CHAPTER III
GENERAL SOLUTION OF g(xoy-1) = g(x)g(y) + £(x)f(y) ON ABELIAN GROUP.

Let G be an abelian group, T be a fiecld of characteristic
different from 2. 1In this chapter we shall determine all functions

fy 8 : G=——F satisfying the functional equation

(A) g(xoy™ ) = glx)e(¥rat(x)i(y) ,

for all x, y in G. The main result of this chapter is Theorem 3,30,

Definition 3,1 Let G /b¢ ‘any group, F be any field, By a solution

of the functional equation
-
(A) glxoy ') = glx)gly) + f(x)f(y)

on G to F, we mecan an ordered pair (f,g) where f, g are functions

from G into F such that (A) holds for all x, ¥y in @.

Definition 3,2 Tet f, g be any functions from an arbitrary group G

into an arbitrary field F such that (f, g) is a solution of
-1
(4) g(xoy ) = g(x)eg(y) + f(x)f(y) .

The subset H = {x : g(x) = g(e)} will be called the period of g.
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Lemma 3,3 Let f, g be any functions from an arbitrary group G into

an arbitrary field F such that (f, g) is a solution of

(a) gxoy™ ) = g(x)ely) + £(x)E(y) .

Then we have

(3e341) g(x)% £(x)° = g(e) ,

(34342) £(e) = gle) - gle)?,

(3e343) f(x)t(e)) = g(x) = g(x)gle) ,
(34344) g(x7 ) =/ B

(343.5) £/ B or 27 = - £

for allix in G .

Proof Setting 'y = x in (1) we get
-
g(x)2 + f(x)2 = 8(xox [)., . =--gle)
Therefore
2
g(x)2 + £(x) = g(e) ,

for all x in G , i.e. (3.3.,1) holds.

In particular when x = e we have

8(e)%x £(0)% = gle) .

Thus (30302) holds.
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For an arbitrary x , we have

g(x) = g(xoe)

g(x)g(e) + f£(x)f(e) .

Therefore

f(x)f(e) g(x) - g(x)g(e) ,
for all x in G, i.e, (3.3.3) holds.

It follows from (A) that

g(x™) = gledxT") = gte)a(x) + £(e)E(x) .
Hence

glx ) = glx),

for all X in G, ioeo (303.1"’) holdSo

Using (3.3.1) , we have

" = 200 = e
and
ool CRMEC O g T
hence, it follows from (3.3.4) that f(x-1)2 = f(x)a. Therefore
= =
e ) = £(x) or f£(x ') =-£(X)

fOI‘ all X in G’ i‘oeo (3-305) hOldSo
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Lerma 3.4 Let f, g be any functions from an arbitrary group G

into an arbitrary field F such that (f, g) is a solution of

() g(xoy™ ") g(x)e(y) + £(x)E(y).

Then the followings hold for all x in G ;

(3e4e1)  if g(x)

g(e) then f(x) = f(e) ,

(3.4e2)  if g(x) = -g(e) then £(x) = -f(e),

"

(3e4a3) [1 - g(e)} [g(x)z- g(e)?] - 0.

Proof To show (3.4.1)/ ‘we assume that g(x) = g(e) « Trom (3:.3.2)

and (3.3.3) we find that

f(x)f(e) = glx) = g(x)g(e)
= g(e) - g(e)2
! = f(e)2 .
Thus
f(e)[f(x) - f(e)] = o .

Case I . Assume that f(e) # O, It follows that f(x) = f(e) .
Case IT « Assume that f(e) = O . By (3.3.1) and (3.3.2)
we see that

£(x)° gle) - g(x),

gle) - g(e)® ,

]



.....
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£(e)?,

Hence

£(x) 0

u

f(e) .

That is (30“".1) holds.

To show (3.4e2) wo assume that g(x) = ~g(e)s From (3.3.2) and

(3+3e3) we find that

it

f(x)f(e) g(x) = g(x)g(e)

-gle) + g(e)?

= -£(e)",
Thus
f(e) [f(x) + f(e)] = 0,
If f(e) £ 0, then f(Q) = - f(e). Suppose that f(e) = 0. It can

be verified in the same way as Case TI that f(x)2 = 0.

Hence

£(x) = 0 = =f(e).

That is (3.4.2) holds..

From (3.3,3) we find that
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f(x)f(e) = g(x) - g(x)g(e),
= g(x)[ 1 - g(e)] .
Thus
f(x)zf(e)2 = g(x)z[ 1 - 8(6)] 2'
2
0 = g(x)z[:1 - g(e)] 2 - f(x)f(e)z.

Using (3.3.1) and (3.3.2) we obtain

~ 2
s(x)2 [1 - g(e)] - [s(e)-e(x)%][g(e)-g(e)i

o
I

[1 - S(G)J [g(x)z- g(x)ag(e) - s(e)2+s(x)2s(°j

[1 - &) ] [a0? o]

That is (301".3) holds.

Theorem 3,5 Let G be an arbitrary group, F be an arbitrary field.

The only solution of

(4) g(xoy™ ) g(x)8(y) + £(x)£(y)

on G to F such that

(z) gle) 0,

is (f,g) such that f and g are identically zero.

Proof It is clear that if f, g are identically zero, then f, g

satisfy (A) and (Z).
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Suppose that (f, g) is a solution of (A) on G to F such

that g satisfies (Z)e By (3+3.2) we see that

£(e)? gle) - g(e)? = o.

Hence f(e) (08

Using (3.3.3) we have

g(x) = g(x)g(e) + £f(x)f(e) = 0.
Thus g(x) = 0 for all x in G .
It follows from (3.3.1) that
£(x)° = gle) - g(x° = o,
Thus f(x) = 0 for all x in G.
Hence f and g are identically zero.
Lemma 3.6 Let f, g be any functions from an abelian group G

into an arbitrary field F such that (£, g) is a solution of

(A) glxoy™ ) = g(x)ely) + £(x)E(¥).

Then the period H of g is a subgroup of G. If g(e) # 1, then H
ie either all of G or is of index 2 in Ge In the case where H is of

index 2 we have g(x) = -g(e) and f(x) = -f(e) for any x ‘ He

Proof Since e belongs to H, hence H is not empty. Let x, ¥y
be any elements of H. Therefore g(x) = g(e) = g(y). Hence, by

(3.4.1), we have
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f(x) = f(e) = f(y')o Thus,

g(xoy™ ) g(x)g(y) + £(x)£(y),

]

g(e)2 + f(e)2

g(e).

The last equality follows from (3.3.2). Therefore xoy-1 belongs

to H.
Hence H 1is a subgroup of G.

Suppose that g(e) # 1. By (3.4,3) we have S(X)a- 8(6)2= 0,

This implies that g(x)2 = g(e)a. Hence g(x) = £ g(e). Thus,

(30601) {x : 8(x)=t g(e)i is the group Ge

Suppose that H is not all of G. Let xH, yH be any cosets
of H in G such that xH £ H £ yH. Hence x, y do not belong to H,
Therefore g(x) = -g(e) = g(y). Hence, by (3.4,2) it follows that

£(x) = ~£(e) = £(y). Thus

g(xoy™ ) g(x)g(y) + £(x)£(y),

(-g(e))%s (=£(e)F

g(e).

1]

Again, the last equality follows from (3.3.2). Therefore xoy-1
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belongs to H. Hence x, y belong to the same coset. That is

XH = yH, which implies that H is of index 2 in G.

To prove the last argument, assume that H is of index 2
in G. By (3.6.1) we have g(x) = -g(e), for any x ¢ He It

follows from (3.4.2) that f(x) = - f(e), for any x ¢ He

Lemma 3,7 Let f, g be functions from an abelian group G into a
field ' of characteristic different from 2. If (f, g) is a

solution of

() g(xoy™ Y / /Ll g(x)ey) + £(x)E(y)

on G to Fy, then f and g are constant on each coset of the period

of g.

Proof Let H be the period of ge By (3.4e1) we have £(x) = £(e),
for any x in H. By Definition 3«2, Wwe have g(x) = g(e), for any

X € H, Hence, f and g are constant on H.

Let xH be any left coset of H, and y be any element of xH .

Therefore, y = xoh for some h in H.. Thus x = yoh"’I and

g(x)

g(yoh™ )

g(y)g(h) + £(y)f(h)

1

g(y)g(e) + f£(y)f(e)



From (3.3.3) g(v)

n

we have

(3476%)

g(x)

That is, g is constant on each
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g(y)g(e) + f(y)f(e) « Hence

g(y).

coset of Hoe It follows from (3.3,3)

that
£(x) f£(e) = g(x) - g(x)g(e)
= gly) = g(yle(e)
= f(y)f(e).
Case TI. Assume that f(e¢) # O. Hence, it follows that f(x) = f(y).
Case II. Assume that f(e) = 0. Using (3.3.1) and (3.7.1) we have
£(x)° . gle) - g(x)°
- gle) - &(y)°
= £(9)2,
Therefore  f(x) = f(y) or £(x) = =f(y).

Suppose that f£(x) £ f(y).

f(y) = O, we have f(x) = O

and (3.7.,1) we have

g(xoy™ )

1]

n

But,

Hence f(x) = -f(y).

Observe that if

f(y) « Hence f(y) # O,

By (a)

g(x)g(y) + f(x)f(y),



g(xoy-1) g(xo(xoh)-1)

= g(h)

= g(e)

g(y)%+ £(y)°.

The last equality follows from (3.3.1), Thus

g(y)z- f(y)2 g(y)2+ f(y)2

Zi(y)2

n
o
-

Hence f(y) = O, we have a contradiction. Therefore

£(x) =7 f(y)a
Hence f 1is constant on each coset of H.

Theorem 3,8 Let @ be an abelian group, T be a field of

characteristic different from 2. Then the solutions of
(a) glxoy ) = g(x)gly) + £(x)f(y)
on G to F are thosc and only those (f, g) of the form

£(x) = fo(xH) y 8(x) = go(xH)

for all x in G where H is a subgroup of G and (fo, go) is a
solution of

.(A ) so(XoY"1

" ) = go(X)go(Y) ™ fo(X)fo(Y)

26
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on %/ﬁ to F such that g, satisfies

c,) g,(X) # g ()

for any X in g/h such that X # H.

Proof Assume that (f, g) is a solution of (A) on G to F « Let

H be the period of g By Lemma 3,6, H is a normal subgroup of G.

Defined fo, 8, * G/H—_—"* F by
g, = E(x), £ (aH) = £(x).

By Lemma 3,7 we sce that fo’ gl are well defined,

Note that, for any xH, yH in g/ﬁ, we have

g, (xHo (yE) ™) g (xtioy™ 1),

. 8O(XOY-1H5,
= g(xoy™ ),
and
g, (XM)g (V) + £ (x)E (yH) = g(0)g(y) + £(0E(y) = glxoy™ ).
Thus |

go(xHo(yH)_1) = go(xH)go(yH) + fo(xH)fo(yH).

Hence (fo,go) is a solution of (Ao) on qﬁ to T .
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Let x be any element of G such that x ¢~H. Therefore g(x) £ g(e).

Since g(x) = g (xH) and g(e)=g (H), hence
o o

g,(H) £ g (1),

i.€e g, satisfies (Co).

Conversely, suppose that (fo,go) is a solution of (Ao) on
gﬁ to F such that g, satisfies (Co) and fo(xH) = f(x), go(xH) = g(x)

where H is a subgroup of G< Hence

g(xoy 1) gé(XOY-1)H)

i

= 8o(xHoy’1H)
= g (xH)g (yH) + £ (xH)E (yH)

= g(x)g(y) + £(x)f(y).
Therefore (£, g) is a solution of (A).

Remark 3.9 By Theorem 3,8, we sece that to determine all
solutions of (A) on G to F, we neecd to determine the various
subgroups H of G and for each H we need only to determine all

solutions (fo,go) of (Ao)on the quotient group q/H to ' such’

that g, satisfies (Co). Hence it is sufficient to look for any

solution of

(A) g,(xoy™ ) g, (08, (¥) + £ (0T (¥)



29
on any group G such that go satisfies
(C) g,(x) £ 8,(e),
for any x in G such that x £ e.

Lemma 3,10 Let f, g be functions from an abelian group G

into a field F of characteristic different from 2., If (f, g)

is a solution of

(n) g(xoy" 1y = | glx)ey) + £(x)E(y)

on G to F then f 'satisfies ceither

-1
(D) f(x ) = - f(x)
for all x in G 3 or
* 9
(p) £ ()55 = f(x)
for all x in G
Proof Suppose that the lemma is not true . Hence there exist

1

X139 4 in @ such that f(x; ) £ —f(x1) and f(y;1) P4 f(y1) .

By (3+4345) we have f(x;1) = f(x1) and f(jq1) = -f(y1) . Note that if

f(x1) = 0, then we must have f(x;1) = 0 , which implies that

f(xqq) =—f(x1). Hence f(xq) # 0., By a similar argument we have
f(y1) # O.

Therefore

glx007 ) = e(x)ely,) + £(x)2(y,),
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and

It
(01
—~
]
=1
=, 4
o]
—~
e
-
~
Nt

-1
g(y1°x1)

= e(yy et ) + 2y e

I

The last equality follows from (3.3.4). Since G is abelian, hence

g(x1)g(y1) + £(x02(y,) g(x1)g(y1) - f(x1)f(y1).

2f(x1)f(y1) =0
Therefore f(x1) =0/ or f(y1) = O, which is a contradiction.
Hence the lemma is true.
Lemma 3,11 Let f, g be functions from an arbitrary group G

into an arbitrary field F. ~If (f, g) is a solution of
-1
(A) glxoy ) = g(x)s(y) + £(x)f(y)
on G to F such that g satisfies
(B) gle) £ 1,
then f satisfies
* |4
(D) f(x ) = f(x),

for all x in G.
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Proof Note that if g(e) = O, then by Theorem 3,5 we have

f(x) = 0 for all x in G, Hence f(x) = C = f(x-1) for all x in G.

Suppose that g(e) # O, TFrom (3.3.2) and (B) we sce that
f(e) #£ O.

By (3.3e3) we conclude that

f(x) = g(x) [ yr g(e)}
fle)
and
-1 1 1 - g(e)
£(x ) /= glx ) [ }
f(e)
BY (3e3.4) we have g(x-1) = g(x) for all x in G. Hence, it

- X *
follows that f(x 1) = f(x) for all xsin G, i.c. f satisfies (D ).

Lemma 3.72 Let f, g be functions from an abelian group G into
a field F of characteristic different from 2. If (f, g) is a

solution of

(4) g(xoy"1) = g(x)g(y) + £(x)f(y)

on G to F then f, g must satisfies one of the followings :

(3:121) g(le) = 1 and f(x~1) = = f(x) for all x in
(361262) gle) = 1 and f(x-1) = f(x) for all x in
(301203) 8(6) f Te

Proof Assume that (3.123) does not hold. Therefore

G

o

(V1
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g(e) = 1, hence by Lemma 3,10 we have f(x-1) = = f(x) for all
x in G or f(x-1) = f(x) for all x in G, iec.(3.12.1)or (3.12.2)

hOldo

Clearly if (3.12.3) hold, then (3.12.1) and (3.12.2)
cannot both hold. 1In this case, by Lemma 3,11, we have

f(x'1) = f(x) for all x in G .

It is convenient to classify the sclutions of (A)
according to the conditions of Lemma 3,72. This is done in

the following definition,

Definition 3.13 Let /f, g be functions from an abelian group

G into a field F of characteristic different. from 2 such that

(f, 8) is a solution of

() g(x0yT) = s(x)aly) s L(x)E(y)

on Ge to F.

We say that (f,g) is of class GF(I) if f, g satisfy the following

additional conditions :

(8") gle) = 1, and

() x5 8 w8 (x) for all X in G.

We say that (f, g) is of Class GF(II) if f, g satisfy the

following additional conditions :

%k

(B ) g(e) = 1, and
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*

(D) f(x-1) = f£(x) for all x in G.

We say that (f, g) is of Class GF(III) if f, g satisfy the

following additional conditionm :

(B) gle) £ 1.

Remark 2.14 It follows from Lemma 312 that any solution of (A)
on G to F must be of Class GF(I) or Class GF(II) or Class GHIII),
Hence to determine all golutions (f, g) of (A), we nced only to
determine (f, g) of Clésg GF(I), Class GF(II) and Class GF(III) .
Note that if g(e) = O, then (f, g) is of Class GF(III). It follows
from Theorem 3.5 that ¥ and g are identically zero. This solution

will be called the trivial solution.If f or g is not identically

zero, then (f, g) will be called g non-trivial solution. The

functional equation (A) always has a solution on any group G,

namely, the trivial solution.

Theorem 3,15 Let G be an arbitrary group, F be an arbitrary field.

Then the solutions (f, g) of

(a) S glxoyTY = g(x)e(y) + £(x)E(y)

on G to I' such that g satisfies

(B) gle) £ 1,

are those and only those (f, g) of the forms :
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(3615,1) f(x) = by, g(x) = a for all x in G where a, b are
2 2

elements of F such that a £ 1, a ~a” = b" ; or
b , x¢eH a, X ¢ H

(361542) £(x) = » 8(x) =
l-b s X ¢H ~a, x ¢ H

where H is a subgroup of index 2 in G and a, b are elements of

F such that a # 1, a - a2 = b2.

Proof Assume that (f,g) is  a solution of (A) on G to F
such that g satisfies (B). Let g(e) = a, f(e) = b,

and H be the period of g./ It follows from (B) that a gle) £ 1,

1

and follows from (3.342) that

2 2

a - a gle) - g(e)

n

£(e)°

9 g

Hence a = a2 = b2. By Lemma 3.6, H is either all of G or is of

index 2 in G.

Case T. Assume that H is the group G. Thus g(x) = g(e) = a
for all x in Ge By (3.4.1) we have f(x) = f(e) = b for all

x in G. That is, f, g are of the form(3.15.1),

Case TI. Assume that H is of index 2 in G. Let x be any element
of Ge Suppose that x € He We have g(x) = g(e) = a for all x

in He By (3e4e1) we get f(x) = f(e) = b for all x in H.

— - T T
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Suppose that x ¢ He By Lemma 3,6 we have g(x) = -g(e) = - a.

From (3.4,2) we see that f(x) = -f(e) = -b. Hence

b' st a’q er
f(x) = y 8(x) =

b, x¢H -a, x¢H
i.e0 f, g8 are of the form (3.15.2).
Conversely, assume that f,g are of the forms (3.15,1) or (3.15.2)

Case I. Suppose that Ty g are of the form (3.15.1), i.c.

f(x) = b, g(x) = a for all x/in G where a, b are eclements of F

such that a £ 1, a = a? b2.

1

Let x, ¥ be any elements of G. We have g(xoy ) = a, and
X072
g(x)g(y) + f(xX)E(y)s —= a—+—b
= a e

Hence

g(xoy™ ) g(x)g(y) + £(x)E(y)

for all x,y in G, i.c. (f, g) is a solution of (A).

Case II, Assume that f, g are of the form (3.15.2) , that is

b .z &H a 4, XEGH
f(x) = , g(x) =

b, x¢H ~-a , x¢H

11772793 1
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where H is a subgroup of index 2 in @ and a, b are elements of F

such that a £ 1, a - a2 = bZ.

First, we assume that x, y € H. Hence we have xoy-16 H .

Therefore f(x) = b = f(y), g(x) a = g(y), and g(xoy-1) = a o But,

g(x)g(y) + £(x)f(y)

1]
%]
+
o’
"
i)
.

Hence,
8(xoy'1) = B{x)g(y) + £(x)f(y).

Next, we assumec that x, ¥y ¢ He We have g(x) = -a = g(y),

and f(x) = =b = f(y). fTherefore,

g(x)eg(y) + f(x)E(y) (-a)(-a) + (=b)(-b)

— &2+ b2

Since H is of index 2 in ¢, hence xoy-1e H, therefore

: =
g(xoy ')

i

Qe
Hence

g(xoy™ ) g(x)g(y) + £(x)E(y).

]

Note that if x ¢ H and y € H, then yox-1¢ He. Thus
-1 Ty} -1 -1
xoy = (yox ') ¢ H. Hence g(yox ) = -a = g(xoy ).
Therefore, it remains to be considered only the case x ¢ H
and y # He In this case we have xoy'@# H, hence g(x) = a,

gly) = -a , £f(x) = b, f(y) = =b and g(xoy-q) = =a,
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But g(x)a(y) + £(x)£(y) = al-a) + b(=b)
= -a2- b2
—"
Hence
g(xoy™ ) = g(®ely) + £1(x)E(y).
Therefore
glxoy’ ) = @(®ely) + H0E),

for all x,y in G, i.e¢. (f, g) is a solution of (A).
Note that g(e) = a £ 1, hence (B) holds.,

Remark 3,16 Let G be an abelian group, F be a field of
characteristic different from 2. It follows from Theorecm 3,15
that the solutions of (4) of Class GF(III) are those and only

those (f,g) of the forms :

(361641) f(x) = b, g(x) = a for all x in G where a, b are
elements of F such that a £ 1, a - a2 = b2 ; or
b, x €H a, xX€H
(301602) f(X) & ’ g(x) =
-b, x¢H -2, x4 H

where H is a subgroup of index 2 in G and a, b are elements of F

such that a £ 1, a-a = b,
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Lemma 3,17 Let f, g be any functions from an arbitrary

group G into an arbitrary field ¥. If (f, g) is a solution of
=1

(a) g(xoy ') = g(x)g(y) + £(x)f(y)

on G to F such that g satisfies

(8") g(e)

= Te

then the followings hold ;

(3.1741) if £(xVo/0 /then T Y - o,
(31742) if f£(x) /=/0<4(#(y), then f(xoy-1) =0

Proof Using (3.3.1), (3.3.4) ' and (B*) we have

O R (¢ )
and
2(x" PRI SANFIINS;
= 1 - g(x)z,
hence,
(3.17.3)  £(x"H% = £(x)°.

It follows from (3.17.3) that if f(x) = O then f(x-1) = 0,

iece (3.1701) ,h01dSo
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To prove (3.17.2), suppose that f(x) = 0 = f(y). By
(303¢1) and (B*) we have g(x)2 =1 ad g(y)2 = 1. Thus

[s(x)g(y)1 C = 1. Note that
elhoy )= gldely) + £(x)2(y) = g(x)g(y).

Using (3.3.7), we have

f(xoy~ )% = 1 - glxoy HE
= -{:g(x>g<y>] F
= 1 <1
£/ v Qs
Hence f(xoy~ ") = 0, dse. (3.17.2) holds,
Lerma 3,18 Let f, g-be functions from an abelian group G into

an arbitrary field:F,_ If (f, g) is _a.solution of

(4) ' glxoy™ ) vl B0)a(y) ¥ £(x)1(y)

on G to F such that f, g satisfy

*

(B ) gle) = 1,

(D) I(x )= -£(x),

for all x in @, then (f, g) is a solution of

(E) f(xoy) = £f(x)g(y) + g(x)f(y),

iecCe (E) holds for all x, y in G.
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Proof Replacing xoy for y in (A) and using (3.3.4) and (D)

we find'{hat

g(xo(xo0y)™ ") g(x)g(xo0y) + £(x)f(x0¥),

g<x>[fg<x>g<y’1> s f(x)f(y‘“)] + £0x)2(x0¥)

Since G is abelian, we see that

glxo(xoy) ) = gy ) = &(y) .
Therefore,

g(y) = g(x) [g(x)g(y) - f(X)f(y)] + f(x)f(xoy).
Hence,

£(0E(x0y) = &3 - 8(0)%6(y) + (LY,

@ = g(x>2] g(3) + g()E(RE(Y).

Consequently, using (3.3%¢1) and (B*) we obtain

f(x)f(xoy) f(x)ag(Y) + g(x)f(x)f(y),

]

£(x) [f(x)g(y) . g(x)f(y>].
Hence, if f(x) #Z O we have
f(xoy) = f(x)e(y) + 8(x)f(y) .

In the case where f(x) = O and f(y) # O, replacing xoy for x in (4),

we <can Verify in the same way as above that

f(xoy) =  f(Xel(y) + g(x)f(y) .
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L1
If f(x) = 0=f(y), by Lemma 3,17, we have
=1,=1

f(xoy) = f(xo(y ) ) = 0 = f£(x)gly) + a(x)f(y).

Hence (f, g) is a solution of (E).

Lemma 3,19 TLet G be an abelian group, F be a field containing

an element i with the property that 12 = =1 and characteristic

of F is different from 2, Then the solutions (f, g) of

(a) g(xoy™ ) = g®)ely) + E0)E(y)

on G to F such that f, g satisfy

(8") g(e) 2/
and
-
(D) £(x" ) e ~£(x),

for all x in G, are those and only those (f, g) of the form

b, g el ’ o(x) o B s e
2i 2

f(X) =

%
where h is a homomorphism from G into F = F - {O}

Proof Assume that (f, g) is a solution of (A) on G to F such

*k
that f, g satisfy (B ) and (D).

Defined h:G—T by
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(3.1901) h(x) - g(X) + if(X),

*
for all x in G, h is clearly well defined. Using (3.3«1), (B ),

(D) and (3+419.1) we find that
h(x) - g(x) = if(x),
2 2
[h(x) - g(x)] = -f(x)7,
- g(x)2-1 .
Therefore we obtain

(3.19.2) " h(x)° = 2h(k)EEIE 1 0.

From (3.19.2) we see that h(x) # O for any x in G. Hence h is a

E 3
function from G into ¥ Moreover

e
2h(x

g(x)

Bex) o h(ah
2

Similarly, using (3.3.1), (B ), (D) and (3.19.71) we find that
h(x) - if(x) = g(x),

[h(x) - if(x)] G e(x)2,

= 1 - £(x)°.

Therefore we obtain
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n

h(x)a- 2i f(x)h(x) - 1 0,

h(x)a- 1
2i h(x)

f(x)

n

hix) =il
2i

It remains only to be proved that h defined by (3.19.1) is a
homomorphism, that is h(xoy), = h{(x)h(y) for all x, y in Ge.

observe that for any x, y in G we have

h(x)h(y)

[g(x) + i f(x)] [g(y) + i f(y)1

1

[saete) - ttm] + 4 [f(::)g(y) - 20

[g(X)g(y'1) + f(;)f(y'1)] + i f(xoy),

g(xoy) + i f(xoy)

h(xoy).

Here the third equality follows from (3.3.4), (D) and Lemma 3.18;
the fourth and fifth equalities follow from (4A) and (3.19.1)

respectively, Hence h is a homomorphism. Thus,

-1 -1
£(x) = h(x) = h(x ) , g(x) = n(x) + h(x ')

2i 2

for éll X in G

B ¢+ hGTD g . B0 = wGT)
2 ei

Conversely, assume that g(x)
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*
for all x in @ where h is a homomorphism from G into F . Hence

B(x) + h(x") h(y) + h(y" )

g(x)g(y) =
2 2
-1 -1 - -
- h(x)h(y) + h(x) h(y~ ) + h(x )h(y)+h(x Yh(y~ )
L
and
-1 -]
f(x)E(y) = 200 -h(x ) ) - hy )
2i 21
-1 -1 T
_ R (y) - h(x)h(y~ )= h(x_ )h(y)+ h(x" )h(y )
-4
Thus
3] T
g(x)g(y)+2(x)f(y) = 2.BEBGY ) + 2 h(x )h(y)

L

B(x)h(y~ )+ h(x~ " )n(y)

2

- h(xoy-q) + h«xoy-1)-1)

- g(xoy™ ).

That is (A) holds., Also we have

AER 14 hie™ )
2

g(e)

h(e)
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and

1y aGTh) - G

2i

f(x

_ h(x) = h(x™ ")
21

- f(x)o

That is, (B*) and (D) hold .

Theorem 3,20 Let G be an abelian group, F be a field of

characteristic different from 2. Then a solution of
-
(A) glxoy ') = “g(x) gly) + £(x)f(y)

on G to F is of Class GF(I) if and only if fy, g are of the form

- -
Pix} o h(x) = h(x ) = ) = h(x) + h(x )
24 i)

where h is a homomorphism from G into M(F).

Proof  Assume that (f, g) is of Class GF(I), iee.(f, g) is a solution

of (A) on G to F such that f and g satisfy

#*

(B ) g(e) = 1,
and

-1
(D) f(x ) = -f(x).

for all x in G.
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Case T Suppose that F contains an element i. Therefore M(F) = F- {O}.

By Lemma 3,19, it follows that

-] -]
£(x) = h(x) - h(x ) i s h(x) + h(x )
21 2

where h is a homomorphism from G into M(F).

Case TI Suppose that F contains no element i. Therefore
M(F) = JCX(F) » Since f(x), g(x) belong to F, hence they
also belong to C(F) for all x in G. C(F) is now a field of
characteristic different ~from 2 which contain an element i,

hence by Lemma 3.19 we have

-4
f(x) = hix) gih(x ) s g(x)

n(x) + h(x" 1)
« @

where h is a homomorphism from G into C(F) - {O} .
To show that h(x) belongs to M(F) for all x in G, 1let us

recall = that f(x), g(x) belong to F for all x in G, hence by

Lemma 2.1.71 h(x) belongs to Z};(F) = M(F) for all x in G.

-1
Conversely, suppose that g(x) = h(x) + h(x ) £(x) = h(x)-h(x-q)
i =
2 21

where h is a homomorphism from G into M(F) . Tt can be verified
as in Lemma 3,79 that f, g satisfy (n), (B*) and (D)e 1In the

case where M(F) = <ZX(F), it follows from Lemma 2,1.1 that

f(x), g(x) belong to F for all x in G. Hence (fy, g) is a solution

of (A) on G to F of Class GF(I).
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Lemma %.21 Let G be an abelian non-boolean group, I be a field of
characteristic different from 2. Then there does not exist any

(fy 8) of Class GF(II) such that g satisfies

(c) g(x) £ g(e),

for any x £ e.

Proof Suppose that there exists, (f, g) of Class GF(II) such

that g satisfies

(¢) 4 i.e. (f, g) -is & solution of

(A) g(xoy™ )

g(x)g(y) + f(x)f(y)

on G to F such that f, g satisfy

(8) g(e)

AN
(D*) f(x-1) = f(x) for all x in G, and
(c) g(x) # g(e) for any x £ e,

Let x be any element of G such that xaﬁ e. Using (3.3.4)

*
and (D ) we obtain

g(xox)

g(xa)
= g(x) gx ) + £(x) £(x)
= g(x)2 + f(x)2

= g(e).
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Thus g(xa) = g(e) where xaf e, which is contrary to (C).

Hence there does not exisy any (f,g) of Class GF(II) ,

Lemma 3,22 Let G be a boolean group of order 2, F be a field

of characteristic different from 2, Then a solution of
(A) g(xoy™ ") = g(0s(y) + 2(R)I(y)

on G to F such that g satisfies

(c) g(x) # gle),

for any x £ e, is of Class GF(II) if, and only if there exist
2 2

elements ¢, d of F where ¢ #1, c '+ d =1, such that
0, x=¢ 1 X =¢e
f(x) = ’ g(x) =
d, x£e C . X £ e .
Proof Let f, g 9 G=—= T be such that
0O , x=c¢e 1 4 x=¢€
f(x) = s 8(x) =
d , x#£e & s Xfe
where c, d are elements of F such that ¢ £ 1, c2+ d2 = 1. Then

it can be verified that f, g satisfy

() gxoy™ ) = g(x)ely) + L(x)E(y)

for all x, y in G,
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(8") gle) = 1

) g(x) £  gle) foranyxf o,
and

(") f(x"h) -

f(x) for all x in G.

Hence (f, g) is of Class GF(ITI)  such that g satisfies (C).

Conversely, assume that (f, g) is of Class GF(II) such that g
* *

satisfies (C), i.e £, g satisfy (A) , (B ), (C) and (D ) . Let

c = g(xo) and d = f(xo) where X is the element of G such that

* -
X, # es It follows from (B ) and (C) that g(xo) #Z 1, hence

c = g(xo) # e By (3.5.1)%and (B*) we have g(xo)2 + f(xo)2 = 1.

Thus c2+ d2 = 1, _Henee, we have
O, x = & 1 4 x=¢e
f(x) = RDNnegiaeg =
d, x £ e c 5, xfe.

Remark 3,23 Note that when G is the trivial group, i.e. G
contains e alone, we see that (f, g) where f(e) = O and g(e) = 1,

is the only solution of Class GF(II) such that g satisfies (C).

Lemma 3,24 Let £, g Dbe any functions from an arbitrary group G

into an arbitrary field F such that (f, g) is a solution of

() g(xoy ) . g(x)e(y) + £(x)E(y)

and g satisfies
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(c) g(x) £ gle) for any x £ e .

For any x, y in G, if f(x) = £(y) and g(x) = g(y) then x = Ve

Proof Assume that x,y are any elements of @ such that f(x) = f(y),
and g(x) = g(y) . Hence
-1
g(xoy ) = g(x)g(y) + £(x)f(y)
- 80)° + £(x)° A%\
[ "/~/' ‘
“» ‘ \ # /
= g(e). w /

It follows from (C) that xoy-1 = e. Hence x =y ,

Lemma 3425 Let f, g be functions from a boolean group G of order
L into a field F of characteristic different from 2 such that
(fy, 8) is of Class GF(II) and G satisfies (C), then there

exists an element x £ ¢ in ¢ such that g(x) = =1,

Proof Let G be a boolean group of order L, say

G = { Gy X9 X5 x3 } and the multiplication table of ¢ be

as follows :

. e X1 X2 X3
e e X,] X2 X3
x,l X1 e X3 xa
X2 x2 XB e X,]
3[3 X3 X2 X,‘ e
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Assume that (f, g) is of Class GF(II) such that g satisfies (C),

i.ee. fg g: G—>F satisfy

(A) g(xoy™ ) g(x)g(y) + T(x)E(y)

for all x,y in G,

(2") gle) = 1,

(c) g(x) # gle) for any x £ e, and

(D*) f(x-1) = f(x) for all x in G.
Let f(xi) = bi 5 g(xi) = a, fori=1,2,3.,.

*
It follows from (A), (B ),(3.3s1)and the multiplication table of G

that the followings hold :

(3425.1) al+ v - 1,
(3.25.2) al + o - 1,
(3425.3) 3+ b5 = 1,
(3.25.4) aja,+ bob, = 259
(3.25.5) a,854b,by = a,,
(3425.6) a2a3+b2b3 = a,.

Suppose that there does not exist any element x of G



such that g(x) = -1, Hence g(xi) = ay A =1, for i = 1,2,3,

*
It follows from (B ) ad (C) that a; #1 for i = 1,2,3 . Hence

bY (362561), (3¢2542) ad (3.25.3) we have bi #0 for i =1,2,3.

Using (3.2541), (3.25.4), (3.25.5) and (3.25.6) we obtain

a, = [a1a3 + b1b3] [a1a2 + b1b2J + bby
= aza a, + a,a;b.b_ + a.a.b b, + b2b b, + b.b
= 5253 153> =13 17273 23 *
% 01 - b2)a a,74/e/b b b +a.a.b.b. + bob.b. + b.b
- 179273 VB34 1"2 2173 1°2°3% 2°3?
= e, - 528 o/ NBBAN N b b + 525 b + bb
e 19273/ 78812 1\ 12201 "3 + P4PP3 + Db
. 8l e 8 acb b a.b.b. + BB b
= T T PR YEEREEY 41727103 * PP -
Hence
= b -
0 1 [ b1a2a3 e a1a3b2 - a1a2b3 + b1b2b3J
= b‘l [- a2a3 + beBJ + a1 [a3b2 + a2b3]
= b,' [b2b3 - a,' + b2b3J+ a,] [a3b2 + a2b3:,
= 2 b1b2b3 - a,‘b1 + 2, [aBb2 + a2b3} &
Therefore
(302507) 2 bbby + a1[}b1 + azb, + aby ] - 0.

Similarly using (3.25.2), (3:25.4)y (3.25.5) and (3.25.6) we have
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(3.25.8) 2b1b2b3 + 8, [-bZ + aBb1 + a,lb'.5 ] = 0,

and using (3.25.3), (3.25.4) , (3.25.5) and (3.25.6) we have

0.

n

(302509) 2b1b2b3 + 6.3[-133 + a2b1 4 a1b2]

It follows from (3.25.7) and (3.25.8) that

0 = a1[-b1 + a3b2 + a2b3;]-a2 [-bz + a3b1 -+ a1b3J
= 4a1b5 + a,a.b + 8,850y + a5b, - 2,850, - a,8,b5
= b2[a1a3 + aE] - b,] [a,] + a2a3]
= b, [az - 8,85+ az] - b, {a1+ &, - b,by ]
= 2a2b2 - b152b3 - 2a1b1 + b1b2b3 ‘
Thus
a,b,= a,b

171% 2% 3

Similarly, it follows from (3.25.7) and (3.25.9) that

a3b3 = a,lb,] ‘
Hence
a,b a,b
19 171
(3.25.10) a2 = —— 9 513 = T .
2 3
Substitute(3.25.10) in (3.25.5) we have
a,b a,b
171 171
B U + b.b = S
1 b3 173 b2
2 2
/a1b1b2 + b1b2b3 = a,‘b,]b3 ~
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Therefore

(3.25411) a,b

2 .27.
b, [a1+b3]

Similarly, substitute (3,25.10) in (3.25.6) we get

171 10
Hence,
2.2 2. 2
(3025.12) a,]b,‘ + b2b3 = a1b2b3 .

It follows from (3.25411)/ and (3.25.12) that

2,2 2)2 2 2 2
Therefore

2 2 2
(3+25.13) a, [b1 - ba_] = 0 .

From (3425.13) we conclude that

2 2
a, =0 or b,I - b2 = 0

Case I. Suppose that a O. It follows from (3.25.1) that

1

b = 1 Orb,l:-”.

Case 1, Suppose that b, Te It follows from (3.25.4) and (3.25.5)

]

respectively that b= a, and b, = a,.Substitute these in (3.25.6)

2 3 3 2
we have
a2a3 + a2a3 = a; = o,
2a.a = O,

23



55

hence a, =0 or a

Case 1,1 Assume that a, = O. It follows from (3.25.,2) that

Suppose that b2 = 1. Hence g(x1) =a, = 0= a2_= g(xe) and

f(x1) = b1 =1 = b2 = f(xa). It follows from Lemma 3,24 that

X, = X which is a contradiction.,

29

Suppose that b2 ==1e | BY (3.25.4) we have

a1a2 + b1b

W
i

&

0 % 1(=1)

]

= "'1.

It follows from (3.25.3) that b. = O,  which is a contradiction.

3
Case 1,2 Assume that a3 = 0, It can be verified in the same
way as in Case 1,1 that X, = X5 9 b2 = 0, which are contradictions,
Case 2 Suppose that b1 = =1, It follows from (3,25.4) and

(3425.5) respectively that -b. = a_ and -b. = a

5 3 3 Substitute. these

2.
in (3.25.6) we have

ey + (-aa)(—as) = 0,
2a2a3 =, O,
Hence
ay = 0 or a3 = 0O,
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It can be verified in the same way as in Case 1 that these lead

to,_x1 = X5y X, = x3, b, =0, b O, which are contradictions.

3 2
2 2 :
Case II, Suppose that b1 - b2 = O« That is b1 = b2 or b1 = =b
In each case we hgve a1 = a2 or a,| = -az.

Case 1. Assume that b1 = b2, a, = a2. Hence f(x1) = f(x2) and

g(x1) - g(xz). It follows from Temma 3,24 that x = x

1 59 which is

a contradiction,

Case 2. Assume that b,/ 7 b2, a, = =a,. From (3.25.5) we have

=3 A, + b2b = a

273 3 2°

It follows from this and (3%.25,6) that

2b2b3 = a, + a,
= -8, + a,
= O.
Hence
b2b‘3 = O.

Therefore b, =0 or b, = O

2 3
Case 3 Assume that b, = =b,y a4 = a5. It can be verified in the
same way as in Case 2 that b_b, = O, which implies that

b2 =0 or b3 = 0O, We again have a contradiction.
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Case 4 Assume that b, = -b2 » &, = -a,. Trom (3625.4)
we have
a3 = aja, + b,‘b2
= -af - b,]2
= -(a§+ b?)
= ~1.

Hence b3 = O, which is & contradiction. Therefore there exists

x in G such that g(x) = <1. It follows from (C) that x £ e.

Lemma 3,26 Let G = { €y Xys X, x3,} be a boolean group of
order 4, F be a field of characteristic different from 2.
Then a solutions (f, g) of
-1
(A) g(xoy ) = g(x)gly) + £(x)f(y)

on G to F such that g satisfies

(c) g(x) * g(e),

for any x # e, dis of Class GF(II) if, and only if there exist
2 2

elements c, d of F where ¢ # + 1, ¢“+ d = 1, such that
0, x = e or %, v 1, x=¢e
f(x) = d, x = X, s, 8(x)= -1, x = X,
—d’ X = x3 Cy X =X,
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Proof Assume that (f, g) is of Class GF(TI) such that g

satisfies (C), ie.c.f,g satisfy

(a) g(xoy™ ) ” 6(X)s(y) + £(x)E(y)

for all X,y in @G,

(B") g(e) = 1,
(C) g(x) # gle) for any x £ e, and
(D*) ' f(x-1) = f(x) for all x in G.

By Lemma 3.25 , there exists x # ¢ in @ such that g(x) = =1. With
out loss of generality, 'we may assume that g(x1) = =7+ Hence

f(x1) = 0. It follows from (A) and the multiplication table of

G that

g(x1)g(x2) + f(x1)f(x2) = g(i1ox£1) = g(xB).
Therefore
(3.2601) -g(xa) = g(x3).

Suppose that f(xz) = Os Hence, by (3.3.1) and (B*), we have

g(xz) = 1 or g(xz) = =1, S8ince g(e) = 1, it follows from (C)
that g(xz) # 1. Hence g(xa) = =1 = g(xq) and f(x2) =0 = f(x1).

It follows from TLemma 3,24 that X, = X5, which is a contradiction.

Hence f(xz) # O. From (A) and the multiplication table of @

we obtain
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(302602) 8(Xé)g(x3) + f(xz)f(XB) = 8(x1)0

It follows from (3.26.1) and (3.26.2) that

“g(x2)2+ f(xz)f(XB) = -1,
2
f(xz)f(xB) = - [1 - 8(x2) ]
2
= —f(xz) s

The last equality follows from (5.3.1) and (B*) « Hence,

2
f(xa)f(x3) = =f(x,)",
Since f(xz) £0, /we see that f(xj) = - f(x2).
Let ¢ = g(xZ), d = f(xz). We have d # O, hence
* 2 2
c £ t 1. It follows from (3.3.1) and (B ) that ¢ + 4 = 1.
Hence we have
O,y X =7 ,0r X4 1, X = €
£l{x) = dy X = x5 y g(x) = -1, X = X,
-d, x = x3 Cy X = X,
-C, X:X3
where ¢ # X 1 and 02 + d2 = 1.
Lemma 3.27 Let G be a boolean group of order greater than 4,

F be a field of characteristic different from o Then there does

not  exist any (f,g) of Class GF(II) such that g satisfies (C).
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Proof Suppose that there exists (f, g) of Class GF(II) such that

g satisfies (C), i.e. f,g satisfy

() g(xoy™ ") = g(Xely) + £()E(y)

for all x,y in G,

*
(B ) g(e) = )
(c) g(x) # g(e) for any x £ e ; and
* -] A
(D) f(x ) = f(x) for all x in G,
Let X4 X5 be any/elements of G such that they are distinc:

and different from the element €. Since G is a boolean group,

hence H1 ='{ €y X,y XZ’ x1x9 }is a subgroup of G. By Lemma 3258
there exists x £ e in Hy —such that g(x) = -1. We shall assume

that g(xq) = =1, Since IG |:> Lk, there exists X in G such

that %y £ Hy. Hemce H, =<{e, Xo1 Xzy X% } is also a subgroup

of Ge By Lemma 3,25 there exists x in H. such that g(x) = -1e

2

It follows from Lemma 3,26 that for all x £ X, in Hyy g(x) £ -1

Since xz ¢ HH, hence x2x3 ¢ H1. Let z = x, or x_x

3 > « Hence

g(z) = =1 = g(xq) and f(z) = 0 = f(xq). It follows from

Lemma 3,24 that z = X,9 Which is a contradiction, Hence,there

does not exist any (f,g) of Class GF(II) such that g satisfies (C).
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Lemma 3,28 Let G be a boolean group, I be a field of

characteristic different from 2. Then a solution (f,g) of

(A) g(xoy™ ") = g(®ely) + £2(x)E(y)

on G to I' such that g satisfies
(c) g(x) # g(e),

for any x £ e, is of Class GF(II) if, and only if f,g are of

the forms :

(328.1) £(x) = g(x) =

|

2 2
where ¢, d are clements of F such that ¢ £ 4 , ¢ + 4 - 1, if

if
|G‘| = -1 o2 % e
0, x = ¢eor X, [ 1, x =€
(3.28.2) f(x) = dy, x = x2 s  8(x) =< -Te X = %,
-d,x:x3 Cy X = X,
\-C’ X = R
2 2
where ¢, d arc elements of F such that ¢ # % 1, ¢"3x a = 1, if
lG ‘ = L, in other word G is the Klein four group.

Proof Assume that f,g : G — F are of the form (3.28,1) or
(3.28+2), Then it can be verified that (f,g) is of Class GF (II)

such that g satisfies (C).
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Conversely, assume that (f,g) is a solution of (A) such that (£,8)

is of Class GF(II) and g satisfies (C), We shall determine (f,8)

according to the order of @,

Case T Assume that G is trivial, i.e. G contains e alone. By
Remark 3,23, we see that (f,g) where f(e) = 0, g(e) = 1, is the
only solution of Class GF(TI) such that g satisfies (C). Hence

f,g are of the ‘form (3.28.1).

Case IT Assume that @G is of order 2. It follows from Lemma 3,22

that any (f,g) of Class GE(II) such that g satisfies (C) are of the

form

D5 7% = e 1y x = ¢
{3.28.1) f(x) < » 8(x) = J

where ¢y, d are elements of F such that ¢ £ 1, c2+ d2 1.

Case IIT Assume that G dis of order k4, i.e, G is the Klein fou»

group, say G = { €y Xq9 Xy, x3 }. It follows from Lemma 3,25

that (f,g) of Class GF(II) such that g satisfies (C) are of the

form
O, x=¢ or x, j 1, x=¢
£3628.2) £f(x) = dy x = x, s 8(x) =¢ -1, x = X,
01X=X2

{ -2, x'=Xx

where ¢, d are elements of F such that ¢ P 02+ d "= 1.
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Case IV Assume that G is of order greater than L.
It follows from Lemma 3,27 that there does not exist any (f,g) of

Class GF(II) such that g satisfies (C)

Hence, by combining the whole cases we have that f,g are

of the forms (3.28.1) or (3.28.2).

Theorem 3,29 Let G be an abelian group, I be a field of

characteristic different from’'2, Then a solution (f,g) of
-
(4) g(xoy ) = g(x)e(y) + £(x)f(y)
on G to F is of Class GF(II) if and only if f,g are of the forms :

O3~ x'@ H 1, x € H
(342947) f(x) = y 8(x) =

d, x ¥ H Cy X ¢ H

where H is a subgroup of index 2 in G and c,d are elements of T

such that c¢ £ 1, 02+ d2 = 1 : pior

O, x®&H or x1H Ty xeH
(302902) f(x) - d’ X e X2H ? g(x> = —1, X e x.‘H
-d, X € x3H Cy X € xaH

-Cy X @ X, H

3

where H is a subgroup of index 4 in G such that G/H is the

Klein four group and c,d are elements of F such that ¢ £ % 1,
2
c2+ a = 1.
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Proof Assume that f,g : G—3 F are of the forms (3.29.1) or

(342942). Since H is a subgroup of G, hence we can write

fo, By * G/H — F  according to (3.29.1) or (3.29.2) as follows :

(302903) fo(x) = 8o(x) =
d, x £ H cy X £ H

where H is a subgroup of index 2 -in G and c,d are elements of F

such that c % 1y 02+ d2 2774 o

Oy’ x = Hor x,H 14 = H
(3429.4) £(x) /= dy('x = xH » B (%) = <=1, x = x,H
V=dy x = xjH Cy X = x2H
=-Cy X = XBH

where H is a subgroups of index 4/in G such that G/ is the

Klein four group and c,d are elements of F such that ¢ £ f 1,

02+ d2 = 1, By Lemma 3,28, we see that (3.29,3) and (3e29.4)

are the solutions of

() Bo(XoT ™) = g (08D + £ (0 (V)

on q/H to F such that g, satisfies

(c,) g,(X)

A g (H)
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for any X # H « Therefore, it follows from Theorem 3.8 that (f,g)

where f(x) = fo(xH), g(x) = go(xH), is a solution of (A) . Hence

(fy8) of the forms (3.29.1) or (3429.2) is a solution of (A) of ‘
Class GF (II). Conversely, assume that (fyg) is of Class GF(II).

By Theorem 3,8, we have f(x) = fo(xH) y-8(x)_= go(xH) where

H is a subgroup of G and (fo,go) is a solution of

(a,) Bo(X0Y ) = g g (1) + £ (0 (D)
on %/H to F such that 8, satisfies

(Co) go(x) £ go(H) for any X £ H.

Observe that (fo,go) is of Class GF(II) such that 8,
satisfies (Co).
Suppose thats the quotient group qﬁ is not a boolean group,

hence G/H is a non-boolecan abelian group. By Lemma 3,21, there

does not exist any (fo,go) of Class GF(II) such that g, satisfies
(Co), we have a contradiction. Hence %/h is the boolean group.
It follows from Lemma 3,28 that £f,186, are of the forms (3.29.3)

or (3.29.4). By Theorem 3.8 it follows that f,g8 are of the forms

(302901) or (3029.2).

Theorem 3,30 Let G be an gbelian group, I be a field of

characteristic different from 2. Then the sclutions of



66

(n) glxoy™ ) = g(0)ely) + L)L)

on G to T are those and only those (f,g) of the forms :

(3630,1) f(x) =b, g(x) = a for all x in G, where a,b are
elements of F such that a £ 1, a - a2 = b2 or

.
== )

by, x€H a, X6 H
y 8(X) =

b, “x ¢ H -a, x ¢ H

(3430,2) f(x)

i

where H is a subgroup 6f index 2 in G and a,b are clements of F

T L]

such that a £ 1, a ~ a2 = b2- or

[ O, x€H 1, xE€H
(3-3003) f(x) =

: v 8(x) =
1 d, x¢H c, x¢4H

where H is a subgroup of index 2 in G and cyd are elements of F

such that ¢ £ 1, c2+ d2 = 13 or

Oy x €& H or x,H 1, x € H
(3e30.4) f(x) = dy x & xH s B8(x) =J -1, xe x,H
{ -d, x € x3H Cy X & x2H

-Cy X G x3H
where H is a subgroup of index 4 in G such that G/H is the Klein
four group and c,d are clements of F such that ¢ £ * 1

02+ d2 =13 or

9

h(x) + h(x" )
2

-1
(3.30.5) px) = BELSBE ) g o

where h is a homomorphism from G into M(F).
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Proof Assume that (f,g) is a solution of (A) on G, By Remark

314, (f,g) must be of Class GF(I) or Class GF(II) or Class GF(III).

By Theorem 3,20, we sec that (f,g) is of Class GF(I) if and

only if there exists a homomorphism h from G into M(F) such that

- .
(3430.5) f(x) = B =hx ) oy h(x) + h(x)

el =

for all x in G.

By Theorem 3,29, we see¢ that (f,g) is of Class GF(IT) if

and only if f,g are of the forms:

Qi % € H 1
(3.30.3) f(x) = y 8(x) =

@ f H c, x¢H

where H is a subgroup of index 2 in @ and c,d are elements of F

such that ¢ £ 1, 654 a> = 1

: OF
0 yux € H/or X (1 ,x6H
(3630.4) f(x) = dy x & xH v 8(x) =4-1 , x € x,H
-d , x¢e x3H C 4 X € xZH

=C 4 X € x3H

where H is a subgroup of index 4 in ¢ such that G/H is the Klein

2
four group and c¢,d are elements of T such that c £ % 1, c2+ a="1.

By Remark 3,16, we see that (f,g) is of Class GF(IIT) if

and only if f,g are of the forms:
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(3.30.1) f(x) = b, g(x) = a for all x in G where a,b are
elements of F such that a £ 1, a = & - bz, or
b,XGH a'XEH
(343042) (x) = y 8(x) =
-b, x ¢ H wa, x ¢ H

where H is a subgroup of index 2 in G and a,b are elements of F

such that a £ 1, a - a2 = ba.

Hence (f,g) is a solution of (A) if and only if f and g
are of the forms (343%0,1) or (3.30.2) or (3.30e3) or (3.30.,4)
or (3.30.5).

Remark 3,31 Note.that if G is any abelian group which has no

subgroup of index 2, then it follows that G has no subgroup of
index 4 such that G/n is the Klein four group. By Theorem 3,30,
there does not exist any (f,g) of the forms (3.30.2) or (3.30.3)

or (3.30.4)., Hence the solutions of
-
(a) g(xoy ') =  g(x)egly) + £(x)f(y)
on G to F are those and only those (f,g) of the forms :

(F3s351:1) f(x) = b, g(x) =a for all x in G where a,b are

2

elements of F such that a # 1, a - % 5 y Or

-1 ' -1
(3.31.2) f(X) - h(x) - h(x ) , g(x) = h(x) + h(x )

i § 2

where h is a homomorphism from G into M(F).




	Chapter III General Solution of G(Xoy) = G(X)G(Y) + F(X) F (Y) on Abelian Group

