SOLUTION OF
$$f(x+y) = f(x)f(y)$$
 AND $f(xy) = f(x)f(y)$

In determining solutions of the functional equation

(A)
$$g(xoy^{-1}) = g(x)g(y) + f(x)f(y)$$

treated in the previous chapters, it turns out that certain solutions of (A) are expressible in terms of homomorphisms from an abelian group G into the multiplicative group M(F), where F is a field of characteristic different from 2. In this chapter, we shall characterize these homomorphisms for the case where $G = \mathbb{R}^n$, $F = \triangle$ and $G = \mathbb{R}^*$, $F = \mathbb{C}^*$.

5.1 Solution of f(x+y) = f(x)f(y)

Theorem 5.1.1 Let V be a vector space over a field F with $B = \{V_{\mathbf{f}} \mid \alpha \in I\}$ as a basis. Let f be a function on V into a commutative group G. Then f satisfies

$$(5.1.1.1)$$
 $f(x+y) = f(x)f(y),$

iff there exists a family $\left\{ \begin{array}{l} f_{\alpha} : \alpha \in I \end{array} \right\}$ of homomorphisms from the additive group of F into G such that for any $\begin{array}{l} n \\ x = \sum a_i V_{\alpha} \\ i = 1 \end{array} \quad \text{in } V, \text{ we have}$ $i = 1 \qquad \qquad n$

$$f(x) = f(\sum_{i=1}^{n} a_i V_{\alpha_i}) = \prod_{i=1}^{n} f_{\alpha_i}(a_i)$$
.

Proof Assume that $f: V \longrightarrow G$ satisfies (5.1.1.1), for each $V_{\alpha} \in \mathcal{G}$, define $f_{\alpha}(a) = f(aV_{\alpha})$. Observe that for each $\alpha \in I$, $f_{\alpha}: F \longrightarrow G'$, and

$$f_{\alpha}(a+b) = f((a+b)V_{\alpha}),$$

$$= f(aV_{\alpha} + bV_{\alpha}),$$

$$= f(aV_{\alpha}) f(bV_{\alpha})$$

$$= f_{\alpha}(a)f_{\alpha}(b).$$

For any $x \in V$, we have $x = \sum_{i=1}^{\infty} a_i V_{\alpha_i}$, where $a_i \in F$, $V_{\alpha_i} \in \mathcal{C}$. $f(x) = f(\Sigma a_{i} V_{\alpha_{i}}).$

By (5.1.1.1), we have

$$f(x) = \prod_{i=1}^{n} f(a_i V_{\alpha_i}).$$

$$f(x) = \prod_{i=1}^{n} f_{\alpha_i}(a_i).$$

 $f(x) = \prod_{i=1}^{n} f_{\alpha_i}(a_i)$. Hence

Conversely, assume that $\{f_{\alpha}: \alpha \in I\}$ is a family of homomorphisms on the additive group of F into G and f is given by $f(\sum_{i=1}^{n} a_i V_{\alpha_i}) = \prod_{i=1}^{n} f_{\alpha_i}(a_i)$. Then for any $x, y \in V$, we

may write

$$x = \sum_{i=1}^{n} a_i V \alpha_i, \quad y = \sum_{i=1}^{n} b_i V \alpha_i,$$

where a, bi∈F and Va ∈ B.

$$f(x+y) = f(\sum_{i=1}^{n} a_{i} \vee_{\alpha_{i}} + \sum_{i=1}^{n} b_{i} \vee_{\alpha_{i}}),$$

$$= f(\sum_{i=1}^{n} (a_{i}+b_{i}) \vee_{\alpha_{i}}),$$

$$= \prod_{i=1}^{n} f_{\alpha_{i}}(a_{i}+b_{i}),$$

$$= \prod_{i=1}^{n} (f_{\alpha_{i}}(a_{i}) f_{\alpha_{i}}(b_{i})),$$

$$= \prod_{i=1}^{n} f_{\alpha_{i}}(a_{i}) \prod_{i=1}^{n} f_{\alpha_{i}}(b_{i}),$$

$$= f(\sum_{i=1}^{n} a_{i} \vee_{\alpha_{i}}) f(\sum_{i=1}^{n} b_{i} \vee_{\alpha_{i}}),$$

$$= f(x)f(y).$$

Lemma 5.1.2 Let h be a homomorphism from the additive group $\mathbb Q$ of rational numbers into a commutative group $\mathbb G$. Then $h(na) = (h(a))^n$, for all $a \in \mathbb Q$ and all $n \in \mathbb Z$, where $\mathbb Z$ is the set of all integers.

Proof Let $a \in Q$. Since h is a homomorphism, hence h(0) = 1Therefore $h(0.a) = h(0) = 1 = (h(a))^{0}$.

Assume that k is a non-negative integer such that

$$h(k \cdot a) = (h(a))^k$$
.

Then

$$h((k+1)a) = h(ka + a),$$

= h(ka)h(a),

= (h(a))^k h(a),

 $= (h(a))^{k+1}$

Hence $h(na) = (h(a))^n$ for all non-negative integers n.

For any negative integer m, -m is a positive integer.

Hence

$$1 = h(0) = h(ma + (-m)a),$$

 $= h(ma)(h(a))^{-m}.$

Therefore $h(ma) = (h(a))^{m}$.

Thus $h(na) = (h(a))^n$ for all $n \in \mathbb{Z}$.

Theorem 5.1.3 h is a homomorphism from Q into G, where G is R^+ or \triangle , iff there exists $r \in G$ such that $h(a) = r^a$, for $a \in Q$.

Proof Assume that h is a homomorphism from Q into G . Let a \in Q. Then a = $\frac{p}{q}$, where p,q are integers, q \neq 0.

We have

$$(h(\frac{p}{q}))^{q} = h(q \cdot \frac{p}{q}),$$

$$= h(p),$$

$$= h(p \cdot 1),$$

$$= (h(1))^{p}.$$
Hence
$$h(\frac{p}{q}) = (h(1))^{q},$$

i.e. we have $h(a) = r^a$ where $r = h(1) \in G'$.

Conversely, assume that there exists re G such that

$$h(a) = r^a$$
, for $r \in G$.

Then

$$h(a+b) = r^{a+b} = r^a \cdot r^b$$
,
= $h(a)h(b)$.

Hence h is a homomorphism.

Theorem 5.1.4 Let $\mathbf{H} = \left\{ V_{\mathcal{A}} : \boldsymbol{\alpha} \in I \right\}$ be a Hamel basis of \mathbb{R} over \mathbb{Q} .

A function $f: \mathbb{R} \longrightarrow G'$, where G' is \mathbb{R}^+ or A, satisfies $(5.1.4.1) \qquad f(x+y) = f(x)f(y)$

iff there exists a function b on H into G'such that for each $x = \sum_{i=1}^{n} a_i V_{\alpha} \subseteq \mathbb{R}$, where $V_{\alpha} \subseteq H$, we have in the formula n and n and n and n

$$f(\sum_{i=1}^{n} a_{i} V_{\alpha_{i}}) = \prod_{i=1}^{n} b(V_{\alpha_{i}})^{a_{i}}.$$

<u>Proof</u> Assume that $f: \mathbb{R} \longrightarrow G'$ satisfies (5.1.4.1) By Theorem 5.1.1, we see that f must be of the form

$$f(\sum_{i=1}^{n} a_{i} V_{\alpha_{i}}) = \prod_{i=1}^{n} f_{\alpha_{i}}(a_{i}),$$

where fa is a homomorphism from o into G.

By Theorem 5.1.3, each form must be of the form

$$f_{\alpha_i}(a) = b_{\alpha_i}^a$$
, for some $b_{\alpha_i} \in G'$.

Let b: $H \longrightarrow G'$ be defined by $b(V_{\alpha_i}) = b_{\alpha_i}$.

Then we have,

$$f(\Sigma = a_{i}V_{\alpha}) = \prod_{i=1}^{n} f_{\alpha}(a_{i})$$

$$= \prod_{i=1}^{n} b_{\alpha}$$

$$= \prod_{i=1}^{n} b(V_{\alpha})^{a_{i}}$$

$$= \prod_{i=1}^{n} b(V_{\alpha})^{a_{i}}$$

Conversely, assume that there exists a function b on H to G' such that f is defined by

$$f(\Sigma a_{i}V_{\alpha_{i}}) = \prod_{i=1}^{n} b(V_{\alpha_{i}})^{a_{i}},$$

then, for any $x = \sum_{i=1}^{n} a_{i}V_{\alpha_{i}}$, $y = \sum_{i=1}^{n} a'_{i}V_{\alpha_{i}}$ in R, we have $f(x+y) = f(\sum_{i=1}^{n} a_{i}V_{\alpha_{i}} + \sum_{i=1}^{n} a'_{i}V_{\alpha_{i}}),$ $= f(\sum_{i=1}^{n} (a_{i}+a'_{i})V_{\alpha_{i}}),$ $= \prod_{i=1}^{n} b(V_{\alpha_{i}})^{a_{i}} + a'_{i},$ $= \prod_{i=1}^{n} b(V_{\alpha_{i}})^{a_{i}} \prod_{i=1}^{n} b(V_{\alpha_{i}})^{a'_{i}},$ $= f(\sum_{i=1}^{n} a_{i}V_{\alpha_{i}}) f(\sum_{i=1}^{n} a'_{i}V_{\alpha_{i}}),$ = f(x)f(y).

Corollary 5.15 Let $H = \{V_{\alpha} : \alpha \in I\}$ be a Hamel basis of \mathbb{R} over \mathbb{Q} .

A function $f : \mathbb{R} \longrightarrow \mathbb{C}$ satisfies

$$(5.1.5.1)$$
 $f(x+y) = f(x)f(y)$

iff there exists a function c on H into C* such that for each $x = \sum_{i=1}^{n} a_i V_{\alpha_i} \in \mathbb{R}$, we have

$$f(\sum_{i=1}^{n} a_{i} v_{\alpha_{i}}) = \prod_{i=1}^{n} c(v_{\alpha_{i}})^{a_{i}}.$$

Proof Assume that
$$f : \mathbb{R} \to C^*$$
 satisfies (5.1.5.1).

Let
$$g(x) = |f(x)|$$
 and $h(x) = \frac{f(x)}{g(x)}$

Observe that g :
$$\mathbb{R} \to \mathbb{R}^+$$
, and h : $\mathbb{R} \to \triangle$.

Hence,
$$g(x+y) = |f(x+y)|$$
,
 $= |f(x)|f(y)|$,
 $= |f(x)||f(y)|$,
 $= g(x)g(y)$.

Also,

$$h(x+y) = \frac{f(x+y)}{g(x+y)},$$

$$= \frac{f(x)f(y)}{g(x)g(y)},$$

$$= \frac{f(x)}{g(x)} \cdot \frac{f(y)}{g(y)},$$

$$= h(x) h(y).$$

Therefore, by using Theorem 5.1.4 there exists a function by on H into \mathbb{R}^+ and a function b₂ on H into \triangle such that for each $\mathbf{x} = \sum_{i=1}^{n} \mathbf{a}_i \mathbf{v}_{\alpha_i} \in \mathbb{R}$, we have

$$g(x) = \prod_{i=1}^{n} b_{1}(V_{\alpha_{i}})^{a_{i}},$$

and

$$h(x) = \prod_{i=1}^{n} b_2(V_{\alpha_i})^{a_i}.$$

Let $c : H \longrightarrow C$ be defined by

$$c(V_{\alpha_i}) = b_1(V_{\alpha_i}) b_2(V_{\alpha_i}).$$

So we have.

$$f(x) = g(x) \cdot h(x)$$

$$= \prod_{i=1}^{n} b_{1}(v_{\alpha_{i}})^{a_{i}}, \prod_{i=1}^{n} b_{2}(v_{\alpha_{i}})^{a_{i}},$$

$$= \prod_{i=1}^{n} (b_{1}(v_{\alpha_{i}}) b_{2}(v_{\alpha_{i}}))^{a_{i}},$$

$$= \prod_{i=1}^{n} c(v_{\alpha_{i}})^{a_{i}}.$$

$$f(\sum_{i=1}^{n} a_i V_{\alpha_i}) = \prod_{i=1}^{n} c(V_{\alpha_i})^{a_i},$$

then it can be verified in the same way as in Theorem 5.1.4, that f(x+y) = f(x)f(y).

Theorem 5.1.6 Let $f: \mathbb{R}^n \to \triangle$ be function. f satisfies (5.1.6.1) f(x+y) = f(x)f(y),

iff for each $i=1,\ldots,n$, there exists a function f_i on R to Δ satisfying

$$f_{i}(x+y) = f_{i}(x)f_{i}(y)$$

such that for each $x = (x_1, \dots, x_n) \in \mathbb{R}^n$, we have $f(x) = \prod_{i=1}^n (f_i \circ p_i)(x),$

where the p_i 's are given by $p_i(x_1, \dots, x_n) = x_i$, $i = 1, \dots, n$.

Proof Assume that f satisfies (5.1.6.1)

For each i = 1, ..., n, let $\pi_i : \mathbb{R} \to \mathbb{R}^n$ be defined by

$$\pi_{i}(x) = xe_{i}$$

where $e_i = (\delta_{i1}, \dots, \delta_{in})$, $\delta_{ij} = 1$ if i = j, and

$$\delta_{ij}$$
 = 0 if $i \neq j$.

Set $f_i = fom_i$,

hence $f_i: \mathbb{R} \longrightarrow \Delta$ and

$$f_{i}(x+y) = (fo\pi_{i})(x+y)$$

= $f(\pi_{i}(x+y)),$

= $f((x+y)e_i)$

=
$$f(xe_i + ye_i)$$
,

$$= f(xe_i)f(ye_i),$$

$$= f(\pi_i(x))f(\pi_i(y)),$$

$$= f_i(x)f_i(y).$$

Also, from $f_i = fom_i$, we have

$$f_{i}^{op} = (fo\pi_{i}) op_{i}$$
,

where p_i is defined by $p_i(x_1, ..., x_n) = x_i$.

Hence, for any $x = (x_1, \dots, x_n)$, we have $f_i \circ p_i(x) = f(\pi_i(p_i(x_1, \dots, x_n))),$ $= f(\pi_i(x_i)),$ $= f(x_i e_i).$

Therefore

$$\prod_{i=1}^{n} f_{i} \circ p_{i}(x) = \prod_{i=1}^{n} f(x_{i} e_{i}),$$

$$= f(x_{1} e_{1}) \cdots f(x_{n} e_{n}),$$

$$= f(x_{1} e_{1} + \cdots + x_{n} e_{n}),$$

$$= f(x_{1}, \dots, x_{n})$$

$$= f(x).$$

Conversely, assume that $f(x) = \prod_{i=1}^{n} f_i \circ p_i(x)$, where each

 f_i , i=1, ..., n, satisfies $f_i(x+y) = f_i(x)f_i(y)$ for all $x,y \in \mathbb{R}$.

We have

$$f(x+y) = \prod_{i=1}^{n} (f_{i}(p_{i}(x+y)),$$

$$= \prod_{i=1}^{n} f_{i}(x_{i}+y_{i}),$$

$$= \prod_{i=1}^{n} (f_{i}(x_{i})f_{i}(y_{i})),$$

$$= \prod_{i=1}^{n} f_{i}(x_{i}) \prod_{i=1}^{n} f_{i}(y_{i}),$$

$$= \prod_{i=1}^{n} f_{i}(p_{i}(x)), \prod_{i=1}^{n} f_{i}(p_{i}(y)),$$

$$= f(x)f(y).$$

Corollary 5.17 By using Theorem 5.1.4, we see that $f: \mathbb{R}^n \to \Delta$ satisfies f(x+y) = f(x)f(y) if, and only if for $j = 1, \ldots, n$, there exist functions b_j on H, where H is a Hamel basis of \mathbb{R} over \mathbb{Q} , into Δ such that for each $\mathbf{x} = (\sum_{i=1}^{n} \mathbf{a}_{1i} \mathbb{V}_{\alpha_i}, \ldots, \sum_{i=1}^{n} \mathbf{a}_{ni} \mathbb{V}_{\alpha_i})$

we have

$$f(x) = \prod_{j=1}^{n} \prod_{i=1}^{m} b_{j}(V_{\alpha_{i}})^{a_{ji}}$$

5.2 Solution of f(xy) = f(x)f(y)

Lemma 5.2.1 Let $H = \{ V_{\alpha} : \alpha \in I \}$ be a Hamel basis of \mathbb{R} over \mathbb{Q} .

A function $f : (\mathbb{R}^+, .) \longrightarrow G'$, where G' is \mathbb{R}^+ or Δ , satisfies (5.2.1.1) f(xy) = f(x)f(y)

iff there exist an isomorphism $g: \mathbb{R} \longrightarrow \mathbb{R}^+$ and a function b on H into G such that for each x in \mathbb{R}^+ , if $g^{-1}(x) = \sum_{i=1}^n a_i V_{\alpha_i} \in \mathbb{R}$, where $V_{\alpha_i} \in H$; we have $f(x) = \prod_{i=1}^n b(V_{\alpha_i})$.

Proof Assume that $f: \mathbb{R}^+ \to G'$ satisfies (5.2.1.1).

Since \mathbb{R} is isomorphic to \mathbb{R}^+ , hence there exist an isomorphism g from \mathbb{R} onto \mathbb{R}^+ such that for each x in \mathbb{R}^+ , $g^{-1}(x) = \sum_{i=1}^n a_i V_{\alpha_i} \in \mathbb{R}$

Put h = fog. Since f and g are homomorphisms, so is h. By Theorem 5.1.4, there exists a function b on H into G such that for each $x = \sum_{i=1}^{n} a_i V_{\alpha} \in \mathbb{R}$, where $V_{\alpha} \in \mathbb{H}$, we have i = 1

$$h \left(\sum_{i=1}^{n} a_{i} V_{\alpha_{i}} \right) = \prod_{i=1}^{n} b \left(V_{\alpha_{i}} \right)^{a_{i}}$$

Hence for each x in R+,

$$f(x) = fg(g^{-1}(x))$$

$$= h(g^{-1}(x))$$

$$= h(\sum_{i=1}^{n} a_i V_{\alpha_i})$$

$$= \prod_{i=1}^{n} b(V_{\alpha_i})^{\alpha_i}$$

Conversely, assume that there exist an isomorphism $g: \mathbb{R} \longrightarrow \mathbb{R}^+$ and a function $b: \mathbb{H} \longrightarrow G'$ such that for each x in \mathbb{R}^+ ,

$$g^{-1}(x) = \sum_{i=1}^{n} a_i V_{\alpha_i};$$
 and f is defined by $f(x) = \prod_{i=1}^{n} b(V_{\alpha_i})^{a_i}.$

Since g is an isomorphism so is g^{-1} . Then for any x, y in \mathbb{R}^+ ,

$$g^{-1}(x) = \sum_{i=1}^{n} a_i V_{\alpha_i}, \quad g^{-1}(y) = \sum_{i=1}^{n} a'_i V_{\alpha_i}, \quad \text{we have}$$

$$g^{-1}(xy) = g^{-1}(x) + g^{-1}(y) = \sum_{i=1}^{n} a_i V_{\alpha_i} + \sum_{i=1}^{n} a_i' V_{\alpha_i}$$

$$= \sum_{i=1}^{n} (a_{i} + a'_{i}) V_{\alpha_{i}}.$$

Hence,
$$f(x)f(y) = \prod_{i=1}^{n} b(V_{\alpha_{i}})^{a_{i}} \prod_{i=1}^{n} b(V_{\alpha_{i}})^{a_{i}'}$$
$$= \prod_{i=1}^{n} b(V_{\alpha_{i}})$$

Theorem 5.2.2 Let $H = \{ V_{\alpha} : \alpha \in I \}$ be a Hamel basis of \mathbb{R} over \mathbb{Q} .

A function $f: (\mathbb{R}^*, \cdot) \longrightarrow (\mathbb{R}^+, \cdot)$, satisfies

(5.2.2.1) f(xy) = f(x)f(y),

iff there exist an isomorphism $g:\mathbb{R} \to \mathbb{R}^+$ and a function

b: $H \longrightarrow \mathbb{R}^+$ such that for each x in \mathbb{R}^* , if $g^{-1}(|x|) = \sum_{i=1}^n a_i V_{\alpha} \in \mathbb{R}$,

where $V_{\alpha} \in H$; we have $f(x) = \prod_{i=1}^{n} b(V_{\alpha_i})^{a_i}$.

<u>Proof</u> Assume that $f: (\mathbb{R}^*, \cdot) \longrightarrow (\mathbb{R}^+, \cdot)$ satisfies (5.2.2.1).

Then $(f(-1))^2 = f(-1)f(-1)$

= f((-1)(-1))

= f(1)

= 1.

Hence f(-1) = 1.

Let $f_1 = f|_{\mathbb{R}^+}$. Observe that f_1 is a homomorphism from

 \mathbb{R}^+ to \mathbb{R}^+ . By Lemma 5.2.1, there exist an isomorphism

 $g: \mathbb{R} \longrightarrow \mathbb{R}^+$ and a function $b: H \longrightarrow \mathbb{R}^+$ such that for

each x in \mathbb{R}^+ , $g^{-1}(x) = \sum_{i=1}^{n} a_i V_{\alpha_i} \in \mathbb{R}$ we have

 $f(x) = f_{\underline{1}}(x) = \prod_{i=1}^{n} b(V_{\alpha_i})^{a_i}.$

Let x be any element of $\mathbb{R}^- = \mathbb{R}^* - \mathbb{R}^+$. Therefore $-x \in \mathbb{R}^+$. It follows that $g^{-1}(|x|) = g^{-1}(-x) = \sum_{i=1}^n a_i V_{\infty} \in \mathbb{R}$, where

V_α ∈ H.

Thus,

$$f(x) = f(-1)(-x)$$

$$= f(-1)f(-x)$$

$$= f(-x)$$

$$= f_1(-x)$$

$$= \prod_{i=1}^{n} b(V_{\alpha_i})$$

Hence for each x in \mathbb{R}^* , $g^{-1}(|x|) = \sum_{i=1}^{n} a_i V_i$, we have

$$f(x) = \prod_{i=1}^{n} b(v_{\alpha_{i}})^{a_{i}}.$$

Conversely, assume that there exist an isomorphism $g: \mathbb{R} \longrightarrow \mathbb{R}^+$ and a function $b: \mathbb{H} \longrightarrow \mathbb{R}^+$ such that for each x in \mathbb{R}^* ,

$$g^{-1}(|x|) = \sum_{i=1}^{n} a_i V_{\alpha_i}$$
, we have $f(x) = \prod_{i=1}^{n} b(V_{\alpha_i})^{a_i}$.

For any x, y in \mathbb{R}^* , $g^{-1}(|x|) = \sum_{i=1}^{n} a_i V_{\alpha_i}$, $g^{-1}(|y|) = \sum_{i=1}^{n} a_i V_{\alpha_i}$,

it follows that
$$g^{-1}(|xy|) = g^{-1}(|x||y|) = g^{-1}(|x|) + g^{-1}(|y|)$$

n

= $\sum_{i=1}^{\infty} (a_i + a_i') V_{\alpha_i}$. Hence

$$f(x)f(y) = \prod_{i=1}^{n} b(V_{\alpha_{i}})^{a_{i}} \prod_{i=1}^{n} b(V_{\alpha_{i}})^{a_{i}}$$

$$= \prod_{i=1}^{n} b(V_{\alpha_{i}})^{a_{i}+a_{i}'}$$

$$= f(xy).$$

Theorem 5.2.3 Let H = { Va: d & I } be a Hamel basis of R over Q. A function $f:(\mathbb{R}^*,.)\longrightarrow (\triangle,.)$, satisfies (5.2.3.1) f(xy) = f(x)f(y)

iff there exist an isomorphism $g: \mathbb{R} \longrightarrow \mathbb{R}^+$ and a function b: H $\rightarrow \Delta$ such that for each x in \mathbb{R}^* , if $g^{-1}(|x|) = \sum_{i=1}^n a_i V_{\alpha_i} \in \mathbb{R}$,

where $V_{\alpha} \in H$; we have

(5.2.3.2)
$$f(x) = \prod_{i=1}^{n} b(V_{\alpha_i})^{a_i} \quad \text{for all } x \text{ in } \mathbb{R}^*; \text{ or}$$

$$(5.2.3.3) \quad f(x) = \begin{cases} \prod_{i=1}^{n} b(V_{\alpha_i})^{a_i} & \text{if } x \neq 0 \\ \prod_{i=1}^{n} b(V_{\alpha_i})^{a_i} & \text{if } x < 0. \end{cases}$$

Proof Assume that $f: \mathbb{R}^* \longrightarrow \triangle$ satisfies (5.2.3.1).

By using the same argument as in the proof of Theorem 5.2.2,

It can be shown that $(f(-1))^2 = 1$. Hence f(-1) = 1 or -1.

Let $f_1 = f_{\mathbb{R}^+}$. Then f_1 is a homomorphism from \mathbb{R}^+ into \triangle .

By Lemma 5.2.1, there exist an isomorphism $g: \mathbb{R} \longrightarrow \mathbb{R}^+$ and a function $b: \mathbb{H} \longrightarrow \triangle$ such that for each x in \mathbb{R}^+ , $g^{-1}(|x|) = g^{-1}(x) = \sum_{i=1}^n a_i V_{\alpha_i} \in \mathbb{R}$, where $V_{\alpha_i} \in \mathbb{H}$, we have $f(x) = \prod_{i=1}^n b(V_{\alpha_i})^{a_i}$.

Let x be any element of $\mathbb{R}^- = \mathbb{R}^+ - \mathbb{R}^+$. Again, by using the same argument as in the proof of Theorem 5.2.2, it can be shown that $f(x) = f(-1)f(-x) = f(-1)\prod_{i=1}^n b(V_{\alpha_i})^{a_i}$ where

$$g^{-1}(|x|) = g^{-1}(-x) = \sum_{i=1}^{n} a_i V_{\alpha_i}$$
. If $f(-1) = 1$, then

$$f(x) = \prod_{i=1}^{n} b(V_{\alpha_i})^{a_i}$$
. If $f(-1) = -1$, then $f(x) = -\prod_{i=1}^{n} b(V_{\alpha_i})^{a_i}$.

Hence f is of the forms (5.2.3.2) or (5.2.3.3).

Conversely, assume that $g: \mathbb{R} \longrightarrow \mathbb{R}^+$ is an isomorphism, $b: H \longrightarrow \Delta$, and $f: \mathbb{R}^* \longrightarrow \Delta$ is given by

(5.2.3.2)
$$f(x) = \prod_{i=1}^{n} b(V_{\alpha})$$
 for all x in \mathbb{R}^* ; or

(5.2.3.3)
$$f(x) = \begin{cases} \prod_{i=1}^{n} b(V_{\alpha_i})^{a_i}, & x > 0 \\ \prod_{i=1}^{n} b(V_{\alpha_i})^{a_i}, & x < 0, \end{cases}$$

where a_i 's are such that $g^{-1}(|x|) = \sum_{i=1}^{n} a_i^{V} a_i$.

By using the same argument as in the proof of Theorem 5.2.2 it can be shown that f given by (5.2.3.2) satisfies (5.2.3.1).

Suppose that f is given by (5.2.3.3). Let x,y be any elements

of
$$\mathbb{R}^*$$
. Therefore $g^{-1}(|x|) = \sum_{i=1}^n a_i V_{\alpha_i}$, $g^{-1}(|y|) = \sum_{i=1}^n a_i' V_{\alpha_i}$

and hence $g^{-1}(xy) = \sum_{i=1}^{n} (a_i + a'_i) V_{\alpha_i}$. If both x and y belong

to \mathbb{R}^+ we are done. First, let us assume that x, y $\in \mathbb{R}^-$.

Therefore xy & R+. Hence

$$f(x)f(y) = \left(-\prod_{i=1}^{n} b(V_{\alpha_i})^{a_i}\right) \left(-\prod_{i=1}^{n} b(V_{\alpha_i})^{a_i}\right)$$

$$= \prod_{i=1}^{n} b(V_{\alpha_i})$$

= f(xy).

Next, we assume that $x \in \mathbb{R}^+$, $y \in \mathbb{R}^-$. Then $xy \in \mathbb{R}^-$. It follows

that $f(x)f(y) = \prod_{i=1}^{n} b(V_{\alpha_i})^{a_i} \left(-\prod_{i=1}^{n} b(V_{\alpha_i})^{a_i}\right)$ $= -\prod_{i=1}^{n} b(V_{\alpha_i})$ = f(xy).

Note that if $x \in \mathbb{R}^-$, $y \in \mathbb{R}^+$, then a similar argument shows that f(x)f(y) = f(xy).

In any case we have f(x)f(y) = f(xy) for all x,y in \mathbb{R}^* .

Theorem 5.2.4 Let $H = \{ V_{\alpha} : \alpha \in I \}$ be a Hamel basis of \mathbb{R} over Q. A function $f : (\mathbb{R}^*, \cdot) \longrightarrow (\mathbb{C}^*, \cdot)$ satisfies

$$(5.2.4.1)$$
 f(xy) = f(x)f(y)

iff there exist an isomorphism $g: \mathbb{R} \longrightarrow \mathbb{R}^+$ and a function $c: H \longrightarrow \mathbb{C}^*$ such that for each x in \mathbb{R}^* , $g^{-1}(|x|) = \sum_{i=1}^n a_i V_{\alpha} \in \mathbb{R}$

where $V_{\alpha_i} \in H$, we have

(5.2.4.2)
$$f(x) = \prod_{i=1}^{n} c(V_{\alpha_i})^{a_i} \quad \text{for all } x \text{ in } \mathbb{R}^*; \text{ or}$$

$$(5.2.4.3) \qquad f(x) = \begin{cases} \prod_{i=1}^{n} c(V_{\alpha_i})^{a_i}, & x > 0 \\ \prod_{i=1}^{n} c(V_{\alpha_i})^{a_i}, & x < 0 \end{cases}$$

Proof Assume that $f: \mathbb{R}^* \longrightarrow \mathbb{C}^*$ satisfies (5.2.4.1)

Let
$$\emptyset(x) = |f(x)|$$
 and $h(x) = \frac{f(x)}{\emptyset(x)}$

Observe that \emptyset : $\mathbb{R}^* \longrightarrow \mathbb{R}^+$,

and h : $\mathbb{R}^* \longrightarrow \triangle$

Hence $\emptyset(xy) = |f(xy)|$,

= |f(x)f(y)|,

 $= |f(x)||f(y)|_{2}$

= $\emptyset(x)$ $\emptyset(y)$.

By Theorem 5.2.2, there exist an isomorphism $g: \mathbb{R} \to \mathbb{R}^+$ and a function $b_1: \mathbb{H} \to \mathbb{R}^+$ such that for each x in \mathbb{R}^* ,

$$g^{-1}(|x|) = \sum_{i=1}^{n} a_i V_{\alpha_i} \in \mathbb{R},$$

we have
$$\emptyset(x) = \prod_{i=1}^{n} b_1(V_{\alpha_i})^{a_i}$$
.

Observe that
$$h(xy) = \frac{f(xy)}{\emptyset(xy)}$$

$$= \frac{f(x)f(y)}{\emptyset(x)\emptyset(y)}$$

$$= \frac{f(x)}{\emptyset(x)} \cdot \frac{f(y)}{\emptyset(y)}$$

=
$$h(x)h(y)$$
.

By Theorem 5.2.3, there exist an isomorphism $g: \mathbb{R} \to \mathbb{R}^+$ and a function $b_2: \mathbb{H} \to \triangle$ such that for each x in \mathbb{R}^* ,

$$\varepsilon^{-1}(|\mathbf{x}|) = \Sigma \quad \mathbf{a}_{\mathbf{i}} \mathbf{v}_{\alpha} \in \mathbb{R},$$

where $V_{\alpha} \in H$, we have

(5.2.4.4)
$$h(x) = \prod_{i=1}^{n} b_2(V_{\alpha_i})$$
 for all x in \mathbb{R}^* ; or

(5.2.4.5)
$$h(x) = \begin{cases} \prod_{i=1}^{n} b_{2}(V_{\alpha_{i}})^{a_{i}}, & x = 0 \\ \prod_{i=1}^{n} b_{2}(V_{\alpha_{i}})^{a_{i}}, & x = 0 \end{cases}$$

Let $c: H \longrightarrow E^*$ be defined by

$$c(V_{\alpha_i}) = b_1(V_{\alpha_i}) b_2(V_{\alpha_i})$$
.

So we have

$$h(x) = \emptyset(x)h(x)$$

$$= \left(\prod_{i=1}^{n} b_{1}(V_{\alpha_{i}})^{a_{i}}\right)h(x).$$

If h(x) is of the form (5.2.4.4), then

$$f(x) = \prod_{i=1}^{n} b_{1}(v_{\alpha_{i}})^{a_{i}} \prod_{i=1}^{n} b_{2}(v_{\alpha_{i}})^{a_{i}},$$

$$= \prod_{i=1}^{n} b_{1}(v_{\alpha_{i}})^{a_{i}} b_{2}(v_{\alpha_{i}})^{a_{i}},$$

$$= \prod_{i=1}^{n} c(v_{\alpha_{i}})^{a_{i}}.$$

$$(5.2.4.2)$$

If h(x) is of the form (5.2.4.5), then we have

Conversely, assume that $f: \mathbb{R} \xrightarrow{*} c^*$ is given by (5.2.4.2) or (5.2.4.3)

It can be werified in the same way as in the proof of Theorem 5.2.3 that f satisfies (5.2.4.1).

5.3 Continuous Solution of f(x + y) = f(x)f(y)

In this section, we shall determine all the continuous solutions of f(x+y)=f(x)f(y), where f is a function from \mathbb{R}^n into \triangle .

Lemma 5.3.1 Let $g: \mathbb{R} \longrightarrow \mathbb{R}$ be a continuous function satisfying

$$(5.3.1.1)$$
 $g(x + y) = g(x) + g(y).$

Then g(x) = bx for some b in R.

<u>Proof</u> We first claim that g(na) = ng(a) for all integers n and $a \in \mathbb{R}$.

Since g is a homomorphism, hence g(0) = 0.

Therefore
$$g(0.a) = g(0) = 0 = 0.g(a)$$
.

Assume that k is a non-negative integer such that

$$g(ka) = kg(a)$$
.

Then, g((k+1)a) = g(ka + a),

$$= g(ka) + g(a),$$

$$= kg(a) + g(a),$$

$$= (k + 1)g(a).$$

For any negative integer m, -m is a positive integer. Hence

$$0 = g(0) = g(ma + (-m)a),$$

$$= g(ma) + g((-m)a),$$

$$= g(ma) + (-m) g(a),$$

Thus g(ma) = mg(a).

Therefore g(na) = ng(a) for all integer n.

For $r = \frac{p}{q}$, where p,q are integers and $q \neq 0$. we have

$$qg(r) = qg(\frac{p}{q}),$$

$$= g(q \cdot \frac{p}{q}),$$

$$= g(p),$$

$$= g(p \cdot 1),$$

$$= pg(1).$$
Thus
$$g(r) = \frac{p}{q}g(1) = rg(1).$$

Let $x \in \mathbb{R}$. Since the set of rational numbers is dense in \mathbb{R} , we can find a sequence $\left\{r_n\right\}$ of rational numbers converging to x. Since g is continuous, hence

$$\lim_{n\to\infty} g(r_n) = g(x).$$
 But
$$\lim_{n\to\infty} g(r_n) = \lim_{n\to\infty} r_n g(1) = xg(1).$$

Therefore
$$g(x) = xg(1)$$
, $x \in \mathbb{R}$.

Thus
$$g(x) = bx$$
, where $b = g(1) \in \mathbb{R}$.

Theorem 5.3.2 Let $g:(\mathbb{R},+)\longrightarrow (\mathbb{R}^+,\cdot)$ be a continuous function. g satisfies

$$(5.3.2.1)$$
 $g(x + y) = g(x) g(y)$

iff f is of the form

$$(5.3.2.2)$$
 $g(x) = e^{ax}$ for some a in \mathbb{R} .

Proof Assume that g satisfies (5.3.2.1).

Let
$$h(x) = \ln x, x > 0$$
,

Put f = hog.

Since both h and g are continuous, hence f is also continuous. We also have

$$f(x + y) = h(g(x + y),$$

$$= ln(g(x + y)),$$

$$= ln(g(x)g(y))$$

$$= lng(x) + lng(y)$$

$$= h(g(x)) + h(g(y)),$$

= f(x) + f(y).

Therefore, by Lemma 5.3.1, there exists a & R such that for all

 $x \in \mathbb{R}$, f(x) = ax.

Then,

$$ln(g(x)) = h(g(x)),$$

$$= f(x),$$

$$= ax.$$

Therefore $g(x) = e^{ax}$, where $a \in \mathbb{R}$.

Conversely, let $g(x) = e^{ax}$ for some a in \mathbb{R} .

Thus $g(x+y) = e^{a(x+y)}$,

 $= e^{ax + ay}$

= eax eay,

= g(x)g(y).

Remark 5.3.3 Observe that the function g given in (5.3.2.2) is an isomorphism iff the element a is different from zero.

Theorem 5.3.4 Let I: $(\mathbb{R}, +) \longrightarrow \triangle$ be a continuous function. I satisfies

$$(5.3.4.1)$$
 $I(x + y) = I(x)I(y)$

iff there exists $k \in \mathbb{R}$ such that $I(x) = e^{ikx}$.

Proof Assume that $I: \mathbb{R} \longrightarrow \triangle$ is given by $I(x) = e^{ikx}$ for some k in \mathbb{R} . Then $I(x + y) = e^{ik(x+y)} = e^{ikx}$. $e^{iky} = I(x)I(y)$.

Conversely, assume that I satisfies (5.3.4.1).

Let $f: \mathbb{R} \to \Delta$ be given by $f(\tilde{x}) = e^{2\pi i x}$ where \tilde{x} denotes the equivalence class containing x. Observe that f defines an open isomorphism on \mathbb{R}_2 to Δ .

Put
$$\beta = f^{-1}$$
oI.

Since both I and f^{-1} are continuous, hence β is also continuous. We also have

$$\beta (x + y) = f^{-1}oI(x + y)$$

$$= f^{-1}(I(x)I(y))$$

$$= f^{-1}(I(x)) + f^{-1}(I(y)).$$

$$= \beta(x) + \beta(y).$$

Therefore by Theorem 2.3.1, there exists a $\in \mathbb{R}$ such that $\beta(x) = G(ax) \quad \text{where } \phi \text{ is the canonical mapping from } \mathbb{R} \text{ onto } \mathbb{R}$ Thon

$$f^{-1}oI(x) = \beta(x)$$

$$= \varphi(ax)$$

$$= \overline{ax}$$

Hence,

$$I(x) = f(\overline{ax})$$

$$= e^{2\pi i ax}$$

$$= e^{\frac{\pi}{4}kx} \quad \text{where } k = 2\pi a \in \mathbb{R}.$$

Therefore $I(x) = e^{ikx}$ where $k \in \mathbb{R}$.

Theorem 5.3.5 Let h: $(\mathbb{R}, +) \longrightarrow (\mathbb{C}, \cdot)$ be a continuous function. h satisfies

$$(5.3.5.1)$$
 $h(x+y) = h(x)h(y)$

iff there exists $c \in \mathbb{C}$ such that $h(x) = e^{CX}$.

Proof Assume that $h: \mathbb{R} \longrightarrow \mathbb{C}^*$ is given by $h(x) = e^{Cx}$ for some $c \in \mathbb{C}$. Then

$$h(x + y) = e^{c(x + y)} = e^{cx + cy} = e^{cx} e^{cy} = h(x) h(y).$$

Conversely, assume that h satisfies (5.3.5.1).

Let
$$g(x) = |h(x)|$$
 and $I(x) = \frac{h(x)}{g(x)}$.

Observe that $g: \mathbb{R} \longrightarrow \mathbb{R}^+$,

and $I: \mathbb{R} \longrightarrow \triangle$.

Since h is continuous, so are g and I.

Also,
$$g(x + y) = |h(x + y)|$$

$$= |h(x) h(y)|$$

$$= |h(x)||h(y)|$$

$$= g(x) g(y).$$

By using Theorem 5.3.2, we get $g(x) = e^{ax}$ for some a $\in \mathbb{R}$.

Observe that
$$I(x + y) = \frac{h(x + y)}{g(x + y)},$$

$$= \frac{h(x) h(y)}{g(x) g(y)},$$

$$= \frac{h(x)}{g(x)} \cdot \frac{h(y)}{g(y)},$$

$$= I(x) I(y).$$

By using Theorem 5.3.4, we get $I(x) = e^{ikx}$ for some $k \in \mathbb{R}$.

Thus
$$h(x) = I(x)g(x),$$

$$= e^{ikx} \cdot e^{ax},$$

$$= e^{(a + ik)x}$$

$$= e^{cx}, \text{ where } c = (a + ik) \in \mathbb{C}.$$

Theorem 5.3.6 Let $f: \mathbb{R}^n \to \triangle$ be a continuous function. f satisfies

$$(5.3.6.1)$$
 $f(x + y) = f(x)f(y)$

iff there exist $k_i \in \mathbb{R}$, i = 1, ..., n, such that for each $x = (x_1, ..., x_n)$ we have $f(x) = e^{i(k_1x_1+...+k_nx_n)}$.

Proof Assume that f satisfies (5.3.6.1).

Using Theorem 5.1.5, there exist $f_i: \mathbb{R} \to \Delta$ satisfying $f_i(x + y) = f_i(x)f_i(y) , i = 1, ..., n ,$

such that for each $x \in \mathbb{R}^n$, we have

$$f(x) = \prod_{i=1}^{n} (f_i \circ p_i)(x),$$

where p_i , i = 1, ..., n, is given by $p_i(x_1, ..., x_n) - x_i$. Such an f_i is given by $f_i = fom_i$, where m_i is defined as in the proof of Theorem 5.1.6.

Since f and π_i are continuous, hence each f_i is continuous.

By using Theorem 5.3.4, we have

$$f_j(x_j) = e^{ik_jx_j}$$
 for each $j = 1, ..., n$ and $k_j \in \mathbb{R}$.

Hence,

$$f(x) = \prod_{i=1}^{n} (f_{i} \circ p_{i})(x),$$

$$= f_{1}(x_{1}) \cdot \cdot \cdot f_{n}(x_{n}),$$

$$= e^{ik_{1}x_{1}} \cdot \cdot \cdot e^{ik_{n}x_{n}},$$

$$= e^{i(k_{1}x_{1} + \cdot \cdot \cdot + k_{n}x_{n})}.$$

Conversely, assume that there exist $k_j\in\mathbb{R},\ j=1,\ \ldots,\ n$ such that f(x)=c for each $x=(x_1,\ldots,x_n)\in\mathbb{R}^n.$ Then we have

$$f(x+y) = e^{i(k_1(x_1+y_1) + \cdots + k_n(x_n + y_n))},$$

$$= e^{i((k_1x_1 + \cdots + k_nx_n) + (k_1y_1 + \cdots + k_ny_n))},$$

$$= e^{i(k_1x_1 + \cdots + k_nx_n)} e^{i(k_1x_1 + \cdots + k_nx_n)},$$

$$= e^{i(k_1x_1 + \cdots + k_nx_n)} e^{i(k_1x_1 + \cdots + k_nx_n)},$$

5.4 Continuous Solution of f(xy) = f(x)f(y)

In this section, we shall determine all the continuous solutions of f(xy) = f(x)f(y), where f is a function from R* into C*.

Lemma 5.1.1 Let $f:(\mathbb{R}^+, \cdot) \longrightarrow \mathbb{C}^*$ be a continuous function. f satisfies

$$(5.4.1.1)$$
 $f(xy) = f(x)f(y)$

iff there exists $c \in C$ such that $f(x) = x^c$, where $x^c = e^{c \ln x}$.

Proof Assume that $f: (\mathbb{R}^+, \cdot) \to \mathbb{C}^*$ is given by $f(x) = x^{\mathbf{C}}$ for some c in \mathbb{C} . It can be verified that f satisfies (5.4.1.1) Conversely, assume that f satisfies (5.4.1.1).

Let $g : \mathbb{R} \longrightarrow \mathbb{R}^+$ be given by $g(x) = e^x$. Hence g is a

continuous isomorphism from R onto R+

Put h = fog.

Since f and g are continuous, hence h is also continuous.

We also have

$$h(x + y) = fog(x + y),$$

$$= f(g(x + y)),$$

$$= f(g(x)g(y)),$$

$$= f(g(x)) f(g(y)),$$

$$= h(x)h(y).$$

Therefore by Theorem 5.3.5, there exists $c \in C$ such that for all $x \in R$ $h(x) = e^{cx}$. Hence for all x in R^{\dagger} ,

$$f(x) = f(g(g^{-1}(x)))$$

$$= h(g^{-1}(x))$$

$$= e^{cg^{-1}(x)}$$

$$= e^{c \ln x}$$

Theorem 5.4.2 Let $f:(R^*, \cdot) \longrightarrow C^*$ be a continuous function . f satisfies

$$(5.4.2.1)$$
 $f(xy) = f(x)f(y)$

iff there exists c & C such that

(5.4.2.2)
$$f(x) = |x|^{c}$$
 for all x in \mathbb{R}^{*} ; or $(5.4.2.3)$ $f(x) = \begin{cases} |x|^{c} & x > 0 \\ & |x|^{c} \end{cases}$

Proof
Assume that $f: (\mathbb{R}^*, \cdot) \longrightarrow \mathbb{C}^*$ is given by (5.4.2.2) or (5.4.2.3). Then it can be verified that f satisfies (5.4.2.1).

Conversely, assume that f satisfies (5.4.2.1). Then it can be verified in the same way as in the proof of Theorem 5.2.2 that $(f(-1))^2 = 1$. Hence f(-1) = 1 or -1. Let $f_1 = f|_{\mathbb{R}^+}$. Then f_1 is a continuous homomorphism from \mathbb{R}^+ to \mathbb{C}^* . By Lemma 5.4.1, $f_1(y) = y^2 = |y|^2$ for some $c \in \mathbb{C}$.

Let x be any element of $\mathbb{R}^{"} = \mathbb{R}^{*} - \mathbb{R}^{+}$. Therefore $-x \in \mathbb{R}^{+}$. Thus,

$$f(x) = f((-1)(-x)),$$

$$= f(-1)f(-x),$$

$$= f(-1)(-x)^{C},$$

$$= f(-1)|x|^{C}.$$

If f(-1) = 1, then $f(x) = |x|^c$, hence f is of the form (5.4.2.2). If f(-1) = -1, then $f(x) = -|x|^c$, hence f is of the form (5.4.2.3). Hence f is of the forms (5.4.2.2) or (5.4.2.3).

5.5 Existence of Discontinuous Solution of f(x + y) = f(x)f(y)

The purpose of this section is to provide some examples of a discontinuous solution of f(x + y) = f(x)f(y), where f is a function from $(\mathbb{R}^n,+)$ into $(\triangle$,.). For simplicity, we give examples of discontinuous solutions from \mathbb{R}^3 to \triangle .

Let $H = \{ V_{\alpha} : \alpha \in I \}$ be a Hamel basis of \mathbb{R} over \mathbb{Q} .

By using Corollary 5.1.7, any function $f : \mathbb{R}^3 \longrightarrow \triangle$ satisfying f(x + y) = f(x)f(y) must be of the form

$$f(\sum_{i=1}^{m} a_{1i} V_{\alpha_{i}}, \sum_{i=1}^{m} a_{2i} V_{\alpha_{i}}, \sum_{i=1}^{m} a_{3i} V_{\alpha_{i}}) = \prod_{j=1}^{3} \prod_{i=1}^{m} b_{j} (V_{\alpha_{i}})^{a_{ji}},$$

where b_1 , b_2 , b_3 are functions on H into \triangle .

Let us denote such function f by f_{b_1} , b_2 , b_3 . Hence each triple $b = (b_1, b_2, b_3)$, where $b_j : H \longrightarrow \Delta$, j = 1, 2, 3, defines a function f_b satisfying $f_b(x + y) = f_b(x)f_b(y)$. A discontinuous function f_b satisfying this equation can be obtained by choosing suitable functions b_1 , b_2 and b_3 . We shall first constructed $b_j : H \longrightarrow \Delta$, j = 1,2,3, which will make f_b a discontinuous solution of f(x + y) = f(x)f(y).

Choose three distinct elements V_{α_1} , V_{α_2} , V_{α_3} of H and three nonzero complex number z_1 , z_2 , z_3 , such that $|z_1| = 1$, i = 1, 2, 3, and not all z_1 is are 1.

Define $b_1: H \rightarrow \Delta$, j = 1, 2, 3, by putting

 $b_1(V_{\alpha_1}) = z_1$, $b_1(V_{\alpha}) = 1$ for all $\alpha \neq \alpha_1$ $b_2(V_{\alpha_2}) = z_2$, $b_2(V_{\alpha}) = 1$ for all $\alpha \neq \alpha_2$ $b_3(V_{\alpha_3}) = z_3$, $b_3(V_{\alpha}) = 1$ for all $\alpha \neq \alpha_3$.

By Corollary 5.1.7 f_b satisfies $f_b(x + y) = f_b(x)f_b(y)$.

Next, we show that f_b is not continuous.

Suppose that f_b is continuous. By Theorem 5.3.6, there exist $k_i \in \mathbb{R}$, i=1, 2, 3, such that for any $x=(x_1, x_2, x_3) \in \mathbb{R}$ we have $f_b(x_1, x_2, x_3) = e^{i(k_1x_1 + k_2x_2 + k_3x_3)}$

Observe that $f_b(V_{\alpha_1}, 0, 0) = b_1(V_{\alpha_1})^1 = z_1$, and $f_b(V_{\alpha_1} + V_{\alpha_2}, 0, 0) = b_1(V_{\alpha_1})^1 b_1(V_{\alpha_2})^1 = z_1 \cdot 1 = z_1$ Therefore $f_b(V_{\alpha_1}, 0, 0) = f_b(V_{\alpha_1} + V_{\alpha_2}, 0, 0)$.

to be about the

Since
$$f_b(x_1, x_2, x_3) = e^{i(k_1x_1 + k_2x_2 + k_3x_3)}$$
, hence $e^{ik_1Vat_1} = f_b(Va_1, 0, 0)$

$$= f_b(Va_1 + Va_2, 0, 0)$$

$$= ik_1(Va_1 + Va_2)$$

Therefore e ik_1V_{α} = 1. Thus ik_1V_{α} = $2k\pi i$ for

some integer k. Since $V_{\alpha} \in H$, we have $V_{\alpha} \neq 0$.

Therefore $k_1 = \frac{2k\pi}{V_{\alpha}}$, Similarly we can show that

 $k_1 = \frac{2k'\pi}{V_{\alpha_3}}$ where k' is an integer. Hence

 $2k^{\pi} V_{\alpha} = 2k^{'\pi} V_{\alpha}$

By the choice of z_i , we may assume that $z_1 \neq 1$. Hence $f_b(v_{\alpha_1}, 0, 0) = z_1 \neq 1$, which is a contradiction. Therefore $f_b(x)$ cannot be of the form $e^{i(k_1x_1+k_2x_2+k_3x_3)}$, i.e. f_b is not continuous. Hence there exists a discontinuous solution of f(x + y) = f(x)f(y).

It can be seen that if we choose n distinct elements ${}^{V}\alpha_1, \dots, {}^{V}\alpha_n \quad \text{in} \quad {}^{H} \quad \text{and any n non-zero complex numbers}$ ${}^{z_1}, \dots, {}^{z_n} \quad \text{such that} \quad {}^{|z_i|} = 1, \ i=1, \dots, n, \quad \text{and not all } {}^{z_i} \text{ such that} \quad {}^{|z_i|} = 1, \ \text{and not all } {}^{z_i} \text{ such that} \quad {}^{z_i} \text$

$$b_{j}(V_{\alpha_{i}}) = \begin{cases} z_{j} & \text{if } i = j, \\ \\ 1 & \text{if } i \neq j, \end{cases}$$

then $f_b: \mathbb{R}^n \longrightarrow A$, defined by

$$f_b(\Sigma a_{1i}V_{\alpha_i}, \ldots, \Sigma a_{ni}V_{\alpha_i}) = \prod_{j i} \prod_{j i} v_{j}(V_{\alpha_i})$$
,

is a discontinuous solution of f(x + y) = f(x)f(y).

5.6 Existence of Discontinuous Solution of f(xy) = f(x)f(y)

Theorem 5.6.1 There exist discontinuous solutions of

$$f(x + y) = f(x)f(y)$$

on R to C*.

Proof

Let $H = \{V_{\alpha} : \alpha \in I\}$ be a Hamel basis of \mathbb{R} over \mathbb{Q} .

By using Corollary 5.1.5, any function $f : \mathbb{R} \longrightarrow \mathbb{C}^*$ satisfying f(x + y) = f(x)f(y) must be of the form $f(\sum_{i=1}^{n} a_i V_{\alpha_i}) = \prod_{i=1}^{n} c(V_{\alpha_i})^{a_i}$

where c is a function on H into &*.

Choose two distinct elements V_{α_1} , V_{α_2} of H and nonzero complex number z_1 such that $z_1 \neq 1$.

Define $c : H \longrightarrow c^*$ by putting

$$c(V_{\alpha_1}) = z_1, c(V_{\alpha}) = 1, \text{ for all } \alpha \neq \alpha_1.$$

By Corollary 5.1.5, c defines a function f_c satisfying $f_c(x + y) = f_c(x)f_c(y)$. Similar arguments as given in the proof in Section 5.5 can be used to show that f_c is not continuous. Hence there exist discontinuous solutions of f(x + y) = f(x)f(y).

Theorem 5.6.2 Let $g: \mathbb{R}^+ \to \mathbb{C}^*$ be a function such that g = h o ln where h is a function on \mathbb{R} into \mathbb{C}^* . Then g is continuous if and only if h is continuous.

Proof Assume that h is continuous. Then g = holn, being the composition of two continuous function, is also continuous.

Coversely, Assume that g is continuous. Let 0 be any open set in \mathbb{C}^* . Since g is continuous and ln is open, hence $\ln(g^{-1}(0))$ is an open set in \mathbb{R} . However $h^{-1}(0) = \ln(g^{-1}(0))$, which implies that $h^{-1}(0)$ is open. Hence h is continuous.

Theorem 5.6.3 Let $f: \mathbb{R}^* \to \mathbb{C}^*$ be a function such that f = goh where g is a function on \mathbb{R}^+ into \mathbb{C}^* and $h: \mathbb{R}^* \to \mathbb{R}^+$ is defined by h(x) = |x|. Then f is continuous if and only if g is continuous.

Proof Since $h: \mathbb{R}^* \longrightarrow \mathbb{R}^+$, defined by h(x) = |x|, is continuous and open, hence we can verify in the same way as in the proof of Theorem 5.6.2 that f is continuous if and only if g is continuous

Theorem 5.6.4 There exist discontinuous solutions of

$$f(xy) = f(x)f(y)$$

on R to C*.

<u>Proof</u> Let $h: \mathbb{R} \longrightarrow \mathbb{C}^*$ be a discontinuous solution of

$$h(x + y) = h(x)h(y)$$

The existence of such h is guaranteed by Theorem 5.6.1

Let g = holn, f = gok where $k : \mathbb{R}^* \longrightarrow \mathbb{R}^+$ is defined by k(x) = |x|. By Theorem 5.6.3, f is continuous if and only if g is continuous. By Theorem 5.6.2, g is continuous if and only if h is continuous. Hence f is discontinuous. Therefore discontinuous solutions of f(xy) = f(x)f(y) on \mathbb{R}^* to \mathbb{C}^* exist.