CHAPTER V

SOLUTION OF f(x+y) = f(x)f(y) AND f(xy) = f(x)f(y)

In determining solutions of the functional equation

() g(xoy™ ")

g(x)g(y) + f(x)f(y)

treated in the previous chapters, it turns out that certain
solutions of (A) are expressible in terms ‘of honouorphisns from
an abelian group G into the multiplicative group M(F), where F
is a field of charaeteristic different from 2, In this chapter,
we shall'characterize these homomorphisms for the case where

6= 8 ,F=2 and/d9R", F- ¢

2+71 Solution of £(xiy) = £(x)f(y)

Theorem 5,161 Let V be a vector space over a field F with

ig = { Wt keI } as a basis. Let f be a function on V into

a ccomutative group GI. Then f satisfies

(5.1.101) f(x+y)

f(x)f(y),

iff there exists a family { %ﬁ : &e I } of homomorphisms

from the additive group of F into G’ such that for any

n
X = ¥ aiV’d‘ in Vv ’ we have
{=1 #
n n
£(x) = £(T  avy ) = I  f,.(a) .
i1 1% 121 i1
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Proof Assume that f : Vv— G satisfies (5.1.1.1),
for each %i G 53 s define ,ﬁﬂ(é) = f(aW¢)'
Observe that for each o e T, fd : ]?——9G’, and
5*(a+b) = f«a+b)Va) ’
= yf(awx + b%i),

= f(avd) f(bvd )
= fd(a)fa (b)
n
For any x ¢ V, we have % = )3 a.v s where a, & F, V_ € @)
-1 1 a i B qi *

Hence f(x) = Iy

BY (5414141), we have

i

)
]
-3

e

f(x) f(aiV

OL)'

Hence f(x)

!
.:_J,'j
QH:
0

P

1

=
H

Conversely, assume that J ﬁn it de I} is a family of homomorphisms
{

/
on the additive group of F into & and f is given by
n n

f(.E aiv“-.) I fcx_(ai) « Then for any x,y € V, we
i=1 i i="1 a

‘may write
n
B -1z -2 &ivo‘i’ Yy =.2 bVo(. >
i=1 i=1 i

where 8 4 bi@ F and Vdiﬁ B




Hence,

f(x+y)

n

i

Lemma 5,1,2
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n n
f(g a.v + £ b,V ¥
i=1 Y%y 4q 1y
n
T
f(i=1 (ai+bi) Vdi )y
n
T.[ fd i(ai+bi) R
121
n
Wi, a) £, (b)),
=y Al
n n
[T o Tl £ o),
i Ry i g, ey i
n n
5 b
f(' aivoci) f(. bivoc.),
i=1 i=1 o
f{x)f(y).

Let hibe a homomorphism from the additive group Q

of rational numbers inte a commutative group G’. Then

h(na) = (h(a))® |,

for

the set of all integers.

Proof Let a e q .
Therefore h(O.a) =

Assume that k is a non-n

h(ke.a)

alla € @ andallne 2z,

Since h is a homomorphism,
0

h(O) =1 = (h(a)) °

egative integer such that

(a(a))® .,

where % is

hence h(0) = 1
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Then
h((k+1)a) = h(ka + a),
- h(ka)h(a),
= (aa)® n(a),
= (m@an®!
Hence h(na) = (h(8))>  for all non-negative integers n.

For any negative integer Wy =m is a positive integer,

Hence
1= h(0) = hima + (-m)a),
= h{ma)(h(2))™ .
Therefore h(ma) = th(a))”,
Thus "h(ng )= (‘h(a))n for alln ¢ z .
Theorem 5,1.,3 h is a homomorphism from @ into ey s Where
’

G is RY or Zk,, iff there exists r e @’ such that h(a) = ra,

for a & 9 .

Proof Assume that h is a homomorphism from Q into ¢’

Let a ¢ Q. Then a = g s Wwhere p,q are integers, q £Z 0 .
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We have
pya p
(h(a» = h(q-q) B
= h(p),
= h(pe1),
= (n(1)F.
p
Hence h(g) = (m(ft -,

a 7/
r where r = h(1) & ¢ .

n

i.e, we have h(a)
Conversely, assume that therc exists r e G such that

h(a)

a £
r ’ for reg .

Then

h(a+bh) ra+b = rb

n

h(a)h(b).

Hence h is a homomorphism.

Theorem 5.1.4 Let H = {\{1 &K € I} be a Hamel basis of R over Q.

p /
A function f : R— G , where G is R or .ZX y» satisfies

(5e1ekte1) f(x+y) = £(x)£(y)
L % o & thefc exists a function b on H into G,such that for
n
each x = 3 aivq € R, where quH, we have
i=1 : § i
n n
&y
£(E av, ) = 1] v, )1 .
3 A L A
i=1 i i=1 i
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Proof Assume that f : R— @G satisfies (5.7.4e1) By

Theorem 54141, Wwe see that f must be of the form

n n
0 avy ) = Tl 2, @,
1:1 1 1:1 1
where fa. is a homomorphism from ¢ into G:

i

By Theorem 5,143, each ﬁi. must be of the form

1
£ b2 £ b ’
« (B8) = o v forsome b e G
k& 1 1
Let b : H—> G be. defined by b(V, )= by .
i i

Then we have,
. n
f(E a,v_ )

A QTi

n

i=1

4
Conversely, assume that there exists a function b on H to G such

that f is defined by

n
a.

n

- &

f( Z ain.) = ll b(V‘x.) ’
i=1 1 i_/' i



then, for any

f(x+y)

Corollary 5,15 Let H =

*
R——>C

A function f

(5010501) f(x+}')

iff there exists a func

83

n
i ain_ v 'Y = 21 a; v, in R, we have
5 3 i= i
n n
/
= f(Z a.v + Z a, ¥, )y
1=1 + %4  qqt iy
n
£(Z (a4, )V )
= a,+8 . N
121 = . Cii
- ai+a;
= ﬂ-b(vq ) H}
i=1 i
1
n a; n a;
— T_l- b(Vq ) b(va ) ?
i=1 i i=1 i
n n
FEE e, ) (2 v, ),
=N 4 j=1 * i

{%1: & @ I} be a Hamel basis of m over Q.

satisfies

£(x)£(y)

*

tion ¢ on H into ¢  such that for

n
each x = a,v & R, we have
1e1 * %4
n n
7 oa.v Tr ai
f o i = o
(29 "1 ay) SR, i)
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%k
Proof Assume that f : R— C satisfies (5.7¢561).

Let g(x) = 'f(x), and h(x) = £(x)

Observe that g : R — R', and

Hence, g(x+y)

| £(x+y) | ’

leco26y) |,

i

oo | | |
= g(x)g(y).

Also,

£(x+y)
g(x+y)

h(x+y)

f(x)£(y)
g(x)ely)

x), £()
g(x) &y

= h(x) h(y) .

Therefore, by using Theorem 5.,1.4 there cxists a function b, on H

4
into m+ and a function b2 on H dinto zCX such that for each
n
X = X a.V £ R, we have
i=1 * %
n a.
i
g(x) = .TT- by (V, ) ,
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and
n ai
h(X) = TT b2(Va ) ) .

i=1 1

*

Let ¢ : H—C be defined by

c(Vd -) = b,](Vd ) b2(V0L )e
i ¢ i
So we have,
£(x) < g(x). h(x)
n ay n a,
= ]_[ b, (V) ,'T’[ b, (V)
i=1 i i=1 -

n
o Ty, ) o, n
o | ¥ i

g7
a

= _]—Tc(va.)i.

i=1 1

*
Conversely, if c¢ is a function on H into C , and f is defined
by n n
l
£z &V, ) = i|¥|1 (Vi )

i

then it cgn be verified in the same way as in Theorem 5.1.k4,

that f(x+y) = £(x)£(y).

Theorem 5.1.6 Let f: RQ——’ACX be function. f satisfies

(5e74661) fx+y) = £()f(y),
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c o~

iff for each i = 1,..4, n, there exists a function f; on R to A

satisfying
fi(x+y) = fi(X)fi(Y)
such that for each X = (x1, ooy xn) e Rn s+ We have
n
f(x) = ﬂ‘ (£;0p.)(x),
i=1
' i :
where the p;s are given by pi(xq, L xn) = Xy 1=, seey n,
Proof Assume that f satisfies (5.1.6.1)

For each i = 1, ..., n, let m ;¢ R-— Rn be defined by

m, (x) ¢ Xe:
where e; = ( Jij’ R d}yg - é;j =1 if i = j, and
5ij = 0 if 44§,
Set £y = foni ’
hence fi tR— A and
fi(x+y) = (foni)(x+y)

= f(ui(x+y)),

B f((x+y)ei)

= f(xei + yei),



Also, from fi =

fiopi =

87

f(xei)f(yei),
f(ni(x))f(ni(Y))o

fi(x)fi(y).
foni, we have

(foni) oP;

where p; 1is defined by pi(x1, e SXees xn) = X

Hence , for any x =

f,0 pi(x)

Therefore

n
1_{fiopi(#)
i=1

1

I

(x1, = I xn), we have

f(ni(pi(x1, Sy xn))),
f(ni<xi)>,

f(xiei)o

n
;[I f(xiei),
f(xqe)...f(xnen),

+ ecocet+ X_© )’

f(xqe, n®n

f(x1, seey xn)

f(x).
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n

Conversely, assume that f(x) = TT— inPi(X)' where each
i=1

fi9 i=1y ceey n, satisfies fi(x+y) = fi(x)fi(y) for all x,y € R.

We have

f(x+y)

n

n
1];(fi(pi(x+y)),

n
- TT-fi(Xi+yi)’
1=1

n
. I;E (£, (xf; (7)),

n
fi(xi) ]—[ fi(yi)'

3=

—

. 3

ot g
n

rtpr), 1 £,6,(00),

i=1

s

izd

= f(X)f(y)e



89

Corollary 5.17 By using Theorem 5.71.4, we see that f : R:—% zf&

satisfies f(x+y) = £f(x)f(y) if, and only if for j = 1, eecey N,
there exist functions bj on Hy where H is a Hamel basis of R

m m
over @, into ZS such that for each x = ( & a,.V Saens L ora B )

i=1 e i i=1 s i
we have
n m aji
£f(x) = I b (V, )
j=1 i=1 3 %
5¢2 Solution of f£(xy) = £(x)f(y)
Lemma % Let H = iVa Sl € I} be a Hamel basis of R over Q.
L + . AN + R
A function f: (R ,,N=3 G , /where G is R or A s satisfies
(5.2.1.1) £ (xy ) Te f(x)f(y)

iff there exist an isomorphism g~ R——a!R+ and a function b

n
on H into G such that for each x in RT, if g-1(x) =% a,V € R,
. 1=1 oA 3
n a.
T :
where Va’i € H ; we have f(x) = fe b(V o i) .

Proof Assume that f : Rt——aG/ satisfies (5.2.7¢1).

. & . - . A -
Since R 1is isomorphic to R , hence there exist an isomorphism

n

g from R onto R* such that for each x in R+, g-1(x) = % a,V_ ER
oq & X g
1=

Put h = fog . Since f and g are homomorphisms, so
7/
is he By Theorem 5.1.4, there exists a function b on H into G

such that for each x = adi € R , where Vq € H, we have

1 i 1

n s

i
n

n
a,
1
h (2 av, ) = TTb(Vd_)
i=1 i i=1 i
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Hence for each x in R+,

£(x) £5(g” (%))

= h(g"(x))

1T i
= b(U, ) .
i=1 . %3

Conversely, assume that there exist an isomorphism g : R —— R’
and a function b : H-—a»G' such that for each x in R+,

a

-1 n n i
g (x) = g a;Vy 3/ @md f is defined by f(x) =T] b(V_ )
121 i i=1 %4
Since g is an isomorphism so is 3-1. Then for any x, y in |R+,
n n
1 (x) v ¥ d
g (x) = ¢ Vo 59 8 (y) =2 ay Kx + We have
i=1 i=1 i
=1 -1 = - =
g(xy)=g(>c)+g(y)=zalvd + T a; v,
i=1 i i=1 i
n
I (a ! )V
= .+ a. .
i=1 l di
n /
- a ai
Hence, tofy) = I vy ) T ey, )
i=1 = i=1 5
n ai+ ai

I
o’
~~
<t
&
P
p—

1]
Hy
7 ot
4
~r
.
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Theorem 5,2.,2 Let H = { Ei HEe S I} be a Hamel basis of R

over Q.

A function « 41 G R*,. )-—-_; (R+,.) , satisfies
(5.802s1) fxy) = f(x)f(y),

iff there exist an isomorphism g : B — R and a function

n
* -
b : H— R" such that for each/x in R , if g 1(|x|) =32 aiva.eﬂl
i=1 i
n a,
3
where Val € H 3 we haye Xy = TT b(Va( ) .
i i=1 i
*
Proof Assume that /£/: (R ,.) ——9(R+,.) satisfies (5.,2,2.,1).
2
Then (£(=1)) - f(-1)f(=1)
= F((=1)(=1))
= £(1)
= %X
Hence f(=1) = 1,
Let fi = f|R+ « Observe that f1 is a homomorphism from

R" to gt . By Lemma 5.2,1, there exist an isomorphism

g : R— R and a function b ; H— RT such that for

n
each x ian+, g-1(x) = X aivd € R we have
i=1 &
n a,
_ _ 4
£(x) = f£,(x) - T]'b(Vo(i) .

i=1

C
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Let x be any element of R~ = IR*- R+ o Therefore =x & R+.
i _ n
It follows that g 1(|x|) = g 1(-x) = ¥ a.Vv € R, where
. it |
i=1 e B
Vq' € H.
i
Thus,
f(x) = £(=1)(=x))
= f(-1)f(-x)
= f(-X)
= f1(~X)
n a,
i
= TT b(Va ) .
i=1 i
n
* &
Hence for each x ini R , ¢ 1(lxi) = I aiv s Wwe have
' 42 k|
I a
i
£x) = ] vy, O
i=1 &

Conversely, assume that there exist an isomorphism g : R— R*

*
and a function b : H— R® such that for each x in R ’

n
n Bl
g-1(1x| ) = I aivd ) we have f(x) = ﬂ'b(vo( y *
i=1 I i=1 1
n n
. & -1 -l /

For any x4 ¥y in R, g (4xl)=.2 ain.'g (iyl):_Z a; Vo s
i=1 i i=1 ¥

i -1 -1 -~ -

it follows that g (|xy]) = g (Ixlly]) = g Ux) +g (yl)

n
= 5 ‘
= I (z:o.i+a:.L ) Vo =+ Hence

i=1 i
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/

n a, n a.,
b &

1
T g > TT wvg )

i=1 i i=1 i

£(x)£(y)

’

n
a.+ a,
ﬂ L 8
= e, )
1:1 i

= f(xy).

Theorem 5.23 Let H = { Ug: A/ EX }be a Hamel basis of R over Q .

%
A function R : (Rye)— (A,.) , satisfies

(502.301) f(XY) = f(X)f(Y)
iff there exist an isomorphism g \\2 R— R' and a function
n
: % _
b : H— Z§ such that for each x in R , if g 1(Ixt) = E.aiVO( ¢ R,
i=1 i
where Vd € H ;3 we have
i
n
a
P *
(5.2:32) f(x) = ﬂ b(Vgy ) for all x in R ; or
i=1 i
a,
n i
TT vy ) if x=» 0
i=1 i
(5-20303) f(x) = n ai
ﬂ' b(Vo( ) if x <0,
. i
1:1

%*
Proof Assume that f : R —3 Zﬁx satisfies (5e2¢3071),

By using the same argument as in the proof of Theorem 5.2.2,



ok

It can be shown that (ﬁt‘(-’l))2 = 1, Hence f(~1) = 1 or -1,

Let f,l = fI!R+ e Then f,] is a homomorphism from R* into A o

By Lemma 5.2.7, there exist an isomorphism g : R—> R" and

'] il
a function b : H—> /\ such that for each x in (R+, g (Ixt) =g (x) =

n
a

T a.V € R, where V € H, we have f(x) = H b(Vv ) +
. i o, 2 a . - a ., o
i=1 1  ® i=1 s

2 *
Let x be any element of R = 'R ~ R . Again, by using the

same argument as in the proof of Theorem 5.,2.2, it can be shown

n a.
that f£(x) = £(-1Df(=x)/2 £DTT by ) " ghere
i=1 i
-1 -1 7
g Uxl) = g (=x) =%/ &V, ., . If £(~1) =1, then
i1 i

n a . 7 a ai
f(X) = ﬂ b(va ) r . If f(-1) = -1, then f(X) s - ﬂb(Vq )

i=1 i i=1 i

Hence f is of the forms (502.3.2) or (5.203.3)0

Conversely, assume that g : R— R is an isomorphismn,

b ¢ H——)A, and f &2*_.>A is given by

n a

i *
(5.2.302) f(X) = TT b(vd ) for all x in R H or
1= i
n a,
TT b(V« ) = s x =0
(5024343) s - 207

n ai
-Tievg ) y x =0,
i=1 b

n
where a,'s arc such that g”(!xl) = 5§ a.V "
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By using the same argument as in the proof of Theorem 5.2.2 it
can be shown that f given by (5.2.3.2) satisfies (5.2e3.1).

Suppose that f is given by (5¢2.3¢3). Let x,y be any elements

% -1 i -1 1 g 4
of R « Therefore g ({x]) = T a.Vv , g Cigh = ¢ a; Vyu
=1 i i=1 3

n

and hence g-1(xy ) = ¢ (ai+ a;) Vfi . If both x and y belong
1=1 3

to R we are done. First, let us assume that x, y € R .

Therefore xy & R*. Hence
/

n n
a.. a.
ot =) = 1] v, BT o
i=1 i i=1 i
n a.+ a’
n X
=l i
= f(xy).
Next, we assume that x € R* , Yé R « Then xy €¢ R . It follows
n ai n a’i
that %) £(%) AnE ooV, ) (-TTb(va )
i=1 i \ 1=1 i
n a.+ a'.
1_.|. o 1§ 1
= =TT ey
i=1 i 4
= f(xy).

Note that if x € R, y € m*, then a similar argument

shows that f(x)f(y) = f(xy) .

®
In any case we have f(x)f(y) = f(xy) for all x,y in R &
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Theorem Se2.4 Let H = { vd. : b €T } be a Hamel basis of R

over Q. A function f : (R*,.)———-) (C*,.) satisfies
(5e24k461) £(xy) = £F(x)£(y)

iff there exist an isomorphism g : R—> R and a function
n

c H~—-+(L‘* such that for each x in R*, 5-1(|xl ) =L ain ¢ R
i=1 4
where V e H 4, we have
Ay
n a .
. - [ ]
(5¢2ek442) ££)///F ﬂ c(V, y * for all x in R , or
i=1 i
a.
. C(Vd ) + 1 x > O
11 5
(5020403) f(x) &)
n 8y
_'rl’ c(Vg, ) s, x «0
! *
Broof Assume that f lRt—) C* satisfies (5.2.441)
Let p(x) = |£(x ]| VERSIY, . &)
B(x)
» +
Observe that @ +: R— R s
*
and h g R — A
Hence @(xy) = 'f(XY)| R
- el

R EIE X1 ECAI

= ¢(X) ¢(y)0
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By Theorem 5.,2,2, there exist an isomorphism g ¢ R— R" and a

function b,‘ : H— R such that for each x in !R*,

n
-1
g (ix|]) = = aV_, € R ,-.
T et %
n a,
we have #(x) = -ﬂ- b'l(vd y & .
3=1 i
Observe that h(xy) = f(xy)
: B(xy)
= f(x)E(y)
B(x)B(y)
f £ i)
F(x) B(y)
= h(x)h(y) .

By Theorem 5.2.,3, there exist an isomorphism g : lR-—-) R" and

a function b2 s H—) A such that for each x in fR*)
n
-1
& (Ix‘) =3 a.V g R ?
et & ¥y
where VO(. e H , we have
i
n &
1 ’ '
(5.2.4.4) h(x) = b (Vo ) for all x inR §; or
i=1 i
n 8y o
TT 22Vg ) D ol
i=1 1
(5020405) h(x) =
n a;
-:” b2(Vai) y X =0 .,



Let c: Hee €
0(21.)
i
So we have
h(x)

If h(x) is of the form (5.2,

f(x)

(5.2e4.2)

If h(x) is of the form (5.2.

(5¢62e443) f(x)

Conversely, assume that f

(542.443)

It can be werified in the same way as in the proof of Theorem 5.2.3

that f satisfies (5.2.4.1),

98

be defined by

b1(V .) ba(voc.) .

a'l ¥
= B(x)h(x)
n ai
= T—“ b,](Va ') h(X) P
=1 +
L.4) , then
n n
a. .
AT N, ) 2T bv,, ) &
I R A S T
n
a, a.,
s CL] g 0t v 0,
i=1 1 i
> a
= ]_T C(Vq .) & .
l=1 1

L,5), then we have

&y
fﬁ’C(VG& )y * , X=»0
i=1 +
n ai
-ﬂc(v‘x-) sy x <0 .
i=1 +

* *
R— ¢

is given by (5¢2.4.2) or

o e il
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5;3 Continuous Solution of f(x + y) = F(x)f(y)

In this section, we shall determine all the continuous

solutions of f(x + y) = f(x)f(y), where f is a function from R

into A .

Lemma 5,3, 1 Let g : R— R be a continuous function satisfying
{(543e741) glx +y) = g(x) + e(y).

Then g(x) = bx for somé b in R .

Proof We first clain that- 'g(na) = ng(a) for all integers n

and a ¢ Re

Since g is a homomorphism, hence g(0) = o,

Therefore g(Qse)—=—pagt0)>r—=—06"5L O, gla) .

Assume that k is a non-negative integer such that

g(ka) kg(a) .

Then, g((k+1)a) g(ka + a) ,
- g(ka) + g(a) ,

= kg(a) + g(a) ,

= (k + Ng(a).
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For any negative integer m, -m is a positive integer., Hence

0 = g(0) = g(ma + (-m)a),
= g(ma) + g((-m)a),
= g(ma) + (-m) g(a),
Thus g(ma) = mg(a).
Therefore g(na) = ng(a) for all integer n,
For r = E s where p,q /are integers and g # O. we have
ag(r) S as(E
= 8(qe. g) ’
= g(p)
= g(pe1),
= pz(1).
Thus g(r) = ZeM = (1.

Let x e R . Since the set of rational numbers is dense in R,

we can find a sequence { rn'} of rational numbers converging

to x. Since g is continuous, hence

lim g(rn) = g(x) .
- o0
But lim g(rn) = lim r g(1) = xg(1).

n-»eoa n —oo
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Therefore g(x) = xg(1) , x € R.

Thus g(x) = bx , where b = g(1) € R .

Theorem 56362 Let g : (R, + )——**(R+,.) be a continuous
function, g satisfies

(503-201) g(x - y) = 8(x) 8(y>

iff f is of the form

(BeFecu2) glx) = &* for some a in R,

Proof Assume that g satisfies (5.3.2.7).

Let h(x)

1nx ’ x > 0 ,

Put f = hog .

Since both h and g are continuous, hence f is almso continuous.

We also have

h(g(x + y) ,

t

f(x + y)
= In (g(x + y)),
= 1n(g(x)g(y))
= Ing(x) + lnS(Y)‘
= h(g(x))+ h(g(y)),

- f(x)+ £(¥)e
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Therefore, by Lemma 5.3.,1, there exists a &€ R such that for all

x € R, f(x) = ax.
Then,
In(g(x)) = h(g(x)),

= f(x),

= ax .
Therefore g(x) = — s, where a &€ R,
Conversely, let g(x)/ = o for some a in R.
Thus g(x+y) . = o2 (X% )

y Q23X+ ay '

A o2 5 8Y

?

= gx)gly) .

Remark 5,3,3 Observe that the function g given in (5.3.2.2)

is an isomorphism iff the elemént a is different from zero.

Theorem 5.3.4 Let I ¢ (R, +) — ZX be a continuous function.

I satisfies

(5030401) I(X + y) = I(X)I(y)

iff there exists k € R such that I(x) = elkx °
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Proof Assume that I : R—>/\ is given by I(x) = ¢=F for
some k in R. Then I(x + y) = elk(x+y) = elkxo MY I(x)I(y)e.
Conversely, assume.that I satisfies (5.3.4.1),

\ . - 2Tix -
Let £ : R ~——)A[§ be given by f(x) = e where x

g

denotes the equivalence class containing x. Observe that f defines

an open isomorphism on @/é to A\

Put _ B = f <oy,

Since both T and £~ are continuous, hence B is also

continuous. We also have

B (x + y) f"101(x +y)

GO I()

N

ez £y,

B(x) + B(y) «

Therefore by Theorem 2,3.1, there exists a € R such that

B (x) =_?(ax) where (P is the canonical mapping from R onto @/
2
Than

i

f_1oI(x) B (x)

1

@ (ax)
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Hence,
I(x) =  f(ax)
2niax
= e
= eikx where k = 2na & R.
Therefore I(x) = e1kx where k € R .,
*
Theorem 5.3%.5 Let h : (R, +)==5(€,.) be a continuous
function, h satisfies
(5.5:51) h(x+y) = h(x)h(y)
iff there exists c &€ such that h(x) = &% .
*
Proof Assume that h : R—3 ¢ is given by h(x) = ¢°*  for
some ¢ €€ , Then
ki oLy ec(x +y) - e OX oy ex oy _ h(x) h(y).

Conversely, assume that h satisfies (5.3.5.1).

Let g(x) = Ih(x)! and I(x) = h(x)
g(x)

Observe that g: R—R',

and It R— A .

Since h is continuous, so are g and I.
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Also, glx + y) [h(x % y)t

- |n(x) n(y) |
= neo | el
= glx) gly).

By using Theorem 5.3.2, we get g(x) = s for some a ¢ R.

hix +y)
glx + y)

Observe that I(x + ¥)

h(X) h(y) 9
glx) g(y)

ho | Ay
g(x) &(y)

= I(x) I(y).

By wusing Theorem 5.3.4, we get I(x) = elkx for some k € R .

i

Thus h(x) I(x)eg(x),

ikx ax
e s © ,

e(a + ik)x

= e s where ¢ = (a + ik) € € .

Theorem 5.3.6 Let f : Rn~a‘1§ be a continuous functione f

satisfies

(50306.1) f(x + Y) = f(X)f(Y)



iff there exist ki 6 R 3 i = 1, oeey n’

i(-k,lx1
X = (X495 ooy x,) we have f(x) = e

Proof Assume that f satisfies (5¢3¢6e1).
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such that for each

+eooetk X )
n'n

Using Theorem 5.1.5, there exist fi t R— [& satisfying

fi(x +y) = fi(x)fi(y) s 1i=1
such that for each x e Rn, we have
n
f(x) = ;[L(inPi)(X)’

Where pi' i = 1’ coeg N 9

Such an fi is given by fi = foni, where 7

the proof of Theorem 5.1.6 .

Since f and m, are continuous,

By using Theorem 5.3:4, 'we have
iijj
£ilx = e for
J( j)
Hence, n
£x) = ] (£,0p,)(x),
juq L4

f,](x,‘)... fn(xn),

1k1x1 lknxn

= e

see €
B el(k1x1 + .0.+knxn)

?

is given by pi(x1' cooy Xn) - X.o

each j = 1’900’ n

ceey I1

X

is défined as in

hence each fi is continuous.

and k. € R.
J
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Conversely, assume that there exist kj €ERy J =Ty eeey n
l(k,]x,] + eeeo+t+ knxn)

such that f(x) c for each x = (x1,..., xn) € r".

Then we have

hi(k,l(x,l-i-y,]) + eecet kn(xn+ yn))

f(x+y) = '
i elf(k,‘x,]'i- e e ot knxn) + (k,'y,l + eee+t+ knyn)) 9
el(k1x1+ T knxn) ;i(k1x1+ et knxn)
= ]

(e .

5.4 Continuous Solutign of flxy) = £(x)£(y)

— . - . pr— —

In this sestion, /we shal; determine all the continuous

i

solutions of f(xy) f(x)f(y), where f is a function from

£

R inte ¢ .

%
Lemma 5.%.1 Lety fr4a@ 5 el arms S 6 be a continuous function,

oo

f satisfies

(5ol401,1) flxy) = £(x)f(y)

iff there exists ¢ € ¢ such that f(x) = xc, where x° = e° n 5

E ]
Proof  Assume that f . (R+,.) —3 C is given by f(x) = x°

for seme ¢ in €. It can be verified that T satisfies (5.5%.1Ta1)

Conversely, assume that f satisfies (5.4.1¢1).

Let g : R—R" be given by g(x) = ex., Hence g is a
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. 2 ; +
continuous isomornhism from R onto R

bPut h = fog

Since f and g are continuous, hence h is also continuous,

wWe also have

hi(x + y)

fog(x + y),

= gz’ + ¥)),

= f(a(x)g(y)),

= £ (x) £8(y)),

Therefore by Theorem 5.3:5, there-exists ¢ € € such that
all x R W) » = ecx e Hence ‘for all x in R+,

£(x) F(ele™ (x))

i}

h(g™ (x))

808'1(X)

¢c 1n x
e

for
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* s
Theorem 5.4,2 Tet: £ 2 (R 40) — € be a continuous function .

f satisfics
(5-402-1) f(xy) = f(x)f(y)

iff there exists ¢ & € such that

‘c *
(5.44242) f(x) = I x | for all x in R § or
. .
(5e40203) £ (xI=
[-{xl & g X 20
¥ *
Proof Assume that £ 2 /(R 44) — € is given by (5.4e22) or

(56462,3)s Then it can’be verified that f satisfiecs (5. 8:2:1) »
Conversely, assume that L -satisfies (5.4.2,1). Then it can be
verified in the same:iway zs in the prool of Theorem 5.2.,2 that

(f(~’l))2 = 1, Hence <l =9—or—=l Nllct f1 = f'R+ e Then

*
f1 is a continutous homomorphism from R to € By Lemma 5.4.7,

c
y o= ly!c for some ¢ € € .

£,(y)

- *
Let x be any element nf R =R - R" . Therefore -x € R'
Thus,

f(x)

n

F(=1)(-x)),
= 1) E(-x),
= T=1ex)",

= f(-—1) lXICo
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If £(-1) = 1, then f(x) , hence f is of the form (5.4.2.2).

n
W

u

128 (=1) -1, then f(x) - ixlc , hence f is of the form (5.4¢2.3).

1]
]

Hence f is of the forme(5.4.242) or (5.4¢2.3),

5.5 Existence of Discontinuous Solution of £(x + y) = £(x)f(y)

The purpose of this section is to provide some examples
of a discontinuous solution of x4+ y) = f(x)f(y), where f is
a function from (Rn,+) into [( L& se)e For simplicity, we give

Z
examples of discontinuous’ solutions from R to D .

Let H = s /O £AG } be a Hamel basis of R over Q.

[,

3

By using Corollary 5.1.7, any function f : R"— Zﬁ satisfying

f(x +y) = £(x)f(y) mustbesf=the form

m m §398 TBT s aji
(o 8. V.. 5% as{iw s B a YY) = il B (Vs ) ’
i ooy 0, el AT Wl fo1 51 9 A

where b1, bz, b, ,.are functions on H, into Zl g

3

Let us denote such function f by f b « Hence
s 4

b,sb 3

1 2

~each triple b = (b, by, b,), where b, : B N w0 Bl i 3 15,
o

27

defines a function fb satisfying fb(x + y) = fb(x)fb(y). A

discontinuous function fb satisfying this equation can be

obtained by choosing suitable functions b b

2
(o

11 and b,, We shall
=

first constructed bj i H—> Z& s J = 1,243, which will make

fb a discontinuous solution of f(x + y) = £(x)f(y).
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Choose three distinct elements Vg 2 V o ' Vo of H and
1 2

3
three nonzero complex number Zgy Zpr Iz oo such that
Izi' "ol . RF Y PR T O and not all z; s are 1,
Define by E—A , =1, 2, 3, by putting
b1(Va1) = Z, , bq(Vol) = 4 for all o # 061
b2(Vq 2) = Zae bg(vot) = 1 for all o # o,
b, (V
3 0(3) = z3 A b}(va) = 1 for all a #£ 0(3.

By Corollary 5.%.7 fb patisfies fb(x +y) = fb(x)fb(y).

Next , we*show that fb is not continuous,

Suppose that £.° is continuous. By Theorem 5.3.6, there

b
exist kye R, 1 = 1, 2y 3y such that for any x = (xq, Xsy XB) € R

we have fb(x1, %5 XB) 2 ei(k1x1+ KXot k3x3) .
Observe that fb(Va . O! 0) = b1(vo‘1)1 = Zy
and fb(vq1+ Vg +0,0) - b, (Ve y? b, (V o y! . 2401 = 2,
2 1 2
Therefore fb(Vq1, 0, 0) = fb(Va1+ Vaz, D, 0)s
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i(k,x, + k.x. + k,x,)

. i B 1™ 2"2 373

Since fb(x1, X5 x3) - ) s hence
ikqu
= f. (v, + Vv s 04 0)
o
R
i ik, (V G vV d’a)
ik1vw
Therefore e = 1+ “Thus ik1V é = 2kmni for
2
some integer k. Sinec Y € H 4, we have V £ O,
A oA
2 2
2kmn =)
Therefore k1 = T 4 Similarly we can show that
Q.
2
2k’ m ’
k1 = 7 where k is an-ianteger., Hence
a
3
2kT Ve = 2Km Vg » But v, V o are linearly independent,
3 2 2 3

Hence k = k' - O’ "Thereforn k,I = 0, By a similar argument
we can show that kZ = k3 = 0. Therefore fb(x) = 1 for all

X = (x1, xa, XB).

]
By the choice of Z.8, We may assume that z, # 1. Hence

£ (v

b ’ O, O) = Z

¥ 1 # 1, which is a contradiction., Therefore

i(k.x. + KX .+ k.x.)
fb(x) cannot be of the forme | | 22 33 y 1lece f. is

b
not continuous., Hence there cxists a discontinuous solution of

f(x + y) = f(X)f(y).
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It can be seen that if we choose n distinct elements

VQ{ g esey V in H and any n non-zero complex numbers

1 dz}

' . 1]
21’ eeay Zn Such that ‘Zi‘ = 1, 1:1’ ce ey n, and nO‘b all Zi S

are 1 and define bj & B — [X by

then £ :®— A,/ /defined by

T ”
E L z . =
£ 0T e/ v B N Vy ) =1 Ty, )
i i i i J 4 i
is a discontinuous solution-of flx + y) = f(x)f(y).
5.6 Existence of Discontinuous Solution of f(xy) = f£(x)f(y)
Theorem 5,661 There exist discontinuous solutions ef
f(x + y) = f(X)f(y)
%
on R to € .
Proof Let H = {Va HER I} be a Hamel basis of R over Q.
*
By using Corollary 5.1.5, any function f : R— € satisfying
f(x +y) = f(x)f(y) must be of the form
i n n
b 1
Wt B asd = 5.9 SV, )

"k i
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*
where ¢ is a function on H into @ .

Choose two distinct elementg Vd 3 \Id of H and nonzero
1 2
complex number z4 such that Z # 1.
»*
Define ¢cC : H—>C€ by putting
C(qu) = z,l’ C(Vq) = 1, for all f d,,' .

By Corollary 5.1.5, ¢ defines a/function fc satisfying
fc(x + ¥) = fc(x)fc(y). Similar arguments as given in the proof
in Section 5,5 can be used /4o .show that fc is not continuous. Ilence

there exist discentinwous solutions of f(x + y) = f(x)f(y).

Theorem 5,6,2 Let g4 Rt——a-Q* be a function such that g = h o 1n

*
where h is a function on R into € . Then g is continuous if and

only if h is continuous,

Proof Assume that h is continuous, . Then g = holn, being the
composition of two continuous function, ds also continuous.
Coversely, Assume that g is continuous, Let O be any open set
in € . 8ince g is continuous and 1ln is open, hence ln(g-q(O))
is an open set in R. However h—q(O) = ln(g'q(o)x which implies

that h~1(0) is open, Hence h is continuous.,

Theoren 5.6.3 Let T mi——a c*be a function such that f = goh

* *
where g is a function on RY into ¢ and h R-ng-R+ is defined

by h(x) = |x |, Then f is continuous if and only if g is continuous.
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*
Proof Since h : R— R*, defined by h(x) = |x| , is
continuous and open, hence we can verify in the same way as in the
proof of Theorem 5,6.2 that f is continuous if and only if g is

continuous

Theorem 5.,6.4 There exist discontinuous solutions of

f(xy) = f(x)£(y)

* *
on R to: ¢,

*
Proof Let h : R— ¢ be a discontinuous solution of

hix/ + ¥y) = h(x)h(y).

The existence of such h/is guaranteed by Theorem 5.6.1

Let g = holn, f = gok where k mf——a R" is defined by

k(x) = |x| o+ By Theorem 5.6.3 , £ —is continuous if and
only if g is continuous., By Theorem 54642, g is continuous
if and only if h is continuous. Hence f is discontinuous.
Therefore discontinuous solutions of f(xy)= f(x)f(y) en R te ¢

exist .
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