CHAPTER VI

SOLUTIONS OF g(x-y) = g(x)g(y) + f(x)f(y) AND $g(\frac{x}{y}) = g(x)g(y) + f(x)f(y)$.

In this chapter we shall determine all continuous solution of

$$(A_*) \qquad g(x-y) = g(x)g(y) + f(x)f(y)$$

on \mathbb{R}^n to \mathbb{R} , and all continuous solutions of

$$(A^*) \qquad g(\frac{x}{y}) \qquad = \qquad g(x)g(y) + f(x)f(y)$$

on \mathbb{R}^* to \mathbb{C} . Furthermore we shall show that discontinuous solutions of (A_*) and (A^*) also exist.

6.1 Continuous Solution of g(x-y) = g(x)g(y) + f(x)f(y) on \mathbb{R}^n

Let $f,g:\mathbb{R}^{\frac{n}{}}\to\mathbb{R}$ be continuous functions such that f,g satisfy

$$(A_*)$$
 = $g(x)g(y) + f(x)f(y)$,

for all x,y in \mathbb{R}^n . We shall characterize all such functions f,g. To do this, we may consider f,g as functions on the topological group $(\mathbb{R}^n,+)$ into the topological field $(\mathbb{R},+,\cdot)$. Since \mathbb{R}^n is also the topological vector space over \mathbb{R} , hence by Corollary 4.9, the continuous solutions of (A_*) must be those and only those (f,g) of the forms:

(6.1.1)
$$f(x) = b$$
, $g(x) = a$ for all x in \mathbb{R}^n , where $a,b \in [0, 1)$ and $b = \sqrt{a-a^2}$; or

(6.1.2)
$$f(x) = \frac{h(x) - h(x^{-1})}{2i}$$
, $g(x) = \frac{h(x) + h(x^{-1})}{2}$

where h is a continuous homomorphism from \mathbb{R}^n to \bigwedge . By Theorem 5.3.6, h(x) must be of the form h(x) = $e^{i(k_1x_1+\cdots+k_nx_n)}$ where $x=(x_1,\cdots,x_n)$ and k_i 's are real numbers. Hence f,g in (6.1.2) must be of the form

$$f(x) = \frac{i(k_1x_1 + \cdots + k_nx_n) - i(k_1x_1 + \cdots + k_nx_n)}{2i}$$

$$= \sin(k_1x_1 + \cdots + k_nx_n)$$

and

$$g(x) = \frac{e^{i(k_1x_1 + \cdots + k_nx_n + e^{-i(k_1x_1 + \cdots + k_nx_n)})}}{2}$$

$$= \cos(k_1x_1 + \cdots + k_nx_n)$$

where $x = (x_1, \dots, x_n)$ and k!s are real numbers.

In particular, when n = 1, the continuous solutions of (A_*) are those and only those (f,g) of the forms :

(6.1.3)
$$f(x) = b$$
, $g(x) = a$ for all x in \mathbb{R} , where $a,b \in [0,1)$ and $b = \sqrt{a-a^2}$; or

$$(6.1.4)$$
 $f(x) = \sin(kx)$, $g(x) = \cos(kx)$

where k is a real number.

6.2 Continuous Solution of $g(\frac{x}{y}) = g(x)g(y) + g(x)f(y)$ on \mathbb{R}^*

Let $f,g:\mathbb{R}^* \to \mathbb{C}$ be continuous functions such that f,g satisfy

(A*)
$$g(\frac{x}{y}) = g(x)g(y) + f(x)f(y)$$
,

for all x,y in \mathbb{R}^* . We shall characterize all such functions f,g.To do this we may consider f,g as functions on the topological group (\mathbb{R}^* ,.) into the topological field (\mathbb{C} ,+,.). It can be shown that (\mathbb{R}^+ ,.) is the only subgroup of index 2 in \mathbb{R}^* , and that (\mathbb{R}^* ,.) has no subgroup of index 4. Hence by Theorem 4.5, the continuous solutions of (\mathbb{A}^*) must be those and only those (f,g) of the forms:

(6.2.1) f(x) = b, g(x) = a for all x in \mathbb{R}^* where a, b are elements of \mathbb{C} such that $a \neq 1$, $a - a^2 = b^2$; or

(6.2.2)
$$f(x) = \begin{cases} b, x \in \mathbb{R}^+ \\ -b, x \in \mathbb{R}^- \end{cases}, g(x) = \begin{cases} a, x \in \mathbb{R}^+ \\ -a, x \in \mathbb{R}^- \end{cases}$$

where a,b are elements of e such that $a \neq 1$, $a - a^2 = b^2$; or

(6.2.3)
$$f(x) = \begin{cases} 0, & x \in \mathbb{R}^+ \\ d, & x \in \mathbb{R}^- \end{cases}, g(x) = \begin{cases} 1, & x \in \mathbb{R}^+ \\ c, & x \in \mathbb{R}^- \end{cases}$$

where c,d are elements of C such that $c \neq 1$, $c^2 + d^2 = 1$; or

(6.2.4)
$$f(x) = \frac{h(x) - h(x^{-1})}{2i}, g(x) = \frac{h(x) + h(x^{-1})}{2}$$

where h is a continuous homomorphism from \mathbb{R}^* to \mathbb{C}^* . By Theorem 5.4.2, we see that

$$h(x) = |x|^c$$
 for all x in \mathbb{R}^*

or

$$h(x) = \begin{cases} |x|^{c} & \text{if } x \neq 0 \\ -|x|^{c} & \text{if } x \neq 0 \end{cases}$$

where c is a complex number. Hence f,g in (6.2.4) must be of the forms :

(6.2.4.a)
$$f(x) = \frac{|x|^c - |x|^{-c}}{2i}$$
, $g(x) = \frac{|x|^c + |x|^{-c}}{2}$ for all x in R,

$$(6.2.4.b) f(x) = \begin{cases} \frac{|x|^c - |x|^{-c}}{2i} & \text{if } x = 0 \\ \frac{|x|^{-c} - |x|^c}{2i} & \text{if } x < 0 \end{cases}$$
 and

$$g(x) = \begin{cases} \frac{|x|^{c} + |x|^{-c}}{2} & \text{if } x > 0 \\ -\frac{|x|^{c} + |x|^{-c}}{2} & \text{if } x < 0 \end{cases}$$

where c is a complex number.

6.3 Existence of Discontinuous Solution of g(x-y) = g(x)g(y)+f(x)f(y)

Let $f,g: \mathbb{R}^{\frac{n}{2}} \to \mathbb{R}$ be functions such that f,g satisfy

$$(A_x) \qquad g(x-y) = g(x)g(y) + f(x)f(y)$$

for all x,y in \mathbb{R}^n . Since \mathbb{R}^n has no subgroup of index 2, hence, by Remark 3.31, any solution (f,g) of (A_*) on \mathbb{R}^n to \mathbb{R} must be of the forms:

(6.3.1)
$$f(x) = b, g(x) = a \text{ for all } x \text{ in } \mathbb{R}^n, \text{ where}$$

$$a,b \in [0,1) \text{ and } b = \sqrt{a-a^2}; \text{ or}$$

(6.3.2)
$$f(x) = \frac{h(x) - h(x^{-1})}{2i}, g(x) = \frac{h(x) + h(x^{-1})}{2}$$

where h is a homomorphism from \mathbb{R}^n to \triangle . Observe that each solution of the form (6.3.1) is continuous. Hence any discontinuous solution of (A_*) , if exists, must be of the form (6.3.2). By Theorem 4.4, the solution of the form (6.3.2) is continuous if and only if h is continuous. Hence any discontinuous h: $\mathbb{R}^n \longrightarrow \triangle$ will provide a discontinuous solution (f,g) by (6.3.2). We have seen from Section 5.5 that such discontinuous homomorphism exists. Hence a discontinuous solution (f,g) of (A_*) on \mathbb{R}^n to \mathbb{R} exists.

6.4 Existence of Discontinuous Solution of $g(\frac{x}{y}) = g(x)g(y) + f(x)f(y)$

Let $f,g: \mathbb{R} \xrightarrow{*} \mathbb{C}$ be functions such that f,g satisfy $g(\frac{x}{y}) = g(x)g(y) + f(x)f(y)$

for all x,y in \mathbb{R}^* . Since \mathbb{R}^+ is the only subgroup of index 2 of \mathbb{R}^* , and \mathbb{R}^* has no subgroup of index 4, hence by Theorem 3.30 any solution of (A^*) on \mathbb{R}^* to \mathbb{C} must be of the forms:

(6.4.1) f(x) = b, g(x) = a for all x in \mathbb{R}^* , where a,b are elements of C such that $a \neq 1$, $a-a^2 = b^2$; or

(6.4.2)
$$f(x) = \begin{cases} b, & x \in \mathbb{R}^+ \\ -b, & x \in \mathbb{R}^- \end{cases}, g(x) = \begin{cases} a, & x \in \mathbb{R}^+ \\ -a, & x \in \mathbb{R}^- \end{cases}$$

where a,b are elements of C such that $a \neq 1$, $a-a^2 = b^2$; or

(6.4.3)
$$f(x) = \begin{cases} 0, & x \in \mathbb{R}^+ \\ d, & x \in \mathbb{R}^- \end{cases}, g(x) = \begin{cases} 1, & x \in \mathbb{R}^+ \\ c, & x \in \mathbb{R}^- \end{cases}$$

where c,d are elements of C such that $c \neq 1$, $c^2 + d^2 = 1$; or (6.4.4) $f(x) = \frac{h(x) - h(x^{-1})}{2i}$, $g(x) = \frac{h(x) + h(x^{-1})}{2}$

where h is a homomorphism from !R into C .

Observe that each solution of the form (6.4.1) is continuous. Since \mathbb{R}^+ is an open subgroup of \mathbb{R}^* , hence by Corollary 4.3 each solution of the forms (6.4.2) and (6.4.3) is continuous. Hence any discontinuous solution of (A^*) , if exist, must be of the form (6.4.4). By Theorem 4.4, the solution of the form (6.4.4) is continuous if and only if h is continuous. Hence any discontinuous h: $\mathbb{R}^* \to \mathbb{C}^*$ will provide a discontinuous solution (\mathbf{f},\mathbf{g}) by (6.4.4). The existence of discontinuous of such h is already discussed in Theorem 5.6.4. Hence a discontinuous solution (\mathbf{f},\mathbf{g}) of (\mathbb{A}^*) on \mathbb{R}^* to \mathbb{C} exists.