CHAPTER III

MEAN VALUE ITERATIONS ON THE CLOSED UNIT N-DISK (N-CELL)

3.1 <u>Introduction</u>. In chapter II, we considered a mapping T which continuously maps the closed interval E = [0,1] into itself and we proved that the iterative scheme

$$(1) x_{n+1} = Tv_n,$$

(2)
$$v_n = \frac{1}{n} (x_1 + \dots + x_n), n = 1, 2, 3, \dots,$$

$$(3) v_1 = x_1 \in E$$

converges to a fixed point of T on E.

In this chapter, we wish to consider the case where E is the closed unit N-cell or the closed unit N-disk of $\mathbb{R}^{\mathbb{N}}$. It will be shown that, with some restrictions on T, the iterative scheme (1)-(3) converges to a fixed point of T.

The statement that the iterative scheme (1)-(3) converges means that each of $\{x_n\}$ and $\{v_n\}$ converges and they converge to the same point. It has been shown, Theorem 2.4, that their common limit is a fixed point of T.

3.2 Remark. In R², only continuity of T is not an adequate restriction to guarantee convergence of the iterative scheme (1)-(3) to a fixed point of T on the closed unit disk or the closed square. In fact,

we have the following theorems.

3.3 <u>Theorem</u>. Let E be the closed unit disk of \mathbb{R}^2 . Then there exists a continuous mapping T of E into itself such that the iterative scheme

$$x_{n+1} = Tv_n,$$

(2)
$$v_n = \frac{1}{n} (x_1 + ... + x_n), n = 1,2,3,...,$$

(3)
$$v_1 = x_1 \in E, x_1 \neq 0,$$

does not converge.

An analogous result about the closed unit square of m^2 , we have

3.4 <u>Theorem</u>. Let E be the closed unit square of IR². Then there exists a continuous mapping T of E into itself such that the iterative scheme

$$x_{n+1} = Tv_{n},$$

(2)
$$v_n = \frac{1}{n} (x_1 + ... + x_n), n = 1,2,3,...,$$

(3)
$$v_1 = x_1 \in E, x_1 \neq 0,$$

does not converge.

3.5 Notation. For any $(x,y) \in \mathbb{R}^2$, by the norm | |, we shall mean the usual or Euclidean norm, i.e.,

$$|(x,y)| = (x^2 + y^2)^{\frac{1}{2}}$$

<u>Proof.</u> (of Theorem 3.3) Let E be the closed unit disk centered at 0 in the complex plane, suppose that $0 < \emptyset < \P/4$, and let T be the mapping defined on E by

$$T(re^{i\theta}) = (2r - r^2)e^{i(\theta + \emptyset)}$$
.

Then T is continuous, since

$$T(v) = T(re^{i\theta}) = (2r - r^2)e^{i(\theta + \emptyset)}$$
$$= (re^{i\theta})(2-r)e^{i\emptyset}$$
$$= v(2 - |v|)e^{i\emptyset}$$
$$= f(v)g(v)$$

where f(v) = v and $g(v) = (2 - |v|)e^{i\emptyset}$ are continuous, hence T is continuous. In fact, T maps E into itself since $0 \le 2r - r^2 \le 1$ for all $r \in [0,1]$. Then

$$0 \le |T(re^{i\theta})| = |(2r - r^2)e^{i(\theta + \emptyset)}| \le 1.$$

Hence T continuously maps E into itself.

The only fixed point of T is 0, since if $v \neq 0$ and Tv = v, then $v(2 - |v|)e^{i\emptyset} = v,$

or

$$(2 - |v|) = e^{-i\emptyset} = \cos\emptyset - i\sin\emptyset.$$

Hence $\sin \emptyset = 0$, which is impossible since $0 < \emptyset < \P/4$ and $0 < \sin \emptyset < \frac{1}{2}$.

If $v_1=0$, then clearly $\{v_n\}$ converges to 0. We will show that, for any $v_1\neq 0$, the iterative scheme (1)-(3) does not converge.

Suppose, on the contrary, that the iterative scheme (1)-(3) converges. Since 0 is the only fixed point of T, we have by virtue of Theorem 2.4 that $\{v_n\}$ must converge to 0.

Now, for each n, we have

$$v_{n+1} = \frac{1}{n+1} (x_1 + \cdots + x_n + x_{n+1})$$

$$= \frac{1}{n+1} (n \cdot v_n + Tv_n)$$

$$= \frac{n}{n+1} v_n + \frac{1}{n+1} Tv_n$$

$$= (1 - \frac{1}{n+1}) v_n + \frac{1}{n+1} Tv_n$$

$$= (1 - c_n) v_n + c_n Tv_n, \quad c_n = \frac{1}{n+1}, \quad n = 1, 2, 3, \dots,$$

and

$$Tv_n = v_n(2-|v_n|)e^{i\phi}$$
.

Therefore, for each n,

(4)
$$|v_{n+1}| = |v_n| |(1-c_n) + c_n(2-|v_n|)e^{i\emptyset}|$$
.

Since $1 > \cos \emptyset > \cos^2 \emptyset$, so that

$$\begin{split} |(1-c_{n})+c_{n}(2-|v_{n}||)e^{i\phi}| \\ &= \left[(1-c_{n})^{2} + 2c_{n}(1-c_{n})(2-|v_{n}||)\cos\phi + c_{n}^{2}(2-|v_{n}||)^{2} \right]^{\frac{1}{2}} \\ &> \left[(1-c_{n})^{2}+2c_{n}(1-c_{n})(2-|v_{n}||)\cos\phi + c_{n}^{2}(2-|v_{n}||)^{2}\cos^{2}\phi \right]^{\frac{1}{2}} \\ &= \left[((1-c_{n})+c_{n}(2-|v_{n}||)\cos\phi \right]^{\frac{1}{2}} \\ &= (1-c_{n})+c_{n}(2-|v_{n}||)\cos\phi \\ &= 1+c_{n}((2-|v_{n}||)\cos\phi - 1). \end{split}$$

Substituting this last expression into (4), we obtain

(5)
$$|v_{n+1}| > |v_n| (1 + c_n((2-|v_n|)\cos \phi - 1)).$$

Hence by induction

(6)
$$|v_{n+1}| > \prod_{k=1}^{n} (1 + c_k((2-|v_k|)\cos(p-1)) |v_1|.$$

Let $\xi > 0$ be such that $(2-\xi)\cdot\frac{1}{\sqrt{2}} > 1$. Then there exists an N such that $|v_n| < \xi$ for all $n \ge N$. Since $\cos \emptyset > \frac{1}{\xi}$, then $(2-|v_n|)\cos \emptyset > (2-\xi)\frac{1}{\xi} > 1$

for all $n \ge N$.

Now from (6), we have for n > N

$$\begin{split} |\,v_{n+1}^{}| > |\,v_{1}^{}| & \stackrel{N}{\underset{k=1}{\longleftarrow}} (1 - c_{k}^{} + c_{k}^{}(2 - |\,v_{k}^{}|\,\,) \cos \emptyset \,\,) \stackrel{n}{\underset{k=N+1}{\longleftarrow}} (1 + c_{k}^{}((2 - |\,v_{k}^{}|\,\,) \cos \emptyset - 1)) \\ > |\,v_{1}^{}| & \stackrel{N}{\underset{k=1}{\longleftarrow}} (\,\,\frac{k}{k+1} + \,\,\frac{1}{k+1}(2 - \,|\,v_{k}^{}|\,\,) \cos \emptyset) \stackrel{n}{\underset{k=N+1}{\longleftarrow}} (1 + \,\,\frac{1}{k+1}((2 - \epsilon\,\,) \frac{1}{2} \,\,-\,\,1)) \end{split}$$

Since each factor in the second product is greater than unity, therefore, for all n > N,

$$|v_{n+1}| > |v_1| \prod_{k=1}^{N} (\frac{k}{k+1} + \frac{1}{k+1} (2 - |v_k|) \cos t) = m,$$

where m is a positive real number independent of n.

This is contradictory to the supposition that $\{v_n\}$ converges to 0. Consequently, the iterative scheme (1)-(3) does not converge. Q.E.D.

Proof. (of Theorem 3.4) Let E denote the square $[-1,1] \times [-1,1]$ of \mathbb{R}^2 . For any two points (x,y), $(x,y') \in \mathbb{R}^2$, define (x,y) + (x,y') = (x+x,y+y')

and

$$(x,y)(x,y') = (xx'-yy',x'y+xy').$$

Suppose that $0 < \emptyset < \pi/4$, and let T be the mapping defined on E by $T(x,y) = (x,y)(2 - ||(x,y)||)(\cos \emptyset, \sin \emptyset).$

Here, by the norm $\|(x,y)\|$, $(x,y) \in \mathbb{E}$ we mean $\|(x,y)\| = \max\{|x|,|y|\}.$

The mapping T is continuous since

$$T(x,y) = (x,y)(2 - ||(x,y)||)(\cos \emptyset, \sin \emptyset)$$
$$= f(x,y)g(x,y)$$

where f(x,y) = (2 - ||(x,y)||)(x,y) and $g(x,y) = (\cos \emptyset, \sin \emptyset)$ are continuous, hence T is continuous.

We now show that T carries E into itself, Since $0 \le \|(x,y)\| \|(2-\|(x,y)\|)\| \le 1,...$

therefore

 $0 \leq \|T(x,y)\| = \|(x,y)\| \|(2-\|(x,y)\|)\| \|(\cos \emptyset, \sin \emptyset)\| \leq 1.$ Hence T continuously maps E into itself.

We observe that 0 = (0,0) is a fixed point of T. We claim that 0 is a unique fixed point of T. Suppose there exists $(x,y) \neq 0$ such that T(x,y) = (x,y). Then, by definition of T,

$$(x,y)(2-||(x,y)||)(\cos \emptyset, \sin \emptyset) = (x,y)$$

 $(2-||(x,y)||)(\cos \emptyset, \sin \emptyset) = (1,0).$

Hence

$$(2-||(x,y)||)\sin \emptyset = 0,$$

or

$$sin \emptyset = 0.$$

But this is absurd, since $0 < \emptyset < \pi/4$ and $0 < \sin \emptyset < \frac{1}{\sqrt{2}}$. Therefore 0 = (0,0) is the only fixed point of T.

We prove that $\{v_n\}$ does not converge to 0 by contradiction. Suppose that $\{v_n\}$ converges to 0.

For each n, we have

$$v_{n+1} = \frac{1}{n+1} (x_1 + \cdots + x_n + x_{n+1})$$

$$= \frac{1}{n+1} (n \cdot v_n + Tv_n)$$

$$= \frac{n}{n+1} v_n + \frac{1}{n+1} Tv_n$$

and

$$Tv_n = v_n(2 - ||v_n||)(\cos \phi, \sin \phi).$$

Therefore, for each n

(4)
$$v_{n+1} = v_{n} \left(\frac{n}{n+1} (1,0) + \frac{1}{n+1} (2 - ||v_{n}||) (\cos \emptyset, \sin \emptyset) \right)$$
$$= v_{n} \left(\frac{n}{n+1} + \frac{1}{n+1} (2 - ||v_{n}||) \cos \emptyset, \frac{1}{n+1} (2 - ||v_{n}||) \sin \emptyset \right).$$

Therefore

(5)
$$||v_{n+1}|| = ||v_n|| || \left(\frac{n}{n+1} + \frac{1}{n+1} (2 - ||v_n||) \cos \emptyset, \frac{1}{n+1} (2 - ||v_n||) \sin \emptyset \right) ||$$

$$= ||v_n|| \left(\frac{n}{n+1} + \frac{1}{n+1} (2 - ||v_n||) \cos \emptyset \right).$$

Hence by induction

(6)
$$\|\mathbf{v}_{n+1}\| = \prod_{k=1}^{n} (\frac{k}{k+1} + \frac{1}{k+1} (2 - \|\mathbf{v}_{k}\|) \cos \emptyset) \|\mathbf{v}_{1}\|$$
.

Let $\ell > 0$ be such that $(2 - \ell) \frac{1}{2} > 1$. Then there exists an N such that $||v_n|| < \ell$ for all $n \ge N$. Since $\cos \beta > \frac{1}{2}$, therefore $(2-||v_n||)\cos \beta > (2-\ell) \frac{1}{2} > 1$

for all $n \ge N$.

Now, from (6), we have for n > N,

$$\begin{aligned} || \mathbf{v}_{n+1} || &= || \mathbf{v}_{1} || \prod_{k=1}^{N} (\frac{k}{k+1} + \frac{1}{k+1} (2 - || \mathbf{v}_{k} ||) \cos \emptyset) \prod_{k=N+1}^{n} (1 + \frac{1}{k+1} ((2 - || \mathbf{v}_{k} ||) \cos \emptyset - 1)) \\ &> || \mathbf{v}_{1} || \prod_{k=1}^{N} (\frac{k}{k+1} + \frac{1}{k+1} (2 - || \mathbf{v}_{k} ||) \cos \emptyset) \prod_{k=N+1}^{n} (1 + \frac{1}{k+1} ((2 - \epsilon) \sqrt{\frac{1}{2}} - 1)). \end{aligned}$$

Since each factor in the second product of the last expression is greater than unity, therefore, for n > N,

$$\|v_{n+1}\| > \|v_1\| \prod_{k=1}^{N} (\frac{k}{k+1} + \frac{1}{k+1} (2 - \|v_k\|) \cos \emptyset) = m$$

where m is a positive real number independent of n.

This is contradictory to the supposition that $\{v_n\}$ converges to 0.

Therefore $\{v_n\}$ does not converge to 0. Consequently, the iterative scheme (1)-(3) does not converge by virtue of Theorem 2.4 .

Q.E.D.

To give a partial generalization of Theorem 2.3 , we first define some classes of mappings.

3.6 <u>Definition</u>. Let E be a subset of $\mathbb{R}^{\mathbb{N}}$. A mapping T:E \longrightarrow E is said to be <u>nonexpansive</u> provided

$$|Tx - Ty| \leq |x - y|$$
(*)

for all $x,y \in E$, and is said to be <u>quasi-nonexpansive</u> provided T has at least one fixed point in E, and if $p \in E$ is any fixed point of T, then

$$|Tx - p| \leq |x - p|$$

for all x (E (i.e., T is nonexpansive about each of its fixed points).

We note that every nonexpansive mapping is continuous, since it follows from condition (*) that $T(x_n) \longrightarrow T(x)$ whenever $x_n \longrightarrow x$.

It is clear that a nonexpansive mapping which has at least one fixed point in E is quasi-nonexpansive, since if p is a fixed point of T, then

$$|Tx - p| = |Tx - Tp| \leq |x - p|$$

for all x € E.

rurthermore, a linear quasi-nonexpansive mapping is nonexpansive, since if p is a fixed point of T, then

$$| \text{Tx} - \text{Ty} | = | \text{Tx} - \text{Ty} + \text{Tp} - \text{p} |$$

$$= | \text{T}(x - y + \rho) - p |$$

$$\leq |x - y + p - p |$$

$$= |x - y|$$

for all x, y (E.

However, there exist continuous quasi-nonexpansive mappings which are not nonexpansive.

3.7 Example. Let \mathbb{R}^1 be the real line and let T be defined as follows T(0) = 0 $T(x) = (x/2)\sin(1/x), x \neq 0.$

The only fixed point of T is 0, since if $x \neq 0$ and x = Tx, then

$$x = (x/2)\sin(1/x),$$

$$2 = \sin(1/x)$$

which is impossible.

or

T is quasi-nonexpansive since if $y \in \mathbb{R}^1$, p = 0, then $|Ty-p| = |Ty-0| = |(y/2)| |\sin(1/y)| \le |(y/2)| < |y| = |y-p|.$ However, T is not a nonexpansive mapping. This is seen by choosing $x = 2/5\text{ T}, y = 2/7\text{ T}, \text{ for then } |Tx - Ty| = |(1/5\text{ T})\sin(5\text{ T}/2) - (1/7\text{ T})\sin(7\text{ T}/2)| = 12/35\text{ T},$

whereas |x - y| = 4/359.

We shall consider a more general class of contractive-type mappings.

3.8 <u>Definition</u>. Let E be a subset of $\mathbb{R}^{\mathbb{N}}$. A mapping T:E \longrightarrow E is said to be <u>strictly pseudo-contractive mapping</u> if there exists a number k satisfying $0 \le k < 1$ such that

$$|Tx - Ty|^2 \le |x-y|^2 + k |(I-T)x - (I-T)y|^2 \dots (*)$$

for all x, $y \in E$. A pseudo-contractive mapping is one satisfying (*) with k = 1.

The class of nonexpansive mappings is a proper subclass of strictly pseudo-contractive mappings. This is seen by taking k=0 in (*).

However, the class of quasi-nonexpansive mappings and the class of strictly pseudo-contractive mappings are independent.

The T in Example 3.7 is quasi-nonexpansive but not strictly pseudo-contractive. To show that T does not belong to the class of strictly pseudo-contractive mappings, we pick x = 2/(4n+1)T and y = 2/(4n+3)T, $n \ge 1$. Then

$$|\operatorname{Tx-Ty}|^{2} = |(1/(4n+1)\pi)\sin(4n+1)\pi/2 - (1/(4n+3)\pi)\sin(4n+3)\pi/2|^{2}$$

$$= |1/(4n+1)\pi + 1/(4n+3)\pi|^{2}$$

$$= (8n+4)^{2}/[(4n+1)(4n+3)\pi]^{2},$$

whereas

$$|x-y|^{2} + |(I-T)x - (I-T)y|^{2}$$

$$= |x-y|^{2} + |(x-y) - (Tx-Ty)|^{2}$$

$$= \left| \frac{2}{(4n+1)\pi} - \frac{2}{(4n+3)\pi} \right|^{2} + \left| \frac{2}{(4n+1)\pi} - \frac{2}{(4n+3)\pi} - \frac{8n+4}{(4n+1)(4n+3)\pi} \right|^{2}$$

$$= \left| \frac{4}{(4n+1)(4n+3)\pi} \right|^{2} + \left| \frac{4}{(4n+1)(4n+3)\pi} - \frac{8n+4}{(4n+1)(4n+3)\pi} \right|^{2}$$

$$= \frac{16 + 64n^{2}}{(4n+1)(4n+3)\pi^{2}}.$$

Hence

$$|Tx-Ty|^2 > |x-y|^2 + |(I-T)x - (I-T)y|^2$$

> $|x-y|^2 + k|(I-T)x - (I-T)y|^2$

for all $k \in [0,1)$.

Now consider the following example.

3.9 Example. Let \mathbb{R}^1 be the real line and let T be defined as follows:

$$T(x) = -x/a + 1$$
, $0 \le x \le a$, $\frac{1}{3} < a < \frac{1}{2}$, $T(x) = 0$, $a < x \le 1$.

The mapping T is strictly pseudo-contractive but not quasi-nonexpansive. We first show that T is not quasi-nonexpansive. Note that $\frac{a}{1+a}$ is a fixed point of T, since $T(\frac{a}{1+a}) = -\frac{1}{a} \cdot \frac{a}{1+a} + 1 = \frac{a}{1+a}.$

At the point $p = \frac{a}{1+a}$, we have, for x < a,

$$|\text{Tx-p}| = \left| -\frac{x}{a} + 1 - \frac{a}{1+a} \right| = \left| \frac{1}{1+a} - \frac{x}{a} \right|$$

$$= \frac{1}{a} \left| \frac{a}{1+a} - x \right| = \frac{1}{a} \left| x - \frac{a}{1+a} \right|$$

$$> \left| x - \frac{a}{1+a} \right| = \left| x - p \right|$$

since $\frac{1}{a} > 2$.

Next, we show that T is a strictly pseudo-contractive mapping.

For $0 \le x$, $y \le a$, we have

$$|Tx-Ty|^2 = |-\frac{x}{a} + 1 + \frac{y}{a} - 1|^2 = |\frac{x-y}{a}|^2$$
,

and

$$|x-y|^{2} + k|(I-T)x - (I-T)y|^{2}$$

$$= |x-y|^{2} + k|x-y+\frac{x}{a} - 1 - \frac{y}{a} + 1|^{2}$$

$$= |x-y|^{2} + k|(x-y)(\frac{1+a}{a})|^{2}$$

$$= |x-y|^{2}(1 + k(\frac{1+a}{a})^{2}).$$

Let $k = \frac{1-a}{1+a}$. Then

$$|Tx-Ty|^2 = |\frac{x-y}{a}|^2 = |x-y|^2 + k|(I-T)x - (I-T)y|^2$$
.

For $0 \le x \le a$, $a < y \le 1$, we have $0 \le a - x < y - x$

and

Therefore

$$k | (I-T)x - (I-T)y|^{2} + |x-y|^{2}$$

$$= k | x - y + \frac{x}{a} - 1|^{2} + |x - y|^{2}$$

$$= k | (y-x) + \frac{x-x}{a}|^{2} + |y - x|^{2}$$

$$> k | (a-x) + \frac{x-x}{a}|^{2} + |a - x|^{2}$$

$$= \frac{1-a}{1+a} |a-x|^{2} (\frac{1+a}{a})^{2} + |a - x|^{2}$$

$$= \left| \frac{a-x}{a} \right|^{2} = \left| -\frac{x}{a} + 1 \right|^{2}$$

$$= |Tx-Ty|^{2}.$$

Finally, for $a < x \le 1$, $a < y \le 1$, we have

$$0 = |Tx-Ty|^2 \le |x-y|^2 + \frac{1-a}{1+a} |x-y|^2.$$

Hence T is a strictly pseudo-contractive mapping.

Our main theorems are the following.

3.10 Theorem. Let E be a closed unit N-disk or a closed unit N-cell of \mathbb{R}^N and let T be a continuous quasi-nonexpansive mapping of E into itself. Then the iterative scheme

$$(1) \qquad x_{n+1} = Tv_n :$$

(2)
$$= \frac{1}{n}(x_1 + ... + x_n), n = 1, 2, 3, ...,$$

$$(3) v_1 = x_1 \in E$$

converges to a fixed point of T.

3.11 Sorollary. Let E be a closed unit N-disk or a closed unit N-cell of \mathbb{R}^N , and let $T\colon E \longrightarrow E$ be continuous. If T satisfies either

(A)
$$|Tx - Ty| \le \alpha [|x - Tx| + |y - Ty|]$$
, $0 \le \alpha \le \frac{1}{2}$, or

(B) $|\text{Tx} - \text{Ty}| \leq \beta [|\text{x} - \text{Ty}| + |\text{y} - \text{Tx}|]$, $0 \leq \beta \leq \frac{1}{2}$, for all x, $y \in \mathbb{E}$, then the iterative scheme (1)-(3) of Theorem 3.10 converges to a fixed point of T.

For a strictly pseudo-contractive mapping we have the following.

3.12 Theorem. Let E be a closed unit N-disk or a closed unit N-cell of \mathbb{R}^N and let T be a continuous strictly pseudo-contractive mapping of E into itself. Then the iterative scheme

$$(1) x_{n+1} = Tv_n,$$

(2)
$$v_n = \frac{1}{n}(x_1 + ... + x_n), n = 1, 2, 3, ...,$$

$$(3) v_1 = x_1 \in \mathbb{E}$$

converges to a fixed point of T.

To prove the above two theorems we need the following lemmas. 3.13 Lemma. Let x, y and z be any three points in \mathbb{R}^N and let t be

a real number. Then

$$|tx+(1-t)y-z|^2 = t|y-z|^2 + (1-t)|y-z|^2 - t(1-t)|x-y|^2$$

roof. For any $x = (x_1, \dots, x_N)$, $y = (y_1, \dots, y_N)$ in \mathbb{R}^N , we set

$$|x| = \sqrt{\langle x, x \rangle} = \sqrt{x_1^2 + \dots + x_N^2}$$
.

Then

$$|x-y|^2 = \langle x-y, x-y \rangle$$

= $\langle x, x \rangle - \langle x, y \rangle - \langle y, x \rangle + \langle y, y \rangle$
= $|x|^2 - 2\langle x, y \rangle + |y|^2$,

Therefore

$$| tx+(1-t)y-z|^{2} = |t(x-y) + (y-z)|^{2}$$

$$= t^{2}|x-y|^{2} + |y-z|^{2} + 2t\langle x-y,y-z\rangle$$

$$= t^{2}|x-y|^{2} + |y-z|^{2} + t[(|x|^{2} - 2\langle x,z\rangle + |z|^{2}) - (|x|^{2} - 2\langle x,y\rangle + |y|^{2}) - (|z|^{2} - 2\langle z,y\rangle + |y|^{2})]$$

$$= t^{2}|x-y|^{2} + |y-z|^{2} + t(|x-z|^{2} - |x-y|^{2} - |y-z|^{2})$$

$$= t|x-z|^{2} + (1-t)|y-z|^{2} - t(1-t)|x-y|^{2}.$$
Q.E.D.

3.14 Lemma. Let $\{|\mathbf{x}_n - \mathbf{p}|\}$ be a nonincreasing sequence of real numbers. If there exists a subsequence $\{\mathbf{x}_{n_k}\}$ of $\{\mathbf{x}_n\}$ that converges to p, then the sequence $\{\mathbf{x}_n\}$ also converges to the point p.

Proof. Since $\{|x_n-p|\}$ is nonincreasing, we see that if $n \ge N$, then

$$|x_{n+1} - p| \leq |x_n - p|$$
 (*)

Let $\xi > 0$ be given. Then there is an n_{k_0} such that

$$|\mathbf{x}_{n_{k_0}} - \mathbf{p}| < \epsilon$$
 and $\mathbf{n}_{k_0} \geq \mathbf{N}$. Hence from (*)

|x_n - p | < E

for n \(\frac{1}{2}\) n_{k0}.

Q.E.D.

<u>Proof.</u> (of Theorem 3.10) We first show that $\mathbf{v}_n \in \mathbf{E}$ by induction on n.

Since $v_1 = x_1 \in E$, we have finished the first step.

Assume $v_n \in E$. Then

$$v_{n+1} = \frac{1}{n+1} (x_1 + \dots + x_n + x_{n+1})$$

$$= \frac{1}{n+1} (n \cdot v_n + Tv_n)$$

$$= \frac{n}{n+1} v_n + \frac{1}{n+1} Tv_n \in E$$

by induction hypothesis. (Recall that if x and y are points in E, a convex set, then the point

$$z(t) = tx + (1-t)y, 0 \le t \le 1,$$

lies on the straight line segment joining x and y with z(0) = y, z(1) = x.

Hence by induction, $\mathbf{v}_{\mathbf{n}} \in \mathbf{E}$ for all positive integral values of n.

If we set $c_n = \frac{1}{n+1}$, then

(4)
$$v_{n+1} = (1-c_n)v_n + c_nTv_n, n = 1,2,3,...$$

If for some n, $v_n=Tv_n$, then clearly $\left\{\,v_n^{}\right\}$ converges to $\,v_n^{}.$ Hence we may assume that $Tv_n^{}\neq v_n^{}$ for each n.

From Brouwer's fixed point theorem, F(T), the set of fixed point of T, is not empty.

Let q denote any point of F(T).

For any $v_n \in E$, we have

(5)
$$|v_{n+1} - q| = |(1-c_n)v_n + c_nTv_n - q|$$
.

The Lemma 3.18 and (5), then gives

(6)
$$|\mathbf{v}_{n+1} - \mathbf{q}|^2 = |(1-\mathbf{e}_n)\mathbf{v}_n + \mathbf{e}_n \mathbf{T}\mathbf{v}_n - \mathbf{q}|^2$$

$$= (1-\mathbf{e}_n)|\mathbf{v}_n - \mathbf{q}|^2 + \mathbf{e}_n |\mathbf{T}\mathbf{v}_n - \mathbf{q}|^2 - \mathbf{e}_n (1-\mathbf{e}_n)|\mathbf{T}\mathbf{v}_n - \mathbf{v}_n|^2$$

Since T is quasi-nonexpansive, so that

$$|Tv_n - q|^2 = |v_n - q|^2$$
.

This inequality, along with (6), gives

(7)
$$|v_{n+1} - q|^2 \leq |v_n - q|^2 - c_n(1 - c_n) |Tv_n - v_n|^2$$

Therefore adding hese inequalities with m,m+l,...,n for n, we derive the following inequality

$$|v_{n+1}-q|^2 \le |v_m-q|^2 - \sum_{k=m}^n c_k(1-c_k)|Tv_k-v_k|^2$$
,

from which we have

(8)
$$\sum_{k=m}^{n} c_{k} (1-c_{k}) |Tv_{k}-v_{k}|^{2} \leq |v_{m}-q|^{2} - |v_{n+1}-q|^{2}.$$

We claim that $\lim_{n\to\infty}\inf |\operatorname{Tv}_n-v_n|=0$. We prove by contradiction:

Suppose that $\lim \inf |Tv_n-v_n| = b \neq 0$. Then, by Remark 1.18, for any given $\epsilon > 0$, there exists N such that

$$| \text{Tv}_{n} - \text{v}_{n} | > \text{b} - \epsilon$$
 for all $n > N$.

Since (8) is true for all n, then if n > n > N, we get

$$\sum_{k=m}^{n} c_{k} (1-c_{k}) (b-\xi)^{2} \leq |v_{m}-q|^{2} - |v_{n+1}-q|^{2}.$$

or

$$(b-\xi)^2 \sum_{k=m}^{n} c_k (1-c_k) \leq |v_m-q|^2 - |v_{n+1}-q|^2$$
.

This gives a contradiction since the series on the left hand side is unbounded whereas the last member is bounded (in fact, it is bounded by 4). Therefore

$$\lim_{n\to\infty}\inf|\mathrm{Tv}_n-\mathrm{v}_n|=0,$$

i.e., $\lim_{k\to\infty} |Tv_n - v_n| = 0$ for some subsequence $\{v_n\}$. Since E is

compact, there exists a subsequence of $\{v_n\}$, $\{v_m\}$ say, such that $\lim v_m = p$.

Since T is continuous on E, (I-T) is also continuous on E. Therefore

$$\lim_{\substack{m \to \infty \\ \text{but lim } (I-T)v_n \\ k \to \infty}} (I-T)v_m = (I-T)p,$$
but lim $(I-T)v_n = 0$, so that
$$(I-T)p = 0, \text{ or } Tp = p$$

i.e., p is a fixed point of T.

Now from (4), we have

$$| v_{n+1} - p | = | (1-c_n)v_n + c_nTv_n - p |$$

$$= | (1-c_n)(v_n-p) + c_n(Tv_n-p) |$$

$$\leq (1-c_n)|v_n-p| + c_n|Tv_n-p|$$

$$\leq (1-c_n)|v_n-p| + c_n|v_n-p|$$

since T is quasi-nonexpansive. Therefore

$$|v_{n+1}-p| \le |v_n-p|$$
.

Hence $\{|v_n-p|\}$ is nonincreasing.

The two conditions $\lim_{m\to\infty} v_m = p$ and $\{|v_n-p|\} \downarrow$ in n yield $\lim_{n\to\infty} v_n = p$, by Lemma 3.14.

Q.E.D.

Proof. (of Corollary 3.11) We need only to prove that if T satisfies either (A) or (B), then T is quasi-nonexpansive.

Since T is continuous, F(T), the set of fixed points of T, is nonempty by the Brouwer's fixed point theorm. Let $p \in F(T)$.

If T satisfies (A) then, with
$$y = p$$
,

$$|Tx-p| = |Tx-Tp| \leq \alpha(|x-Tx|)$$

 $\leq \alpha([|x-p| + |p-Tx|].$

Therefore

$$|Tx-p| \stackrel{\checkmark}{=} \frac{\alpha}{1-\alpha}|x-p| \stackrel{\checkmark}{=} |x-p|,$$
 since $\frac{\alpha}{1-\alpha} \stackrel{\checkmark}{=} 1$.

In view of (B), we have, for
$$y = p$$
,
$$|Tx-p| = |Tx-Tp| \leq \beta[|x-Tp| + |p-Tx|]$$

$$= \beta[|x-p| + |Tx-p|].$$

Therefore

since
$$\frac{B}{1-B} \le 1$$
.

Q.E.D.

Proof. (of Theorem 3.12) For each n, we have

(4)
$$v_{m+1} = (1-c_n)v_n + c_m T v_n$$

where
$$c_n = \frac{1}{n+1}$$
, $n = 1,2,3,...$

From Brouwer's fixed point theorem, F(T), the set of fixed point of T, is nonempty. Let q denote any point of F(T).

The Lemma 3.13 and (4) then gives

(5)
$$|v_{n+1}-q|^2 = (1-c_n)|v_n-q|^2 + c_n|Tv_n-q|^2 - c_n(1-c_n)|Tv_n-v_n|^2$$

Since T is a strictly pseudo-contractive mapping, there exists a number k, $0 \le k < 1$ such that if x, $y \in E$, then

$$|Tx-Ty|^2 \le |x-y|^2 + k|(I-T)x - (I-T)y|^2$$
.

Thus, if y = q and $x = v_n$, then

(6)
$$|Tv_{n}-q|^{2} \stackrel{!}{=} |v_{n}-q|^{2} + k|v_{n}-Tv_{n}|^{2}$$
.

Substituting (6) into (5), we obtain

(7)
$$|v_{n+1}-q|^2 \leq |v_n-q|^2 - c_n(1-c_n-k)|Tv_n-v_n|^2$$
.

Therefore adding these inequalities with m,m+l,...,n for n, we derive the following inequality

(8)
$$\sum_{i=m}^{n} c_{i}(1-c_{i}-k)|Tv_{i}-v_{i}|^{2} \leq |v_{m}-q|^{2} - |v_{n+1}-q|^{2}.$$

Since k < 1, there exists $\xi > 0$ such that $0 < \xi < 1-k$. For sufficiently large n, n = N say, we have $c_N = \frac{1}{N+1} < \xi < 1-k$.

Since $\{c_n\}$ is decreasing, therefore $c_n < \xi < 1-k$ for all $n \ge N$.

Then if $n > m \ge N$, (8) becomes

(9)
$$\sum_{i=m}^{n} c_{i} (1-\xi-k) |Tv_{i}-v_{i}|^{2} \leq |v_{m}-q|^{2} - |v_{n+1}-q|^{2}$$

or

$$(1-\xi-k)\sum_{i=m}^{n}e_{i}|Tv_{i}-v_{i}|^{2} \leq |v_{m}-q|^{2}-|v_{n+1}-q|^{2}$$
.

The last member is bounded, therefore the series on the left hand side is bounded. But since $\sum_{i=1}^{\infty} c_i$ diverges, this should implies that $\lim\inf_{n\to\infty}|\mathsf{Tv}_n-\mathsf{v}_n|=0$, which in turn implies from the compactness of E that there is a subsequence $\{\mathsf{v}_n\}$ of $\{\mathsf{v}_n\}$ that converges to a certain point p of F(T).

Since p is a fixed point of T, from (7), we see that if $n \ge N$, then

$$|v_{n+1}-p| \le |v_n-p|$$
.

The conditions $\lim_{k\to\infty} v_n = p$ and $\{|v_n-p|\}\}$ in n for all n sufficiently large yield $\lim_{n\to\infty} v_n = p$, by Lemma 3.14.

Q.E.D.