{1(n+1)}$ to be $q_{2(n+1)}$ and $q_{2(n+1)}$ to be $q_{1(n+1)}$, we may write f_{n+1} , g_{n+1} in the form (4.4.37). Hence there is no loss of generality in assuming that $\beta_n = \beta_{n+1}$.

Therefore, f_{n+1}, g_{n+1} are of the form

$$f_{n+1}(t a_{n+1}) = \beta_n(q_{1n}^{\frac{t}{2}} - q_{2n}^{\frac{t}{2}}),$$

$$g_{n+1}(t a_{n+1}) = \frac{1}{2}(q_{1n}^{\frac{t}{2}} + q_{2n}^{\frac{t}{2}})$$

for all t in N, where q^2 is defined to be $q_{i(n+1)}$; in i = 1, 2. Then f, g are of the form (4.4.1).

LEMMA 4.5 Let S_n, S be as in lemma 4.3. Let (f,g) be a non-trivial zero-type solution of

$$(*)$$
 $f(x + y) = g(x)f(y) + g(y)f(x)$

on S into C . For each n in p , let f_n , g_n be the restrictions of f, g respectively on s_n .

If (f_n, g_n) is also a non-trivial zero-type solution of (*) on S_n for all n in p and there exists an n_0 in p such that (f_n, g_n) is a type II solution of (*) on S_n , then (f_n, g_n) is also a type II solution of (*) on S_n for all n in p and f, g are given by

(4.5.1)
$$\begin{cases} f(t a_n) = \frac{t}{2^{n-1}} \beta_1 q_1^{\frac{t}{2^{n-1}}}, \\ g(t a_n) = q_1^{\frac{t}{2^{n-1}}} \end{cases}$$

for all t in \mathbb{N}_{1} for all n in \mathbb{P}_{1} , where β_{1} , $q_{1} \in \mathbb{C}^{*}$ and q_{1} is defined to be q_{n}

PROOF Let (f,g) be a non-trivial zero-type solution of (*) on S into C such that (f_n, g_n) is also a non-trivial zero-type solution of (*) on S for all n in p. Let (f_{n_0}, g_{n_0}) be a type II solution of (*) on S_{n_0} . Hence

$$(4.5.2)$$
 $2g_{n_0}(a_{n_0})^2 - g_{n_0}(2a_{n_0}) \neq 0$

and

$$(4.5.3)$$
 $g_{n_0}(a_{n_0})^2 = g_{n_0}(2a_{n_0}).$

By using (4.5.2), (4.5.3), lemma 4.3, and the same argument as in the proof of lemma 4.4, we can verify that

$$(4.5.4)$$
 $2g_n(a_n)^2 - g_n(2a_n) \neq 0$

for all n in p, and

$$(4.5.5)$$
 $g_n(a_n)^2 = g_n(2a_n)$

for all n in P.

From (4.5.4) and (4.5.5), we see that for each n in p, (f_n, g_n) is a type II solution of (*). Hence, by lemma 3.10, f_n, g_n must be of the form

$$\begin{cases} f_n(t a_n) = t \beta_n q_n^t, \\ \\ g_n(t a_n) = q_n^t \end{cases}$$

for all t in β , where β_n , $q_n \in C$.

Since (f_n, g_n) , (f_{n+1}, g_{n+1}) are the restrictions of (f,g) and $a_n = 2a_{n+1}$, hence we have

$$(4.5.7)$$
 $g_n(a_n) = g_{n+1}(2a_{n+1})$

and

$$(4.5.8)$$
 $f_n(a_n) = f_{n+1}(2a_{n+1})$.

By applying (4.5.6) to the above identities, we have

$$(4.5.9)$$
 $q_n = q_{n+1}^2$

and

$$(4.5.10) \quad \beta_{n}q_{n} = 2\beta_{n+1} q_{n+1}^{2}.$$

From (4.5.9) and (4.5.10), it follows that

$$(4.5.11)$$
 $\beta_n = 2\beta_{n+1}$

Therefore, from (4.5.6), (4.5.9), and (4.5.11), f_{n+1} , g_{n+1} are of the form

$$f_{n+1} (t a_{n+1}) = t \frac{\beta_n}{2} q_n^{\frac{t}{2}}$$
,
 $g_{n+1} (t a_{n+1}) = q_n^{\frac{t}{2}}$

for all t in N where $q_n^{\frac{1}{2}}$ is defined to be q_{n+1} . Hence f,g are of the form (4.5.1).

LEMMA 4.6 Let S_n, S be as in lemma 4.3. Let (f,g) be a nontrivial zero-type solution of

(*)
$$f(x + y) = g(x)f(y) + g(y)f(x)$$

on S into c. For any n in p, let f_n , g_n be the restrictions of f, g respectively on S_n .

If there exists an n_0 in p such that (f_{n_0}, g_{n_0}) is a type III solution of (*) on S_{n_0} , then (f_n, g_n) is also a type III solution of (*) on S_n for all n in p, and f, g are given by

$$\begin{cases}
f(t a_n) = \begin{cases}
0 & \text{if } t = 0, \\
\beta_1 q_1 & \text{otherwise,}
\end{cases}$$

$$g(t a_n) = \begin{cases}
1 & \text{if } t = 0, \\
\frac{1}{2} q_1 & \text{otherwise}
\end{cases}$$

for all t in \mathbb{N} , for all n in \mathbb{P} , where β_1 , $q_1 \in \mathbb{C}^*$ and $q_1^{2^{n-1}}$ is defined to be q_n .

PROOF Let (f,g) be a nontrivial zero-type solution of (*) on S into C . Let (f_n, g_n) be a type III solution of (*) on S_{n_0} .

Hence

$$(4.6.2) 2g_{n_0}(a_{n_0})^2 - g_{n_0}(2a_{n_0}) = 0$$

and

$$(4.6.3)$$
 $g_{n_0}(a_{n_0}) \neq 0.$

By using (4.6.2), lemma 4.3, and the same argument as in the proof of lemma 4.4, we can verify that

$$(4.6.4)$$
 $2g_n(a_n)^2 - g_n(2a_n) = 0$

for all n in P.

From (4.6.4), it follows that

$$(4.6.5)$$
 $g_n(2a_n) = 2g_n(a_n)^2$

for all n in p. By using (4.6.3) and (4.6.5), we can verify, by mathematical induction, that

$$(4.6.6)$$
 $g_n(a_n) \neq 0$

for all n in \mathbb{P} such that $n \geq n_0$.

Suppose that

$$(4.6.7)$$
 $g_{k_0}(a_{k_0}) = 0$

for some k_0 in p such that $k_0 < n_0$. By using (4.6.5) and (4.6.7), we can verify, by mathematical induction, that

$$(4.6.8)$$
 $g_k(a_k) = 0$

for all $k \ge k_0$. But this is contrary to (4.6.3). Therefore,

$$(4.6.9)$$
 $g_n(a_n) \neq 0$

for all n in p such that $n < n_0$. From (4.6.6) and (4.6.9), we have

$$(4.6.10)$$
 $g_n(a_n) \neq 0$

for all n in P.

From (4.6.4) and (4.6.10), it follows that for each n in p, (f_n, g_n) is a type III solution of (*). By lemma 3.11, f_n , g_n must be of the form

$$\begin{cases} f_n(t a_n) = \begin{cases} 0 & \text{if } t = 0, \\ \beta_n q_n^t & \text{otherwise,} \end{cases}$$

$$(4.6.11) \begin{cases} g_n(t a_n) = \begin{cases} 1 & \text{if } t = 0, \\ \frac{1}{2} q_n^t & \text{otherwise.} \end{cases}$$

for all t in N , where β , q & C.

Since (f_n, g_n) and (f_{n+1}, g_{n+1}) are the restrictions of (f, g) and $a_n = 2a_{n+1}$, hence we have $(4.6.12) \quad g_n(a_n) = g_{n+1} \cdot (2a_{n+1}),$

$$(4.6.13)$$
 $f_n(a_n) = f_{n+1}(2a_{n+1}).$

By applying (4.6.11) to the above identities, we have, respectively,

$$(4.6.14) \quad \frac{1}{2} q_n = \frac{1}{2} q_{n+1}^2,$$

(4.6.15)
$$\beta_n q_n = \beta_{n+1} q_{n+1}^2$$

It follows that

$$(4.6.15)$$
 $q_n = q_{n+1}^2$

$$(4.6.16)$$
 $\beta_n = \beta_{n+1}$

From (4.6.11), (4.6.15), and (4.6.16), we can see that f_{n+1} , g_{n+1} are of the form

$$f_{n+1}(t a_{n+1}) = \begin{cases} 0 & \text{if } t = 0, \\ \beta_n q_n^{\frac{1}{2}} & \text{otherwise,} \end{cases}$$

$$g_{n+1}(t a_{n+1}) = \begin{cases} 1 & \text{if } t = 0, \\ \frac{1}{2} q_n^{\frac{1}{2}} & \text{otherwise.} \end{cases}$$

for all t in \mathbb{N} , where $q_n^{\frac{1}{2}}$ is defined to be q_{n+1} . Therefore f, g are of the form (4.6.1).

LEMMA 4.7 Let S_n, S be as in lemma 4.3. Let (f,g) be a non-trivial zero-type solution of

(*)
$$f(x + y) = g(x)f(y) + g(y)f(x)$$

on S into C. For each n in P, let fn, gn be the restrictions

of f, g respectively on S_n . Then f_n , g_n cannot be a type IV solution of (*) on S_n for any n in \mathbb{F} .

PROOF Let (f,g) be a non-trivial zero-type solution of (*) on S into f. Suppose there exists n_0 in f such that (f_{n_0}, g_{n_0}) is a type IV solution of (*) on S_{n_0} . Hence

$$(4.7.1)$$
 $2g_{n_0}(a_{n_0})^2 - g_{n_0}(2a_{n_0}) = 0$

and

$$(4.7.2)$$
 $g_{n_0}(a_{n_0}) = 0.$

By lemma 3.12, we have

$$\begin{cases} f_{n_0}(t a_{n_0}) = \begin{cases} f_{n_0} & \text{if } t = 1, \\ 0 & \text{otherwise,} \end{cases} \\ g_{n_0}(t a_{n_0}) = \begin{cases} 1 & \text{if } t = 0, \\ 0 & \text{otherwise} \end{cases}$$

for all t in \mathbb{N} , where $\beta_{n_0} \in \mathfrak{C}^*$. Inparticular, we have

$$(4.7.4)$$
 $f_{n_0}(a_{n_0}) = \beta_{n_0} \neq 0.$

Since g_{n_0} , g_{n_0+1} are the restrictions of g and $a_{n_0} = 2a_{n_0+1}$, hence

By (4.3.1) in lemma 4.3, we have

$$(4.7.6) 2g_{n_0}(a_{n_0})^2 - g_{n_0}(2a_{n_0}) = \left[2g_{n_0+1}(a_{n_0+1})^2 - g_{n_0+1}(2a_{n_0+1})\right]^2.$$

From (4.7.1) and (4.7.6), it follows that

$$(4.7.7) 2g_{n_0+1}(a_{n_0+1})^2 - g_{n_0+1}(2a_{n_0+1}) = 0.$$

From (4.7.5) and (4.7.7), it follows that

$$(4.7.8)$$
 $g_{n_0+1}(a_{n_0+1}) = 0.$

Therefore (fn0+1 , gn0+1) is also a type IV solution of (*)

on S_{n₀+1* Hence, by lemma 3.12, we have}

$$(4.7.9) f_{n_0+1} (t a_{n_0+1}) = \begin{cases} \beta_{n_0+1} & \text{if } t = 1, \\ 0 & \text{otherwise} \end{cases}$$

for all t in \mathbb{N} , where $\beta_n \in \mathbb{C}^*$. In particular, we have

$$f_{n_0}(a_{n_0}) = f(a_{n_0}),$$

$$= f(2a_{n_0+1}),$$

$$= f_{n_0+1}(2a_{n_0+1}),$$

$$= 0,$$

which is contrary to (4.7.4). Therefore f_n , g_n cannot be a type IV solution of (*) on S_n for any n.

THEOREM 4.8 Let $\{a_n\}$ be a sequence of positive real numbers such that $a_n = 2a_{n+1}$. For any n in P, let $S_n = \langle a_n \rangle$ be the cyclic monoid generated by a_n . Let $S = US_n$. For any functions f,g on S into C, let f_n , g_n be the restrictions of f, g respectively on S_n . If (f,g) is a non-trivial zero-type solution of

(*)
$$f(x + y) = g(x)f(y) + g(y)f(x)$$

on S into (such that (f_n, g_n) is also a non-trivial zero-type solution of (*) on S for each n in P then f, g are of the form

(4.8.1)
$$\begin{cases} f(ta_n) = \beta_1(q_{11} - q_{21}), \\ \frac{t}{2^{n-1}} \frac{t}{2^{n-1}}, \\ g(ta_n) = \frac{1}{2}(q_{11} + q_{21}) \end{cases}$$

for all t in \mathbb{N} , for all n in \mathbb{P} , where β_1 , q_{11} , $q_{21} \in \mathbb{C}^*$

such that
$$q_{11} \neq q_{21}$$
, or $\frac{t}{2^{n-1}}$

$$\begin{cases} f(ta_n) = \frac{t}{2^{n-1}} \beta_1 q_1, \\ \frac{t}{2^{n-1}} \end{cases}$$

$$g(ta_n) = q_1$$

for all t in \mathbb{N} for all n in \mathbb{P} , where β_1 , $q_1 \in \mathbb{C}^*$ or

(4.8.3)
$$\begin{cases} f(ta_n) = \begin{cases} 0 & t & \text{if } t = 0 \end{cases}, \\ \beta_1 q_1 & \text{otherwise,} \end{cases}$$

$$g(ta_n) = \begin{cases} 1 & t & \text{if } t = 0, \\ \frac{1}{2} q_1^{2^{n-1}} & \text{etherwise,} \end{cases}$$

for all t in N, for all n in \mathbb{R} , where β_1 , $q_1 \in \mathcal{C}$.

PROOF Let (f,g) be a non-trivial zero-type solution of (*) on S into C. Let f_n , g_n be the restrictions of f, g respectively on S_n . By our assumption, (f_n, g_n) is also a non-trivial zero-type solution of (*) on S_n for all n in P. By lemma 4.7, we know that (f_n, g_n) cannot be a type IV solution of (*). By lemma 4.4 - 4.6, then f, g are of the form (4.8.1) - (4.8.3) respectively.

THEOREM 4.9 Let f, g be functions on R 1 (0) into C. Then

(f, g) is a continuous non-trivial zero-type solution of

(*)
$$f(x + y) = g(x)f(y) + g(y)f(x)$$

on W U (0) if and only if f, g are of the form

$$\begin{cases} f(x) = \beta(q_1^x - q_2^x), \\ g(x) = \frac{1}{2}(q_1^x + q_2^x) \end{cases}$$

1

for all x in $\mathbb{R}^+ \cup \{0\}$, where β , q_1 , $q_2 \in \mathbb{C}^*$ such that $q_1 \neq q_2$, or

$$\begin{cases}
f(x) = x\beta q^{x}, \\
g(x) = q^{x}
\end{cases}$$

for all x in $R^+ \cup \{0\}$, where β , $q \in C$.

<u>PROOF</u> Let (f,g) be a continuous non-trivial zero-type solution of (*) on $\mathbb{R}^+ \cup \{0\}$ into \mathbb{C} . Then there exists a \mathbb{C} \mathbb{R}^+ such that $f(\frac{a}{2}) \neq 0$.

For any n in P, define

7

(

$$S_n = \left\{ \frac{ta}{2^n} / t \in \mathbb{N} \right\}.$$

Let $S = \bigcup S_n$. Let f_n , g_n be the restrictions of f_n , g respectively on S_n . Since $\frac{a}{2} \notin S_n$ for all n in P and $f(\frac{a}{2}) \neq 0$, hence (f_n, g_n) is a non-trivial zero-type solution of (*) on S_n for all n in P.

Let f_S , g_S be the restrictions of f, g respectively on S. By theorem 4.8, f_S , g_S must be of the form

$$\begin{cases} f_{S} \left(\frac{ta}{2^{n}}\right) = \beta_{1} \left(q_{11}^{\frac{t}{2^{n-1}}} - q_{21}^{\frac{t}{2^{n-1}}}\right), \\ \\ q_{S}\left(\frac{ta}{2^{n}}\right) = \frac{1}{2} \left(q_{11}^{\frac{t}{2^{n-1}}} + q_{21}^{\frac{t}{2^{n-1}}}\right) \end{cases}$$

for all t in N, for all n in \mathbb{A} , where β_1 , q_{11} , $q_{21} \in \mathbb{C}$ such that $q_{11} \neq q_{21}$, or

$$\begin{cases} f_{S}(\frac{ta}{2^{n}}) = \frac{t}{2^{n-1}} \beta_{1} q_{1}^{\frac{t}{2^{n-1}}}, \\ q_{S}(\frac{ta}{2^{n}}) = q_{1}^{\frac{t}{2^{n-1}}} \end{cases}$$

for all t in N, for all n in P, where β_1 , $q_1 \in C$, or

$$(4.9.5) \begin{cases} f_S(\frac{ta}{2^n}) = \begin{cases} 0 & \text{if } t = 0, \\ \frac{t}{2^{n-1}} & \text{otherwise,} \end{cases} \\ g_S(\frac{ta}{2^n}) = \begin{cases} 1 & \text{if } t = 0, \\ \frac{t}{2}q_1^{2^{n-1}} & \text{otherwise.} \end{cases}$$

for all t in \mathbb{N} , for all n in \mathbb{P} , where β_1 , $q_1 \in \mathbb{C}$.

CASE 1 If f_S , g_S are of the form (4.9.3). Let x be any point in $\mathbb{R}^+ \cup \{0\}$. Let $\{\frac{n}{2^n}\}$ be a sequence in S which tends to x. Since f, g are continuous on $\mathbb{R}^+ \cup \{0\}$, hence

$$f(x) = \lim_{n \to \infty} f_{S} \left(\frac{t_{n}^{a}}{2^{n}}\right),$$

$$= \lim_{n \to \infty} \beta_{1}(q_{11}^{2^{n-1}} - q_{21}^{2^{n-1}}),$$

$$= \lim_{n \to \infty} (q_{11}^{2^{n}} \cdot \frac{2}{a} + \frac{t_{n}}{q_{21}^{2^{n}}} \cdot \frac{2}{a}),$$

$$= \beta_{1} \lim_{n \to \infty} (q_{11}^{2^{n}} - q_{21}^{2^{n}}),$$

$$= \beta_{1} (q_{11}^{2^{n}} - q_{21}^{2^{n}}),$$

Similarly it can be shown that

(

$$g(x) = \frac{1}{2} \left(\frac{2x}{a} + \frac{2x}{a} \right) .$$
Let $\beta = \beta_1$, $q_1 = q_{11}^2$, $q_2 = q_{21}^2$. Then f, g are of the form
$$\begin{cases} f(x) = \beta(q_1^x - q_2^x), \\ g(x) = \frac{1}{2} (q_1^x + q_2^x) \end{cases}$$

for all x in $\mathbb{R}^+ \cup \{0\}$. Since β_1 , q_{11} , $q_{21} \in \mathbb{C}^+$, hence (4.9.7) β_1 , q_1 , $q_2 \in \mathbb{C}^+$.

Because of (f, g) is a non-trivial solution of (*), hence $f \not\equiv 0$.

Therefore we must have

(4.9.8) q₁ ≠ q₂.

Hence, f, g are of the form (4.9.1).

CASE 2. If f_S , g_S are of the form (4.9.4). Let x be any point in $\mathbb{R}^+ \cup \{0\}$. Let $\{\frac{t_n^a}{2^n}\}$ be a sequence in S which tends to x.

Since f, g are continuous, hence by an argument similar to that in case 1 we have

$$f(x) = \frac{2\beta_1}{a} \times q_1^{\frac{2x}{a}}$$

$$g(x) = \frac{2x}{q_1^a}$$

Let $\beta = \frac{2\beta_1}{a}$, $q = q_1^2$. Then f, g are of the form

$$(4.9.9) \begin{cases} f(x) = x\beta q^{x}, \\ g(x) = q^{x}. \end{cases}$$

Since β_1 , $q_1 \in \mathbb{C}^+$, a $\in \mathbb{R}^+$, hence

(4.9.10) β, q € C.*.

Therefore f, g are of the form (4.9.2) .

CASE 3 If f_S , g_S are of the form (4.9.5). Observe that $\{\frac{a}{2}n\}$ tends to 0. Hence we have

$$\lim_{n\to\infty} f_{S}(\frac{a}{2}n) = \beta_{1} \lim_{n\to\infty} q_{1}^{\frac{1}{2^{n-1}}},$$

$$= \beta_{1},$$

That is $\lim_{n\to\infty} f_S(\frac{a}{2^n}) \neq f(0)$. Therefore f is not continuous at 0, which is contrary to the assumption that (f,g) is a continuous solution of (*) on $R^+ \cup \{0\}$. Therefore f_S , g_S cannot be of the form (4.9.5).

We can verify directly that any function f, g of the form (4.9.1) or (4.9.2) are continuous and (f,g) is a non-trivial zero-type solution of (*) on \mathbb{R}^{\dagger} U $\{0\}$ into \mathbb{C} .

We may now summarize the results obtained in theorem 4.2 and theorem 4.9 in the following theorem.

THEOREM 4.10 Let f, g be functions on R U (0) into C. Then

(f,g) is a continuous non-trivial solution of

$$(\clubsuit) \quad f(x + y) = g(x)f(y) + g(y)f(x)$$

on R 1 [0] if and only if f, g are of the form

(4.10.1)
$$\begin{cases} f(x) = \beta q^{x}, \\ g(x) = \frac{1}{2} q^{x} \end{cases}$$

for all x in R[†] U {0}, where β, q € €, or

$$\begin{cases} f(x) = \beta(q_1^x - q_2^x), \\ g(x) = \frac{1}{2}(q_1^x + q_2^x) \end{cases}$$

for all x in $\mathbb{R}^+ \cup \{0\}$, where β , q_1 , $q_2 \in \mathbb{C}^+$ such that $q_1 \neq q_2$, or

$$(4.10.3) \begin{cases} f(x) = x\beta q^{X}, \\ g(x) = q^{X} \end{cases}$$

for all x in $\mathbb{R}^+ \cup \{0\}$, where β , $q \in \mathbb{C}^*$.